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Abstract

This paper is concerned with the qualitative property of the ground state solutions for the Hénon equation. By studying a limiting
equation on the upper half space RN+ , we investigate the asymptotic energy and the asymptotic profile of the ground states for the
Hénon equation. The limiting problem is related to a weighted Sobolev type inequality which we establish in this paper.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Nous nous intéresserons, dans cet article, aux propriétés qualitatives des fonctions minimisantes (ou « ground state solutions »)
de l’équation d’Hénon. L’étude d’une équation limite dans le demi-espace supérieur RN+ , nous renseignera sur l’énergie et les
caractéristiques limites des fonctions minimisantes de l’équation d’Hénon. Notons que le problème limite est en relation avec une
inégalité de Sobolev pondérée que nous établirons également.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this paper we investigate the Hénon equation [9]

�u + |x|αup = 0, u > 0 in Ω, u = 0 on ∂Ω, (1)

where Ω is a bounded domain in RN . For α � 0, 2 < p + 1 < 2∗ := 2N
N−2 (in the case N = 1,2, 2∗ = +∞), it is easy

to show that
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I all,α(Ω) ≡ inf
u∈H 1

0 (Ω)\{0}

∫
Ω

|∇u|2 dx

(
∫
Ω

|x|α|u|p+1 dx)
2

p+1

is achieved by a positive function u, which by re-scaling gives a ground state solution of (1). I all,α(Ω) is called the
ground state energy, or the least energy. Numerical computations [6] suggest that when Ω is the unit ball B(0,1), for
some parameter α the ground state solutions are nonradial. This was confirmed recently in an interesting paper [14],
in which it was proved that for each 2 < p + 1 < 2∗ and N � 2, there exists α∗ such that for α > α∗ the ground states
are nonradial. In fact, the authors there compared I all,α(B(0,1)) with another minimization problem

I rad,α
(
B(0,1)

) ≡ inf
u∈H 1

0 (B(0,1))\{0}, u(x)=u(|x|)

∫
B(0,1)

|∇u|2 dx

(
∫
B(0,1)

|x|α|u|p+1 dx)
2

p+1

.

It was shown that, if p ∈ (1, (N + 2)/(N − 2)) and N � 2, for sufficiently large α > 0,

I all,α(
B(0,1)

)
< I rad,α

(
B(0,1)

)
.

More precisely, for N � 2, they showed that

lim
α→∞

(
N

α + N

) p+3
p+1

I rad,α
(
B(0,1)

) ∈ (0,∞),

and that for some c > 0, as α → ∞
I all,α(

B(0,1)
)
� cα

2−N+ 2N
p+1 .

Our main interest in this paper is about the asymptotic profiles of both the nonradial ground state solutions and the
radial ground states. This is a natural question along the line of the study and has not been addressed at all. In order
to study the asymptotic profile of the ground state solutions we need to develop finer estimates on the ground state
energy than those given above and to derive a limiting equation for the problem, which is essential to determining
the asymptotic shape of the ground states. It turns out that the following minimization problem serves as the limiting
problem for Eq. (1):

JN,β(Ω) ≡ inf

{∫
Ω

|∇u|2 dx

∣∣∣∣
∫
Ω

exp(−βt)up+1 dt dy = 1, u ∈ H(Ω)

}
,

where Ω = (0,∞) × RN−1, H(Ω) is the completion of C∞
0 (Ω) with respect to the norm ‖u‖2 = ∫

Ω
|∇u|2 dx, and

β > 0 and N is the dimension. More precisely, we shall prove that for any N � 1 and p > 1

lim
α→∞

(
N

α + N

) p+3
p+1

I rad,α
(
B(0,1)

) = ∣∣SN−1
∣∣(p−1)/(p+1)

J1,N ,

and that for any N � 1 and p ∈ (1,2∗ − 1)

lim
α→∞

(
N

α + N

)N+2−(N−2)p
p+1

I all,α(
B(0,1)

) = JN,N .

Furthermore, through a more delicate analysis, we find asymptotic profiles of the minimizers of I all,α(B(0,1)) and
I rad,α(B(0,1)) as α → ∞. Roughly speaking, under suitable transformations the minimizers of I all,α(B(0,1)) con-
verge to the minimizer of JN,N(Ω) and the minimizers of I rad,α(B(0,1)) converge to the minimizer of J1,N (Ω). The
precise statements will be given in Sections 3 and 4. As a byproduct of our analysis, we show that symmetry breaking
occurs for all N � 1. On the other hand, in order to study the limiting equations, in Section 2 we first establish some
weighted Sobolev type inequalities in the half space RN+ . These inequalities should be of independent interest of their
own.

In recent years, extensive work have been done for analyzing limiting profiles of least energy solutions of singularly
perturbed elliptic problems including elliptic Dirichlet, Neumann boundary value problems and nonlinear Schrödinger
equations in RN . Symmetry breaking of ground state solutions has been observed for some of these problems where
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the problems are radially invariant. Most of these problems have an associated limiting problem which are usually of
the following form [1]

−�u + u = f (u) in RN.

The existence and uniqueness of the ground state solutions for the limiting problems are used to get information for
the ground state solutions of the singularly perturbed problems. For Hénon equation (1) we see that the appropriate
limiting equation is more complicated. The analysis of the limiting equation will be done in Section 2. After getting
information for the limiting problem we shall study the asymptotic property of both the radial ground state solutions
and nonradial ground state solutions of the Hénon equation (1). These are done in Sections 3 and 4, respectively.

2. Limiting equations and a weighted Sobolev type inequality

As we mentioned, by a suitable transformation of the ground states, we obtain, in Section 3, the following limiting
problem for Eq. (1).

�u + exp(−βt)up = 0, u > 0 in (0,∞) × RN−1,

u = 0 on ∂
(
(0,∞) × RN−1

)
,

(2)

where β > 0.
In this section, we shall first study this equation. In fact, we shall work on more general situations and consider more

general domain Ω than (0,∞) × RN−1. Let (t, y) ∈ (−∞,∞) × RN−1. Let Ω be a domain in (−∞,∞) × RN−1.
Throughout this section, we assume that there exists L > 0 such that

Ω ⊂ (−L,∞) × RN−1.

It is well known that there exists no solution for

�u + up = 0, u > 0 in (0,∞) × RN−1, u = 0 on {0} × RN−1.

Moreover, for p ∈ [1, (N + 2)/(N − 2)),

sup
ϕ∈C∞

0 ((0,∞)×RN−1)\{0}

(
∫
(0,∞)×RN−1 |ϕ|p+1 ds dy)2/(p+1)∫

(0,∞)×RN−1 |∇ϕ|2 ds dy
= ∞.

On the other hand, we have the following weighted Sobolev inequality.

Proposition 2.1. Let p ∈ [1, (N + 2)/(N − 2)] for N � 3, p ∈ [1,∞) for N = 1,2 and β > 0. Then, there exists a
constant C > 0, depending only on β,p,N and L, such that for any ϕ ∈ C∞

0 (Ω),(∫
Ω

exp(−βt)|ϕ|p+1 ds dy

) 2
p+1

� C

∫
Ω

|∇ϕ|2 ds dy.

Proof. Since exp(−βt) � exp(βL) in Ω , the case p = (N + 2)/(N − 2) for N � 3 comes from Sobolev inequality.
Let ϕ ∈ C∞

0 (Ω). We see from integration by parts and Cauchy’s inequality that

∞∫
−∞

exp(−βt)
(
ϕ(y, t)

)2 dt = 2

β

∞∫
−∞

exp(−βt)ϕ(y, t)ϕt (y, t)dt

� 1

2

∞∫
−∞

exp(−βt)
(
ϕ(y, t)

)2 dt + 8

β2

∞∫
−∞

exp(−βt)
(
ϕt (y, t)

)2 dt. (3)

Then, it follows that
∞∫

exp(−βt)
(
ϕ(y, t)

)2 dt � 16

β2

∞∫
exp(−βt)

(
ϕt (y, t)

)2 dt. (4)
−∞ −∞
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Thus, by integrating both sides over RN−1 in above inequality, we deduce that for any ϕ ∈ C∞
0 (Ω),∫

Ω

exp(−βt)
(
ϕ(y, t)

)2 ds dy � 16

β2

∫
Ω

exp(−βt)
(
ϕt (y, t)

)2 ds dy

� 16

β2
exp(βL)

∫
Ω

∣∣∇ϕ(y, t)
∣∣2 ds dy. (5)

This proves the case p = 1.
From now on, we assume that p ∈ (1,2∗ − 1).
Let N � 3. Since p + 1 ∈ (2,2N/(N − 2)), there exists s ∈ (0,1) such that p + 1 = 2s + (1 − s)2N/(N − 2).

Then, from Hölder’s inequality, we see that∫
Ω

exp(−βt)
(
ϕ(y, t)

)p+1 ds dy �
(∫

Ω

exp(−βt)φ2 ds dy

)s(∫
Ω

exp(−βt)φ2N/(N−2) ds dy

)1−s

� exp(βL)

(∫
Ω

exp(−βt)ϕ2 ds dy

)s(∫
Ω

ϕ2N/(N−2) ds dy

)1−s

. (6)

Then, by Sobolev inequalities, there exists a constant C > 0 that ϕ ∈ C∞
0 (Ω),∫

Ω

exp(−βt)
(
ϕ(y, t)

)p+1 ds dy � C

(∫
Ω

∣∣∇ϕ(y, t)
∣∣2 ds dy

)(p+1)/2

.

