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Abstract

In this paper we study, analytically and numerically, the existence and blow up of solutions to two-dimensional boundary value
problems of the form �uλ = 0 in Ω , ∂uλ/∂n = Duλ + λf (uλ) on ∂Ω . We place particular emphasis on f (u) = sinh(u) =
(eu − e−u)/2, in which case the nonlinear flux boundary condition is frequently associated with the names of Butler and Volmer.
© 2005 Elsevier SAS. All rights reserved.

Résumé

Dans cet article nous étudions, analytiquement et numériquement, l’existence et l’explosion de solutions de problèmes aux
limites bi-dimensionnels de la forme �uλ = 0 dans Ω , ∂uλ/∂n = Duλ + λf (uλ) sur ∂Ω . Nous portons une attention particulière
à f (u) = sinh(u) = (eu − e−u)/2, situation dans laquelle la condition non linéaire sur le flux au bord est fréquemment associée
aux noms de Butler et Volmer.
© 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Let Ω be a smooth (C∞), bounded domain in R
2, and consider the elliptic boundary value problem

�uλ = 0 in Ω,

∂uλ

∂n
= Duλ + λ sinh(uλ) on ∂Ω. (1)
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This is a simplified model problem, the likes of which frequently show up in connection with corrosion/oxidation
modeling. Such problems also appear when modeling the electronic properties of certain semiconductor interface
systems, for instance MIS (metal-insulator) or MOS (metal-oxide) semiconductor systems [1]. For the latter modeling
it is often assumed that the surface electric field is controlled by the use of certain gaseous ambients. The exponential
character of the flux boundary condition in general reflects the fact that the charged particles (the electrons) are
thought to be regulated by a Boltzman statistics. For a discussion of some practical aspects of these problems, and
some references to the applied literature we refer the reader to [1, 7], and [17]. For a discussion of related problems
with “interior” exponential terms, see [2].

For λ < min{−D,0} the solution of (1) is trivial: zero is the only solution. Our focus is thus on certain nontrivial
(nonzero) solutions corresponding to λ > min{−D,0}, and in particular on the asymptotic behavior of these solutions
as λ approaches zero. As it turns out there is a significant difference between the solution structure for −D < λ < 0
(if such an interval exists) and the solution structure for 0 < λ. For any value of λ in the interval −D < λ < 0 we
establish the existence of finitely many (and at least one) nontrivial solutions, whereas for any λ > 0 we establish the
existence of infinitely many nontrivial solutions. Our existence proof is based on a variational technique, the likes of
which have been used in several related contexts (see [9,14] and [16]). Maybe more surprising than the dichotomy of
the solution structure is the difference in the asymptotic behavior of these solutions as λ approaches 0 from below and
above, respectively.

For λ > 0 we show that any of the (infinitely many) families of solutions we construct generically contains a sub-
sequence along which the nonlinear flux components λ sinh(uλ) converge to a finite, nontrivial sum of delta functions∑K

i=1 αj δxi
. Along the same subsequence the functions uλ will, modulo a possible eigen-component (that can only

appear for a countable set of D’s) have a finite limit at all but a finite set of boundary points (generically {xi}Ki=1).
Finally, under very minimal assumptions, we derive a set of K necessary conditions for the point-mass locations xi .

For λ < 0 we show that any family of solutions which does not converge to 0, as λ → 0−, contains a subsequence
which blows up pointwise almost everywhere as λ → 0−. We also show that along such a subsequence the nonlinear
flux components λ sinh(uλ) blow up in H−1/2(∂Ω), and even after a rescaling they converge weakly to a distribution,
which is not supported at a finite set of points.

It is interesting to note that for −D < λ < 0 we establish an upper bound for ‖uλ‖2
H 1(Ω)

of the order (log 1
|λ| )

2, as
λ → 0−, whereas for the solutions we construct corresponding to 0 < λ we establish an upper bound for the “essen-
tial” part of ‖uλ‖2

H 1(Ω)
of the order log 1

λ
. We do not claim that the solutions we variationally construct necessarily

represent all solutions to the problem (1) – in certain situations (e.g. for an annulus, or for a disk and D negative) it is
not hard to find an extra family of solutions for λ > 0 such that the “essential” part of ‖uλ‖2

H 1(Ω)
grows like (log 1

λ
)2 as

λ → 0+, and the functions uλ as well as the boundary flux components λ sinh(uλ) blow up almost everywhere. In the
situations mentioned above these additional solutions possess higher order bifurcations, whereas the other solutions
do not appear to possess any. We provide some numerical data that cast extra light on this phenomenon.

We have already in earlier papers [5,10] and [12] analyzed the special case ∂uλ

∂n = λ sinh(uλ) (i.e., D = 0). That
analysis included a study of the existence structure as well as a study of the asymptotic behavior as λ → 0+. In
that case there are no nontrivial solutions for λ < 0, and so one does not encounter the quite remarkable difference
in existence structure and blow-up behavior between λ → 0− and λ → 0+. For D = 0 we have presented strong
numerical evidence that the fluxes λ sinh(uλ) might occasionally (depending on the domain Ω) converge to a sum of
delta functions plus a regular part, as λ → 0+ [12]. This should be compared to the results in this paper which (with
only minor additional assumptions) show that, for D �= 0, the functions λ sinh(uλ) can only converge to a pure sum
of delta functions – the limit of the fluxes Duλ + λ sinh(uλ), on the other hand, will always contain a regular part as
well.

Of particular interest for D are Steklov eigenvalues, i.e., the case when D = Dk , for any of the countable set of
nonnegative values 0 = D1 � D2 � · · · for which the linear boundary value problem

�φ = 0 in Ω,
∂φ

∂n
= Dφ on ∂Ω, (2)

possesses nontrivial solutions. We may think of the corresponding bound states φk as associated with impurities
and defects. As stated in [1] such bound states are known to “strongly affect the electrical properties of the bulk
semiconductor” – the results in the present paper (in particular the estimates of the finite dimensional projection
PDuλ) provide some qualitative and quantitative clarification of this statement.
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In the case of D = 0, and a domain in the shape of a disk, it is possible to give explicit (and surprisingly simple)
formulas for what we believe to be all the solutions to (1), see [5]. We have not been able to derive similar explicit
formulas for D �= 0.

Finally we present some numerical calculations and some heuristic arguments related to the solution structure of
the boundary value problem

�uλ = 0 in Ω,

∂uλ

∂n
= Dvλ + λf (uλ) on ∂Ω, (3)

for several other functions f (odd and with f ′(0) = 1, f (t) > 0 for t > 0).

2. The Butler–Volmer case

In this and the following two subsections we provide a very careful analysis of the existence and the asymptotic
behavior of solutions to the boundary value problem (1). As already mentioned, nonlinear boundary flux conditions
of this (exponential) type are frequently found in the corrosion literature; they are often associated with the names of
Butler and Volmer.

When we talk about a solution to (1) we shall always mean a real function uλ ∈ H 1(Ω) which satisfies the boundary
value problem in the weak sense that∫

Ω

∇uλ∇v dx = D

∫
∂Ω

uλv dσx + λ

∫
∂Ω

sinh(uλ)v dσx,

for any v ∈ H 1(Ω). The fact that we restrict attention to domains Ω that are two dimensional ensures that ev is
in Lp(∂Ω), 1 < p < ∞, for any v ∈ H 1(Ω). It furthermore ensures that the mapping v → ev|∂Ω is compact from
H 1(Ω) to Lp(∂Ω), 1 < p < ∞. These facts are both essential for our present analysis, in particular as far as existence
of solutions to (1) is concerned. Very classical results from elliptic regularity theory ensure that any weak, finite energy
solution is a classical solution to (1); indeed it is C∞( 
Ω).

