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Abstract

We study the Klein–Gordon equation coupled with an interaction term (� + m2)ϕ + λϕp = 0. In the linear case (λ = 0) a kind
of generalized Noether’s theorem gives us a conserved quantity. The purpose of this paper is to find an analogue of this conserved
quantity in the interacting case. We will see that we can do this perturbatively, and we define explicitly a conserved quantity, using
a perturbative expansion based on Planar Trees and a kind of Feynman rule. Only the case p = 2 is treated but our approach can be
generalized to any φp-theory.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Nous étudions l’équation de Klein–Gordon couplée avec un terme d’interaction (�+m2)ϕ +λϕp = 0. Dans le cas où l’équation
est linéaire (λ = 0), une généralisation du théorème de Noether nous donne une quantité conservée. Le but de cet article est de
trouver un analogue de cette quantité dans le cas non-linéaire (λ �= 0). Nous verrons que pour λ petit, on peut définir explicitement
une quantité conservée en utilisant un développement perturbatif basé sur les Arbres Plans et des règles de Feynman particulières.
Seul le cas p = 2 est traité mais notre approche peut être appliquée pour tout p � 2.
© 2006 Elsevier Masson SAS. All rights reserved.
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Introduction

In this paper, we study the Klein–Gordon equation coupled with a second order interaction term(� + m2)ϕ + λϕ2 = 0 (Eλ)

where ϕ : Rn+1 → R is a scalar field and � denotes the operator ∂2

∂(x0)2 − ∑n
i=1

∂2

∂(xi )2 . The constant m is a positive
real number which is the mass and λ is a real parameter, the “coupling constant”.
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For any s ∈ R we define the hypersurface Σs ⊂ Rn+1 by Σs := {x = (x0, . . . , xn) ∈ Rn+1; x0 = s}. The first
variable x0 plays the role of time variable, and so we will denote it by t . Hence we interpret Σs as a space-like surface
by fixing the time to be equal to some constant s.

When λ equals zero, (Eλ) becomes the linear Klein–Gordon equation (� + m2)ϕ = 0. Then it is well known (see
e.g. [14]) that for any function ψ which satisfies (� + m2)ψ = 0 and for any solution ϕ of (Eλ) for λ = 0 then
assuming that ϕ decays sufficiently at infinity in space, we have for all (s1, s2) ∈ R2∫

Σs1

(
∂ψ

∂t
ϕ − ψ

∂ϕ

∂t

)
dσ =

∫
Σs2

(
∂ψ

∂t
ϕ − ψ

∂ϕ

∂t

)
dσ. (∗)

This last identity can be seen as expressing the coincidence on the set of solutions of (E0) of two functionals Iψ,s1

and Iψ,s2 where for all function ψ : Rn+1 → R and all s ∈ R, the functional Iψ,s is defined by

ϕ �−→
∫
Σs

(
∂ψ

∂t
ϕ − ψ

∂ϕ

∂t

)
dσ.

So (∗) says exactly that on the set of solutions of the linear Klein–Gordon equation, the functional Iψ,s does not
depend on the time s.

This could be interpreted as a consequence of a generalized version of Noether’s theorem, using the fact that up to
a boundary term, the functional∫

K

(
1

2

(
∂ϕ

∂t

)2

− |∇ϕ|2
2

− m2

2
ϕ2
)

dx

is infinitesimally invariant under the symmetry ϕ → ϕ + εχ , where χ is a solution of (E0).
This property is no longer true when λ �= 0 i.e. when Eq. (Eλ) is not linear. The purpose of this article is to obtain a

result analogous to (∗) in the nonlinear (interacting) case. Another way to formulate the problem could be: if we only
know the field ϕ and its time derivative on a surface Σs1 then how can we evaluate Iψ,s2 for s2 �= s1?

We will see that the computation of Iψ,s2 can be done perturbatively when λ is small and s2 is close to s1. This
perturbative computation takes the form of a power series over Planar Binary Trees, this notion will be explained in
Section 2. Note that Planar Binary Trees appear in other works on analogous Partial Differential Equations studied by
perturbation (see [4,6,16,7,2,5]) although the point of view differs with ours.

Let us express our main result. Without loss of generality we can suppose that s1 = 0. We denote by T (2) the set
of Planar Binary Tree (see Section 2 for definition) and for each b ∈ T (2) we write ‖b‖ ∈ N∗ the number of leaves
of b. Then for any functions ψ ∈ C2([0, T ],H−q) (where q is such that q > n/2) which satisfies (� + m2)ψ = 0, we
explicitly construct a family of ‖b‖-multilinear functionals (Ψ (b)

←→
∂s

⊗‖b‖)b∈T (2) acting on C2([0, T ],Hq) and indexed
by the set T (2) of Planar Binary Trees such that the following result holds;

Theorem 1. Let q ∈ N be such that q > n/2, T > 0 be a fixed time and ψ ∈ C2([0, T ],H−q+2) be such that
(� + m2)ψ = 0 in H−q .

(i) For all ϕ in C2([0, T ],Hq) and s ∈ [0, T ] the power series in λ∑
b∈T (2)

(−λ)‖b‖−1〈Ψ (b)
←→
∂s

⊗‖b‖, (ϕ, . . . , ϕ)
〉

(S)

has a nonzero radius of convergence R. More precisely we have

R �
(

4CqM2T

[��ϕ(s)
��

Hq +
����∂ϕ

∂t
(s)

����
Hq

])−1

here M and Cq are some constants.
(ii) Let ϕ ∈ C2([0, T ],Hq) be such that (� + m2)ϕ + λϕ2 = 0. If the condition

8|λ|CqM2T ‖ϕ‖C2([0,T ],Hq)

(
1 + |λ|CqT ‖ϕ‖C2([0,T ],Hq)

)
< 1
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is satisfied then the power series (∗) converges and we have for all s ∈ [0, T ]∑
b∈T (2)

(−λ)|b|〈Ψ (b)
←→
∂s

⊗‖b‖, (ϕ, . . . , ϕ)
〉= ∫

Σ0

(
∂ψ

∂t
ϕ − ψ

∂ϕ

∂t

)
.

The quantity ‖ϕ‖C2([0,T ],Hq) can be evaluated by using the initials conditions of ϕ and using a perturbative expan-
sion. More details will be available in a upcoming paper [10]. This result can be generalized for φp+1-theory, p � 3,
but instead of Planar Binary Trees we have to consider Planar p-Trees.

Beside the fact that the functional
∑

b λ|b|Ψ (b)
←→
∂s

‖b‖ provides us with a kind of generalized Noether’s theorem
charge, it can also help us to estimate the local values of the fields ϕ and ∂ϕ

∂t
. We just need to choose the test function

ψ such that ψ = 0 on the surface Σ0 and ∂ψ
∂t

|Σ0 is an approximation of the Dirac mass at the point x0 ∈ Σ0. One gets

the value of ∂ϕ
∂t

at a point x0 ∈ Σ0 by exchanging ψ and ∂ψ
∂t

in the previous reasoning.
Another motivation comes from the multisymplectic geometry. One of the purpose of this theory is to give a

Hamiltonian formulation of the (classical) field theory similar to the symplectic formulation of the one dimensional
Hamiltonian formalism (the Hamilton’s formulation of Mechanics). If the time variable is replaced by several space–
time variables, the multisymplectic formalism is based on an analogue to the canonical symplectic structure on the
cotangent bundle, a manifold equipped with a multisymplectic form. For an introduction to the multisymplectic geom-
etry one can refer to [11] and for more complete informations one can read the papers of F. Hélein and J. Kouneiher
[12,13]. Starting from a Lagrangian density which describes the dynamics of the field, one can construct a Hamiltonian
function through a Legendre transform and obtain a geometric formulation of the problem. Note that this formalism
differs from the standard Hamiltonian formulation of fields theory used by physicists (see e.g. [14]), in particular the
multisymplectic approach is covariant i.e. compatible with the principles of special and general Relativity.

The main motivation of the multisymplectic geometry is quantization, but it requires as preliminary to define
the observable quantities, and the Poisson Bracket between these observables. A notion of observable have been
introduced in the seventies by the Polish school, see e.g. J. Kijowski [15], Tulcjiew [19]. For more informations one
can read the papers of F. Hélein and J. Kouneiher [12] and [13]. In the problem which interests us in this paper these
observable quantities are essentially the functionals Iψ,s . In order to be able to compute the Poisson bracket between
two such observables Iψ1,s1 and Iψ2,s2 , we must be able to transport Iψ1,s1 into the surface Σs2 . When λ = 0, the
identity (∗) gives us a way to do this manipulation, but when λ �= 0 this is no longer the case. So F. Hélein proposed
an approach based on perturbation; the reader will find more details on this subject in his paper [11].