Thus, the case of N � 3 is finished.
For the case N = 1, we see that

exp

(
− βt

2(p − 1)

)
ϕ(t) =

t∫
−∞

− β

2(p − 1)
exp

(
− βs

2(p − 1)

)
ϕ(s) + exp

(
− βs

2(p − 1)

)
ϕ′(s)ds. (7)

Thus, it follows from Cauchy’s inequality and (7) that for some C = C(p,β,L) > 0,

sup
t∈(−∞,∞)

∣∣∣∣exp

(
− βt

2(p − 1)

)
ϕ(t)

∣∣∣∣
2

�
(

β

2(p − 1)

)2 ∞∫
−L

exp

(
− βs

2(p − 1)

)
ds

∞∫
−∞

exp

(
− βs

2(p − 1)

)(
ϕ(s)

)2 ds

+
∞∫

−L

exp

(
− βs

2(p − 1)

)
ds

∞∫
−∞

exp

(
− βs

2(p − 1)

)(
ϕ′(s)

)2 ds

� C

∞∫
−∞

(
ϕ′(s)

)2 ds.

Then, for any p � 1, we deduce from (5) that for some C = C(β,p,L) > 0,

∞∫
−∞

exp(−βt)
(
ϕ(t)

)p+1 dt � sup
t∈(−∞,∞)

∣∣∣∣exp

(
− βt

2(p − 1)

)
ϕ(t)

∣∣∣∣
p−1 ∞∫

−∞
exp

(
−βt

2

)(
ϕ(t)

)2 dt

� C

( ∞∫
−∞

(ϕ′)2 dt

)(p+1)/2

.

For the case N = 2, we see that
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exp

(
−β

2
t

)∣∣ϕ(y, t)
∣∣ �

y∫
−∞

exp

(
−β

2
t

)∣∣∣∣∂ϕ(y, t)

∂y

∣∣∣∣dy,

exp

(
−β

2
t

)∣∣ϕ(y, t)
∣∣ �

t∫
−∞

exp

(
−β

2
t

)∣∣∣∣∂ϕ(y, t)

∂t

∣∣∣∣ + β

2
exp

(
−β

2
t

)∣∣ϕ(y, t)
∣∣dt.

Then, multiplying each sides and integrating over Ω , we see that

∫
Ω

exp(−βt)
(
ϕ(y, t)

)2
dt dy �

(∫
Ω

exp

(
−β

2
t

)∣∣∇ϕ(y, t)
∣∣ds dy

)2

+ β

2

∫
Ω

exp

(
−β

2
t

)∣∣∇ϕ(y, t)
∣∣ds dy

∫
Ω

exp

(
−β

2
t

)∣∣ϕ(y, t)
∣∣dt dy.

Replacing ϕ by ϕm in above inequality, we deduce from Cauchy’s inequality that

∫
Ω

exp(−βt)ϕ2m �
(∫

Ω

exp

(
−β

2
t

)
m|ϕ|m−1|∇ϕ|

)2

+ β

2

∫
Ω

exp

(
−β

2
t

)
m|ϕ|m−1|∇ϕ|

∫
Ω

exp

(
−β

2
t

)
|ϕ|m

� m2
∫
Ω

exp

(
−β

2
t

)
ϕ2(m−1)

∫
Ω

exp

(
−β

2
t

)
|∇ϕ|2

+ mβ

2

(∫
Ω

exp

(
−β

2
t

)
ϕ2(m−1)

∫
Ω

exp

(
−β

2
t

)
|∇ϕ|2

) 1
2
∫
Ω

exp

(
−β

2
t

)
|ϕ|m.

Thus, there exists C = C(m,β,L) > 0 such that for any ϕ ∈ C∞
0 (Ω),

∫
Ω

exp(−βt)ϕ2m � C

∫
Ω

exp

(
−β

2
t

)
ϕ2(m−1)

∫
Ω

|∇ϕ|2

+ mβ

2

(∫
Ω

exp

(
−β

2
t

)
ϕ2(m−1)

∫
Ω

|∇ϕ|2
) 1

2
∫
Ω

exp

(
−β

2
t

)
|ϕ|m.

Then, if it holds that for some C = C(m,β,L) > 0,(∫
Ω

exp

(
−β

2
t

)
|ϕ|m

)2/m

� C

∫
Ω

|∇ϕ|2, (8)

and (∫
Ω

exp

(
−β

2
t

)
ϕ2(m−1)

)1/(m−1)

� C

∫
Ω

|∇ϕ|2, (9)

it follows that for some C = C(m,β,L) > 0,(∫
Ω

exp(−βt)ϕ2m

)1/m

� C

∫
Ω

|∇ϕ|2. (10)

Note from (5) that (8) and (9) hold for m = 2. Therefore, we deduce by induction that (10) holds for any m � 1. This
completes the proof. �
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We define H(Ω) to be the completion of C∞
0 (Ω) with respect to the following norm

‖u‖ ≡
(∫

Ω

|∇u|2 dt dy

)1/2

.

Remark 2.1. We note that, due to Sobolev embedding, H(Ω) = D
1,2
0 (Ω) is well defined for N � 3 and any domain

Ω ⊂ RN . Proposition 2.1 assures that the space H(Ω) is also well defined as a space of functions for N = 1,2 if there
exists L > 0 such that Ω ⊂ (−L,∞) × RN−1.

Now, we are interested in the existence of a ground state solution of (2). As we will see in the following, the
existence depends on the shape of ∂Ω . The following condition (referred as E-condition later) is a natural one, in a
technical reason, for the existence of a ground state solution. The existence will be given in Proposition 2.3. We do
not know whether this condition is optimal or not (see Proposition 2.7 and [3] for related results).

Definition 2.2. We say that Ω satisfies E-condition if there exists a fixed point y0 = (y0
1 , . . . , y0

N−1) ∈ RN−1 such that
for any (t, y1, . . . , yN−1) ∈ Ω and s1, . . . , sN−1 ∈ [−1,1],(

t, y0
1 + s1

∣∣y1 − y0
1

∣∣, . . . , y0
N−1 + sN−1

∣∣yN−1 − y0
N−1

∣∣) ∈ Ω,

or if for each T > 0, Ω ∩ ((−L,T ) × RN−1) is bounded.

Proposition 2.3. Let p ∈ (1,2∗ − 1) and β > 0. Suppose that a domain Ω satisfies E-condition. Then, there exists a
minimizer u ∈ H(Ω) of the following minimization problem

JN,β(Ω) ≡ inf

{
‖u‖2

∣∣∣∣
∫
Ω

exp(−βt)up+1 dt dy = 1, u ∈ H(Ω)

}
.

To prove Proposition 2.3, we need some preparation. We first consider an eigenvalue problem

d2φ

dt2
+ λ exp(−βt)φ = 0 on (0,∞),

φ(0) = 0, (11)

φ ∈ H
(
(0,∞)

)
.

Let s = 2
√

λ
β

exp(−β
2 t) and w(s) = φ(t). Then, it follows that

d2w

ds2
+ 1

s
ws + w = 0. (12)

Note that for some C > 0,

∣∣φ(t)
∣∣ =

∣∣∣∣
t∫

0

φ′(s)ds

∣∣∣∣ �
√

t

( ∞∫
0

|φ′|2 dt

)1/2

� C
√

t .

This implies that for some C > 0,∣∣w(s)
∣∣ � C

(
1 + |log s|)1/2

.

There are two kinds of solutions, Bessel functions of the first kind J0 and the second kind N0, for (12). Since N0(s) ∼=
log s near 0, it follows that w(s) = J0(s). The Bessel function of the first kind J0(s) is given by

∑∞
n=0

(−1)n

(n!)2 ( s
2 )2n. Let

j1 < j2 < · · · be the positive zeros of J0. Then, it is well known that

J0(s) =
∞∏

n=1

(
1 − s2

(jn)2

)
.

Thus, we have the following lemma.
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Lemma 2.4. The eigenvalues {λβ,n}∞n=1 of (11) are given by

λβ,n = (jn)
2β2

4
, n = 1,2, . . . .

The eigenfunction φβ,n corresponding to λβ,n is given by

φβ,n(t) = J0

(
2
√

λβ,n

β
exp

(
−β

2
t

))
, t ∈ [0,∞).

Proof of Proposition 2.3. Let {vn}n be a minimizing sequence of JN,β(Ω). Since H(Ω) is the completion of C∞
0 (Ω),

we can assume that {vn}n ⊂ C∞
0 (Ω). We take T 1

n , T 2
n > 0 such that for each positive integer n,

supp(vn) ⊂ {
(t, y) ∈ Ω | −L < t < T 1

n , |y| < T 2
n

}
,

and that for each i = 1,2, T i
1 < T i

2 < · · · and limn→∞ T i
n = ∞. Define

Dn ≡ (−L,T 1
n

) × {
y ∈ RN−1 | |y| � T 2

n

}
.

When Ω ∩ ((−L,T 1
n ) × RN−1) is bounded, we can take larger T 2

n so that Ω ∩ ((−L,T 1
n ) × RN−1) ⊂ Dn. Then,

we consider a following minimization problem

In ≡ inf

{
‖u‖2

∣∣∣∣
∫

Ω∩Dn

exp(−βt)up+1 dt dy = 1, u ∈ Hn \ {0}
}
,

where Hn ≡ H
1,2
0 (Ω ∩ Dn). Since Dn is bounded, there exists a nonnegative minimizer un of In for each n � 1. It is

easy to see that In → JN,β(Ω) as n → ∞.
When Ω ∩ ((−L,T 1

n ) × RN−1) is not bounded, from a Steiner symmetrization (refer [10]), we can assume that
un(t, y

0 + z) is even with respect to each of the components of z = (z1, . . . , zN − 1) and is monotone decreasing in
each of the components of z. Then, {un}n is also a minimizing sequence of JN,β(Ω), and limn→∞ In = JN,β(Ω).

Moreover, we see that

�un + In exp(−βt)(un)
p = 0 in Ω ∩ Dn,

un > 0 in Ω ∩ Dn, (13)

un = 0 on ∂(Ω ∩ Dn).

Note that

�un + In exp(−βL)(un)
p � 0 in Ω ∩ Dn,

un = 0 on ∂(Ω ∩ Dn).