Before proceeding let us present some computational results that provide intuition concerning the kind of results
we might expect to be able to prove. For our computational experiments we take Ω to be the unit disk, and we first take
D = 2 (a Steklov eigenvalue). Based on a boundary integral formulation, a collocation method, and a “continuation
scheme” we now calculate what we believe to be all the nontrivial solutions to (1) (modulo rotations). For details
about the numerical implementations, see [11] and [12]. In the left frame of Fig. 1 we display the H 1(Ω)-norm

‖uλ‖H 1(Ω) = 〈uλ,uλ〉1/2
H 1 =

(∫
Ω

|∇uλ|2 dx +
∫

∂Ω

u2
λ dσx

)1/2

,

as a function of λ for all these solutions. In the right frame of Fig. 1 we display the energy

Eλ(uλ) = 1

2

∫
Ω

|∇uλ|2 dx − D

2

∫
∂Ω

u2
λ dσx − λ

∫
∂Ω

(
cosh(uλ) − 1

)
dσx, (4)

Fig. 1. Left frame: H 1(Ω)-norm as a function of λ for different solutions to (1). Right frame: energies Eλ for the same solutions.



502 K. Medville, M.S. Vogelius / Ann. I. H. Poincaré – AN 23 (2006) 499–538
Fig. 2. Left frame: normal boundary flux component λ sinh(uλ) for λ negative. Right frame: normal boundary flux component λ sinh(uλ) for λ

positive. In both frames D = 2.

Fig. 3. Left frame: normal boundary flux component λ sinh(uλ) for λ negative (smallest flux: λ ∼ −0.64 × 10−1, largest flux λ ∼ −0.56 × 10−4).
Right frame: normal boundary flux component λ sinh(uλ) for λ positive (smallest flux: λ ∼ 0.85 × 10−1, largest flux λ ∼ 0.75 × 10−4). In both
frames D = 1.5.

as a function of λ for all these solutions. It is quite easy to show that there are no nontrivial solutions for λ <

min{−D,0}. We note that if uλ is a solution to (1) so is −uλ. We furthermore note that if Ω is a disk and uλ is a
solution to (1), then so is any rotation of uλ. We do not consider these to be essentially different solutions. In Fig. 1
there appears to be finitely many essentially different solutions for any fixed λ in the interval −D = −2 < λ < 0,
whereas there appears to be infinitely many essentially different solutions for any λ > 0 (we have only “traced”
solutions that bifurcate from the trivial (0) solution before λ = 6, but the same pattern would persist for “later”
solutions). The H 1(Ω) norm (and also the energy) of all nontrivial solutions “blows up” as λ approaches 0.

In Fig. 2 we display the nonlinear part of the normal boundary currents λ sinh(uλ) for 8 values of λ. The left frame
corresponds to λ negative (between −0.79 × 10−1 and −0.70 × 10−4) and the flux components are taken along the
branch emanating from the trivial solution at λ = −1. The right frame corresponds to λ positive (between 0.85×10−1

and 0.75 × 10−4) and the flux components are taken along the branch emanating from the trivial solution at λ = 1.
The blow-up behavior of the solutions is clearly considerably different depending on whether λ → 0−, or whether

λ → 0+. The blow-up behavior is not significantly affected by whether D is a Steklov eigenvalue or not, as evidenced
by Fig. 3, each frame of which depicts the nonlinear part of the normal boundary currents λ sinh(uλ) for 8 values
of λ. Only this time D = 1.5, and we follow solution branches emanating from the trivial solution at λ = −0.5 and
λ = 1.5, respectively. Nontrivial solutions corresponding to λ < 0 (only possibly when D > 0) blow up pointwise
almost everywhere, and the flux components λ sinh(uλ) seem to blow up on entire intervals as λ → 0−, whereas it
is tempting to conjecture that the corresponding flux components for λ → 0+ blow up at only a finite number of
boundary points (provided Ω is simply connected, and D is positive).

The purpose of the next two sections is to carefully analyze the existence structure and the blow-up patterns, as
partially illustrated in Figs. 1–3. For obvious reasons we separate this analysis into two different parts, one concerning
λ < 0, and one concerning λ > 0.

A common tool for the two analyzes is the energy functional Eλ(·) and the associated “restricted” functional Jλ(·),
defined by

Jλ(v) =
{

inft>0 Eλ(tv) for λ < 0,

sup E (tv) for λ > 0,
t>0 λ
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v ∈ H 1(Ω) \ {0}. In the more general setting of (3) the expression coshv − 1 (in the energy Eλ(·)) would be replaced
by F(v), where the nonnegative even function F is given by

F(t) =
t∫

0

f (s)ds.

We also define

Σ = {
w ∈ H 1(Ω): ‖w‖H 1(Ω) = 1

}
.

The functional Jλ(·) is even and continuous on H 1(Ω) \ {0} (see [10] Lemma 2.4). Since Jλ(·) is homogeneous (of
degree 0) it is occasionally convenient to regard it as just a functional on Σ . It is not difficult to see that

v → Jλ(v) maps H 1(Ω) \ {0} onto the interval
[
Jλ(1),0

] ⊂ (−∞,0] for λ < 0.

In particular, for λ < 0 we have Jλ(v) = 0 for any v that vanishes identically on ∂Ω . A simple calculation yields that

Jλ(1) = inf
t>0

|∂Ω|
(

−D

2
t2 − λ

(
cosh(t) − 1

)) = 0 for λ < min{−D,0}, and

Jλ(1) = inf
t>0

|∂Ω|
(

−D

2
t2 − λ

(
cosh(t) − 1

))
< 0 for min{−D,0} < λ < 0.

As a consequence Jλ(·) = 0 for λ < min{−D,0}. It is equally easy to show that

v → Jλ(v) maps H 1(Ω) \ {0} into the interval [0,∞] for λ > 0.

Concerning λ > 0 we see that Jλ(v) = ∞ if and only if v vanishes identically on ∂Ω . For λ > max{0,−D} we also
calculate Jλ(1) = 0. We thus conclude that the range of Jλ(H

1(Ω) \ {0}) is unbounded for any λ > 0 and that the
range equals the interval [0,∞] for any λ > max{0,−D}.

Following the same arguments as in [10] we may show that Jλ(·) is smooth on the set {v: Jλ(1) � Jλ(v) < 0} for
min{−D,0} < λ < 0, and that Jλ(·) is smooth on the set {v: 0 < Jλ(v) < ∞} for 0 < λ. In each case we do this by
showing that there exists a unique value t (v) > 0 such that Jλ(v) = Eλ(t (v)v). By the chain rule,

J ′
λ(v)[w] = E′

λ

(
t (v)v

)[v]t ′(v)[w] + E′
λ

(
t (v)v

)[w]t (v) = E′
λ

(
t (v)v

)[w]t (v), (5)

where we have used the fact that E′
λ(t (v)v)[v] = d

dt
|t=t (v)Eλ(tv) = 0, due to the definition of t (v). Since J ′

λ(v)[v] =
d
dt

|t=1Jλ(tv) = 0 we now arrive at the following equivalences for any v, with Jλ(v) ∈ R \ {0},
∃α such that J ′

λ(v)[·] = α〈·, v〉H 1 ⇐⇒ J ′
λ(v)[·] = 0 ⇐⇒ E′

λ

(
t (v)v

)[·] = 0.