In the first section, we begin the perturbative expansion by dealing with the linear case and the first order correction.
The second section introduces the Planar Binary Trees which allow us to define the corrections of higher order, and
the statement of the main result is given. Finally the last section contains the proof of the theorem.

1. Perturbative calculus: beginning expansion

1.1. A simple case: λ = 0

Let us consider the space Sλ := {solutions of (Eλ)} we will be more precise about topology in Section 1.3.
Consider the linear Klein–Gordon equation i.e. λ = 0. Let T > 0 and s ∈ [0, T ] be a fixed positive time (the negative

case is similar) and ψ : Rn+1 → R a regular function. If ϕ belongs to S0 then assuming that ϕ and its derivatives decay
sufficiently at infinity in space we have∫

Σs

[
∂ψ

∂t
ϕ − ψ

∂ϕ

∂t

]
dσ −

∫
Σ0

[
∂ψ

∂t
ϕ − ψ

∂ϕ

∂t

]
dσ =

∫
D

[
∂2ψ

∂t2
ϕ − ψ

∂2ϕ

∂t2

]
dx (1.1)

where D denotes the set D := [0, s] × Rn ⊂ Rn+1. Since ϕ ∈ S0 we have

∂2ϕ

∂t2
=
∑ ∂2ϕ

∂z2
− m2ϕ
i i
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hence if one replaces ∂2ϕ

∂t2 in the right-hand side of (1.1) and perform two integrations by parts, assuming that boundary
terms vanish, one obtains∫

Σs

[
∂ψ

∂t
ϕ − ψ

∂ϕ

∂t

]
dσ −

∫
Σ0

[
∂ψ

∂t
ϕ − ψ

∂ϕ

∂t

]
dσ =

∫
D

ϕ
(� + m2)ψ. (1.2)

Hence if we assume that ψ satisfies the linear Klein–Gordon equation (� + m2)ψ = 0 then it follows that for all ϕ in
S0 and for all s ∈ [0, T ] the right-hand side of (1.2) vanishes.

We want to know how these computations are modified for ϕ ∈ Sλ when λ �= 0. For ϕ ∈ Sλ we have ∂2ϕ

∂t2 =∑
i

∂2ϕ

∂z2
i

−
m2ϕ − λϕ2. Hence instead of (1.2) one obtains∫

Σs

[
∂ψ

∂t
ϕ − ψ

∂ϕ

∂t

]
dσ −

∫
Σ0

[
∂ψ

∂t
ϕ − ψ

∂ϕ

∂t

]
dσ = λ

∫
D

ψϕ2 (1.3)

where ψ is supposed to satisfy the equation (� + m2)ψ = 0. The difference is no longer zero. However, one can
remark that the difference seems1 to be of order λ. This is the basic observation which leads to the perturbative
calculus.

1.2. First order correction: position of the problem

Let s be a nonnegative integer. In the previous section, it was shown that if one choose a function ψ such that
(� + m2)ψ = 0, then equality (1.3) occurs for all ϕ ∈ Sλ. The purpose of this section is to search for a counter-term
of order λ which annihilates the right-hand side of (1.3).

Let Ψ (2) be a smooth function Ψ (2) : Rn+1 × Rn+1 → R then for all ϕ ∈ Sλ consider the quantity∫
Σs×Σs

Ψ (2)

(←−−
∂

∂t1
−

−−→
∂

∂t1

)(←−−
∂

∂t2
−

−−→
∂

∂t2

)
ϕ ⊗ ϕ dσ1 ⊗ dσ2. (1.4)

We need to clarify the notation
←−
A and

−→
B for some given operator A and B . When the arrow is right to left (resp. left

to right) the operator is acting on the left (resp. right). For instance we have ∂ψ
∂t

ϕ − ψ
∂ϕ
∂t

= ψ(
←−
∂
∂t

− −→
∂
∂t

)ϕ.
If we assume that Ψ (2) satisfies the boundary condition ∀α ∈ {0,1}2, (∂ |α|Ψ (2)/∂tα)|Σ0×Σs = 0 then for all ϕ in

Sλ we have∫
Σs×Σs

Ψ (2)

(←−−
∂

∂t1
−

−−→
∂

∂t1

)(←−−
∂

∂t2
−

−−→
∂

∂t2

)
ϕ ⊗ ϕ =

∫
D×Σs

∂

∂t1

(
Ψ (2)

(←−−
∂2

∂t2
1

−
−−→
∂2

∂t2
1

)(←−−
∂

∂t2
−

−−→
∂

∂t2

)
ϕ ⊗ ϕ

)
here D denotes the set D := [0, s] × Rn. Assume further that we have ∀α = (α1, α2) ∈ {0,2} × {0,1},

∂ |α|Ψ (2)

∂tα

∣∣∣∣
D×Σ0

= 0

then we can do the same operation for the second variable t2 and finally we get∫
Σs×Σs

Ψ (2)

(←−−
∂

∂t1
−

−−→
∂

∂t1

)(←−−
∂

∂t2
−

−−→
∂

∂t2

)
ϕ ⊗ ϕ =

∫
D×D

Ψ (2)

(←−−
∂2

∂t2
1

−
−−→
∂2

∂t2
1

)(←−−
∂2

∂t2
2

−
−−→
∂2

∂t2
2

)
ϕ ⊗ ϕ.

Now since ϕ belongs to Sλ we have ∂2ϕ

∂t2 = ∑
i

∂2ϕ

∂z2
i

− m2ϕ − λϕ2, hence one can replace the second derivatives with

respect to time of ϕ and then perform integrations by parts in order to obtain∫
D×D

dx1dx2

2∏
i=1

(
ϕ(xi)Pi + λϕ2(xi)

)
Ψ (2)(x1, x2) (1.5)

1 Do not forget that the situation is actually more complicated because since ϕ satisfies Eq. (Eλ), the field ϕ depends on λ.
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where Pi denotes the operator P := � + m2 acting on the i-th variable. Here we have assumed that there are no
boundary terms in the integrations by parts.

Using (1.5) and (1.3) one obtains that for all ϕ in Sλ we have∫
Σs

(
∂ψ

∂t
ϕ − ψ

∂ϕ

∂t

)
+ λ

∫
Σ2

s

Ψ (2)

(←−−
∂

∂t1
−

−−→
∂

∂t1

)(←−−
∂

∂t2
−

−−→
∂

∂t2

)
ϕ⊗2 −

∫
Σ0

(
∂ψ

∂t
ϕ − ψ

∂ϕ

∂t

)

= λ

[ ∫
D×D

ϕ⊗2P1P2Ψ
(2) +

∫
D

ϕ2ψ

]
+ λ2 · · · . (1.6)

Hence if we choose a function Ψ (2) such that

P1P2Ψ
(2)(x1, x2) = −δ(x1 − x2)ψ(x1) (1.7)

where δ is the Dirac operator then the first order term in the right-hand side of (1.6) vanishes. But because of the
hyperbolicity of the operator P , it seems difficult to control the regularity of such a function Ψ (2). Hence we need to
allow Ψ (2) be in a distribution space.

1.3. Function space background

Here we define the function spaces which will be used in the following. Let fix some time T > 0.
Let q ∈ Z then we denote by Hq(Rn) (or simply Hq ) the Sobolev space

Hq
(
Rn

) := {
f ∈ L2(Rn

) ∣∣ (1 + |ξ |2)q/2
f̂ (ξ) ∈ L2(Rn

)}
.

Then it is well known (see e.g. [3,17,1]) that Hq endowed with the norm ‖f ‖Hq := ∫
Rn(1 + |ξ |2)q |f̂ |2(ξ)dξ is a

Hilbert Space. Moreover one can see in every classical text book (see e.g. [1]) the following result

Theorem 1.1. If q > n/2 then Hq is a Banach Algebra i.e. there exists some constant Cq > 0 such that for all
(f, g) ∈ (Hq)2, fg ∈ Hq and

‖fg‖Hq � Cq‖f ‖Hq ‖g‖Hq .

In the rest of the paper we fix some integer q ∈ N such that q > n/2.

Definition 1.1. Let k ∈ N∗ be a positive integer, then we denote by Ek∗ the space defined by

Ek∗ := C1
(

[0, T ]k,
⊗̂k

H−q

)
where for all Banach space B and for all k ∈ N∗, we denote by

⊗̂kB∗ the space of k-linear continuous forms over B.