Then, since {‖un‖L2N/(N−2)}n is bounded for N � 3, from a uniform L∞-estimate [2, Proposition 3.5], we see that
{‖un‖L∞}n is bounded for N � 3. For N = 1, it follows that for some C > 0,

un(t) =
t∫

−L

u′
n(s)ds �

√
t + L

( ∞∫
−L

∣∣u′
n(s)

∣∣2 ds

)1/2

� C
√

t .

For N = 2, we use the Green function on the upper half plane. Then there is a constant C > 0,

u(t − L,x) � C

∞∫
0

∞∫
−∞

log
(t + s)2 + (x − y)2

(t − s)2 + (x − y)2
exp(−βs)up(y)dy ds.

Since {∫ ∞ ∫ ∞ exp(−βs)(un)
p+1(y)dy ds}n is bounded, from Hölder’s inequality, it follows that for some C > 0,
0 −∞
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(
un(t − L,x)

)p+1 � C

∞∫
0

∞∫
−∞

(
log

(t + s)2 + (x − y)2

(t − s)2 + (x − y)2

)p+1

exp(−βs)dy ds

� C exp(−βt)

∞∫
−t

∞∫
−∞

(
log

(s + 2t)2 + (x − y)2

s2 + (x − y)2

)p+1

exp(−βs)dy ds

= C exp(−βt)

∞∫
−t

∞∫
−∞

(
log

(
1 + 4t (s + t)

s2 + (x − y)2

))p+1

exp(−βs)dy ds

= C exp(−βt)

∞∫
−t

∞∫
−∞

(
log

(
1 + 4t (s + t)

s2 + y2

))p+1

exp(−βs)dy ds.

Note that log(1 + a) � a for a > 0. Thus, for some constant C > 0 and t > 0,

∞∫
−t

∞∫
−∞

(
log

(
1 + 4t (s + t)

s2 + y2

))p+1

exp(−βs)dy ds

=
∫

(−t,∞)×(−∞,∞)∩B(0,1)

(
log

(
1 + 4t (s + t)

s2 + y2

))p+1

exp(−βs)dy ds

+
∫

(−t,∞)×(−∞,∞)\B(0,1)

(
log

(
1 + 4t (s + t)

s2 + y2

))p+1

exp(−βs)dy ds

�
1∫

0

2π∫
0

(
log

(
1 + 4t (1 + t)

r2

))p+1

exp(−βr sin θ)r dθ dr + (4t)p+1

1∫
−1

∞∫
s=

√
1+y2

(s + t)p+1 exp(−βs)ds dy

+ (4t)p+1

1∫
−1

s=−
√

1+y2∫
s=−t

(s + t)p+1 exp(−βs)ds dy + (4t)p+1
∫

|y|�1

∞∫
s=−t

(
(s + t)

y2

)p+1

exp(−βs)ds dy

� Ct(1 + t) + Ctp+1

∞∫
−t

∞∫
s=−t

(s + t)p+1 exp(−βs)ds

� C
(
t (1 + t)

)p+1 exp(βt).

This implies that there exists a constant C > 0, independent of n � 1, such that

un(t, x) � C(1 + t)C, t > 0. (14)

Having established some upper bounds we need an estimate from below for the L∞ norm. From Proposition 2.2
and the fact that∫

Ω∩Dn

|∇un|2 dx dt � In‖un‖p−1
L∞

∫
Ω∩Dn

exp(−βt)(un)
2 dx dt,

we see that the set {‖un‖L∞}n is bounded away from 0.
Next, we consider the convergence of un and we consider several cases. First, for N = 1, it is easy to see that

lim
T →∞

∞∫
exp(−βt)(un)

p+1 dt = 0 uniformly with respect to n = 1,2, . . . .
T
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Since {un}n is bounded in H , un converges weakly to some u in H . Then,∫
Ω

exp(−βt)up+1 dt = 1.

This implies that u is a minimizer of J1,β(Ω).
For the case N � 2, we claim that for sufficiently large T > 0,

lim inf
n→∞ sup

{
un(t, y) | −L < t < T, (t, y) ∈ Ω ∩ Dn

}
> 0.

Suppose that it is not true. Then, for any T > 0,

lim inf
n→∞ sup

−L<t<T, (t,y)∈Ω∩Dn

un(t, y) = 0.

Taking a subsequence if necessary, we can assume that for sufficiently large T > 0,

lim
n→∞ sup

−L<t<T, (t,y)∈Ω∩Dn

un(t, y) = 0.

By Lemma 2.4 we let (φβ
2 ,1, λ β

2 ,1) be a pair of the first eigenfunction and the first eigenvalue of

d2φ

dt2
+ λ exp

(
−βt

2

)
φ = 0 on (0,∞),

φ(0) = 0,

φ ∈ H
(
(0,∞)

)
satisfying that for t > 0, φβ

2 ,1(t) > 0, and limt→∞ φβ
2 ,1(t) = 1. From the estimate (14) for N = 2 and the boundedness

of {‖un‖L∞}n for N � 3, we see that limt→∞ exp(−β
2 t)(un(t, y))p−1 = 0 uniformly with respect to y ∈ RN−1. Thus,

there exists sufficiently large T > 0 such that

�φβ
2 ,1 + In exp(−βt)(un)

p−1φβ
2 ,1 = φβ

2 ,1 exp(−βt)

(
Inu

p−1
n − exp

(
βt

2

)
λβ

2 ,1

)
� 0, t � T .

From a comparison principle (refer [12]), we see that for each n = 1, . . . , and t � T ,

un(t, y) � φβ
2 ,1(t) max

{y|(T ,y)∈Ω∩D̃n}
un(T , y)

φβ
2 ,1(T )

.

This implies that

lim
n→∞ sup

(t,y)∈Ω∩Dn

un(t, y) = 0;

this contradicts that {‖un‖L∞}n is bounded away from 0. This proves the claim.
Now, taking a subsequence if necessary, we can assume that un converges weakly to some u in H(Ω) as n → ∞.

From the boundedness of {‖un‖L∞}n, we see that for some ρ ∈ (0,1), {‖un‖C2,ρ }n is bounded. Thus, we can assume
that un converges locally to u in C2 as n → ∞. Note that limn→∞ In = JN,β(Ω). Thus, this u satisfies the following
equation

�u + JN,β(Ω) exp(−βt)up = 0 in Ω,

u = 0 on ∂Ω.

From the preceding claim, we see that if Ω satisfies the first assertion of E-condition in Definition 2.2, for sufficiently
large T > 0,

lim inf
n→∞ max

t∈(−L,T ),(t,y)∈Ω∩Dn

un(t, y) = lim inf
n→∞ max

t∈(−L,T )
un

(
t, y0) > 0,

and that if Ω satisfies the second assertion of E-condition in Definition 2.2, for sufficiently large T > 0,

lim inf
n→∞ max un(t, y) = lim inf

n→∞ max un(t, y) > 0.

−L<t<T, (t,y)∈Ω −L<t<T, (t,y)∈Ω∩Dn
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Thus, it follows that u �= 0. Let

γ ≡
∫
Ω

exp(−βt)up+1 dt dy ∈ (0,1].

Suppose that γ < 1. Then, taking w = γ −1/(p+1)u, we see that∫
Ω

exp(−βt)wp+1 dt dy = 1,

and that

�w + JN,β(Ω)γ (p−1)/(p+1) exp(−βt)wp = 0 in Ω,

w > 0 in Ω,

w = 0 on ∂Ω.

By integration by parts, we get∫
Ω

|∇w|2 dt dy = JN,β(Ω)γ (p−1)/(p+1) < JN,β(Ω).

This contradicts the definition of JN,β(Ω). Thus, it follows that∫
Ω

exp(−βt)up+1 dt dy = 1.

Since ∫
Ω

|∇u|2 dt dy � lim inf
n→∞

∫
Ω

|∇un|2 dt dy = JN,β(Ω),

we conclude that u is a minimizer of JN,β(Ω). This completes the proof. �
For our applications to the Hénon equation (1), we are particularly interested in the case Ω = (0,∞) × RN−1. In

this case, we derive the following qualitative properties of the minimizers of JN,β((0,∞) × RN−1).

Proposition 2.5. Let u be a nonnegative minimizer of JN,β((0,∞) × RN−1). Then,

(i) For N = 1, u is a monotone increasing bounded function, and for any c ∈ (0, β), there exists constants C > 0
such that

0 < lim
s→∞u(s) − u(t) � C exp(−ct);

(ii) For N � 2, for some x0 ∈ RN−1, u(t, x) depends only on t and |x −x0|, and is monotone decreasing with respect
to |x − x0|;

(iii) For N � 2, lim|x|→∞ u(t, x) = 0;
(iv) For N � 3, lim|(t,x)|→∞ u(t, x) = 0;
(v) For N � 4, there exists C > 0 independent of t > 0 such that u(t, x) � C

|x|N−3 .

Proof. For simplicity of notations, let J = JN,β((0,∞) × RN−1). First of all, we note that

�u + J exp(−βt)up = 0, u > 0 in (0,∞) × RN−1,

u = 0 on {0} × RN−1.
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We prove (i) first. For N = 1, we see that

u(t) =
t∫

0

u′(s)ds �
√

t

( t∫
0

(
u′(s)

)2 ds

)1/2

� C
√

t .

Denoting w(t) = u′(t), we see that

w′′ + βw′ + pJ exp(−βt)up−1w = 0 in (0,∞).

It is easy to see that w(0) > 0, and that u is monotone increasing and w is monotone decreasing. Since
∫ ∞

0 w2(t)dt <

∞, it follows that limt→∞ w(t) = 0. Since u(t) � C
√

t , it follows that for φ(t) = exp(−ct) with c ∈ (0, β),

φ′′ + βφ′ + pJ exp(−βt)up−1φ < 0 in (T ,∞)

if T > 0 is sufficiently large. By a comparison principle (refer [12]), we see that for some C > 0,

w(t) � C exp(−ct), t ∈ (0,∞).