Jλ(v) ∈ R \ {0} ensures that the positive number t (v) is well defined. In other words: if v is a critical point for Jλ(·)
on Σ , corresponding to a nonzero critical value, then u = t (v)v �= 0 is a critical point for Eλ(·) in H 1(Ω). Conversely,
if u �= 0 is a critical point for Eλ(·) in H 1(Ω), with Jλ(u) �= 0, then v = u/‖u‖1 is a critical point for Jλ(·) on Σ .
Such critical points are weak-, and by elliptic regularity, also strong solutions to the boundary value problem (1).

For the existence-analysis (in order to establish the existence of critical point for Jλ(·) on Σ ) it is crucial that Jλ(·)
has a certain compactness property. For the exponential nonlinearity we consider here this condition is a fairly direct
consequence of the compactness of the mapping

H 1(Ω) � v → cosh(v)|∂Ω ∈ Lp(∂Ω).

Lemma 1 ((Palais–Smale condition)). Given any two sequences vn ∈ Σ , αn ∈ R with Jλ(vn) → c �= 0 and J ′
λ(vn)[·]−

αn〈·, vn〉H 1 → 0 in [H 1(Ω)]∗, as n → ∞, we may conclude that αn → 0, and that there exists a subsequence (for
simplicity also indexed by n) and a function v∞ ∈ Σ , so that vn → v∞ in H 1(Ω), as n → ∞.

Proof. Since J ′
λ(vn)[·] − αn〈·, vn〉H 1 → 0 in [H 1(Ω)]∗, and since J ′

λ(vn)[vn] = 0, it follows immediately that

−αn = J ′
λ(vn)[vn] − αn〈vn, vn〉H 1 → 0,
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as desired. It then also follows that

J ′
λ(vn)[·] → 0 in

[
H 1(Ω)

]∗
. (6)

Defining un = t (vn)vn, we now proceed to prove that the sequence {un} is bounded in H 1(Ω). We may without loss
of generality suppose that the sequence {t (vn)} is strictly positive, since 0 < Jλ(vn) < ∞ for n sufficiently large. Our
definition of t (vn) (stationarity of Eλ(tvn) with respect to t) implies

1

2

(∫
Ω

∣∣t (vn)∇vn

∣∣2 dx − D

∫
∂Ω

(
t (vn)vn

)2 dσx

)
= λ

2

∫
∂Ω

t (vn)vn sinh
(
t (vn)vn

)
dσx.

This in turn gives the inequality

|c| + 1 >
∣∣J (vn)

∣∣ = ∣∣Eλ

(
t (vn)vn

)∣∣ = |λ|
∫

∂Ω

(
un

2
sinh(un) − cosh(un) + 1

)
dσx

� |λ|
∫

∂Ω

(
cosh(un) + u2

n − C0
)

dσx,

with C0 = maxx∈R(2 cosh(x) + x2 − x
2 sinh(x) − 1) < ∞. From this it is easy to see that both

∫
∂Ω

u2
n dσx and∫

∂Ω
cosh(un)dσx are bounded by constants depending on c, λ, and Ω . Invoking the energy convergence (the fact

that Eλ(un) → c) we see that
∫
Ω

|∇un|2 dx is bounded by a constant with the same set of dependencies. In summary

0 < t(vn) = ‖un‖H 1(Ω) � C(c,λ,Ω).

We may now extract a subsequence (also indexed by n) such that un ⇀ u∞ weakly in H 1(Ω) and t (vn) → b, for
some u∞ ∈ H 1(Ω) and some b � 0. Note that c �= 0 implies that b > 0, and the weak H 1(Ω) convergence implies
that

∫
∂Ω

(un − u∞)2 dσx → 0. Therefore,∫
Ω

|∇un − ∇u∞|2 dx = (
E′

λ(un) − E′
λ(u∞)

)[un − u∞] + D

∫
∂Ω

(un − u∞)2 dσx

+ λ

∫
∂Ω

(un − u∞)
(
sinh(un) − sinh(u∞)

)
dσx

= E′
λ(un)[un − u∞] − E′

λ(u∞)[un − u∞] + o(1).

The last equality follows from the L2(∂Ω) convergence and Trudinger’s inequality, that is,∫
∂Ω

(
sinh(u)

)2 dσx � C1e
C2‖u‖2

H1(Ω) ,

see Lemma 2.1 of [10]. By (5), E′
λ(un)[·] = 1

t (vn)
J ′

λ(vn)[·] and so from (6), the fact that lim t (vn) = b > 0, and the

weak convergence un − u∞ ⇀ 0, we now conclude that un → u∞ in H 1(Ω). It follows that vn = 1
t (vn)

un → 1
b
u∞ =

v∞ in H 1(Ω), and that v∞ ∈ Σ . �
Let {(Dk,φk)}∞k=1 denote the Steklov eigenvalues and eigenvectors for (2). The eigenvalues Dk form a non-

decreasing sequence 0 = D1 � D2 � · · ·, with Dk → ∞ as k → ∞. There may be repeated values in this sequence,
since each eigenvalue appears as many times as its (finite) multiplicity indicates. The φk may be selected so that∫
∂Ω

φjφk dσx = δjk . The functions φk|∂Ω now form an orthonormal basis for L2(∂Ω). The φk are then also orthogo-
nal in H 1(Ω). Corresponding to any D ∈ R we define the projection operator

PDu =
∑

Dk=D

〈u,φk〉L2(∂Ω)φk =
∑

Dk=D

〈u,φk〉H 1

〈φk,φk〉H 1
φk.

PD is a projection onto the “eigenspace” VD , associated with D. Note that we interpret this to mean that PD = 0
(and VD = {0}) if D is not a Steklov eigenvalue. In the case of the unit disk we have D2k+1 = k, k � 0 and D2k = k,
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k � 1, as seen in Fig.1 (where D = 2). In general, it is well known that the eigenvalues Dk grow according to a
classical Weyl asymptotics. Indeed, under the assumption that Ω is simply connected, it is extremely easy to see
that ck � Dk � Ck, as k → ∞ (chose a conformal transformation to map Ω onto the unit disk, build a min-max
characterization of the original eigenvalues and compare with the known eigenvalues for the problem (2) on the unit
disk). Much more detailed results concerning the asymptotic behavior of Dk and φk have been established in [15].

It will frequently be convenient to decompose solutions to (1) as

uλ = PDuλ + (I − PD)uλ = PDuλ + wλ,

where D is the same as the “shift” which appears in (1). The following lemma will then play a crucial role.

Lemma 2. Let D ∈ R be fixed, and suppose uλ, λ �= 0, is a solution to (1), i.e., a solution to

�uλ = 0 in Ω,
∂uλ

∂n
= Duλ + λ sinh(uλ) on ∂Ω.

Let wλ denote the function wλ = (I − PD)uλ. There exists a constant C, depending on Ω and D, but independent
of λ, and uλ such that

‖PDuλ‖H 1(Ω) � C
(‖wλ‖2

H 1(Ω)
+ 1

)
.