Then Ek∗ together with the norm ‖ · ‖k∗ defined by

‖U‖k∗ := max
α∈{0,1}k

(
sup

t∈[0,T ]k
(f1,...,fk)∈(Hq)k

‖fj ‖Hq �1

∣∣∣∣〈∂ |α|U
∂tα

(t), (f1, . . . , fk)

〉∣∣∣∣
)

is a Banach Space, here 〈·, ·〉 denotes the duality brackets. For all k ∈ N∗, we denote by (E1∗)⊗k the space of finite
sum of decomposable elements where a decomposable element U of Ek∗ is such that there exists (U1, . . . ,Uk) ∈ E1∗
such that U = U1 ⊗ · · · ⊗ Uk i.e. for all (f1, . . . , fk) ∈ (Hq)k and for all t = (t1, . . . , tk) ∈ [0, T ]k〈

U(t), (f1, . . . , fk)
〉= 〈

U(t1), f1
〉 · · · 〈U(tk), fk

〉
.

Then using the fact that the space of compactly supported smooth functions is dense in Hq , one can easily prove the
following property
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Property 1.1. For all k in N∗, (E1∗)⊗k is a dense subspace of Ek∗.

We will denote by E the space defined by E := C2([0, T ],Hq). Then E is a Banach space and we can see naturally

Ek∗ as a subspace of
⊗̂kE∗ the space of k-linear continuous form over E ; ∀U ∈ Ek∗ and ∀ϕ = (ϕ1, . . . , ϕk) ∈ Ek

〈U,ϕ〉 :=
T∫

0

dt1 · · ·
T∫

0

dtk
〈
U(t1, . . . , tk),

(
ϕ1(t1), . . . , ϕk(tk)

)〉
.

Now let us generalize the expression (1.4) for the elements of Ek∗.

Definition 1.2. Let U belong to E1∗ and s ∈ [0, T ], then we denote by U
←→
∂s the continuous linear form over E defined

by ∀ϕ ∈ E〈
U

←→
∂s , ϕ

〉 := 〈
∂U

∂t
(s), ϕ(s)

〉
−
〈
U(s),

∂ϕ

∂t
(s)

〉
. (1.8)

Then using the Property 1.1 one can easily prove the following property

Property 1.2. Let k ∈ N∗ and s ∈ [0, T ] then there exists an unique operator Ek∗ → ⊗̂kE∗, U �→ U
←→
∂s

⊗k such that
for any decomposable element U = U1 ⊗ · · · ⊗ Uk of (E1∗)⊗k and for all ϕ = (ϕ1, . . . , ϕk) ∈ Ek

〈
U

←→
∂s

⊗k, ϕ
〉 := k∏

j=1

〈
Uj

←→
∂s , ϕj

〉
.

1.4. Resolution of the first order correction

Let us introduce the perturbative calculus by dealing with the first order correction. In this section we will define a
functional Ψ (2) such that〈

ψ
←→
∂s , ϕ

〉+ λ
〈
Ψ (2)←→∂s

⊗2, (ϕ,ϕ)
〉− 〈

ψ
←→
∂0 , ϕ

〉= O
(
λ2) (1.9)

for all ϕ ∈ E solution of (Eλ).

Proposition–Definition 1.1. Let Υ :E1∗ → E2∗ be the operator2 defined by ∀ψ ∈ E1∗, ∀t = (t1, t2) ∈ [0, T ]2 and
∀(f1, f2) ∈ (Hq)2

〈
Υ ψ(t1, t2), (f1, f2)

〉 := T∫
0

dτ
〈
ψ(τ), (G ∗ f1)(t1 − τ)(G ∗ f2)(t2 − τ)

〉
where for all f ∈ Hq , t ∈ [0, T ], (G ∗ f )(t) denotes the element of Hq such that ∀k ∈ Rn

̂(G ∗ f )(t)(k) := θ(t)
sin(tωk)

ωk

¯̂
f (k) (1.10)

where θ denote the Heaviside function3 and where ωk := (m2 + |k|2)1/2 for all k ∈ Rn.

Remark 1.1. One can see Υ ψ as a distribution Υ ψ ∈ ⊗̂2D′((O,T ) × Rn) and we have the following expression
for Υ ψ

Υ ψ(x1, x2) =
∫
P+

dy Gret(x1 − y)Gret(x2 − y)ψ(y) (1.11)

2 Υ ψ = (G ⊗ G) ∗ Δ0ψ where Δ0 is a generalized coproduct.
3 θ(t) = 0 if t < 0 and 1 otherwise.
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where P+ = {x ∈ Rn+1 | x0 > 0} and where Gret(z) denotes the retarded Green function of the Klein–Gordon operator

Gret(z) := 1

(2π)n
θ
(
z0)∫

Rn

dnk
sin(z0ωk)

ωk

eik.z

here z̄ denotes the spatial part of z ∈ Rn+1 i.e. z = (z0, z̄).

One can verify that Υ is well defined and we have the following result

Proposition 1.1. Let λ be a real number and s ∈ [0, T ] a fixed time. Let ψ ∈ C2([0, T ],H−q+2) ⊂ E1∗ be such that
∂2ψ

∂t2 − �ψ + m2ψ = 0. If ϕ ∈ E is a solution of Eq. (Eλ) then the following inequality holds

∣∣〈ψ←→
∂s , ϕ

〉− λ
〈
(Υ ψ)

←→
∂s

⊗2, (ϕ,ϕ)
〉− 〈

ψ
←→
∂0 , ϕ

〉∣∣� λ2
(

s2C2
q

m
‖ϕ‖3

E + |λ| s
3C3

q

3m2
‖ϕ‖4

E

)
‖ψ‖1∗. (1.12)

Proof of Proposition 1.1. Let ψ ∈ C2([0, T ],H−q+2) be such that ∂2ψ

∂t2 − �ψ + m2ψ = 0 in H−q and ϕ ∈ E be a

solution of Eq. (Eλ). Then since ψ and ϕ are C2 the function f : t �→ 〈ψ←→
∂t , ϕ〉 is derivable with respect to t and

f ′(t) =
〈
∂2ψ

∂t2
(t), ϕ(t)

〉
−
〈
ψ(t),

∂2ϕ

∂t2
(t)

〉
.

But since ψ and ϕ satisfy ∂2ψ

∂t2 − �ψ + m2ψ = 0 and ∂2ϕ

∂t2 − �ϕ + m2ϕ = −λϕ2 we have

f ′(t) = 〈
ψ(t),

(
� − m2)ϕ(t)

〉− 〈
ψ(t),

∂2ϕ

∂t2
(t)

〉
= λ

〈
ψ(t), ϕ2(t)

〉
.

Hence we finally get for all s ∈ [0, T ] in

〈
ψ

←→
∂s , ϕ

〉− 〈
ψ

←→
∂0 , ϕ

〉= f (s) − f (0) = λ

s∫
0

〈
ψ(τ),ϕ2(τ )

〉
dτ (1.13)

and we recover the identity (1.3).
Now let us study the term of order one of the left-hand side of (1.12). Using Definition 1.1 of Υ one can show

easily that it is given by the expression

〈
(Υ ψ)

←→
∂s

⊗2, (ϕ,ϕ)
〉= s∫

0

dτ

∫
Rn

dk1

∫
Rn

dk2 M(s, τ, k1)M(s, τ, k2)ψ̂(τ, k1 + k2) (1.14)

where ∀(t, τ ) ∈ [0, T ]2 and ∀k ∈ Rn, the quantity M(t, τ, k) is given by

M(t, τ, k) := cos
(
(t − τ)ωk

)
ϕ̂(t)(k) − sin((t − τ)ωk)

ωk

̂∂ϕ(t)

∂t
(k). (1.15)

The identity (1.14) can be seen as 〈(Υ ψ)
←→
∂s

⊗2, (ϕ,ϕ)〉 = u(s) where u : [0, T ] → R is the continuous function given
by

u(t) :=
t∫

0

dτ

∫
Rn

dk1

∫
Rn

dk2 M(t, τ, k1)M(s, τ, k2)ψ̂(τ, k1 + k2).

Then in view of definition (1.15) of M(t, τ, k) one can see that u is derivable with respect to t and since u(0) = 0 we
get u(s) = ∫ s

u′(t)dt which leads to
0
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〈
(Υ ψ)

←→
∂s

⊗2, (ϕ,ϕ)
〉= s∫

0

dt

∫
(Rn)2

dk1 dk2 ϕ̂(t)(k1)M(s, τ, k2)ψ̂(t)(k1 + k2)

−
s∫

0

dt

t∫
0

dτ

∫
(Rn)2

dk1 dk2
sin((t − τ)ωk1)

ωk1

P̂ ϕ(t)(k1)M(s, τ, k2)ψ̂(τ )(k1 + k2) (1.16)

where P denotes the Klein–Gordon operator P := � + m2.
Then one can see the identity (1.16) as 〈(Υ ψ)

←→
∂s

⊗2, (ϕ,ϕ)〉 = v(s) + w(s) where the functions v,w : [0, T ] → R

are defined by

v(t) =
t∫

0

dt1

∫
(Rn)2

dk1 dk2 ϕ̂(t1)(k1)M(t, τ, k2)ψ̂(t1)(k1 + k2),

w(t) = −
t∫

0

dt1

min(t,t1)∫
0

dτ

∫
(Rn)2

dk1 dk2
sin((t1 − τ)ωk1)

ωk1

P̂ ϕ(t1)(k1)M(t, τ, k2)ψ̂(τ )(k1 + k2).

