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Abstract

We study a new Liouville-type phenomenon for entire weak supersolutions of elliptic partial differential equations of the form
A(u) = 0 on R

n, n � 2. Typical examples of the operator A(u) are the p-Laplacian for p > 1, the mean curvature operator, and
their well-known modifications.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Ce travail est consacré à l’étude d’un nouveau phénomène de type de Liouville pour les sursolutions entières faibles d’équa-
tions aux derivées partielles elliptiques de la forme A(u) = 0 sur R

n, n � 2. Des exemples typiques de l’opérateur A(u) sont le
p-laplacien pour p > 1, l’opérateur de courbure moyenne, et leurs modifications bien connues.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Liouville’s well-known theorem says that any superharmonic function on R
2 bounded below by a constant is itself

a constant. On the other hand it is also well known that for n � 3 there exist non-constant superharmonic functions on
R

n bounded below by a constant. The purpose of this work is to determine for n � 3 the ‘sharp distance at infinity’
between the non-constant superharmonic functions on R

n bounded below by a constant and this constant itself in

E-mail address: vvk@ams.org (V.V. Kurta).
0294-1449/$ – see front matter © 2006 Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.anihpc.2005.12.001



840 V.V. Kurta / Ann. I. H. Poincaré – AN 23 (2006) 839–848
the form of a theorem of Liouville type and to characterize basic properties of quasilinear elliptic partial differential
operators which make it possible to obtain such a theorem for supersolutions of quasilinear elliptic partial differential
equations of the form

A(u) = 0 (1)

on R
n, n � 2. Typical examples of the operator A(u) are the p-Laplacian

�p(u) := div
(|∇u|p−2∇u

)
, p > 1, (2)

its well-known modification (see, e.g., [8, p. 155])

�̃p(u) :=
n∑

i=1

∂

∂xi

(∣∣∣∣ ∂u

∂xi

∣∣∣∣
p−2

∂u

∂xi

)
, p > 1, (3)

the mean curvature operator

Ξ(u) := div

( ∇u√
1 + |∇u|2

)
, (4)

and its well-known modifications.
Note that a Liouville theorem for solutions of linear uniformly elliptic second-order partial differential equations

on R
n, n > 2, was first obtained, as a direct consequence of a Harnack inequality, in [1] under some continuity

assumptions on the coefficients of the equations and in [12] without continuity assumptions on the coefficients of
the equations. In the case of quasilinear uniformly elliptic second-order partial differential equations on R

n, n � 2,
a Liouville theorem is a direct consequence of a Harnack inequality first obtained in [14]. Note also that a Liouville
theorem for mappings of R

n, n > 2, with bounded distortion was first obtained in [13] by using the same Harnack
inequality from [14]. Finally, in the case of linear uniformly elliptic second-order partial differential equations on R

2,
a Liouville theorem is a direct consequence of a Harnack inequality first obtained in [7].

2. Definitions

Let A(u) be a differential operator defined formally by

A(u) =
n∑

i=1

d

dxi

Ai(x,u,∇u). (5)

Here and in what follows, n � 2. We assume that the functions Ai(x, η, ξ), i = 1, . . . , n, satisfy the usual
Carathéodory conditions on R

n × R
1 × R

n; namely, they are continuous in η and ξ for almost all x ∈ R
n and measur-

able in x for any η ∈ R
1 and ξ ∈ R

n.

Definition 1. Let α > 1 be a given number. The operator A(u) given by (5) belongs to the class A(α) if for all η ∈ R
1,

all ξ,ψ ∈ R
n, and almost all x ∈ R

n the following two inequalities hold:

0 �
n∑

i=1

ξiAi(x, η, ξ), (6)

with equality only if ξ = 0, and∣∣∣∣∣
n∑

i=1

ψiAi(x, η, ξ)

∣∣∣∣∣
α

� K|ψ |α
(

n∑
i=1

ξiAi(x, η, ξ)

)α−1

, (7)

with K a certain positive constant.

It is easy to see that condition (7) is fulfilled whenever the inequality(
n∑

A2
i (x, η, ξ)

)α/2

�K
(

n∑
ξiAi(x, η, ξ)

)α−1

(8)

i=1 i=1
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holds for all η ∈ R
1, all ξ,ψ ∈ R

n, and almost all x ∈ R
n. Hence, the operator A(u) given by (5) and satisfying

conditions (6) and (8) belongs to the class A(α).

Remark 1. Conditions (7) and (8) on the behavior of the coefficients of partial differential operators were introduced
in [10].