Proof. From the definition of uλ, and integration by parts, we immediately get

λ

∫
∂Ω

sinh(uλ)PDuλ dσx = −D

∫
∂Ω

uλPDuλ dσx +
∫

∂Ω

∂uλ

∂n
PDuλ dσx

= −
∫

∂Ω

uλ

∂PDuλ

∂n
dσx +

∫
∂Ω

∂uλ

∂n
PDuλ dσx = 0.

For λ �= 0 we thus conclude∫
∂Ω

sinh(uλ)PDuλ dσx = 0. (7)

By insertion of the identity

sinh(uλ) = sinh(PDuλ + wλ) = sinh(PDuλ) cosh(wλ) + cosh(PDuλ) sinh(wλ)

into (7), rearrangement, and use of the estimate | cosh(PDuλ)PDuλ| � sinh(PDuλ)PDuλ + e−1, we now obtain∫
∂Ω

sinh(PDuλ)PDuλ cosh(wλ)dσx = −
∫

∂Ω

cosh(PDuλ)PDuλ sinh(wλ)dσx

�
∫

∂Ω

∣∣cosh(PDuλ)PDuλ

∣∣∣∣sinh(wλ)
∣∣dσx

�
∫

∂Ω

(
sinh(PDuλ)PDuλ + e−1)∣∣sinh(wλ)

∣∣dσx.

Since cosh(wλ) − | sinh(wλ)| = e−|wλ| this last inequality immediately leads to∫
∂Ω

sinh(PDuλ)PDuλ e−|wλ| dσx � e−1
∫

∂Ω

∣∣sinh(wλ)
∣∣dσx.

An application of Cauchy–Schwarz’s inequality yields
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(∫
∂Ω

(
sinh(PDuλ)PDuλ

)1/2 dσx

)2

�
∫

∂Ω

sinh(PDuλ)PDuλ e−|wλ| dσx ·
∫

∂Ω

e|wλ| dσx

� e−1
∫

∂Ω

∣∣sinh(wλ)
∣∣dσx ·

∫
∂Ω

e|wλ| dσx � C e
C‖wλ‖2

H1(Ω) . (8)

For the last estimate we used a version of Trudinger’s inequality, asserting that for a (smooth) bounded, two dimen-
sional domain Ω there exists a constant C such that∫

∂Ω

e|w| dσx � C e
C‖w‖2

H1(Ω) , ∀w ∈ H 1(Ω);

see for example [10] or [17]. Since e|p|/2 � (sinh(p)p)1/2 + C it follows from (8) that∫
∂Ω

e|PDuλ|/2 dσx � C
(
e
C‖wλ‖2

H1(Ω) + 1
)
� 2C e

C‖wλ‖2
H1(Ω) � e

C‖wλ‖2
H1(Ω)

+log 2C
,

and so an application of Jensen’s inequality (applied to the convex function p → ep/2) leads to

e
∫
∂Ω (|PDuλ|/2)(dσx/|∂Ω|) �

∫
∂Ω

e|PDuλ|/2 dσx

|∂Ω| � e
C(‖wλ‖2

H1(Ω)
+1)

.

By taking a logarithm on both sides we get∫
∂Ω

|PDuλ|dσx � C
(‖wλ‖2

H 1(Ω)
+ 1

)
.

Since PDuλ is either 0 or lies in the finite dimensional Steklov eigenspace associated with D (where all norms are
equivalent) we now conclude that

‖PDuλ‖H 1(Ω) � C
(‖wλ‖2

H 1(Ω)
+ 1

)
,

with C independent of λ and uλ. Here we use that ‖ · ‖L1(∂Ω) is a norm on the eigenspace VD (since φ ∈ VD vanishes
identically if φ|∂Ω = 0). This completes the proof of the lemma. �
2.1. Negative λ

To consider the very simplest case first, suppose λ � min{0,−D}, and suppose uλ is a solution to (1). Green’s
formula then immediately gives∫

Ω

|∇uλ|2 dx = D

∫
∂Ω

u2
λ dσx + λ

∫
∂Ω

sinh(uλ)uλ dσx = (D + λ)

∫
∂Ω

u2
λ dσx + λ

∫
∂Ω

(sinh(uλ) − uλ)uλ dσx � 0.

For the last inequality we used that D + λ � 0, that λ � 0, and that (sinh(x) − x)x � 0. We may thus conclude
that uλ is a constant. However, if we additionally suppose that D �= 0 or λ �= 0, then the only constant, z, for which
Dz + λ sinh(z) = 0 is z = 0. In summary:

Proposition 1. For λ � min{0,−D} the only solution to (1) is, with one exception, uλ = 0. The exception is D = λ = 0,
in which case any constant is a solution to (1).

The case min{0,−D} < λ � 0 is more interesting (and complicated). Except for possibly λ = 0, there are now
always nontrivial solutions to (1). Corresponding to the segment min{0,−D} < λ < 0 we may actually prove the
following result about existence and about a general upper bound for the H 1(Ω)-norm of solutions.
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Proposition 2. Suppose the shift D, appearing in (1), is positive. There exist constants C1 > 0 and C2 > 0, depending
only on D and Ω , such that

‖uλ‖2
H 1(Ω)

� C1

(
log

1

|λ|
)2

+ C2,

for any −D < λ < 0, and any solution uλ to (1). Furthermore, there exists at least one family of solutions Uλ �= 0,
−D < λ < 0, and two constants c1 > 0 and c2 such that

c1

(
log

1

|λ|
)2

+ c2 � ‖Uλ‖2
H 1(Ω)

� C1

(
log

1

|λ|
)2

+ C2.

Proof. The fact that∫
Ω

|∇uλ|2 dx − D

∫
∂Ω

u2
λ dσx − λ

∫
∂Ω

sinh(uλ)uλ dσx = 0

for any solution uλ to (1), and any λ < 0, may be rewritten∫
Ω

|∇uλ|2 dx + |λ|
∫

∂Ω

sinh(uλ)uλ dσx = D

∫
∂Ω

u2
λ dσx. (9)

It is well known that, given any ε > 0, there exists a constant Cε , such that

‖u‖2
L2(∂Ω)

� ε‖u‖2
H 1/2(∂Ω)

+ Cε‖u‖2
H−1(∂Ω)

� ε‖u‖2
H 1/2(∂Ω)

+ Cε‖u‖2
L1(∂Ω)

. (10)

For the last inequality we used that L1(∂Ω) embeds continuously into H−1(∂Ω), since ∂Ω is one-dimensional. It is
also well known that

‖u‖2
H 1/2(∂Ω)

� C‖u‖2
H 1(Ω)

� C
(‖∇u‖2

L2(Ω)
+ ‖u‖2

L1(∂Ω)

)
. (11)

By selecting ε sufficiently small we obtain from a combination of (9), (10) and (11), that

1

2

∫
Ω

|∇uλ|2 dx + |λ|
∫

∂Ω

sinh(uλ)uλ dσx � C‖uλ‖2
L1(∂Ω)

. (12)

The function x → g(x) = sinh(x)x is convex, and so Jensen’s inequality immediately asserts that

g

(∫
∂Ω

|uλ| dσ

|∂Ω|
)

�
∫

∂Ω

g
(|uλ|

) dσ

|∂Ω| =
∫

∂Ω

sinh(uλ)uλ

dσ

|∂Ω| .