Then one can see that v and w are derivable with respect to t and that

v′(t) =
∫

(Rn)2

dk1 dk2 ϕ̂(t)(k1)ϕ̂(t)(k2)ψ̂(t)(k1 + k2)

−
t∫

0

dt1

∫
(Rn)2

dk1 dk2
sin((t − t1)ωk2)

ωk2

ϕ̂(t1)(k1)P̂ ϕ(t)(k2)ψ̂(t1)(k1 + k2)

and

w′(t) =
s∫

0

dt1

min(t1,t)∫
0

dτ

∫
(Rn)2

dk1 dk2
sin((t1 − τ)ωk1)

ωk1

sin((t − τ)ωk2)

ωk2

P̂ ϕ(t1)(k1)P̂ ϕ(t)(k2)ψ̂(τ )(k1 + k2)

+
s∫

t

dt1

∫
(Rn)2

dk1 dk2
sin((t1 − t)ωk1)

ωk1

P̂ ϕ(t1)(k1)ϕ̂(t)(k2)ψ̂(t1)(k1 + k2).

Hence since v(0) = w(0) = 0 and using the fact that Pϕ(t) = −λϕ2(t) and in view of (1.10) we finally get

〈
(Υ ψ)

←→
∂s

⊗2, (ϕ,ϕ)
〉= s∫

0

dτ
〈
ψ(τ),ϕ2(τ )

〉+ 2λ

s∫
0

dt

s∫
0

dτ
〈
ψ(τ),

(
G ∗ (ϕ2(t)

)
(t − τ)

)
ϕ(τ)

〉

+ λ2

s∫
0

dt1

s∫
0

dt2

s∫
0

dτ
〈
ψ(τ),

(
G ∗ (ϕ2(t1)

)
(t1 − τ)

)(
G ∗ (ϕ2(t2)

)
(t2 − τ)

)〉
.

Hence (1.13) and the last identity leads to〈
ψ

←→
∂s , ϕ

〉− λ
〈
(Υ ψ)

←→
∂s

⊗2, (ϕ,ϕ)
〉− 〈

ψ
←→
∂0 , ϕ

〉
= −2λ2

s∫
0

dt

s∫
0

dτ
〈
ψ(τ),

(
G ∗ (ϕ2(t)

)
(t − τ)

)
ϕ(τ)

〉

− λ3

s∫
dt1

s∫
dt2

s∫
dτ

〈
ψ(τ),

(
G ∗ (ϕ2(t1)

)
(t1 − τ)

)(
G ∗ (ϕ2(t2)

)
(t2 − τ)

)〉
. (1.17)
0 0 0
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Now to complete the proof it suffices to estimate the right-hand side of (1.17). Using the definition (1.10) of
G ∗ f (t) one can easily prove the following lemma

Lemma 1.4.1. If f be in Hq then for all (t, τ ) ∈ [0, T ]2 we have (G ∗ f )(t − τ) ∈ Hq and ‖(G ∗ f )(t − τ)‖Hq �
1
m

θ(t − τ)‖f ‖Hq .

Hence using Lemma 1.4.1 and Property 1.1 one get∣∣∣∣∣
s∫

0

dt

s∫
0

dτ
〈
ψ(τ),

(
G ∗ (ϕ2(t)

)
(t − τ)

)
ϕ(τ)

〉∣∣∣∣∣� s2C2
q

2m
‖ψ‖1∗‖ϕ‖3

E

and ∣∣∣∣∣
s∫

0

dt1

s∫
0

dt2

s∫
0

dτ
〈
ψ(τ),

(
G ∗ (ϕ2(t1)

)
(t1 − τ)

)(
G ∗ (ϕ2(t2)

)
(t2 − τ)

)〉∣∣∣∣∣� s3C3
q

3m2
‖ψ‖1∗‖ϕ‖4

E .

Then inserting these two inequalities in (1.17) we finally get (1.12). �
Hence we found a counter-term which annihilates the term (1.3) of order one with respect to λ. But some extra

new terms of high order have been introduced. Thus we need to find a functional λ2Ψ (3) in order to delete the terms
of order λ2, and then an other functional λ3Ψ (4) for those of order three etc. In order to picture all these extra terms,
it will be suitable to introduce the following object: the Planar Binary Tree.

2. Planar Binary Tree

A Planar Binary Tree (PBT) is a connected oriented tree such that each vertex has either 0 or two sons. The vertices
without sons are called the leaves and those with two sons are the internal vertices. For each Planar Binary Tree, There
are an unique vertex which is the son of no other vertex, this vertex will be called the root. Since a Planar Binary Tree
is oriented, one can define an order on the leaves. In the rest of the paper we choose to arrange the leaves from left to
right.

We will denote by T (2) the set of Planar Binary Tree. Let denote by |b| the number of internal vertices of a Planar
Binary Tree b and ‖b‖ the leave’s number of b. Then one can easily show that we have ‖b‖ = |b| + 1. Let denote by
◦ the unique Planar Binary Tree with no internal vertex.

If b1 and b2 are two Planar Binary Trees, then we denote by B+(b1, b2) the Planar Binary Tree obtained by
connecting a new root to b1 on the left and to b2 on the right

B+(b1, b2) = .

Then one can easily show that |B+(b1, b2)| = |b1| + |b2| + 1 and ‖B+(b1, b2)‖ = ‖b1‖ + ‖b2‖, and for all b ∈ T (2),
b �= ◦, there is an unique couple (b1, b2) ∈ T (2)2 such that b = B+(b1, b2). For further details on the Planar Binary
Trees, one can consult [9,18,8] or [20].

Proposition–Definition 2.1. There is a unique family (Υ (b))b∈T (2) of operators Υ (b) :E1∗ → E‖b‖∗ such that{
Υ (◦) := id

∀(b1, b2) ∈ T (2)2; Υ
(
B+(b1, b2)

) := (
Υ (b1) ⊗ Υ (b2)

) ◦ Υ
(2.1)

where for U :E1∗ → Ek∗ and V :E1∗ → E l∗, U ⊗V denotes the unique functional from E2∗ to E (k+l)∗ such that for all
U = U1 ⊗ U2 ∈ (E1∗)⊗2, U ⊗ V(U) = U(U1) ⊗ V(U2).

We postpone the proof of Proposition 2.1 until the next section. Let ψ belong to E1∗, then we consider the family
(Ψ (b))b∈T (2) defined by

Ψ (b) := Υ (b)(ψ) ∈ E‖b‖∗.
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Then using Remark 1.1 we can see that formally the functionals Ψ (b), b ∈ T (2), can be constructed using the
following rules:

1. attach to each leaf of b the space–time variable x1, x2, . . . , x‖b‖ with respect to the order of the leaves.
2. for each internal vertex attach a space–time integration variable yi ∈ Rn+1 and integrate this variable over P+.
3. for each line between the vertices v and w where the depth of v is lower than the w’s, put a factor Gret(av − aw)

where av (resp. aw) is the space–time variable associated with v (resp. w).
4. finally multiply by ψ(ar) where ar is the space–time variable attached to the root of the Planar Binary Tree b.

To fix the ideas, let us treat an example. Let b ∈ T (2) be the Planar Binary Tree described by the following graph

b = .

Then using Definition 2.1 we have Ψ (b) = (id⊗Υ ) ◦ Υ ψ and for x = (x1, x2, x3) ∈ ([0, T ] × Rn)3, Ψ (b)(x) is given
by the following

Ψ (b)(x) =
∫ ∫
P+

dy1 dy2 Gret(x1 − y2)Gret(y1 − y2)Gret(x2 − y1)Gret(x3 − y1)ψ(y2).

Theorem 2.1.

(i) Let ψ ∈ E1∗ and ϕ be in E and s ∈ [0, T ], then the power series in λ∑
b∈T (2)

(−λ)|b|〈Ψ (b)
←→
∂s

⊗‖b‖, (ϕ, . . . , ϕ)
〉

(∗)

has a nonzero radius of convergence R. More precisely we have

R �
(

4CqM2T

[��ϕ(s)
��

Hq +
����∂ϕ

∂t
(s)

����
Hq

])−1

here M is defined by M := max( 1
m

,1) and Cq is the constant of Theorem 1.1.
(ii) Let ϕ ∈ E be such that (� + m2)ϕ + λϕ2 = 0 and ψ ∈ C2([0, T ],H−q+2) ⊂ E1∗ be such that (� + m2)ψ = 0

in H−q . If the condition

8|λ|CqM2T ‖ϕ‖E
(
1 + |λ|CqT ‖ϕ‖E

)
< 1 (2.2)

is satisfied then the power series (∗) converges and we have for all s ∈ [0, T ]∑
b∈T (2)

(−λ)|b|〈Ψ (b)
←→
∂s

⊗‖b‖, (ϕ, . . . , ϕ)
〉= 〈

ψ
←→
∂0 , ϕ

〉
.