It is not difficult to verify that for any given p > 1 the differential operators (2) and (3) as well as the differential
operator A(u) given by (5) and satisfying the well-known growth conditions(

n∑
i=1

A2
i (x, η, ξ)

)1/2

�K1|ξ |p−1 (9)

and

|ξ |p �K2

n∑
i=1

ξiAi(x, η, ξ), (10)

with K1,K2 positive constants, belong to the class A(α) with α = p.
It is also easy to see that linear divergent elliptic partial differential operators of the form

L :=
n∑

i,j=1

∂

∂xj

(
aij (x)

∂

∂xi

)
(11)

with aij (x) measurable bounded coefficients and with the (possibly non-uniformly) positive-definite quadratic form

n∑
i,j=1

aij (x)ξiξj (12)

belong to the class A(α) with α = 2 but do not satisfy condition (10) for any fixed p > 1.
In connection with this we give another example of an operator that belongs to the class A(α) with a certain

α > 1 but does not satisfy condition (10). Let a(x, η, ξ) be a positive bounded function that satisfies the Carathéodory
conditions on R

n × R
1 × R

n. It is easy to see that for a given p > 1 the weighted p-Laplacian

�̄p(u) := div
(
a(x,u,∇u)|∇u|p−2∇u

)
(13)

belongs to the class A(α) with α = p but does not satisfy condition (10) for any fixed p > 1 if the function a(x, η, ξ)

is only assumed to be positive.
It can happen that an operator A(u) given by (5) belongs simultaneously to several different classes A(α). For

example, the mean curvature operator Ξ(u) given by (4) belongs to the classes A(α) for all 1 < α � 2; similarly its
modification for p � 2,

Ξp(u) := div

( |∇u|p−2∇u√
1 + |∇u|2

)
, (14)

belongs to the classes A(α) for all α ∈ (p − 1,p] and p � 2. Obviously, operators given by (4) and (14) do not satisfy
conditions (9)–(10) for any fixed p � 1.

Definition 2. Let α > 1 be a given number, and let the operator A(u) given by (5) belong to the class A(α). A measur-
able function u : Rn → R

1 is called an entire weak supersolution of Eq. (1) on R
n if u ∈ L1

loc(R
n), |∇u| ∈ Lα

loc(R
n),

and the integral inequality∫
Rn

n∑
i=1

ϕxi
Ai(x,u,∇u)dx � 0 (15)

holds for every non-negative function ϕ ∈ W 1,α(Rn) with compact support.
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3. Results

Theorem 1. Let n � 2 and α > 1 be given numbers such that α � n. Let the operator A(u) given by (5) belong to the
class A(α), and let u(x) be an entire weak supersolution of (1) on R

n bounded below by a constant. Then u(x) is a
constant on R

n.

Theorem 2. Let n � 2 and α > 1 be given numbers such that n > α. Let the operator A(u) given by (5) belong to the
class A(α), and let u(x) be an entire weak supersolution of (1) on R

n bounded below by a constant c and such that
u ∈ L∞

loc(R
n). Then either u(x) = c on R

n or the relation

lim inf
r→+∞

[
sup

r�|x|�2r

(
u(x) − c

)]
r

n−α
α−1−ν = +∞ (16)

holds with any fixed ν ∈ (0, α − 1).

Theorem 3. Let n � 2 and α > 1 be given numbers such that n > α. Let the operator A(u) given by (5) belong to the
class A(α), and let u(x) be an entire weak supersolution of (1) on R

n bounded below by a constant c. Then either
u(x) = c on R

n or the relation

lim inf
r→+∞ r−α

∫
r�|x|�2r

(
u(x) − c

)α−1−ν dx = +∞ (17)

holds with any fixed ν ∈ (0, α − 1).

Due to the arbitrariness of the constant c in Theorems 2 and 3, the statements of these theorems can be reformulated
in a slightly different form.

Theorem 2′. Let n � 2 and α > 1 be given numbers such that n > α. Let the operator A(u) given by (5) belong to
the class A(α), and let u(x) be an entire weak supersolution of (1) on R

n bounded below by a constant and such
that u ∈ L∞

loc(R
n). Then either u(x) is a constant on R

n or relation (16) holds with any fixed real number c such that
u(x) � c on R

n and any fixed ν ∈ (0, α − 1).

Theorem 3′. Let n � 2 and α > 1 be given numbers such that n > α. Let the operator A(u) given by (5) belong to
the class A(α), and let u(x) be an entire weak supersolution of (1) on R

n bounded below by a constant. Then either
u(x) is a constant on R

n or relation (17) holds with any fixed real number c such that u(x) � c on R
n and any fixed

ν ∈ (0, α − 1).