By a combination of this inequality and (12) we obtain

|λ| e
∫
∂Ω |uλ| dσx|∂Ω| � |λ|g

(∫
∂Ω

|uλ| dσ

|∂Ω|
)

+ |λ| cosh(1) � C

(∫
∂Ω

|uλ|dσx

)2

+ |λ| cosh(1),

which immediately leads to∫
∂Ω

|uλ|dσx � C1 log
1

|λ| + C2,

for −D < λ < 0. From (12) it now follows that∫
Ω

|∇uλ|2 dx � C1

(
log

1

|λ|
)2

+ C2,

and so, in summary

‖uλ‖2
H 1(Ω)

� C1

(
log

1
)2

+ C2.
|λ|
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This completes the proof of the first part of this proposition. The second part is much simpler. We just note that for
any −D < λ < 0 there exists exactly one positive solution to

sinh zλ = −D

λ
zλ.

Here we have used the fact that −D < λ < 0 ⇒ −D/λ > 1. This solution satisfies

c1 log
1

|λ| + c2 < zλ,

for some constants c1 > 0 and c2, and so the constant function Uλ(x) = zλ is easily seen to be a nonzero solution to
(1) with the desired lower bound. �

Based on Fig. 1 one might expect that any sequence of solutions uλn , λn → 0−, which does not degenerate to the
0 solution for λn sufficiently near 0, must contain a subsequence such that ‖uλn‖2

H 1(Ω)
is bounded from below by

c1(log 1
|λn| )

2 as λn → 0−. We are not quite able to prove that, but we can establish the following weaker result. This
result also shows that the only possible blow up behavior as λ → 0− is blow-up almost everywhere. The family Uλ

constructed in Lemma 2 does blow up everywhere.

Proposition 3. Suppose the shift D, appearing in (1), is positive. There exists a constant c1 > 0 such that whenever
uλn , −D < λn < 0, λn → 0−, is a family of solutions to (1) with the property that ‖uλn‖H 1(Ω) does not converge to 0
as λn → 0−, then we may extract a subsequence, for simplicity also denoted uλn , with

c1 log
1

|λn| � ‖uλn‖2
H 1(Ω)

as λn → 0−. (13)

We may extract this subsequence so that uλn converges pointwise to ±∞ almost everywhere in Ω , and so that uλn |∂Ω

converges pointwise to ±∞ on a set of positive one dimensional surface measure. By appropriate extraction of the
subsequence we may also arrange that wλn = (I −PD)uλn converges pointwise to ±∞ almost everywhere in Ω , that
wλn |∂Ω converges pointwise to ±∞ on a set of positive one dimensional surface measure, and that

∃γn → ∞ such that
λn sinh(uλn)

γn

⇀ μ �= 0, weakly in H−1/2(∂Ω), as λn → 0−.

Remarks. A distribution μ ∈ H−1/2(∂Ω) cannot consist of Dirac delta functions. By comparison with Theorem 2
later in this paper the structure of the (rescaled flux-component) limit μ, for λ → 0−, is thus completely different
from the finite sum of Dirac delta masses that generically emerges as the limit of the flux-component λ sinh(uλ) (for
the variationally constructed solutions) as λ → 0+. Broadly speaking the last statement of Proposition 3 means that,
as λ approaches 0−, the flux-component λ sinh(uλ) “blows up on a thicker set” than is the case (for the variationally
constructed solutions) when λ approaches 0+. This is exactly what we evidenced in Fig. 2. Similarly we also see
that wλ blows up almost everywhere in Ω , and on a set of positive measure on ∂Ω , as λ → 0−, whereas Theorem 2
implies that (for the variationally constructed solutions) wλ generically only blows up at a finite number of points
on ∂Ω , as λ → 0+.

Proof of Proposition 3. In order to prove the first statement of this proposition (concerning the lower bound on
‖uλn‖H 1(Ω)) it suffices to prove that there exists a (small) constant c1 > 0 such that if uλn is a sequence of solutions
to (1) with

‖uλn‖2
H 1(Ω)

/
log

1

|λn| < c1 as λn → 0−, (14)

then

‖uλn‖H 1(Ω) → 0 as λn → 0−. (15)
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Now suppose (14) is satisfied for some sufficiently small positive c1; in order to verify (15) we start by estimating
‖wλn‖L2(∂Ω) = ‖(I − PD)uλn‖L2(∂Ω)

‖wλn‖2
L2(∂Ω)

=
∑

k: Dk �=D

α2
k,λn

with αk,λn =
∫

∂Ω

uλnφk dσx. (16)

Straightforward integration by parts gives that

Dk

∫
∂Ω

uλnφk dσx =
∫
Ω

∇uλn∇φk dx = D

∫
∂Ω

uλnφk dσx + λn

∫
∂Ω

sinhuλnφk dσx,

and so

αk,λn =
∫

∂Ω

uλnφk dσx = λn

Dk − D

∫
∂Ω

sinhuλnφk dσx for Dk �= D, (17)

and ∫
∂Ω

sinhuλnφk dσx = 0 for Dk = D. (18)

From (16) and (17) it follows that

‖wλn‖2
L2(∂Ω)

=
∑

k: Dk �=D

α2
k,λn

� Cλ2
n

∑
k: Dk �=D

∣∣∣∣∫
∂Ω

sinhuλnφk dσx

∣∣∣∣2

with C =
(

min
Dk �=D

|Dk − D|
)−2

. (19)

We also have the estimate∑
k: Dk �=D

∣∣∣∣∫
∂Ω

sinhuλnφk dσx

∣∣∣∣2

=
∫

∂Ω

sinh2 uλn dσx � C1 e
C2‖uλn‖2

H1(Ω)

(see for example Lemma 2.1 of [10]). Due to the assumption (14) it follows that

‖uλn‖2
H 1(Ω)

< c1 log
1

|λn| � 1

C2
log

1

|λn| as λn → 0−,

provided c1 < 1
C2

(incidentally, this is the only “smallness” restriction on c1). By a combination of these last two
estimates we get∑

k: Dk �=D

∣∣∣∣∫
∂Ω

sinhuλnφk dσx

∣∣∣∣2

= ‖ sinhuλn‖2
L2(∂Ω)

� C1

|λn| ,

which after insertion into (19) leads to

‖wλn‖2
L2(∂Ω)

� C|λn|, (20)

as λn → 0−. We easily see that wλn = (I − PD)uλn satisfies the boundary value problem

�wλn = 0 in Ω,
∂wλn

∂n
= Dwλn + λn sinhuλn on ∂Ω. (21)

Due to the estimate

|λn|‖ sinhuλn‖L2(∂Ω) � C1|λn|1/2,

(which was proven previously) and the estimate (20) we now conclude that

∂wλn

∂n
→ 0 in L2(∂Ω),

as λn → 0−. It follows, by elliptic estimates, that

wλn → 0 in H 3/2(Ω). (22)
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If PD = 0 this leads to the desired conclusion (15). If PD �= 0 it still remains to show that PDuλn → 0 in H 1(Ω).
Since Ω is two dimensional, we may use the Trace Theorem and Sobolev’s Imbedding Theorem, together with (22),
to conclude that

(I − PD)uλn = wλn → 0 in L∞(∂Ω), (23)

as λn → 0−. From (18) we have that∫
∂Ω

sinh(wλn + PDuλn)PDuλn dσx =
∫

∂Ω

sinh(uλn)PDuλn dσx = 0,

which, due to the formula sinh(w + v) = sinhw coshv + sinhv coshw, translates into∫
∂Ω

sinh(PDuλn) coshwλnPDuλn dσx = −
∫

∂Ω

sinhwλn cosh(PDuλn)PDuλn dσx. (24)

We also have the estimate∣∣∣∣∫
∂Ω

sinhwλn cosh(PDuλn)PDuλn dσx

∣∣∣∣ � ‖ sinhwλn‖L∞(∂Ω)

∫
∂Ω

cosh(PDuλn)|PDuλn |dσx

� ‖ sinhwλn‖L∞(∂Ω)

( ∫
∂Ω

sinh(PDuλn)PDuλn dσx + |∂Ω| e−1
)

.