Remark. Note that it is possible to control the norm ‖ϕ‖E with the norm of initial datas using some perturbative
expansion. More precisely for any (ϕ0, ϕ1) ∈ (Hq)2, λ ∈ R and T ∈ R such that T |λ|‖(ϕ0, ϕ1)‖ is small enough, it
is possible to construct a solution ϕ ∈ C2([0, T ],Hq) of (Eλ) such that ϕ(0, ·) = ϕ0 and ∂ϕ

∂t
(0, ·) = ϕ1. Then one can

control ‖ϕ‖E using ‖(ϕ0, ϕ1)‖. A proof of this result, based on a remark of Christian Brouder [5] will be expounded
in a forthcoming paper.

Let us comment this last proposition. First of all, using Definition 1.2 of
←→
∂s , one can remark that the power series

(∗) depends only on ϕ(s, ·) and ∂ϕ
∂t

(s, ·). Hence the theorem answers the original question.
We have written the solution for s nonnegative, but the study can be done in the same way for negative s. Finally

the result exposed in Proposition 2.1 can be generalized to φp-theory i.e. for the equation (� + m2)ϕ + λϕp = 0,
p � 2. But the set of Planar Binary Trees must be replaced by T(p), the set of Planar p-Trees i.e. oriented rooted trees
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which vertices have 0 or p sons. Then the definition of (Ψ (b))b∈T (p) remains the same i.e. Ψ (b) := Υ (p)(b)ψ where
Υ (p)(b) is an adaptation of Definition 2.1 for p-trees and an analogue of Theorem 2.1 holds but the condition (2.2)
must be adapted.

3. Proof of the main proposition

3.1. Radius of convergence

First of all we have to prove Proposition 2.1, then we will focus on the radius of convergence of the power series (∗).
Two special Planar Binary Trees play an important role: the Planar Binary Tree ◦ with one leaf, and � the one with

two leaves

◦ = and � = .

Let us introduce for b ∈ T (2), b �= ◦, α ∈ {0,1}‖b‖, t ∈ [0, T ]‖b‖ and f ∈ (Hq)‖b‖ the functions Gα(b)(t, f ) ∈
C0

m([0, T ],Hq) defined in the following way. Let b ∈ T (2), b �= ◦, then there exists b1 and b2 such that b = B+(b1, b2).
Let us denote α = (α(1), α(2)) ∈ {0,1}‖b1‖ × {0,1}‖b2‖ t = (t(1), t (2)) ∈ [0, T ]‖b1‖ × [0, T ]‖b2‖ and f = (f (1), f (2)) ∈
(Hq)‖b1‖ × (Hq)‖b2‖. Then if b1 �= ◦ and b2 �= ◦ we set

Gα(b)(t, f )(τ ) :=
T∫

0

dη1
[
G ∗ (Gα(1)

(b1)(t
(1), f (1))(η1)

)]
(η1 − τ)

×
T∫

0

dη2
[
G ∗ (Gα(2)

(b2)
(
t (2), f (2)

)
(η2)

)]
(η2 − τ). (3.1)

For all b �= ◦ and for all α ∈ {0,1}‖b‖, t ∈ [0, T ]‖b‖ and f ∈ (Hq)‖b‖, α̃ ∈ {0,1}, t̃ ∈ [0, T ], g ∈ Hq we define
G(α̃,α)(B+(◦, b))((t̃ , t), (f̃ , f ))(τ ) = G(α,α̃)(B+(b,◦))((t, t̃ ), (f, f̃ ))(τ ) by

(
Gα̃ ∗ f̃

)
(t̃ − τ)

T∫
0

dη
[
G ∗ (Gα(b)(t, f )(η)

)]
(η − τ) (3.2)

where G0 ∗f := G∗f and where for all f ∈ Hq , t ∈ [0, T ], (G1 ∗f )(t) denotes the element of Hq such that ∀k ∈ Rn

̂(G1 ∗ f )(t)(k) := θ(t) cos(tωk)
¯̂

f (k). (3.3)

Finally for all α = (α1, α2) ∈ {0,1}2, f = (f1, f2) ∈ (Hq)2 and t = (t1, t2) ∈ [0, T ]2 we set

Gα(�)(t, f )(τ ) := (
Gα1 ∗ f1

)
(t1 − τ)

(
Gα2 ∗ f2

)
(t2 − τ). (3.4)

Then we have the following lemma

Lemma 3.1.1. For all b ∈ T (2), b �= ◦, α ∈ {0,1}‖b‖, t ∈ [0, T ]‖b‖ and f ∈ (Hq)‖b‖, the function Gα(b)(t, f ) ∈
C0

m([0, T ],Hq) is well defined by (3.1), (3.2) and (3.4). Moreover we have ∀τ ∈ [0, T ]��Gα(b)(t, f )(τ )
��

Hq � 1

T

(
CqM2T

)|b|
. (3.5)

Proof of Lemma 3.1.1. We will show Lemma 3.1.1 inductively with respect to |b| the number of internal vertices of b.
If b = � then Gα(�)(t, f ) is given by (3.4), hence using definition (1.10) and (3.3) of G0 ∗ f and G1 ∗ f one gets that
Gα(�)(t, f ) belongs to C0

m([0, T ],Hq). Let α = (α1, α2) ∈ {0,1}2, f = (f1, f2) ∈ (Hq)2 and t = (t1, t2) ∈ [0, T ]2,
τ ∈ [0, T ] then using Proposition 1.1 we have��Gα(�)(t, f )(τ )

��
Hq � Cq

��(Gα1 ∗ f1
)
(t1 − τ)

��
Hq

��(Gα2 ∗ f2
)
(t2 − τ)

��
Hq

but from the definition of G0 ∗ f and G1 ∗ f we have ‖(Gαj ∗ fj )(tj − τ)‖Hq � Mθ(tj − τ)‖fj‖Hq where M =
max(1, 1 ) for all j ∈ {1,2}, hence the lemma is true for b = �.
m
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Now suppose that the lemma is true for all b ∈ T (2) such that 1 � |b| � N for some N ∈ N∗. Let b ∈ T (2)

be such that |b| = N + 1 � 2. Then there is (b1, b2) ∈ T (2)2 such that b = B+(b1, b2). Let α = (α(1), α(2)) ∈
{0,1}‖b1‖ × {0,1}‖b2‖ t = (t(1), t (2)) ∈ [0, T ]‖b1‖ × [0, T ]‖b2‖ and f = (f (1), f (2)) ∈ (Hq)‖b1‖ × (Hq)‖b2‖. We have
b = B+(b1, b2) and |b| = N + 1 so |b1| � N and |b1| � N .

If b1 �= ◦ and b2 �= ◦ then Gα(b)(t, f )(τ ) is defined by (3.1) and Lemma 3.1.1 is valid for b1 and b2. So

τ �−→
T∫

0

dη
[
G ∗ (Gα(j)

(bj )(t
(j), f (j))(η)

)]
(η − τ)

is well defined and belongs to C0
m([0, T ],Hq) for j ∈ {1,2}. Hence using Proposition 1.1, we get that Gα(b)(t, f ) is

well defined and belongs to C0
m([0, T ],Hq) and we have

��Gα(b)(t, f )(τ )
��

Hq � Cq

T∫
0

dη1
��[G ∗ (Gα(1)

(b1)
(
t (1), f (1)

)
(η1)

)]
(η1 − τ)

��
Hq

×
T∫

0

dη2
��[G ∗ (Gα(2)

(b2)
(
t (2), f (2)

)
(η2)

)]
(η2 − τ)

��
Hq .

Then using the definition (1.10) of G ∗ f and since (3.5) is satisfied by b1 and b2 we get ‖Gα(b)(t, f )(τ )‖Hq �
CqM2(CqM2T )|b1|+|b2| which leads to (3.5) for b = B+(b1, b2).

If b1 �= ◦ and b2 = ◦ then Gα(b)(t, f )(τ ) is given by (3.2) and Lemma 3.1.1 is true for b1. Hence using definition
of G ∗ f , G1 ∗ f and Proposition 1.1 one gets that Gα(b)(t, f ) ∈ C0

m([0, T ],Hq) is well defined and that

��Gα(b)(t, f )(τ )
��

Hq � Cq

��(Gα(2) ∗ f (2)
)(

t (2) − τ
)��

Hq

×
T∫

0

dη1
��[G ∗ (Gα(1)

(b1)
(
t (1), f (1)

)
(η1)

)]
(η1 − τ)

��
Hq .