Remark 2. It is important to note that for any given n � 2 and α > 1 such that n > α the function

u(x) = (
1 + |x| α

α−1
) α−n

α (18)

is an entire weak supersolution of the equation

�p(u) = 0 (19)

with p = α that is bounded below and is such that relations (16) and (17) hold with any fixed ν ∈ (0, α − 1) and, at
the same time, the relations

lim
r→+∞

[
sup

r�|x|�2r

(
u(x) − 0

)]
r

n−α
α−1 = C1 (20)

and

lim
r→+∞ r−α

∫
r�|x|�2r

(
u(x) − 0

)α−1 dx = C2, (21)

with C1, C2 certain positive constants, also hold.
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Remark 3. The results of this work were announced in [5]. To prove these results we further develop an approach that
was proposed for solving similar problems in [6].

Remark 4. The results of Theorem 1 are new only for α = n. Similar results to those of Theorem 1 for entire weak
continuous supersolutions of (1) on R

n for α = n were first obtained in [11]. For α > n, the results of Theorem 1
for entire weak supersolutions of (1) on R

n, which in this case are continuous on R
n by the well-known Sobolev

imbedding theory, were also first obtained in [11]. Here, we give a new proof of these results from [11] by developing
an approach from [6] which does not explicitly use the continuity of entire weak supersolutions of (1) on R

n.

Remark 5. In the case when α = p and A(u) = �p(u), Theorem 1 coincides with well-known Liouville-type the-
orems for entire superharmonic and p-superharmonic functions locally bounded on R

n (see, e.g., [2, p. 68] and [3,
p. 179]). Also, in this case, the results of Theorems 2 and 3 correlate well with certain results in the theory of entire
superharmonic and p-superharmonic functions (see, e.g., [2, pp. 131, 139] and [3, pp. 133, 135]).

4. Proofs

Proof of Theorem 2. The statement of Theorem 2 follows immediately from Theorem 3. In fact, let n � 2 and
α > 1 be given numbers such that n > α. Let the operator A(u) given by (5) belong to the class A(α), and let u(x)

be an entire weak supersolution of (1) on R
n bounded below by a constant c, i.e., u(x) � c on R

n, and such that
u ∈ L∞

loc(R
n). Hence, by Theorem 3, either u(x) = c on R

n or relation (17) holds with any fixed ν ∈ (0, α − 1).
Further, via the trivial inequality

r−α

∫
r�|x|�2r

(
u(x) − c

)α−1−ν dx � r−α
[

sup
r�|x|�2r

(
u(x) − c

)α−1−ν
] ∫
r�|x|�2r

dx, (22)

which obviously holds for any r > 0, it follows from (17) that

lim inf
r→+∞

[
sup

r�|x|�2r

(
u(x) − c

)α−1−ν
]
rn−α = +∞. (23)

Then, since

sup
r�|x|�2r

(
u(x) − c

)α−1−ν �
[

sup
r�|x|�2r

(
u(x) − c

)]α−1−ν

(24)

and [
sup

r�|x|�2r

(
u(x) − c

)]α−1−ν

rn−α =
([

sup
r�|x|�2r

(
u(x) − c

)]
r

n−α
α−1−ν

)α−1−ν

, (25)

the validity of (16) follows immediately from that of (23) and (25). �
In what follows, a ‘smooth’ function is a C∞-function on R

n, B(r) is an open ball on R
n of radius r > 0 centered

at the origin, and B(r) is the closure of B(r).

Proof of Theorem 3. Let n � 2 and α > 1 be given numbers such that n > α. Let the operator A(u) given by (5)
belong to the class A(α), and let u(x) be an entire weak supersolution of (1) on R

n bounded below by a constant c,
i.e., u(x) � c on R

n. Let r and ε be positive numbers, and let ζ : Rn → [0,1] be a smooth function which equals 1 on
B(r) and 0 outside B(2r). Substituting, without loss of generality, ϕ(x) = (u(x) − c + ε)−νζ α(x) as a test function in
inequality (15), where ν ∈ (0, α − 1) is arbitrary, and integrating by parts, we find

α

∫
B(2r)\B(r)

n∑
i=1

ζxi
Ai(x,u,∇u)(u − c + ε)−νζ α−1 dx

� ν

∫ n∑
i=1

uxi
Ai(x,u,∇u)(u − c + ε)−ν−1ζ α dx. (26)
B(2r)
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Estimating the left-hand side of (26) by using condition (7) on the coefficients of the operator A(u), we have