By insertion of this into (24), and use of the facts that coshwλn � 1, and sinhwλn → 0 in L∞(∂Ω) as λn → 0−
(cf. (23)), we now obtain

1

2

∫
∂Ω

sinh(PDuλn)PDuλn dσx � ‖ sinhwλn‖L∞(∂Ω)|∂Ω|e−1,

for λn < 0 sufficiently close to 0. Since

‖PDuλn‖2
L2(∂Ω)

�
∫

∂Ω

sinh(PDuλn)PDuλn dσx,

we have therefore verified that

PDuλn → 0 in L2(∂Ω) as λn → 0−.

Since the range of the projection PD is finite dimensional, all (well defined) norms are equivalent on this space, and
so

PDuλn → 0 in H 1(Ω) as λn → 0−. (25)

A combination of (22) and (25) now yields

‖uλn‖H 1(Ω) → 0 as λn → 0−,

which is exactly the desired conclusion (15).
We proceed to the proof of the second statement of this proposition. Since λn is negative, and since x sinhx � 0,

we calculate∫
Ω

|∇uλn |2 dx = D

∫
∂Ω

u2
λn

dσx + λn

∫
∂Ω

uλn sinhuλn dσx � D

∫
∂Ω

u2
λn

dσx. (26)

As a consequence

‖uλn‖2
H 1(Ω)

=
∫

|∇uλn |2 dx +
∫

u2
λn

dσx � (D + 1)‖uλn‖2
L2(∂Ω)

. (27)
Ω ∂Ω
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Let uλn , λn → 0−, be a sequence which satisfies the lower bound (13) and define

ũλn = uλn/‖uλn‖L2(∂Ω).

Due to this definition, and (27),∥∥ũλn

∥∥
L2(∂Ω)

= 1 and
∥∥ũλn

∥∥
H 1(Ω)

� C.

By extraction of a subsequence, for simplicity also referred to as ũλn , we may obtain

ũλn ⇀ u0 weakly in H 1(Ω) and ũλn → u0 in L2(∂Ω),

as λn → 0−. For the second property we relied on the compactness of the trace map from H 1(Ω) to L2(∂Ω).
Since ũλn , and therefore also u0, are all harmonic in Ω we may conclude that

ũλn → u0 in C0(Ωc), (28)

for any compact subdomain Ωc of Ω . Being harmonic in Ω (and nonzero, since ‖u0‖L2(∂Ω) = lim‖ũλn‖L2(∂Ω) = 1)
the function u0 is different from zero almost everywhere inside Ω (and on a set of positive surface measure on ∂Ω).
From the definition of ũλn , the fact that ‖uλn‖L2(∂Ω) → ∞ (since c1 log 1

|λn| � ‖uλn‖2
H 1(Ω)

� C‖uλn‖2
L2(∂Ω)

) and (28)
it now follows that

uλn → ±∞ almost everywhere in Ω,

and (by extraction of a subsequence) that

uλn → ±∞ on a set of positive one dimensional surface measure on ∂Ω,

as λn → 0−. The “limit” is +∞ where u0 is positive, −∞ where u0 is negative.
It only remains to prove the validity of the very last statements of the Proposition. As before let wλn = (I −PD)uλn .

From integration by parts, (21), and (18) it follows immediately that∫
Ω

|∇wλn |2 dx = D

∫
∂Ω

w2
λn

dσx + λn

∫
∂Ω

sinh(uλn)wλn dσx = D

∫
∂Ω

w2
λn

dσx + λn

∫
∂Ω

sinh(uλn)uλn dσx

� D

∫
∂Ω

w2
λn

dσx. (29)

Lemma 2 and (29) now yield

‖uλ‖H 1(Ω) = (‖PDuλ‖2
H 1(Ω)

+ ‖wλ‖2
H 1(Ω)

)1/2 � C
(‖wλ‖H 1(Ω) + ‖wλ‖2

H 1(Ω)
+ 1

)
� C

(‖wλ‖L2(∂Ω) + ‖wλ‖2
L2(∂Ω)

+ 1
)
.

If the sequence of numbers ‖wλn‖L2(∂Ω) contains a bounded subsequence then it follows immediately from this
estimate that the sequence ‖uλn‖H 1(Ω) contains a bounded subsequence. However this would contradict the estimate
(13), which we have already proven, and therefore we may conclude that

‖wλn‖L2(∂Ω) → ∞ as λn → 0−. (30)

Since wλn is a solution to the boundary value problem (21), we arrive at the estimates∥∥λn sinh(uλn)
∥∥

H−1/2(∂Ω)
�

∥∥Dwλn + λn sinh(uλn)
∥∥

H−1/2(∂Ω)
+ ‖Dwλn‖H−1/2(∂Ω)

=
∥∥∥∥∂wλn

∂n

∥∥∥∥
H−1/2(∂Ω)

+ ‖Dwλn‖H−1/2(∂Ω) � C‖wλn‖H 1(Ω),

and therefore, due to (29),

‖λn sinh(uλn)‖H−1/2(∂Ω)

‖w ‖ 2
� C

‖λn sinh(uλn)‖H−1/2(∂Ω)

‖w ‖ 1
� C. (31)
λn L (∂Ω) λn H (Ω)
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We now define

w̃λn = wλn

‖wλn‖L2(∂Ω)

.

Due to this definition, and (29),∥∥w̃λn

∥∥
L2(∂Ω)

= 1 and
∥∥w̃λn

∥∥
H 1(Ω)

� C. (32)

Because of the estimates (31), (32), and the compactness of the trace map from H 1(Ω) to L2(∂Ω), we may extract a
subsequence, for simplicity also denoted λn, so that

w̃λn ⇀ w0 weakly in H 1(Ω), w̃λn |∂Ω → w0|∂Ω in L2(∂Ω),

and
λn sinh(uλn)

‖wλn‖L2(∂Ω)

⇀ μ, weakly in H−1/2(∂Ω), (33)

as λn → 0−. The functions w̃λn satisfy

�w̃λn = 0 in Ω,
∂w̃λn

∂n
= Dw̃λn + λn sinh(uλn)

‖wλn‖L2(∂Ω)

on ∂Ω.

Furthermore
∫
∂Ω

w̃λnφ dσx = 0, for any φ that solves

�φ = 0 in Ω,
∂φ

∂n
= Dφ on ∂Ω.