Then using the same argument as before we finally get

��Gα(b)(t, f )(τ )
��

Hq � CqM2

T

(
CqM2T

)|b1|‖f ‖
T∫

0

dη1 θ(η1 − τ) � 1

T

(
CqM2T

)|b1|+1
.

Hence inequality (3.5) is true for b = B+(b1,◦). One can deal with the case b1 = ◦ and b2 �= ◦ by exchanging b1 and
b2 in the previous reasoning. �

Now we can deal with the proof of Proposition 2.1. In fact we will prove a more precise result

Proposition 3.1. For all b ∈ T (2) the operator Υ (b) :E1∗ → E‖b‖∗ is well defined by (2.1) and ∀b ∈ T (2), b �= ◦, we
have ∀ψ ∈ E1∗, α ∈ {0,1}‖b‖, ∀t ∈ [0, T ]‖b‖ and ∀f ∈ (Hq)‖b‖

〈
∂ |α|(Υ (b)ψ)

∂tα
(t), f

〉
=

T∫
0

dτ
〈
ψ(τ),Gα(b)(t, f )(τ )

〉
. (3.6)

Proof of Proposition 3.1. We will show Proposition 3.1 inductively with respect to |b| the number of internal vertices
of b. If b = � then (2.1) gives Υ (b) = Υ hence in view of the Definition 1.1 of Υ we see that (3.6) is true.
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Suppose that Proposition 3.1 is true for all b ∈ T (2) such that |b| � N . Let b ∈ T (2)N+1, then there is (b1, b2) ∈
T (2)2 such that b = B+(b1, b2). Let α = (α1, α2) ∈ {0,1}2, f = (f1, f2) ∈ (Hq)2 and t = (t1, t2) ∈ [0, T ]2 and let
U =∑

j U
(1)
j ⊗ U

(2)
j belong to (E1∗)⊗2 then by definition we have

〈
∂ |α|(Υ (b1) ⊗ Υ (b2))U

∂tα
(t), f

〉
=
∑
j

〈
∂ |α(1)|Υ (b1)U

(1)
j

∂(t(1))α
(1)

(
t (1)

)
, f (1)

〉〈
∂ |α(2)|Υ (b2)U

(2)
j

∂(t(2))α
(2)

(
t (2)

)
, f (2)

〉
. (3.7)

If b1 �= ◦ and b2 �= ◦ then (3.6) is true for b1 and b2. Hence the right-hand side of (3.7) leads to

T∫
0

dτ1

T∫
0

dτ2

〈∑
j

U(τ1, τ2)
((
Gα(1)

(b1)
(
t (1), f (1)

)
(τ1)

)
,
(
Gα(2)

(b2)
(
t (2), f (2)

)
(τ2)

))〉
. (3.8)

Then using this last expression and using the inequality (3.5) of Lemma 3.1.1 we finally get∣∣∣∣〈∂ |α|(Υ (b1) ⊗ Υ (b2))U

∂tα
(t), f

〉∣∣∣∣� (
CqM2T

)|b1|+|b2|‖U‖‖f ‖.

So since (E1∗)⊗2 is a dense subspace of E2∗ � Υ (ψ), the last inequality implies that (Υ (b1)⊗Υ (b2)) is a well defined
operator from E2∗ to E‖b‖∗, so (Υ (b1) ⊗ Υ (b2)) ◦ Υ is well defined. Finally let ψ ∈ E1∗ then Υ (ψ) ∈ E2∗, let Un be
sequence of elements of (E1∗)⊗2 which converges to Υ (ψ). Then for all n, (3.8) leads to

〈
∂ |α|(Υ (b1) ⊗ Υ (b2))Un

∂tα
(t), f

〉
=

T∫
0

dτ1

T∫
0

dτ2
〈
Un(τ1, τ2),

((
Gα(1)(

t (1), f (1)
)
(τ1)

)
,
(
Gα(2)(

t (2), f (2)
)
(τ2)

))〉
.

Hence taking the limit n → ∞ in this last identity and using the definitions (1.1) of Υ and (3.1) of Gα(B+(b1, b2)) ×
(t, f ) we finally get (3.6). The cases b1 �= ◦, b2 = ◦ and b1 = ◦, b2 �= ◦ are similar. �

One can remark that inserting the inequality (3.5) of Lemma 3.1.1 in identity (3.6), we get the following inequality
for all b ∈ T (2) \ {◦}��Υ (b)

���
(
CqM2T

)|b|
. (3.9)

Now we can prove the first part of Theorem 2.1. Let ϕ belong to E then Proposition 3.1 shows that for all s ∈ [0, T ]
and for all b ∈ T (2) we have

∣∣〈Ψ (b)
←→
∂s , (ϕ, . . . , ϕ)

〉∣∣� (
CqM2T

)|b|‖ψ‖∗1

[��ϕ(s)
��

Hq +
����∂ϕ

∂t
(s)

����
Hq

]‖b‖

then using the fact (see [18] for a proof) that the number pN of Planar Binary Tree b such that |b| = N satisfies
pN � 4N we finally get the first part of Theorem 2.1, i.e. the power series in λ defined by∑

b∈T (2)

(−λ)|b|〈Ψ (b)
←→
∂s , (ϕ, . . . , ϕ)

〉
has a nonzero radius of convergence R and

R �
(

4CqM2T

[��ϕ(s)
��

Hq +
����∂ϕ

∂t
(s)

����
Hq

])−1

> 0.

Remark. We have used here the fact that for all b ∈ T (2), ‖b‖ = |b| + 1. For Planar p-trees, this property is replaced
by ∀b ∈ T (p), ‖p‖ = (p − 1)|b| + 1.



904 D. Harrivel / Ann. I. H. Poincaré – AN 23 (2006) 891–909
3.2. Algebraic calculations

Let us fix some time s in [0, T ], then we define the operator P :E1∗ → F∗ where F ⊂ E denotes the space
F := C2([0, T ],Hq) ∩ C0([0, T ],Hq+2) by for all U ∈ E1∗ and for all ϕ ∈F

〈PU,ϕ〉 := 〈
U

←→
∂s , ϕ

〉− 〈
U

←→
∂0 , ϕ

〉+ s∫
0

dτ
〈
U(τ),

(� + m2)ϕ(τ)
〉

(3.10)

here � + m2 denotes the operator F → C0([0, T ],Hq) defined by � = ∂2

∂t2 − �. Let k be an integer k ∈ N2 then for

all I ⊂ [[1, k]] we denote by P k
I the unique continuous operator P k

I :Ek∗ → ⊗̂kF such that for any decomposable
element U = U1 ⊗ · · · ⊗ Uk of (E1∗)⊗k and for all ϕ = (ϕ1, . . . , ϕk) ∈ Fk

〈
P k

I U,ϕ
〉=∏

i∈I

〈PUi,ϕi〉
∏
j /∈I

s∫
0

〈
Uj (τj ), ϕj (τj )

〉
dτj .

Since (E1∗)⊗k is a dense subspace of Ek∗, one can prove that P k
I is well defined.

Let ϕ ∈ E be a solution of (Eλ) then in view Property 1.1 ϕ belongs to F . Let b be a Planar Binary Tree such
that b �= ◦ and let k denotes the number of leaves of b (k := ‖b‖). Then in view of Definition 2.1 one can easily see
that for b �= ◦, ∀j ∈ [[1, k]], ∀α ∈ {0,1}k , (∂ |α|Ψ (b)/∂tα)|tj =0 = 0, hence the definition (3.10) of P and the identity
(� + m2)ϕ = −λϕ2 lead to〈

Ψ (b)
←→
∂s

⊗k, (ϕ, . . . , ϕ)
〉= ∑

I⊂[[1,k]]
λk−|I |〈P k

I Ψ (b),
(
ϕαI

1 , . . . , ϕαI
k
)〉

(3.11)

where αI
j = 2 if j /∈ I and αI

j = 1 otherwise. Moreover the proof of Proposition 1.1 shows that if one choose ψ ∈
C2([0, T ],H−q+2) such that (� + m2)ψ = 0 in H−q then we have

〈
ψ

←→
∂s , ϕ

〉− 〈
ψ

←→
∂0 , ϕ

〉= −λ

s∫
0

〈
ψ(τ),ϕ2(τ )

〉
dτ (3.12)

i.e. Pψ = 0. For N ∈ N∗ let denote by ΔN the finite sum

ΔN :=
∑

b∈T (2)
|b|�N

(−λ)|b|〈Ψ (b)
←→
∂s

⊗‖b‖, (ϕ, . . . , ϕ)
〉− 〈

ψ
←→
∂0 , ϕ

〉
.