αK1/α

∫
B(2r)\B(r)

(
n∑

i=1

uxi
Ai(x,u,∇u)

)(α−1)/α

|∇ζ |(u − c + ε)−νζ α−1 dx

�
∣∣∣∣∣α

∫
B(2r)\B(r)

n∑
i=1

ζxi
Ai(x,u,∇u)(u − c + ε)−νζ α−1 dx

∣∣∣∣∣. (27)

Further, estimating the left-hand side of (27) by Hölder’s inequality, we arrive at

αK1/α

( ∫
B(2r)\B(r)

|∇ζ |α(u − c + ε)α−1−ν dx

)1/α

×
( ∫

B(2r)\B(r)

n∑
i=1

uxi
Ai(x,u,∇u)(u − c + ε)−ν−1ζ α dx

)(α−1)/α

�
∣∣∣∣∣α

∫
B(2r)\B(r)

n∑
i=1

ζxi
Ai(x,u,∇u)(u − c + ε)−νζ α−1 dx

∣∣∣∣∣. (28)

In turn, (26) and (28) imply the inequality

αK1/α

( ∫
B(2r)\B(r)

|∇ζ |α(u − c + ε)α−1−ν dx

)1/α

×
( ∫

B(2r)\B(r)

n∑
i=1

uxi
Ai(x,u,∇u)(u − c + ε)−ν−1ζ α dx

)(α−1)/α

� ν

∫
B(2r)

n∑
i=1

uxi
Ai(x,u,∇u)(u − c + ε)−ν−1ζ α dx (29)

and, therefore, the inequality

ααK
∫

B(2r)\B(r)

|∇ζ |α(u − c + ε)α−1−ν dx � να

∫
B(r)

n∑
i=1

uxi
Ai(x,u,∇u)(u − c + ε)−ν−1 dx. (30)

It is easy to see that the right-hand side of (30) increases monotonically if ε > 0 decreases strongly monotonically
to zero. Therefore, it follows from (30) that the inequality

ααK
∫

B(2r)\B(r)

|∇ζ |α(u − c + ε)−ν+α−1 dx � να

∫
B(r)

n∑
i=1

uxi
Ai(x,u,∇u)(u − c + δ)−ν−1 dx (31)

holds with any δ > 0 and any ε ∈ (0, δ]. Since for any sequence εk > 0 monotonically decreasing to zero as k → +∞
the sequence of functions

Φk(x) := |∇ζ |α(u − c + εk)
α−1−ν (32)

measurable on R
n converges a.e. on R

n to the function

Φ(x) := |∇ζ |α(u − c)α−1−ν (33)

measurable on R
n, since for sufficiently large k∣∣Φk(x)

∣∣ � |∇ζ |α(u − c + 1)α−1−ν (34)
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on R
n, and since the function

|∇ζ |α(u − c + 1)α−1−ν (35)

is locally integrable on R
n, then, by Lebesgue’s theorem (see, e.g., [4, p. 303]), for ε = εk > 0 monotonically decreas-

ing to zero we can pass to the limit as k → +∞ on the left-hand side of (31). As a result, we obtain the inequality

ααK
∫

B(2r)\B(r)

|∇ζ |α(u − c)α−1−ν dx � να

∫
B(r)

n∑
i=1

uxi
Ai(x,u,∇u)(u − c + δ)−ν−1 dx, (36)

which holds with any δ > 0. Then, for any r > 0 and any sequence εk > 0 monotonically decreasing to zero as
k → +∞, it follows from (36), by letting δ = εk and

Ψk(x) :=
n∑

i=1

uxi
Ai(x,u,∇u)(u − c + εk)

−ν−1, (37)

that the sequence of integrals∫
B(r)

Ψk(x)dx (38)

is bounded above by the positive constant

c1 = K
(

α

ν

)α ∫
B(2r)\B(r)

|∇ζ |α(u − c)α−1−ν dx, (39)

which does not depend on εk . Hence, since

Ψ1(x) � Ψ2(x) � · · · � Ψk(x) � · · · (40)

on R
n, then by Beppo Levi’s theorem (see, e.g., [4, p. 305]), for any r > 0 there exists a function Θr : B(r) → R

1

integrable on B(r) and such that the sequence of functions Ψk(x) converges a.e. to Θr(x) on B(r) and

lim
k→+∞

∫
B(r)