This and the monotonicity of u imply that for some C > 0,

0 < lim
s→∞u(s) − u(t) � C exp(−ct), t ∈ (0,∞).

The proof of (ii) follows from using a rearrangement technique [10]. We can show the monotonicity and the
symmetry properties of u for N � 2.

The decay property (iii) lim|x|→∞ u(t, x) = 0 for N � 2 follows from an elliptic estimate. The decay property (iv)
lim|(t,x)|→∞ u(t, x) = 0 follows from elliptic estimates and the fact that by the Sobolev inequalities for N � 3,
‖u‖L2N/(N−2) < ∞. Finally, for N > 3, we consider a function

ψβ(t, x) ≡ φβ,1(t)

|x|N−3
,

where φβ,1 is the first eigenfunction of (8) with the corresponding eigenvalue λβ,1. Then, we see that for x �= 0,

�ψβ + exp(−βt)up−1ψβ = (
up−1(t, x) − λβ,1

)
exp(−βt)ψβ.

From above decay property of u, we see that for sufficiently large x ∈ RN−1, up−1(t, x) − λβ,1 < 0. Thus, by a
comparison principle (refer [12]), we see that for some constant C > 0,

u(t, x) � Cψβ(t, x) � C

|x|N−3
.

This finishes the proof of (v). �
Finally, we close up this section with a symmetry property and a non-existence result of positive solutions for

Eq. (2) for more general Ω .

Proposition 2.6. For N � 2, let u ∈ H(Ω) be a solution of (2) with Ω replacing (0,∞) × RN−1 satisfying

lim|(t,x)|→∞u(t, x) = 0.

Suppose that for any (t, x) ∈ Ω , (t, y) ∈ Ω if |y| � |x|. Then, for some x0 ∈ RN−1, u depends only on t and r ≡
|x − x0|, and ∂u(t,r)

∂r
< 0 for r �= 0 and t > 0.

Proof. We sketch the proof here since it is standard by now to show the symmetry property of positive solution via
a moving plane method [7]. Let x0 ∈ RN−1 \ {0}. For λ > 0, let Tλ = {(t, x) | 〈x0, x〉 = λ}, and Eλ = {(t, x) ∈ Ω |
〈x0, x〉 � λ}. For (t, x) ∈ Eλ, we denote (t, xλ) the reflection of (t, x) with respect to Tλ and define uλ(t, x) = u(t, xλ).
Define λ̄ ≡ sup{λ ∈ R | Eλ �= ∅} ∈ (−∞,∞].

Suppose that for λ sufficiently close to λ̄,

wλ(t, x) ≡ min
{
uλ(t, x) − u(t, x),0

} �= 0.
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Then, it is easy to deduce that∫
Eλ

|∇wλ|2 dt dx �
∥∥pup−1

∥∥
L∞(Eλ)

∫
Eλ

exp(−βt)(wλ)
2 dt dx. (15)

Note that for λ̄ = ∞, limλ→∞ ‖pup−1‖L∞(Eλ) = 0, and that for λ̄ �= ∞, the first eigenvalue −� on Eλ goes to ∞ as
λ → λ̄. Thus, the inequality (15) contradicts Proposition 2.1. This implies that for λ sufficiently close to λ̄, wλ > 0
on Eλ. Define λ0 ≡ inf{λ ∈ R | wλ > 0 on Eλ} > −∞. Then, combining above arguments and the Hopf maximum
principle, we conclude that wλ0 ≡ 0, that is, u is symmetric for the reflection with respect to Tλ0 . Since it holds for
any x0 ∈ RN−1 \ {0}, the symmetry and monotonicity properties of u follow. �

As in the proof above, for x0 ∈ RN−1 and λ ∈ R, we define

Tλ = {
(t, x) | 〈x0, x〉 = λ

}
and Eλ = {

(t, x) ∈ Ω | 〈x0, x〉 � λ
}
.

For (t, x) ∈ Eλ, we denote (t, xλ) the reflection of (t, x) with respect to Tλ, and define E′
λ = {(t, xλ) | (t, x) ∈ Eλ}.

Therefore, we obtain the following non-existence result.

Proposition 2.7. Suppose that there exists x0 ∈ RN−1 such that for any λ ∈ R with Eλ �= ∅,

E′
λ ∪ Eλ ⊂ Ω, but E′

λ ∪ Eλ �= Ω.

Then, there exists no solution u ∈ H(Ω) for Eq. (2) satisfying lim|(t,x)|→∞ u(t, x) = 0.

Proof. We sketch the proof here. Denote λ̄ ≡ sup{λ ∈ RE′
λ ∪ Eλ ⊂ Ω | Eλ �= ∅} and λ ≡ inf{λ ∈ R | E′

λ ⊂ Ω}. From
the fact that E′

λ ∪ Eλ �= Ω for any λ ∈ R with Eλ �= ∅, we see that λ = −∞.
Suppose that there exists a solution u ∈ H(Ω) of (2) satisfying lim|(t,x)|→∞ u(t, x) = 0. Then, as in the proof of

Proposition 2.6, we see that for λ sufficiently close to λ̄,

u
(
t, xλ

)
> u(t, x), x ∈ Eλ.

Then, since E′
λ ∪ Eλ �= Ω for any λ ∈ R with Eλ �= ∅, by the same argument as in the proof of Proposition 2.6, it

follows that for λ < λ̄,

u
(
t, xλ

)
> u(t, x), x ∈ Eλ.

This contradicts that lim|(t,x)|→∞ u(t, x) = 0. This proves the claim. �
3. Asymptotic profile of least energy radial solutions on unit ball

In this section, we consider the limiting behaviour of the least energy radial solutions, i.e., the minimizers of
I ral,α(B(0,1)). We consider both the asymptotics of limiting energy and limiting profile.

Let Ω = B(0,1) ≡ {x ∈ RN | |x| < 1}, and Hrad ≡ {u ∈ H
1,2
0 (Ω) | u(x) = u(|x|)}. Then, we consider the following

minimization problem

I rad,α ≡ inf

{∫
Ω

|∇u|2 dx

∣∣∣∣
∫
Ω

|x|αup+1 dx = 1, u ∈ Hrad

}
. (16)

In [11], Ni proved that the above minimization problem has a positive minimizer uα
rad for 1 � p < (N + 2 + 2α)/

(N − 2). Moreover, from the Pohozaev identity, we can show that there is no solution of Eq. (1) with Ω = B(0,1) for
p � (N + 2 + 2α)/(N − 2). This urad

α satisfies the following equation

∂2u

∂r2
+ N − 1

r

∂u

∂r
+ I rad,α|x|αup = 0 in Ω, u = 0 on ∂Ω.

In [14], it was shown that for N � 2, limα→∞( N
α+N

)
p+3
p+1 I rad,α ∈ (0,∞). We will examine the exact value of the limit

I rad,α and our analysis applies to N = 1 too. This analysis in turn will be used to find a fine asymptotic behaviour
of the minimizers urad

α for I rad,α as α → ∞. We have the following asymptotic result for I rad,α and urad
α . We denote

JN,β ≡ JN,β((0,∞) × RN−1).
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Theorem 3.1. Let N � 1 and p � 1. Then

lim
α→∞

(
N

α + N

) p+3
p+1

I rad,α = ∣∣SN−1
∣∣(p−1)/(p+1)

J1,N ,

where |SN−1| is the volume of (N − 1)-dimensional sphere SN−1. For any r ∈ (0,1], durad
α (r)/dr < 0. Furthermore,

under the following transformation

vrad
α (t) ≡ ∣∣SN−1

∣∣ 1
p+1

(
N

α + N

) 1
p+1

urad
α

(
exp

(
− N

α + N
t

))

vrad
α (t) converges uniformly on (0,∞) to a minimizer of J1,N as α → ∞.

For a nonnegative minimizer urad
α of I rad

α , a scaled function ωrad
α ≡ (I rad

α )
1

p−1 urad
α is a least energy solution (a moun-

tain pass solution) of (1) in the class of radial functions Hrad. Proposition 2.3 implies that there exists a least energy
solution (a mountain pass solution) of ωN,β in H((0,∞) × RN−1) of the equation

�u + exp(−βt)up = 0 in (0,∞) × RN−1,

u > 0 in (0,∞) × RN−1, (17)

u = 0 on {0} × RN−1.

For the minimizer uN,β of JN,β ≡ JN,β((0,∞) × RN−1), the least energy solution ωN,β of (17) is given by

(JN,β)
1

p−1 uN,β . Then, we have the following equivalent version of Theorem 3.1 for ωrad
α and its energy.

Theorem 3.1-E. Let N � 1 and p � 1. Then

lim
α→∞

(
N

α + N

) p+3
p−1

∫
B(0,1)

1

2

∣∣∇ωrad
α

∣∣2 − 1

p + 1
|x|α(

ωrad
α

)p+1 dx

= ∣∣SN−1
∣∣ ∞∫

0

1

2
|∇ω1,N |2 − 1

p + 1
exp(−Nt)(ω1,N )p+1 dt,

where |SN−1| is the volume of (N − 1)-dimensional sphere SN−1. Furthermore, the following transformed solution

W rad
α (t) ≡ ∣∣SN−1

∣∣p(
N

α + N

) 2
p−1

ωrad
α

(
exp

(
− N

α + N
t

))
converges uniformly on (0,∞) to a least energy solution ω1,N of (17) as α → ∞.

Proof of Theorem 3.1. It is easy to see that there are no local minimum points of urad
α in (0,1). Suppose that there

exists r0 ∈ (0,1) satisfying urad
α (0) < urad

α (r) for any r ∈ (0, r0). Then, defining wrad
α = urad

α (r) for r ∈ (r0,1) and
urad

α (r0) for r ∈ [0, r0], we see that∫
Ω

∣∣∇urad
α

∣∣2 dx >

∫
Ω

∣∣∇wrad
α

∣∣2 dx

and ∫
Ω

|x|α(
urad

α

)p+1 dx <

∫
Ω

|x|α(
wrad

α

)p+1 dx.