Then (3.12) and (3.11) lead to

ΔN =
2N−1∑
β=1

λβ−1
∑

1�k�N
0�l�k
k+l=β

∑
b∈T (2)
‖b‖=k

∑
I⊂[[1,k]]
|I |=k−l

(−1)|b|〈P k
I Ψ (b),

(
ϕαI

1 , . . . , ϕαI
k
)〉
. (3.13)

Let β ∈ N∗ be such that β � N then Δ
β
N the term of order β with respect to λ in (3.13) writes

Δ
β
N =

∑
b∈T (2)
‖b‖=β

(−1)|b|〈P β

[[1,β]]Ψ (b), (ϕ, . . . , ϕ)
〉

+
∑

1�l�k�β
k+l=β

∑
a∈T (2)
‖a‖=k

∑
I⊂[[1,k]]
|I |=k−l

(−1)|a|〈P k
I Ψ (a),

(
ϕαI

1 , . . . , ϕαI
k
)〉
. (3.14)

Let us focus on the first sum of this last identity. We need some extra structure on the set of Planar Binary Tree, the
growing operation. Let b be a Planar Binary Tree with k leaves and E = (E1, . . . ,Ek) be a k-uplet in {◦,�}k . We call



D. Harrivel / Ann. I. H. Poincaré – AN 23 (2006) 891–909 905
the growing of E on b and denote by E ∝ b the Planar Binary Tree obtained by replacing the i-th leaf of b by Ei . For
instance we have(

,
)

∝ =
(

, ,
)

∝ = .

For E ∈ {◦,�}k we denote by n�(E) the occurrence number of � in E i.e. n�(E) := Card{i | Ei = �}. Then we have
the combinatorial lemma

Lemma 3.2.1.

(1) Let b be a Planar Binary Tree with β leaves, β � 2. Then we have

−
∑

1�l�k�β
k+l=β

∑
a∈T (2); ‖a‖=k

E∈{◦,�}k such that
n�(E)=l and E∝a=b

(−1)|a| = (−1)|b|.

(2) Let p ∈ N∗, a ∈ T (2) be such that ‖a‖ = p and E ∈ {◦,�}p then we have ‖E ∝ a‖ = p + n�(E) and〈
P

p+n�(E)

[[1,p+n�(E)]]Ψ (E ∝ a), (ϕ, . . . , ϕ)
〉= 〈

P
p
IE

Ψ (a),
(
ϕα

IE
1 , . . . , ϕα

IE
p
)〉

where IE := {j ∈ [[1,p]] such that Ej = ◦} and α
IE

j = 2 if j /∈ IE and 1 otherwise.

We postpone the proof of Lemma 3.2.1 until Appendix A. The point (1) of Lemma 3.2.1 leads to∑
b∈T (2)
‖b‖=β

(−1)|b|〈P β

[[1,β]]Ψ (b), (ϕ, . . . , ϕ)
〉

= −
∑

1�l�k�β
k+l=β

∑
a∈T (2); ‖a‖=k

E∈{◦,�}k |n�(E)=l

(−1)|a|〈P β

[[1,β]]Ψ (E ∝ a), (ϕ, . . . , ϕ)
〉
. (3.15)

But since E ∈ {◦,�}p is entirely determined by p and IE , the point (2) of Lemma 3.2.1 and identity (3.15) lead to∑
b∈T (2)
‖b‖=β

(−1)|b|〈P β

[[1,β]]Ψ (b), (ϕ, . . . , ϕ)
〉= −

∑
1�l�k�β

k+l=β

∑
a∈T (2)
‖a‖=k

∑
I⊂[[1,k]]
|I |=k−l

(−1)|a|〈P k
I Ψ (a),

(
ϕαI

1 , . . . , ϕαI
k
)〉

then inserting this last identity in (3.14) we finally get that for all β � N , ΔN
β = 0.

To complete the proof of Theorem 2.1 it suffices to show that ΔN converges to 0 when N tends to infinity.

3.3. Analytic study

We have shown that all the terms of order β with β � N in identity (3.13) vanish, hence we have

ΔN =
2N−1∑

β=N+1

λβ−1
∑

1�l�k�N
k+l=β

∑
b∈T (2)
‖b‖=k

∑
I⊂[[1,k]]
|I |=k−l

(−1)|b|〈P k
I Ψ (b),

(
ϕαI

1 , . . . , ϕαI
k
)〉
. (3.16)

We have to estimate the right-hand side of this last identity. Let us prove the following lemma

Lemma 3.3.1. Let k ∈ N∗, k � 2 and b ∈ T (2) be such that ‖b‖ = k, then for all I ⊂ [[1, k]], ϕ ∈ E solution of (Eλ)
and ψ ∈ E1∗ we have∣∣〈P k

I Ψ (b),
(
ϕαI

1 , . . . , ϕαI
k
)〉∣∣� 1

T

(
2 + |λ|CqT ‖ϕ‖E

)|I |
M2(k−1)

(
CqT ‖ϕ‖E

)2k−|I |‖ψ‖1∗. (3.17)
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Proof of Lemma 3.3.1. Let P̃ denotes the operator P̃ :E1∗ →F ′ defined for all U ∈ E1∗ and for all ϕ ∈ F by

〈
P̃U,ϕ

〉 := 〈
U

←→
∂s , ϕ

〉+ s∫
0

dτ
〈
U(τ),

(� + m2)ϕ(τ)
〉

(3.18)

and for k ∈ N∗ and I ⊂ [[1, k]] we denote by P̃ k
I the unique continuous operator P̃ k

I :Ek∗ → ⊗̂kF such that for all
decomposable element U = U1 ⊗ · · · ⊗ Uk of (E1∗)⊗k and for all ϕ = (ϕ1, . . . , ϕk) ∈Fk

〈
P̃ k

I U,ϕ
〉=∏

i∈I

〈
P̃Ui, ϕi

〉∏
j /∈I

s∫
0

〈
Uj (τj ), ϕj (τj )

〉
dτj .

One can prove that P̃ k
I is well defined, in fact one can prove that for all U ∈ (E1∗)⊗k we have∣∣〈P̃ k

I U,ϕ
〉∣∣� ‖U‖∗k

∑
J⊂I

∏
α∈J

2‖ϕα‖E
∏

β∈I\J
T
��(� + m2)ϕβ

��∞,Hq

∏
γ∈[[1,k]]\I

T ‖ϕγ ‖∞,Hq .

Moreover since for b �= ◦, ∀j ∈ [[1, k]], ∀α ∈ {0,1}k , (∂ |α|Ψ (b)/∂tα)|tj =s = 0, we have P k
I Ψ (b) = P̃ k

I Ψ (b) for all
b �= ◦.

Let ϕ ∈ E be a solution of (Eλ) then since (� + m2)ϕ = −λϕ2, ϕ belongs to F . Hence using Property 1.1 and
Definition (3.18) we get ϕ2 ∈F and applying the last inequality to (ϕαI

1 , . . . , ϕαI
k ) we finally get∣∣〈P k

I Ψ (b),
(
ϕαI

1 , . . . , ϕαI
k
)〉∣∣� (

2 + |λ|CqT ‖ϕ‖E
)|I |

(CqT )k−|I |‖ϕ‖2k−|I |��Ψ (b)
��∗k

. (3.19)

Then using inequality (3.9) we finally get (3.17). �
Then using (3.16), Lemma 3.3.1 and the fact that the number pk of Planar Binary Tree b such that |b| = k satisfies

pk � 4k , we get that |ΔN | is bounded by

‖ψ‖1∗
|λ|T

2N−1∑
β=N+1

(|λ|CqT ‖ϕ‖E
)β ∑

1�l�k�N
k+l=β

4k−1Ck−l
k

(
2 + |λ|CqT ‖ϕ‖E

)k−l
M2(k−1). (3.20)

Let A denotes the quantity A := |λ|CqT ‖ϕ‖E then (3.20) leads to

|ΔN | � Cq‖ϕ‖E‖ψ‖1∗
∑

1�l�k�N
N+1�k+l�2N−1

Ck−l
k

(
4M2A

)k−1
Al(2 + A)k−l .

But for all (k, l) ∈ (N∗)2 such that 1 � l � k � N and N + 1 � k + l � 2N − 1 we have k � [N/2], so we get

|ΔN | � Cq‖ϕ‖E‖ψ‖1∗
N∑

k=[N/2]

(
4M2A

)k−1
(2 + 2A)k−1.

But since (2.2) is satisfied we get 8M2A(1 +A) < 1 hence the last inequality shows that ΔN tends to 0 when N tends
to infinity which completes the proof of Theorem 2.1.