Ψk(x)dx =
∫

B(r)

Θr(x)dx. (41)

Further, it is easy to see that the family of functions {Θr}r>0 uniquely determines a function Ψ : Rn → R
1 which

is non-negative, measurable, locally integrable on R
n and is such that Ψ (x) = Θr(x) on B(r) for all r > 0. Therefore,

the sequence of functions Ψk(x) given by (37) converges a.e. to Ψ (x) on R
n for any sequence εk > 0 monotonically

decreasing to zero as k → +∞. Then, by choosing δ = εk in (36), where the sequence εk > 0 converges monotonically
to zero as k → +∞, and passing to the limit on the right-hand side of (36), we find, due to (41), the inequality

ααK
∫

B(2r)\B(r)

|∇ζ |α(u − c)α−1−ν dx � να

∫
B(r)

Ψ (x)dx. (42)

We divide the rest of the proof into three cases according to the behavior of the right-hand side of (42), which can
monotonically approach zero, +∞, or some positive number I as r strongly monotonically approaches +∞.

If the right-hand side of (42) approaches zero as r → +∞, then, due to the non-negativity of the function Ψ (x),
we have that Ψ (x) = 0 on R

n. Further, since by (37) and (40) the inequality
n∑

i=1

uxi
Ai(x,u,∇u)(u − c + εk)

−ν−1 � Ψ (x) (43)

holds on R
n for any sequence εk > 0 monotonically decreasing to zero as k → +∞, then, again, due to the non-

negativity of the left-hand side of (43), we obtain that
n∑

uxi
Ai(x,u,∇u)(u − c + εk)

−ν−1 = 0 (44)

i=1
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on R
n. Hence, by condition (6) on the coefficients of the operator A(u), the supersolution u(x) = const. on R

n, and,
therefore, either u(x) = c on R

n or relation (17) holds with any fixed ν ∈ (0, α − 1).
If the right-hand side of (42) approaches +∞ as r → +∞, then, due to monotonicity, (42) yields that

lim inf
r→+∞

∫
B(2r)\B(r)

|∇ζ |α(u − c)α−1−ν dx = +∞. (45)

Finally, if the right-hand side of (42) monotonically approaches a certain positive number I as r approaches +∞,
i.e.,

lim
r→+∞να

∫
B(r)

Ψ (x)dx = I > 0, (46)

we again consider inequality (29), just noting here that, due to monotonicity,∫
B(2rk)\B(rk)

Ψ (x)dx → 0 (47)

for any sequence rk > 0 such that rk → +∞. First, we have from (29) the inequality

αK1/α

( ∫
B(2r)\B(r)

|∇ζ |α(u − c + ε)α−1−ν dx

)1/α

×
( ∫

B(2r)\B(r)

n∑
i=1

uxi
Ai(x,u,∇u)(u − c + ε)−ν−1 dx

)(α−1)/α

� ν

∫
B(r)

n∑
i=1

uxi
Ai(x,u,∇u)(u − c + ε)−ν−1 dx. (48)

In (48), let ε = εk > 0 converge monotonically to zero as k → +∞. Then, by Lebesgue’s theorem (see, e.g., [4,
p. 303]), we can pass to the limit on both sides of (48). Namely, we know from the above that for any sequence εk > 0
monotonically decreasing to zero as k → +∞ the sequences of functions Φk(x) and Ψk(x) measurable and locally
integrable on R

n and given, respectively, by (32) and (37), converge a.e. on R
n, respectively, to the functions Φ(x)

and Ψ (x) measurable and locally integrable on R
n. Further, arguing as above and letting ε = εk > 0 monotonically

decrease to zero as k → +∞, by Lebesgue’s theorem (see, e.g., [4, p. 303]) we can pass to the limit on both sides
of (48). As a result, we arrive at the inequality

αK1/α

( ∫
B(2r)\B(r)

|∇ζ |α(u − c)α−1−ν dx

)1/α( ∫
B(2r)\B(r)

Ψ (x)dx

)(α−1)/α

� ν

∫
B(r)

Ψ (x)dx. (49)

In (49), for r = rk > 0 monotonically increasing to +∞, by passing to the limit as rk → +∞, we obtain from (46),
(47), and (49) that

lim
rk→+∞

∫
B(2rk)\B(rk)

|∇ζ |α(u − c)α−1−ν dx = +∞. (50)

Thus, due to the arbitrariness in the choice of the sequence rk in (50), we again arrive at relation (45).
Now, without loss of generality, we choose in (45) the function ζ(x) in the form ζ(x) = ψ(|x|/(2r)), where