The function w0 is nonzero (since ‖w0‖L2(∂Ω) = lim‖w̃λn‖L2(∂Ω) = 1) and it satisfies

�w0 = 0 in Ω,
∂w0

∂n
= Dw0 + μ on ∂Ω,

in a weak, variational sense. From the same argument we used in connection with uλn it now follows that

wλn → ±∞ almost everywhere in Ω,

and (by extraction of a subsequence) that

wλn → ±∞ on a set of positive one dimensional surface measure on ∂Ω,

as λn → 0−. Here we use that ‖wλn‖L2(∂Ω) → ∞, according to (30). We may also conclude that μ �= 0, because
if μ vanished identically, then w0 would be a Steklov eigenvector, and the orthogonality relationship for the w̃λn

would give that
∫
∂Ω

(w0)
2 dσx = lim

∫
∂Ω

w̃λnw0 dσx = 0. However, this contradicts the fact that ‖w0‖L2(∂Ω) = 1.
A combination of (30) and (33) now completes the proof of the proposition. �

Proposition 2 already asserts the existence of one nontrivial solution to (1) for λ in the range −D < λ < 0. There
is a very useful variational characterization of a (potentially) larger class of solutions, which we shall now introduce,
and which we shall also use extensively in the next section, for λ > 0. For this purpose we use the energy Eλ(·), and
in particular the “restricted” functional

Jλ(v) = inf
t>0

Eλ(tv). (34)

The functionals Jλ, λ < 0, are bounded by −∞ < Jλ(1) � Jλ(·) � 0. We already showed in the previous section that
if w∗ is a critical point for Jλ(·) on

Σ = {
w ∈ H 1(Ω): ‖w‖H 1(Ω) = 1

}
,

with Jλ(w
∗) < 0, then Jλ(w

∗) = Eλ(t
∗w∗) for some t∗ > 0, and u∗ = t∗w∗ is a critical point for Eλ in H 1(Ω) (see

also Lemma 2.5 of [10]). Such critical points are weak- and, by elliptic regularity, also strong solutions to the boundary
value problem (1).

In order to establish existence of solutions it thus suffices to find nonzero critical values (and corresponding critical
points) for Jλ on Σ . To do this we employ a (by now) fairly standard result in critical point theory, cf. [9], [14] or [16].
Briefly stated this result asserts that all nonzero values of the form

ck(λ) = inf
A∈A

sup Jλ(w)

k w∈A
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are critical values of Jλ. The infimum in A is taken over the collection Ak of subsets A ⊂ Σ that are compact, even
and of genus(A) � k � 1.1 The most essential prerequisite in order to be able to apply this result is to verify an
appropriate compactness property of the functional Jλ(·). In the present context the required property is the Palais–
Smale Condition verified in Lemma 1. For more details we refer the reader to [10].

We now proceed to show that this construction, for −D < λ < 0, gives rise to at most finitely many critical values,
in complete agreement with Fig. 1. We also show that these critical values tend to −∞ as λ tends to 0−, so that the
H 1(Ω) norms of the corresponding critical points for Eλ(·) tend to ∞, and these therefore represent solutions that
“blow up” as described in Proposition 3.

Proposition 4. Suppose D > 0, and define K∗ = max{k: −D + Dk < 0}. Let ck(λ), −D < λ < 0, k ∈ N, be given by

ck(λ) = inf
A∈Ak

sup
w∈A

Jλ(w),

with

Jλ(w) = inf
t>0

Eλ(tw) � 0,

and Eλ as above. Then

ck(λ) = 0 for any k � K∗ + 1, −D < λ < 0. (35)

Furthermore there exist positive constants ai, bi , i = 1,2 such that

−a1

(
log

1

|λ|
)2

− b1 � ck(λ) � −a2 log
1

|λ| + b2, (36)

for −D < λ < 0, and any 1 � k � K∗.

Proof. Suppose A is an even, compact subset of Σ , with genus (A) � k � K∗ + 1. Then

A ∩ span{φ1, φ2, . . . , φK∗−1, φK∗}⊥ �= ∅; (37)

otherwise the mapping

A � v → (〈φ1, v〉H 1, 〈φ2, v〉H 1, . . . , 〈φK∗−1, v〉H 1, 〈φK∗ , v〉H 1

)
would be an odd, continuous map from A to R

K∗ \ 0, contradicting the fact that genus (A) � K∗ + 1. From (37) (and
the orthogonality of the Steklov eigenvectors φk) it follows immediately that there exists v ∈ A (v �= 0) such that

DK∗+1

∫
∂Ω

v2 dσx �
∫
Ω

|∇v|2 dx. (38)

Since D � DK∗+1 (and λ < 0) we get

Eλ(tv) = t2

2

[∫
Ω

|∇v|2 dx − D

∫
∂Ω

v2 dσx

]
− λ

∫
∂Ω

(
cosh(tv) − 1

)
dσx � −λ

∫
∂Ω

(
cosh(tv) − 1

)
dσx � 0,

for any t > 0. In other words, there exists v ∈ A with Jλ(v) = 0, and thus it follows that

sup
w∈A

Jλ(w) = 0.

Since this identity holds for any compact, even subset of Σ with genus(A) � K∗ + 1, it follows that

ck(λ) = inf
A∈Ak

sup
w∈A

Jλ(w) = 0

1 The value of genus(A) is by definition the smallest integer m, such that there exists a continuous, odd map from A into R
m \ {0}.
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for any k � K∗ + 1. This proves the statement (35), and we now proceed with the verification of the estimates in (36).
Since

c1(λ) � c2(λ) � · · · � cK∗−1(λ) � cK∗(λ),

it suffices to verify that

−a1

(
log

1

|λ|
)2

− b1 � c1(λ) and cK∗(λ) � −a2 log
1

|λ| + b2.

We start with the lower bound for c1(λ). The inequality

sup
w∈A

Jλ(w) � inf
w∈Σ

Jλ(w) = inf
w∈H 1(Ω)

Eλ(w),

which holds for any subset A ⊂ Σ , immediately implies that

c1(λ) = inf
A∈A1

sup
w∈A

Jλ(w) � inf
w∈H 1(Ω)

Eλ(w). (39)

For the energy Eλ(w) we have that

Eλ(w) = 1

2

∫
Ω

|∇w|2 dx − D

2

∫
∂Ω

w2 dσx − λ

∫
∂Ω

(
cosh(w) − 1

)
dσx �

∫
∂Ω

[
−D

2
w2 − λ

(
cosh(w) − 1

)]
dσx

� |∂Ω| inf
t∈R

[
−D

2
t2 − λ

(
cosh(t) − 1

)]
. (40)

A straightforward calculation (remember −D < λ < 0) gives that

inf
t∈R

[
−D

2
t2 − λ

(
cosh(t) − 1

)] = −D

2
t2∗ − λ

(
cosh(t∗) − 1

)
� −D

2
t2∗ , (41)

where t∗ > 0 is the unique positive solution to

sinh(t∗) = −D

λ
t∗.