Appendix A. Planar Binary Trees

Here we will prove Lemma 3.2.1. Let begin with the first part of the lemma which is equivalent to

Lemma A.0.2. Let b belong to T (2), ‖b‖ = β (β � 2), then we have∑
0�l�k�β

k+l=β

∑
a∈T (2),‖a‖=k

E∈{◦,�}k |n�(E)=l
such that E∝a=b

(−1)|a| = 0. (A.1)
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Proof. Let b ∈ T (2) be such that ‖b‖ = β (β � 2). Then let us denote by L the integer defined by

L := max
{
i ∈ N such that ∃a ∈ T (2), ‖a‖ = β − i, ∃E ∈ {◦,�}β−i such that n�(E) = i and E ∝ a = b

}
.

Then since β � 2 we have L � 1. Define K by K := β − L and let A ∈ T (2), ‖A‖ = K and Ê ∈ {◦,�}K such that
Ê ∝ A = b (and then necessarily n�(Ê) = L). Note that A is actually unique: it is obtained by removing all pairs of b

which are sons of the same vertex. Let denote by I the set of indices 1 � i � K such that Ei = �. Then for all J ⊂ I

we will denote by EJ the K-uplet EJ := (EJ
1 , . . . ,EJ

K) where for all j in [[1,K]], EJ
j defined by

EJ
j =

{
� if j ∈ J,

◦ if j ∈ [[1,K]] \ J

∀j ∈ J , EJ
j = � and ∀i ∈ [[1,K]] \ J EJ

i = ◦.
Let k, l be some integers such that 1 � l � k � β and k + l = β . Then for all a ∈ Tk such that there exists

Ea ∈ {◦,�}k which satisfies b = E ∝ a, there is an unique subset J ⊂ I such that a = EJ ∝ A and then we have
k � |J | = l � 1. In the other hand for all J ⊂ I such that |J | � 1 there exists an unique Ẽ ∈ {◦,�}K+|J |, n�(Ẽ) � 1
such that Ẽ ∝ (EJ ∝ A) = b. Hence we have

−
∑

0�l�k�β
k+l=β

∑
a∈T (2),‖a‖=k

E∈{◦,�}k |n�(E)=l
such that E∝a=b

(−1)|a| = 0 −
∑
J⊂I|J |�L

(−1)|EJ ∝A|

but |EJ ∝ A| = K + |J | − 1 so the previous equality leads to

−
∑

0�l�k�β
k+l=β

∑
a∈T (2),‖a‖=k

E∈{◦,�}k |n�(E)=l
such that E∝a=b

(−1)|a| = −
L∑

l=0

Cl
L(−1)K+l−1 = (−1)K(1 − 1)L = 0

which completes the proof. �
Let focus on the second part of Lemma 3.2.1.

Lemma A.0.3. Let p ∈ N∗, a ∈ T (2) be such that ‖a‖ = p and E ∈ {◦,�}p then we have ‖E ∝ a‖ = p + n�(E) and〈
P

p+n�(E)

[[1,p+n�(E)]]Ψ (E ∝ a), (ϕ, . . . , ϕ)
〉= 〈

P
p
IE

Ψ (a),
(
ϕα

IE
1 , . . . , ϕα

IE
p
)〉

(A.2)

where IE := {j ∈ [[1,p]] such that Ej = ◦} and α
IE

j = 2 if j /∈ IE and 1 otherwise.

Proof. Let k ∈ N∗ and U belong to Ek∗, then for all K ⊂ [[1, k]], for all t∨K ∈ [0, T ]k−|K| and for all f ∨K ∈
(Hq)k−|K| we consider the element U∨K(t∨K,f ∨K) of E |K|∗ defined by ∀τ ∈ [0, T ]|K| and ∀g ∈ (Hq)|K|,
〈U∨K(t∨K,f ∨K)(τ), g〉 := 〈U(t̃), f̃ 〉 where t̃ and f̃ are defined by{

t̃r := t∨K
v(r) if r /∈ K,

t̃r := τk(r) if r ∈ K
and

{
f̃r := f ∨K

v(r) if r /∈ K,

f̃r := gk(r) if r ∈ K
(A.3)

here v(r) := card{k � r such that k /∈ k} and k(r) := card{k � r such that k ∈ K}.
First we will treat the case n�(E) = 1 then we will see how to generalize the result. For j ∈ [[1, k]] we define

E(j,k) = (E
(j,k)

1 , . . . ,E
(j,k)
k ) ∈ {◦,�}k by E

(j,k)
r = ◦ if r �= j and E

(j,k)
j = �. Let t ∈ [0, T ]k−1 and (f1, . . . , fk−1) ∈

(Hq)k then we consider the element Ψ (a)∨{j}(t, f ) of E1∗. In view of the definition of Ψ (b) = Υ (b)ψ we have
Ψ (E(j,k) ∝ a) = Υ [Ψ (a)∨{j}(t, f )] ∈ E2∗. Then the calculations done in the proof of Proposition 1.1 shows that for
all ϕ ∈ E solution of (Eλ) we have

〈
P 2[[1,2]]Υ

[
Ψ (a)∨{j}(t, f )

]
, (ϕ,ϕ)

〉= T∫ 〈
Ψ (a)∨j (t, f )(τ ), ϕ2(τ )

〉
dτ. (A.4)
0
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Hence using the definition (A.3) of Ψ (a)∨{j}(t, f ) we find that the lemma is true if E = E(j,k) i.e. when n�(E) = 1.
Let M ∈ N∗ and E ∈ {◦,�}k be such that n�(E) = M . Then we define JE ⊂ [[1, k]] as the set of indices j ∈ [[1, k]]

such that Ej = �, then since n�(E) = M we have |JE | = M . We denote JE := {j1, . . . , jM} where jM < jM−1 <

· · · < j1. Then one can show easily that we have

b := E ∝ a = E(jM,k+M−1) ∝ (
E(jM−1,k+M−2) ∝ (· · · ∝ (

E(j1,k) ∝ a
)) · · ·).

Hence if we denote by a1 the Planar Binary Tree a1 := E(jM−1,k+M−2) ∝ (· · · ∝ (E(j1,k) ∝ a)) · · ·) we have b =
E ∝ a = E(jM,k+M−1) ∝ a1. Then for all

t {jM } = (t1, . . . , tjM−1, tjM+1, . . . , tk+M−1) ∈ [0, T ]k+M−2,

f {jM } = (f1, . . . , fjM−1, fjM+1, . . . , fk+M−1) ∈ (Hq)k+M−2

we can use (A.4) and the fact that

Υ
[
Ψ (a1)

∨jM
(
t {jM }, f {jM })]= Ψ (b)∨{jM,jM+1}(t {jM }, f {jM })

in order to obtain〈
P 2[[1,2]]Ψ (b)∨{jM,jM+1}(t {jM }, f {jM }), (ϕ,ϕ)

〉
=

T∫
0

〈
Ψ (a1)(t),

(
f1, . . . , fjM−1, ϕ

2(tjM
), fjM+1, . . . , fk+M−1

)〉
dtjM

where t denotes the (k + M − 1)-uplet t := (t1, . . . , tjM−1, tjM
, tjM+1, . . . , tk+M−1). Then writing

a1 = E(jM−1,k+M−2) ∝ a2

one can use the same arguments to show that〈
P 4[[1,4]]Ψ (b)∨{jM,jM+1,jM−1+1,jM−1+2}(t {jM,jM−1}, f {jM,jM−1}), (ϕ,ϕ,ϕ,ϕ)

〉
=
∫∫
[0,T ]

dtjM
dtjM−1

〈
Ψ (a2)(t),

(
f1, . . . , ϕ

2(tjM
), fjM+1, . . . , fjM−1−1, ϕ

2(tjM−1), . . . , fk+M−1
)〉

.

Hence Doing this operation successively for jM−2, . . . , j1 we finally get〈
P

|K|
[[1,|K|]]Ψ (b)∨K

(
t∨K,f ∨K

)
, (ϕ, . . . , ϕ)

〉= ∫ ∫
[0,T ]M

dtjM
· · ·dtj1

〈
Ψ (a)(t), (g̃1, . . . , g̃k)

〉
(A.5)

where K :=⋃M
r=1{jr + M − r, jr + M − r + 1} and where g̃r := ϕ2(tr ) if r ∈ JE and g̃r := fv(r) otherwise. Hence,

considering the element 〈P |K|
[[1,|K|]]Ψ (b)∨K(·, ·), (ϕ, . . . , ϕ)〉 of E (k+M−2M)∗ and using (A.5), we finally get〈

P k+M
[[1,k+M]]Ψ (b), (ϕ, . . . , ϕ)

〉= 〈
P k

[[1,k]]\JE
Ψ (a), (h̃1, . . . , h̃k)

〉
where g̃r := ϕ2 if r ∈ JE and h̃r := ϕ otherwise i.e. we obtain exactly identity (A.2). �
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