ψ : [0,+∞) → [0,1] is a smooth function that equals 1 on [0,1/2] and 0 on [1,+∞) and is such that the inequality

|∇ζ | � c2r
−1 (51)

holds on R
n with a certain positive constant c2 for an arbitrary r > 0. Relation (17) then follows immediately from

(45) and (51). �
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Proof of Theorem 1. Let n � 2 and α > 1 be given numbers such that α � n. Let the operator A(u) given by (5)
belong to the class A(α), and let u(x) be an entire weak supersolution of (1) on R

n bounded below by a constant c,
i.e., u(x) � c on R

n. Let r , R, and ε be positive numbers such that R > r , and let ζ : Rn → [0,1] be a smooth function
which equals 1 on B(r) and 0 outside B(R). Substituting, without loss of generality, ϕ(x) = (u(x) − c + ε)−νζ α(x)

as a test function in inequality (15), where ν > α − 1 is an arbitrary positive number, and integrating by parts, we have
the inequality

α

∫
B(R)\B(r)

n∑
i=1

ζxi
Ai(x,u,∇u)(u − c + ε)−νζ α−1 dx

� ν

∫
B(R)

n∑
i=1

uxi
Ai(x,u,∇u)(u − c + ε)−ν−1ζ α dx. (52)

Further, we repeat the proof of Theorem 3 word for word from (26) to (30). As a result, we arrive at the inequality

ααK
∫

B(R)\B(r)

|∇ζ |α(u − c + ε)α−1−ν dx � να

∫
B(r)

n∑
i=1

uxi
Ai(x,u,∇u)(u − c + ε)−ν−1 dx. (53)

It follows immediately from (53) that the inequality

ααεα−1−νK
∫

B(R)\B(r)

|∇ζ |α dx � να

∫
B(r)

n∑
i=1

uxi
Ai(x,u,∇u)(u − c + ε)−ν−1 dx (54)

holds with any fixed ε > 0 and ν > α − 1.
Now, first let α > n. In (54), choosing R = 2r and the function ζ(x) in the form ζ(x) = ψ(|x|/R), where

ψ : [0,+∞) → [0,1] is a smooth function that equals 1 on [0,1/2] and 0 on [1,+∞) and is such that the inequality
(51) holds on R

n with a certain positive constant c2 for an arbitrary R > 0, we obtain from (51) and (54) the inequality

c3r
n−α �

∫
B(r)

n∑
i=1

uxi
Ai(x,u,∇u)(u − c + ε)−ν−1 dx, (55)

which holds with a certain positive constant c3 that does not depend on r . Passing to the limit as r → +∞ in (55), we
find, due to the non-negativity of the integrand, that the equality

n∑
i=1

uxi
Ai(x,u,∇u)(u − c + ε)−ν−1 = 0 (56)

holds on R
n, and, therefore, by condition (6) on the coefficients of the operator A(u), that u(x) = const. on R

n.
If α = n, we choose in (54) the function ζ(x) in the form ζ(x) = ψ(

ln(|x|/r)
ln(R/r)

) with arbitrary R > r > 1, where
ψ : [−∞,+∞) → [0,1] is a smooth function which equals 1 on [−∞,0] and 0 on [1,+∞). It is not difficult to
understand (see, e.g., [9, p. 12]) that the inequality∣∣∇ζ(x)

∣∣ � c4

|x| ln(R/r)
(57)

holds on R
n with a certain positive constant c4 for arbitrary R > r > 1. It then follows from (54) and (57) that the

inequality

c5

∫
B(R)\B(r)

(|x| ln(R/r)
)−n dx �

∫
B(r)

n∑
i=1

uxi
Ai(x,u,∇u)(u − c + ε)−ν−1 dx (58)

holds, and, therefore, so does the inequality

c6
(
ln(R/r)

)−n+1 �
∫ n∑

i=1

uxi
Ai(x,u,∇u)(u − c + ε)−ν−1 dx (59)
B(r)
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with arbitrary R > r > 1 and certain positive constants c5 and c6 that do not depend on R. Passing to the limit as
R → +∞ in (59), we find that the equality∫

B(r)

n∑
i=1

uxi
Ai(x,u,∇u)(u − c + ε)−ν−1 dx = 0 (60)

holds with an arbitrary r > 1. Passing to the limit as r → +∞ in (60), we again obtain, due to the non-negativity of
the integrand in (60) and by condition (6), that u(x) = const. on R

n. �
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