This implies that∫
Ω

|∇wrad
α |2 dx

(
∫ |x|α(wrad)p+1 dx)2/(p+1)

<

∫
Ω

|∇urad
α |2 dx

(
∫ |x|α(urad)p+1 dx)2/(p+1)

;

Ω α Ω α
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this contradicts that urad
α is a minimizer of I rad,α . Thus we see that uα

rad is monotone decreasing on [0,1].
We transform urad

α as follows: for t ∈ (0,∞),

vrad
α (t) ≡ ∣∣SN−1

∣∣ 1
p+1

(
N

α + N

) 1
p+1

urad
α

(
exp

(
− N

α + N
t

))
.

Then, direct calculations show

∫
Ω

∣∣∇urad
α

∣∣2 dx = ∣∣SN−1
∣∣ p−1

p+1

(
α + N

N

) p+3
p+1

∞∫
0

exp

(
−N(N − 2)t

α + N

)∣∣∣∣dvrad
α

dt

∣∣∣∣
2

dt,

and ∫
Ω

|x|α(
urad

α

)p+1 dx =
∞∫

0

exp(−Nt)
(
vrad
α

)p+1 dt.

Thus, we see that for any p � 1,

(
N

α + N

) p+3
p+1

I rad,α = ∣∣SN−1
∣∣ p−1

p+1

∞∫
0

exp

(
−N(N − 2)t

α + N

)∣∣∣∣dvrad
α

dt

∣∣∣∣
2

dt

and
∞∫

0

exp(−Nt)
(
vrad
α

)p+1 dt = 1.

Moreover, it follows that

d

dt

(
exp

(
−N(N − 2)t

α + N

)
dvrad

α

dt

)
+ Hα exp(−Nt)

(
vrad
α

)p = 0 on (0,∞),

lim
t→∞

dvrad
α (t)

dt
= vrad

α (0) = 0,

where

Hα ≡ ∣∣SN−1
∣∣− p−1

p+1

(
N

α + N

) p+3
p+1

I rad,α.

Since limα→∞ exp(−N(N−2)t
α+N

) = 1 uniformly on each compact subset of [0,∞), it follows that

lim
α→∞

(
N

α + N

) p+3
p+1

I rad,α �
∣∣SN−1

∣∣(p−1)/(p+1)
J1,N . (18)

This implies that lim supα→∞ Hα � J1,N .
For sufficiently large α > 0, we see that

∞∫
0

exp(−Nt)

∣∣∣∣dvrad
α

dt

∣∣∣∣
2

dt �
∞∫

0

exp

(
−N(N − 2)t

α + N

)∣∣∣∣dvrad
α

dt

∣∣∣∣
2

dt

= Hα

∞∫
0

exp(−Nt)
(
vrad
α

)p+1 dt � Hα

∥∥vrad
α

∥∥p−1
L∞

∞∫
0

exp(−Nt)
(
vrad
α

)2 dt.

Then, from the inequality (4), we see that {‖vrad
α ‖L∞}α is bounded away from 0.
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From now, we will show that {‖vrad
α ‖L∞}α is bounded. Defining Wα ≡ dvrad

α /dt , we see from the equation for vrad
α

that

d2Wα

dt2
+ N(α − N + 4)

α + N

dWα

dt
+

(
pHα exp

(
−N(α + 2)

α + N
t

)(
vrad
α

)p−1 − N2(α + 2)(N − 2)

(α + N)2

)
Wα = 0.

Note that vrad
α (0) = 0, limt→∞ Wα(t) = 0. Then, we see that

vrad
α (t) =

t∫
0

Wα(s)ds =
t∫

0

exp

(
N(N − 2)

2(α + N)
s

)
exp

(
−N(N − 2)

2(α + N)
s

)
Wα ds.

Then for some constant C > 0, independent of α,

vrad
α (t) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C

√
α + N

N(N − 2)

√
exp

(
N(N − 2)

α + N
t

)
− 1 for N > 2,

vrad
α (t) � C

√
t for N = 2,

vrad
α (t) � C for N = 1.

Note that for any γ, c, t > 0,

exp(−ct)γ

(
exp

(
t

γ

)
− 1

)
� t exp

((
1

γ
− c

)
t

)
.

Thus we see from (18) that

lim|(α,t)|→∞

(
pHα exp

(
−N(α + 2)

α + N
t

)(
vrad
α

)p−1 − N2(α + 2)(N − 2)

(α + N)2

)
= 0.

It is standard to show that for each T > 0, {‖Wα‖L∞(0,T )}α is bounded. For a ∈ (0,N), we denote φ(t) ≡ exp(−at),
Then, we see that for sufficiently large α > 0 and t > 0,

d2φ

dt2
+ N(α − N + 4)

α + N

dφ

dt
+

(
pHα exp

(
−N(α + 2)

α + N
t

)(
vrad
α

)p−1 − N2(α + 2)(N − 2)

(α + N)2

)
φ � 0.

Then it follows from the comparison principle that for any given a ∈ (0,N), there exists some C > 0, independent of
α > 0, satisfying

Wα(t) � C exp(−at), t � 0. (19)

Then, since vrad
α (t) = ∫ t

0 Wα(s)ds, it follows that {‖vrad
α ‖L∞}α is bounded, and that for any a ∈ (0,N), there exists

some C > 0 satisfying

lim
s→∞vrad

α (s) − vrad
α (t) � C exp(−at), t > 0. (20)

Now, from the elliptic estimates [8], we deduce that for each T > 0 and γ ∈ (0,1), {|vrad
α |C2,γ (0,T )}α is bounded. If

lim infα→∞ ‖vrad
α ‖L∞((0,T )) = 0 for sufficiently large T > 0, from the boundedness of {‖vrad

α ‖L∞}α , it follows that

lim inf
α→∞

∞∫
0

exp(−Nt)
(
vrad
α

)p+1 dt = 0;

this contradicts that for any α > 0,
∫ ∞

0 exp(−Nt)(vrad
α )p+1 dt = 1. Thus, we deduce that for some H ∈ (0, J1,N ], the

solution vrad
α converges in C2

loc(0,∞) to a solution v ∈ H((0,∞)) of

d2v

dt2
+ H exp(−Nt)vp = 0, v > 0 in (0,∞),

v(0) = 0.
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Since
∫ ∞

0 exp(−Nt)vp+1 dt = 1, it follows that H = ∫ ∞
0 | dv

dt
|2 dt � J1,N . Therefore, it follows that

lim
α→∞

(
N

α + N

) p+3
p+1

I rad,α �
∣∣SN−1

∣∣ p−1
p+1 J1,N .

Thus we get

lim
α→∞

(
N

α + N

) p+3
p+1

I rad,α = ∣∣SN−1
∣∣ p−1

p+1 J1,N .

Moreover, from (19), it follows that vrad
α converges uniformly to a minimizer of J1,N . This completes the proof. �

4. Asymptotic profile of least energy solutions on the unit ball

In this section, we turn to the least energy solutions of the Hénon equation (1). We will study both asymptotic
energy and asymptotic profile of the ground states.

Let us consider the following minimization problem

I all,α ≡ inf

{
‖u‖2

∣∣∣∣∣
∫
Ω

|x|αup+1 dx = 1, u ∈ H
1,2
0

(
B(0,1)

)}
. (21)

For p ∈ [1, (N + 2)/(N − 2)), there exists a positive minimizer uall
α of (21). This uall

α satisfies the following equation

�u + I all,α|x|αup = 0, u > 0 in Ω, u = 0 on ∂Ω.

When N � 2, for x ∈ RN , we take polar coordinates x = (r, θ) with r = |x| ∈ [0,∞), θ = x/|x| ∈ SN−1, and denote
u(x) = u(r, θ). For the sake of convenience, we denote SN−1

α ≡ α+N
N

SN−1. For each y ∈ RN−1 ≡ RN−1 × {0} ⊂ RN ,
there exists a unique ψα(y) ∈ SN−1

α \{(0, . . . ,0, α+N
N

)} such that t (y)ψα(y)+(1− t (y))(0, . . . ,0, α+N
N

) = y for some
t (y) > 0 depending upon α. Then, the map (ψα)−1 :SN−1

α \ {(0, . . . ,0, α+N
N

)} → RN−1 is a stereographic projection.
Also when N � 2, by a rearrangement technique [10], we can assume that uall

α (x) = uall
α (g ·x) for g ∈ O(N −1)⊗I ⊂

O(N) (i.e., u is radially symmetric with respect to the first N − 1 variables), and that for fixed r ∈ (0,1), uall
α (r, θ)

decreases strictly as |θ − (0, . . . ,0,−1)| increases. If N = 1, we can assume that duall
α (0)/dx � 0.

Then, we have the following results on the asymptotic behaviour of the least energy I all
α and the minimizer uall

α .

Theorem 4.1. Let p ∈ (1,2∗ − 1). Then

lim
α→∞

(
N

α + N

)N+2−(N−2)p
p+1

I all,α = JN,N .

Moreover, the following transformed solution

V all
α (t, y) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
N

α + N

) N
p+1

uall
α

(
exp

(
− N

α + N
t

)
,

N

α + N
ψα(y)

)
for N � 3,

(
2

α + 2

) 2
p+1

uall
α

(
exp

(
− 2

α + 2
t

)
,

2

α + 2
y

)
for N = 2,

(
1

α + 1

) 1
p+1

uall
α

(
exp

(
− t

α + 1

))
for N = 1

with t ∈ [0,∞), y ∈ RN−1, converges to a minimizer of JN,N uniformly for N � 3 and locally uniformly for N = 1,2
as α → ∞, and, for N = 1, the following transformed solution ( 1

α+1 )1/(p+1)uall
α (− exp(− t

α+1 )) converges locally
uniformly to 0 as α → ∞.

For a nonnegative minimizer uall
α of I all

α , a scaled function ωall
α ≡ (I all

α )
1

p−1 uall
α is a least energy solution (a mountain

pass solution) of (1) in the whole class of functions in H
1,2
0 (B(0,1)). Then, we have the following equivalent version

of Theorem 4.1 as for ωrad
α and its energy in Theorem 3.1-E.
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Theorem 4.1-E. Let p ∈ (1,2∗ − 1). Then

lim
α→∞

(
N

α + N

)N+2−(N−2)p
p−1

∫
B(0,1)

1

2

∣∣∇ωall
α

∣∣2 − 1

p + 1
|x|α(

ωall
α

)p+1 dx

=
∞∫

0

1

2
|∇ωN,N |2 − 1

p + 1
exp(−Nt)(ωN,N)p+1 dt

for some ωN,N being a least energy solution of (14-(N,N)). Moreover, the following transformed solution

W all
α (t, y) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
N

α + N

) 2
p−1

ωall
α

(
exp

(
− N

α + N
t

)
,

N

α + N
ψα(y)

)
for N � 3,

(
2

α + 2

) 2
p−1

ωall
α

(
exp

(
− 2

α + 2
t

)
,

2

α + 2
y

)
for N = 2,

(
1

α + 1

) 2
p−1

ωall
α

(
exp

(
− t

α + 1

))
for N = 1

with t ∈ [0,∞), y ∈ RN−1, converges to ωN,N uniformly for N � 3 and locally uniformly for N = 1,2 as α → ∞,

and, for N = 1, the following transformed solution ( 1
α+1 )

2
p−1 ωall

α (− exp(− t
α+1 )) converges locally uniformly to 0 as

α → ∞.

Proof of Theorem 4.1. We take polar coordinates x = (r, θ) with r ∈ [0,∞), θ ∈ SN−1, and denote u(x) = u(r, θ).
We first consider the following transformation

vall
α (t, φ) ≡

(
α + N

N

)− N
p+1

uall
α

(
exp

(
− N

α + N
t

)
,

N

α + N
φ

)
,

where t ∈ [0,∞) and φ ∈ SN−1
α . For the sake of convenience, we denote dασ the volume element of SN−1

α . Then,
from some direct calculations, we get for N � 2

I all,α =
∫
Ω

∣∣∇uall
α

∣∣2 dx =
(

α + N

N

)N+2−(N−2)p
p+1

∫
(0,∞)×SN−1

α

exp

(
−N(N − 2)t

α + N

)(∣∣∣∣∂vall
α

∂t

∣∣∣∣
2

+ ∣∣∇Sαv
all
α

∣∣2
)

dt dασ,

1 =
∫
Ω

|x|α(
uall

α

)p+1 dx =
∫

(0,∞)×SN−1
α

exp(−Nt)
(
vall
α

)p+1 dt dασ,

where ∇Sα is the gradient on SN−1
α . Thus we see that Kα,N ≡ I all,α( N

α+N
)

N+2−(N−2)p
p+1 ,

∂2vall
α

∂t2
− N(N − 2)

α + N

∂vall
α

∂t
+ �

SN−1
α

vall
α + Kα,N exp

(
−N(α + 2)t

α + N

)(
vall
α

)p = 0 (22)

in (0,∞) × Sα and vall
α = 0 on {0} × SN−1

α . A direct computation shows that (22) also holds for N = 1.
For each ϕ ∈ C∞

0 ((0,∞) × RN−1), we define a function wα ∈ C∞
0 (B(0,1))

wα(r, θ) ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
α + N

N

) N
p+1

ϕ

(
−α + N

N
log r, (ψα)−1

(
α + N

N
θ

))
for N � 2,

(
α + N

N

) N
p+1

ϕ

(
−α + N

N
log r

)
for N = 1.

Then, since ϕ ∈ C∞((0,∞) × RN−1), it is not difficult to deduce that
0
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∫
Ω

|∇wα|2 dx

(
∫
Ω

|x|α|wα|p+1 dx)2/(p+1)

=
(

α + N

N

)N+2−(N−2)p
p+1

∫
(0,∞)×RN−1 exp(−N(N−2)t

α+N
)(| ∂ϕ

∂t
|2 + |∇yϕ|2)dt dy + O( 1

α
)

(
∫
(0,∞)×RN−1 exp(−Nt)|ϕ|p+1 dt dy + O( 1

α
))2/(p+1)

as α → ∞. Furthermore, since ϕ ∈ C∞
0 ((0,∞) × RN−1), it follows that

lim
α→∞

∫
(0,∞)×RN−1 exp(−N(N−2)t

α+N
)| ∂ϕ

∂t
|2 + |∇yϕ|2 dt dy + O( 1

α
)

(
∫
(0,∞)×RN−1 exp(−Nt)|ϕ|p+1 dt dy + O( 1

α
))2/(p+1)

=
∫
(0,∞)×RN−1 |∇ϕ|2 dt dy

(
∫
(0,∞)×RN−1 exp(−Nt)|ϕ|p+1 dt dy)2/(p+1)

.

This implies that

lim
α→∞

(
N

α + N

)N+2−(N−2)p
p+1

I all,α � JN,N . (23)

Next, by a similar argument as in the proof of Theorem 3.1, we deduce using (5) that for N � 2, {‖vall
α ‖L∞}α is

bounded away from 0. For N = 1, since vall
α (t) = (α + 1)

−1
p+1 uall

α (exp( −t
α+1 )), we see that

d

dt

(
exp

(
t

α + 1

)
dvall

α

dt

)
+ I all,α(α + 1)

− p+3
p+1 exp(−t)

(
vall
α

)p = 0 on (0,∞), (24)

and that

vall
α (0) = 0, lim

t→∞ exp

(
t

α + 1

)
dvall

α (t)

dt
= −duall

α (0)

dx

1

(α + 1)
p+2
p+1

.

We assumed that duall
α

dx
(0) � 0. Then, since d2uall

α

dx2 (x) � 0 for |x| < 1, the unique maximum point of uall
α is located in

[0,1). From Theorem 3.1 and (23), we see that uall
α is not symmetric, that is, uall

α (x) �= uall
α (−x) for some x ∈ (0,1).

Thus, from the uniqueness of a solution for the initial value problem of ordinary differential equations, we deduce that
duall

α

dx
(0) �= 0; then duall

α

dx
(0) > 0. Multiplying vall

α on both sides of (24) and integrating by parts, we get

∞∫
0

exp

(
t

α + 1

)∣∣∣∣dvall
α

dt

∣∣∣∣
2

dt − lim
t→∞ exp

(
t

α + 1

)
vall
α (t)

dvall
α (t)

dt

=
∞∫

0

exp

(
t

α + 1

)∣∣∣∣dvall
α

dt

∣∣∣∣
2

dt + duall
α (0)

dx

1

(α + 1)
p+2
p+1

uall
α (0)

(α + 1)
1

p+1

= I all,α(α + 1)
− p+3

p+1

∞∫
0

exp(−t)
(
vall
α

)p+1 dt.

Then, it follows that

∞∫
0

exp(−t)

∣∣∣∣dvall
α

dt

∣∣∣∣
2

dt �
∞∫

0

∣∣∣∣dvall
α

dt

∣∣∣∣
2

dt �
∞∫

0

exp

(
t

α + 1

)∣∣∣∣dvall
α

dt

∣∣∣∣
2

dt

� I all,α(α + 1)
− p+3

p+1
∥∥vall

α

∥∥p−1
L∞

∞∫
exp(−t)

(
vall
α

)2 dt. (25)
0
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Then, from (4) and (23), we deduce that for N = 1, {‖vall
α ‖L∞}α is bounded away from 0. Prior to proceeding

further, we prepare some lemmas.
We consider the L∞ bound first.

Lemma 4.1. For each N �= 2, {‖vall
α ‖L∞}α is bounded.

Proof. We prove the claim for the cases N � 3 and N = 1 separately.

Let N � 3. First of all, we note that for Uα ≡ (I all,α)
1

p−1 uall
α ,

�Uα + (Uα)p � 0, Uα > 0 in B,

Uα = 0 on ∂B.

Then, by an uniform estimate [2, Proposition 3.5], we see that for N � 3 and some C > 0, independent of α,

‖Uα‖L∞ � C‖Uα‖4/(N+2−p(N−2))

L2N/(N−2) .

Thus, from the Sobolev inequality and (20), it follows that for some C > 0,

∥∥uall
α

∥∥
L∞ = (

I all,α)− 1
p−1 ‖Uα‖L∞ � C

(
I all,α) 2

N+2−p(N−2)
− 1

p+1 � C

(
α + N

N

) N
p+1

.

Thus, for N � 3, {‖vall
α ‖L∞}α is bounded.

Let N = 1. Defining Wα ≡ dvall
α

dt
, we see that for Kα,1 ≡ I all,α(α + 1)

−(p+3)
p+1 ,

d2Wα

dt2
+ α + 3

α + 1

dWα

dt
+

(
α + 2

(α + 1)2
+ Kα,1p exp

(
−α + 2

α + 1
t

)(
vall
α

)p−1
)

Wα = 0

and

Wα(0) > 0, lim
t→∞Wα(t) = − lim

t→∞ exp

(
− t

α + 1

)
1

α + 1

duall
α (0)

dx
= 0.

As in Theorem 3.1, we deduce that for any a ∈ (0,1), there exists some C > 0, independent of α > 0, satisfying

Wα(t) � C exp(−at), t � 0.

This implies that

vall
α (t) =

t∫
0

Wα(s)ds � C

a
, t > 0.

This completes the proof. �
Lemma 4.2. For N = 2, there exists a constant C > 0, independent of α > 0, such that

vall
α (t, φ) � C exp

(
2pt

p2 − 1

)
, t > 0, −α + 2

2
π � φ � α + 2

2
π.

Proof. Let N = 2 and Kα,2 ≡ I all,α( 2
α+2 )

4
p+1 , Then, the vall

α satisfies the following equation

∂2vall
α

∂t2
+ ∂2vall

α

∂y2
+ Kα,2 exp(−2t)

(
vall
α

)p = 0 in (0,∞) ×
(

−α + 2

2
π,

α + 2

2
π

)
,

∂vall
α

∂y
= 0 on (0,∞) ×

{
−α + 2

2
π,

α + 2

2
π

}
,

vall
α = 0 on {0} ×

(
−α + 2

π,
α + 2

π

)
.

2 2
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Let T > 2, and φ a smooth function such that

φ(t, y) =
{

1 for
√

(t − T )2 + y2 � 1,

0 for
√

(t − T )2 + y2 � 2

and 0 � φ � 1 on RN . For the sake of convenience, we denote v = vall
α in the followings. Then, for any α > 0,

multiplying v2α+1φ2 to above equation for v and integrating by parts, we deduce that∫ ∣∣∇vα+1φ
∣∣2 dt dy �

∫
v2α+2|∇φ|2 dt dy + Kα,2(α + 1)

∫
exp(−2t)v2α+2vp−1φ2 dt dy. (26)

Denoting w = exp(− 2t
p

)vφ
2
p , we see from Hölder’s inequality that for any K > 0,∫

exp(−2t)v2α+2vp−1φ2 dt dy =
∫

wp−1 exp

(
−2t

p

)
v2α+2φ

2
p dt dy

�
( ∫

{(t,y)|w(t,y)�K}
exp(−2t)vpφ2 dt dy

) p−1
p

(∫
exp(−2t)vp(2α+2)φ2 dt dy

) 1
p

+ Kp−1
∫

exp

(
−2t

p

)
v2α+2φ

2
p dt dy. (27)

It is easy to see that∫
{(t,y)|w(t,y)�K}

exp(−2t)vpφ2 dt dy

�
∣∣{(t, y) | w(t, y) � K

}∣∣ 1
p+1

(∫
exp

(
−2

(p + 1)t

p

)
vp+1φ

2(p+1)
p dt dy

) p
p+1

�
∣∣{(t, y) | w(t, y) � K

}∣∣ 1
p+1

(∫
exp(−2t)vp+1φ2 dt dy

) p
p+1

(28)

and ∣∣{(t, y) | w(t, y) � K
}∣∣ � K−(p+1)

∫
exp

(
−2

(p + 1)t

p

)
vp+1φ

2(p+1)
p dt dy

� K−(p+1)

∫
exp(−2t)vp+1φ2 dt dy.

Thus, it follows that∫
{(t,y)|w(t,y)�K}

exp(−2t)vpφ2 dt dy � 1

K

∫
exp(−2t)vp+1φ2 dt dy. (29)

Combining (26)–(29) and Proposition 2.1, we see that for some C > 0, independent of α,φ and v,(∫
exp(−2t)vp(2α+2)φ2p dt dy

) 1
p

� C

∫
v2α+2|∇φ|2 dt dy + +C(α + 1)Kp−1

∫
exp

(
−2t

p

)
v2α+2φ

2
p dt dy

+ C(α + 1)

(
1

K

∫
exp(−2t)vp+1φ2 dt dy

) p−1
p

(∫
exp(−2t)vp(2α+2)φ2 dt dy

) 1
p

.

We take K > 0 so that

C(α + 1)

(
1

∫
exp(−2t)vp+1φ2 dt dy

) p−1
p = 1

.

K 2
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Then, since

(α+N)π
N∫

− (α+N)π
N

∞∫
0

exp(−2t)vp+1 dt dy = 1,

it follows that

(∫
exp(−2t)vp(2α+2)φ2p dt dy

) 1
p

� 2C

∫
v2α+2|∇φ|2 dt dy + (

2C(α + 1)
)1−p

(∫
exp(−2t)vp+1φ2 dt dy

)p−1 ∫
exp

(
−2t

p

)
v2α+2φ

2
p dt dy

� 2C

∫
v2α+2|∇φ|2 dt dy + (

2C(α + 1)
)1−p

∫
exp

(
−2t

p

)
v2α+2φ

2
p dt dy.

We take a smooth function φi such that

φi(t, y) =
{

1 for
√

(T − t)2 + y2 � 1 + 2−i ,

0 for
√

(T − t)2 + y2 � 1 + 2−i+1

and 0 � φi � 1, |∇φi | � 2i+1. Then, substituting φ and 2α+2 by φi and (p+1)pi−1 respectively in above inequality,
we see that

( ∫
B((T ,0),1+2i )

exp(−2t)vpi(p+1) dt dy

) 1
p

� 2C4i+1 exp(2T + 4)

∫
B((T ,0),1+2i−1)

exp(−2t)vpi−1(p+1) dt dy

+ (
2C(α + 1)

)1−p exp

(
p − 1

p
(2T + 4)

) ∫
B((T ,0),1+2i−1)

exp(−2t)vpi−1(p+1) dt dy.

Then, we deduce that for some D > 0, independent of i and T > 0,

( ∫
B((T ,0),1+2i )

exp(−2t)vpi(p+1) dt dy

) 1
pi (p+1)

� D exp

(
2T

i∑
j=1

1

pj−1(p + 1)

)( ∫
B((T ,0),2)

exp(−2t)vp+1 dt dy

) 1
p+1

� D exp

(
2T

p

p2 − 1

)
.

Then, taking i → ∞ in above inequality, we see that for some D > 0,

v(T ,0) � D exp

(
2T

p

p2 − 1

)
, T > 2.

This proves the claim. �
Lemma 4.3. Let N � 3, and let Aα := limt→∞ vall

α (t, φ). Then limα→∞ Aα = 0.
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Proof. Denoting Uα ≡ (I all,α)1/(p−1)uall
α , we see that

�Uα + |x|α(Uα)p = 0 in B(0,1),

and that∫
B(0,1)

|x|α(Uα)p+1(x)dx = (
I all,α) p+1

p−1 .

Let G(x,y) be the Green function of −� on B(0,1). Then, we see that

Uα(x) = −
∫

B(0,1)

G(y, x)|y|α(Uα)p(y)dy.

Note that G(x,0) = C(1/|x|N−2 −1) for some C > 0. Applying Hölder’s inequality, we deduce that for some constant
C > 0,

Uα(0) � C

( ∫
B(0,1)

(
G(x,0)

)p+1|x|α dx

)1/(p+1)( ∫
B(0,1)

|x|α(Uα)p+1 dx

)p/(p+1)

� C(α + C)−1/(p+1)
(
I all,α)p/(p−1)

.

Thus, it follows that

lim
t→∞vall

α (t, φ) =
(

N

α + N

) N
p+1

uall
α (0, θ) � CI all,α

(
N

α + N

) N
p+1 + 1

p+1

� C

(
α + N

N

)N+2−p(N−2)
p+1 − N+1

p+1 = C

(
α + N

N

) 1−p(N−2)
p+1

.

Since 1−p(N−2)
p+1 < 0 for p > 1 and N � 3, the claim follows. �

Lemma 4.4. Let N � 3. Suppose that there exists Tα > 0 satisfying limα→∞ Tα = ∞ and

lim
α→∞ sup

φ∈SN−1
α

vall
α (Tα,φ) = 0.

Then, it follows that

lim
α→∞ sup

{
vall
α (t, φ) | t � Tα,φ ∈ SN−1

α

} = 0.

Proof. Let (φN
2 ,1, λN

2 ,1) be a pair of the first eigenfunction and the first eigenvalue of

d2φ

dt2
+ λ exp

(
−Nt

2

)
φ = 0 on (0,∞),

φ(0) = 0,

φ ∈ H
(
(0,∞)

)
satisfying that for t > 0, φN

2 ,1(t) > 0, and limt→∞ φN
2 ,1(t) = 1. Note that dφ1(t)

dt
> 0 for t > 0. Let Kα,N ≡

I all,α( N
α+N

)
N+2−(N−2)p

p+1 . From the boundedness of {‖vall
α ‖L∞}α for N � 3, we see that for sufficiently large T > 0,

(φN
2 ,1)tt − N(N − 2)

α + N
(φN

2 ,1)t + �
SN−1

α
φN

2 ,1 + Kα,N exp

(
−N(α + 2)t

α + N

)(
vall
α

)p−1
φN

2 ,1

� φN
2 ,1 exp

(
−N(α + 2)t

)(
Kα,N

(
vall
α

)p−1 − exp

(
N(α + 4 − N)t

)
λN

2 ,1

)
� 0, t � T .
α + N 2α + 2N
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From a comparison principle (refer [12]), (22) and Lemma 4.3, we deduce as in Proposition 2.3 that

lim
α→∞ sup

{
vall
α (t, φ) | t � Tα,φ ∈ SN−1

α

} = 0.

This completes the proof of Lemma 4.4. �
Now we consider the limit of vall

α . Note that for each T > 0,∫
(0,T )×SN−1

α

(
vall
α

)p+1 dασ dt � exp(NT ).

Then, from elliptic estimates [8], we deduce that there exists γ ∈ (0,1) such that {|vall
α |

C2,γ ((0,T )×SN−1
α )

}α is bounded

for any T < ∞. Thus, for some K ∈ [0, JN,N ], vα(t, y) = vall
α (t,ψα(y)) converges in C2

loc to some w satisfying

�w + K exp(−Nt)wp = 0 in (0,∞) × RN−1,

w = 0 on {0} × RN−1.
(30)

Furthermore, it follows that∫
(0,∞)×RN−1

|∇w|2 dt dy � JN,N and
∫

(0,∞)×RN−1

exp(−Nt)wp+1 dt dy � 1.

Then, we see the following result.

Lemma 4.5. For each N � 1, w > 0 in (0,∞) × RN−1.

Proof. To the contrary, suppose that w = 0.
First, consider the cases N � 3. From Lemma 4.1, we see that

lim
α→∞

∥∥∥∥exp

(
−Nt

2

)
vall
α

∥∥∥∥
L∞((0,∞)×Sα)

= 0.

Then, for sufficiently large α > 0 and N > 2, we see that∫
(0,∞)×SN−1

α

exp

(
−Nt

2

)(∣∣∣∣∂vall
α

∂t

∣∣∣∣
2

+ ∣∣∇Sαvall
α

∣∣2
)

dt dασ

�
∫

(0,∞)×SN−1
α

exp

(
−N(N − 2)t

α + N

)(∣∣∣∣∂vall
α

∂t

∣∣∣∣
2

+ ∣∣∇Sαvall
α

∣∣2
)

dt dασ

= Kα,N

∫
(0,∞)×SN−1

α

exp(−Nt)
(
vall
α

)p+1 dt dασ

� Kα,N

∥∥∥∥exp

(
−Nt

2

)(
vall
α

)p−1
∥∥∥∥

L∞((0,∞)×Sα)

∫
(0,∞)×SN−1

α

exp

(
−N

2
t

)(
vall
α

)2 dt dασ,

where Kα,N = I all,α(α+N
N

)
N+2−(N−2)p

p+1 . On the other hand, integrating both sides of (4) on Sα with respect to y, we see
that for some C > 0,∫

(0,∞)×SN−1
α

exp

(
−N

2
t

)(
vall
α

)2 dt dασ � C

∫
(0,∞)×SN−1

α

exp

(
−Nt

2

)(∣∣∣∣∂vall
α

∂t

∣∣∣∣
2

+ ∣∣∇Sαvall
α

∣∣2
)

dt dασ.

Since limα→∞ Kα,N � JN,N , this is a contradiction.
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Secondly, consider the case N = 2. Note that a function ψ = ∂vall
α /∂φ satisfies

�ψ + Kα,2 exp(−2t)
(
vall
α

)p−1
ψ = 0 in (0,∞) ×

(
−α + N

N
π,

α + N

N
π

)
,

ψ = 0 on ∂

(
(0,∞) ×

(
−α + N

N
π,

α + N

N
π

))
.

It is obvious that

lim
t→∞ sup

{
ψ(t, y)

∣∣∣∣ y ∈
(

−α + N

N
π,

α + N

N
π

)}
= 0.

From Lemma 4.2, we see that

lim
t→∞ sup

{
exp(−2t)

(
vall
α

)p−1
(t, y)

∣∣∣∣ y ∈
(

−α + N

N
π,

α + N

N
π

)}

= lim
t→∞ sup

{
exp

(
− (2p + 1)t

p + 1

)(
vall
α

)p−1
(t, y)

∣∣∣∣ y ∈
(

−α + N

N
π,

α + N

N
π

)}
= 0.

that a set {‖ψ‖C2} is bounded. Then, by integration by parts, we see that

∞∫
0

α+N
N

π∫
− α+N

N
π

|∇ψ |2 dt dy = Kα,2

∞∫
0

α+N
N

π∫
− α+N

N
π

exp(−2t)
(
vall
α

)p−1
ψ2 dt dy < ∞.

Thus, it follows that ψ ∈ H((0,∞) × R). Moreover, since

∞∫
0

α+N
N

π∫
− α+N

N
π

exp(−2t)
(
vall
α

)p−1
ψ2 dt dy �

∥∥∥∥exp

(
− (2p + 1)t

p + 1

)(
vall
α

)p−1
∥∥∥∥

L∞

∞∫
0

α+N
N

π∫
− α+N

N
π

exp

(
− t

p + 1

)
ψ2 dt dy,

it follows that

∞∫
0

α+N
N

π∫
− α+N

N
π

|∇ψ |2 dt dy � Kα,2

∥∥∥∥exp

(
− (2p + 1)t

p + 1

)(
vall
α

)p−1
∥∥∥∥

L∞

∞∫
0

α+N
N

π∫
− α+N

N
π

exp

(
− t

p + 1

)
ψ2 dt dy.

Note that limα→∞ Kα,2 � J2,2 and

lim
α→∞

∥∥∥∥exp

(
− (2p + 1)t

p + 1

)(
vall
α

)p−1
∥∥∥∥

L∞
= 0.

This contradicts (5).
Finally, we consider the case N = 1. As in (25), we deduce that

∞∫
0

exp

(
− t

2

)∣∣∣∣dvall
α

dt

∣∣∣∣
2

dt �
∞∫

0

exp

(
t

α + 1

)∣∣∣∣dvall
α

dt

∣∣∣∣
2

dt � Kα,1

∥∥∥∥exp

(
− t

2

)
vall
α

∥∥∥∥
p−1

L∞

∞∫
0

exp

(
− t

2

)(
vall
α

)2 dt.

Since w = 0, limα→∞ Kα,1 � J1,1 and {‖vall
α ‖L∞}α is bounded, it follows that

lim
α→∞Kα,1

∥∥∥∥exp

(
− t

2

)(
vall
α

)p−1
∥∥∥∥

L∞
= 0.

This contradicts (4).
Therefore, we conclude that w > 0 in (0,∞) × RN−1. The proof of Lemma 4.5 is finished. �
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If K = 0 in (30), the limit function w is harmonic. Then, it is easy to see that w = at for some a > 0. This
contradicts that

∫ ∞
0

∫
RN−1 |∇w|dt dy � ∞. Thus, we have K > 0. Now, let γ = ∫ ∞

0

∫
RN−1 exp(−Nt)wp+1 dt dy ∈

(0,1] and W = γ −1/(p+1)w. Then, we see that
∫ ∞

0

∫
RN−1 exp(−Nt)Wp+1 dt dy = 1, and that

�W + Kγ (p−1)/(p+1) exp(−Nt)Wp = 0 in (0,∞) × RN−1.

This implies that
∫ ∞

0

∫
RN−1 |∇W |2 dt dy = Kγ (p−1)/(p+1). Thus, it follows that

Kγ (p−1)/(p+1) � JN,N .

Since JN,N � K by (20) and K � Kγ (p−1)/(p+1), it follows that K = JN,N and γ = 1. Therefore, the function w is
a minimizer of JN,N , and

lim
α→∞ I all,α

(
N

α + N

)N+2−(N−2)p
p+1 = JN,N .

To complete the proof of Theorem 4.1, it suffices to show that V all
α (defined in the statement of Theorem 4.1) con-

verges uniformly to w for N � 3. It is standard to see that for each T > 0, lim|y|,α→∞ V all
α (t, y) = 0 uniformly for

t ∈ (0, T ). Note that limα→∞ sup
φ∈SN−1

α
vall
α (T ,φ) � w(T ,0). Then, since limt→∞ supy∈RN−1 w(t, y) = 0 for N � 3

(Proposition 2.5), by Lemma 4.4,

lim
t→∞, α→∞ sup

y∈RN−1
V all

α (t, y) = 0.

Thus, V all
α (t, y) converges uniformly to w for N � 3. For the convergence of vall,−

α ≡ ( 1
α+1 )1/(p+1)uall

α (− exp(− t
α+1 )),

we note that

1 =
∞∫

0

exp(−t)wp+1 = lim
α→∞

∞∫
0

exp(−t)
(
vall
α

)p+1 dt = lim
α→∞

1∫
0

|x|α(
uall

α

)p+1 dx

and

1∫
−1

|x|α(
uall

α

)p+1 dx =
∞∫

0

exp(−t)
(
vall
α

)p+1 dt +
∞∫

0

exp(−t)
(
vall,−
α

)p+1 dt.

Thus,

lim
α→∞

∞∫
0

exp(−t)
(
vall,−
α

)p+1 dt = 0.

Then, the convergence of vall,−
α comes from standard elliptic estimates [8]. This completes the proof of Theo-

rem 4.1. �
5. Some final remarks

First, as a corollary of Theorems 3.1, 3.1-E, 4.1 and 4.1-E, we obtain symmetry breaking of least energy solutions
of the Hénon equation (1). For N � 2, this was proved in [14] by a different argument.

Corollary 5.1. For N � 1 and p ∈ (1,2∗ − 1) fixed, a minimizer uall
α of I all,α and a least energy solution ωall

α of (1) is
not radially symmetric if α > 0 is sufficiently large.

As it can be seen in Theorems 3.1 and 3.1-E, the behaviour of urad
α and ωrad

α as α → ∞ is rather completely
understood. On the other hand, the behaviour of nonradial ground states uall

α and ωall
α as α → ∞ is not quite completely

understood. The following questions are worth further study.
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1. What is the exact growth rate of uall
α (0) for N � 2 as α → ∞? Through the proof of Theorem 4.1, we showed

that if N � 3, there exists some constant C > 0 satisfying(
α + N

N

) −N
p+1

uall
α (0) � C

(
α + N

N

) 1−p(N−2)
p+1 → 0 as α → 0

and

1

C
� lim

(
α + N

N

) −N
p+1

max
x∈B(0,1)

uall
α (x) � C.

From the Harnack inequality, we see that for any fixed x ∈ B(0,1), the growth rate of uall
α (x) is the same with that

of uall
α (0).

2. Another question is whether a finer convergence of uall
α for N = 2 hold. The main difficulty for N = 2 comes

from the fact that there is no appropriate inequality of Sobolev type which is independent of domains.
3. There is a unique maximum point xα of uall

α for N = 1. It would be interesting to know the asymptotic behaviour
of xα as α → ∞.

Note added in proof

After the submission of this paper, there have been several works in relation to the problems studied in this paper:
[15] for symmetry of ground states using polarization method, [5,4,13] for critical or near critical exponent problems,
and our work [3] in sequel to the current paper for limiting ground states in general bounded domains.
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