This t∗ satisfies, for any ε > 0, the estimate

0 < t∗ � (1 + ε) log
1

|λ| + Cε,D,

where the constant Cε,D depends on ε and D, but is independent of λ. After insertion into (41) we now get

inf
t∈R

[
−D

2
t2 − λ

(
cosh(t) − 1

)]
� −(1 + ε)

D

2

(
log

1

|λ|
)2

− Cε,D,

where the constant Cε,D depends on ε and D, but is independent of λ. In combination with (39) and (40) this gives

c1(λ) � −(1 + ε)|∂Ω|D
2

(
log

1

|λ|
)2

− Cε,D,

which is a lower bound of the desired form.
We now turn our attention to the upper bound for cK∗(λ). In order to verify this bound it suffices to find a compact,

even subset A∗ ⊂ Σ with

(i) genus(A∗) � K∗,

(ii) sup
w∈A∗

Jλ(w) � −a2 log
1

|λ| + b2.

Let {φk}K∗
k=1 be the Steklov eigenvectors corresponding to eigenvalues Dk , with 0 � Dk < D, and define for R > 0

A∗
R =

{
K∗∑

skφk:

∥∥∥∥ K∗∑
skφk

∥∥∥∥2

H 1(Ω)

=
K∗∑

(Dk + 1)s2
k = R2

}
.

k=1 k=1 k=1
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It follows immediately from the Borsuk–Ulam Theorem that genus(A∗
R) = K∗. For any w = ∑K∗

k=1 skφk ∈ A∗
R we

have that∫
Ω

|∇w|2 dx∫
∂Ω

w2 dσx

� DK∗ ,

so that

1

2

∫
Ω

|∇w|2 dx − D

2

∫
∂Ω

w2 dx � −D − DK∗

2

∫
∂Ω

w2 dσx = −D − DK∗

2

K∗∑
k=1

s2
k

= −D − DK∗

2

∑K∗
k=1 s2

k∑K∗
k=1(Dk + 1)s2

k

R2 � − D − DK∗

2(DK∗ + 1)
R2 = −aR2, (42)

with a = (D − DK∗)/2(DK∗ + 1) > 0. As a consequence of Trudingers inequality (cf. Lemma 2.1 of [10]) we also
have ∫

∂Ω

(
cosh(w) − 1

)
dσx �

∫
∂Ω

e|w| dσx − |∂Ω| � C1 e
C2‖w‖2

H1(Ω) = C1 eC2R
2
, (43)

for any w ∈ A∗
R . A combination of (42) and (43) now gives

Eλ(w) � −aR2 + C1|λ| eC2R
2

(44)

for any w ∈ A∗
R , with positive constants a,C1 and C2 independent of w, R and λ. By selecting R = R(λ) =√

(1/C2) log(1/|λ| + 1) it follows immediately from (44) that there exist positive constants a2 and b2, independent of
λ ∈ (−D,0), such that

Eλ(w) � −a2 log
1

|λ| + b2 ∀w ∈ A∗
R(λ).

From the definition of Jλ(·) it now follows that

Jλ(w) � Eλ

(
R(λ)w

)
� −a2 log

1

|λ| + b2 ∀w ∈ A∗
1,

or

sup
w∈A∗

1

Jλ(w) � −a2 log
1

|λ| + b2.

The compact, even set A∗ = A∗
1 ⊂ Σ now satisfies the conditions (i) and (ii). This completes the proof of the upper

bound for cK∗(λ), and thus the proof of this proposition. �
Remarks. From Proposition 4 it follows that ck(λ) < 0 for 1 � k � K∗, and λ < 0 sufficiently close to 0. As discussed
earlier ck(λ) is thus a critical value for Jλ(·) on Σ (with corresponding critical point wk,λ). Furthermore there exists
tk,λ > 0 such that uk,λ = tk,λwk,λ is a critical point for Eλ(·) in H 1(Ω), and thus a solution to the boundary value
problem (1). As a consequence of Proposition 4 these solutions satisfy

−a1

(
log

1

|λ|
)2

− b1 � Eλ(uk,λ) � −a2 log
1

|λ| + b2.

They also satisfy

c1 log
1

|λ| − c2 � ‖uk,λ‖2
H 1(Ω)

� C1

(
log

1

|λ|
)2

+ C2,

in accordance with Proposition 2 and Proposition 3. From the very definition of the values ck(λ) it is clear that

c1(λ) � c2(λ) � · · · � cK∗(λ) � 0, −D < λ < 0.



516 K. Medville, M.S. Vogelius / Ann. I. H. Poincaré – AN 23 (2006) 499–538
One might expect that, generically, it would be true that

c1(λ) < c2(λ) < · · · < cK∗(λ) < 0, −D < λ < 0.

If this were they case, i.e., if all the ck(λ), 1 � k � K∗, were negative, and different, then the critical points correspond-
ing to these critical values represent K∗ essentially different nontrivial solutions to the boundary value problem (1)
for −D < λ < 0. �
2.2. Positive λ

We continue our consideration of the problem (1) with the nonlinear boundary flux Du + λ sinh(u), but now for
λ > 0. The analysis required has many similarities to that presented in [10,12] (where we considered D = 0) and so in
certain places we shall, for reasons of brevity, not provide all the details – but instead refer the reader to these papers.
According to Fig. 1 we expect to find, for any fixed positive λ, an infinite set of essentially different solutions. Indeed
we may verify this conjecture using a Lyusternik–Schnirelmann approach, similar to that described in the previous
section. This variational approach also provides very precise bounds for the H 1-norms of the constructed solutions.
We shall establish

Theorem 1. Suppose D ∈ R. For any fixed λ > 0, there exists an integer Kλ and an infinite set of solutions {uk,λ}∞k=Kλ

to the problem (1). There exist λ∗ > 0, and K0, such that these solutions obey the energy estimates

c � Eλ(uk,λ) � ak log

(
1

λ

)
+ bk (45)

for 0 < λ < λ∗, and k � K0. The constants c, ak , bk are positive, and independent of λ.

The existence part of this theorem will be established using the auxiliary functional Jλ :H 1(Ω) → [0,∞], defined
by

Jλ(v) = sup
t>0

Eλ(tv).

To be specific we prove the existence of infinitely many critical points, vk,λ, for Jλ on the manifold Σ = {w ∈
H 1(Ω); ∫

Ω
|∇w|2 dx + ∫

∂Ω
w2 dσx = 1}, with corresponding (different) positive critical values. As seen earlier in

Section 2 such critical points immediately lead to solutions uk,λ = tk,λvk,λ to (1), with Eλ(uk,λ) = Jλ(vk,λ).
In order to arrive at these critical points we define, for any integer k � 1,

ck(λ) = inf
A∈Ak

sup
w∈A

Jλ(w),

where Ak is the collection of compact, even subsets of Σ of genus greater than or equal to k. We observe that
0 � c1(λ) � c2(λ) � · · · � ck(λ) � ck+1(λ) � · · ·.

Since the even functional Jλ(·), λ > 0, has the appropriate “smoothness properties” (on the set {w: 0 < Jλ(w) <

∞}) and satisfies the Palais–Smale Condition of Lemma 1, the same approach used in the previous section (for λ

negative) here implies that any positive ck(λ) is a critical value for Jλ(·).
To establish the existence of nontrivial solutions to (1) it thus suffices to show that cK > 0 for some K = Kλ. The

bounds in Theorem 1 require estimates for the ck(λ) as λ → 0+. These estimates (as well as the existence of Kλ) are
established by the following lemma.

Lemma 3. Given D ∈ R, let K � 2 be a fixed integer such that DK > D, where DK denotes the K’th Steklov
eigenvalue for the problem (2). Let ck(λ) be as above. There exist positive constants, ak and bk , depending on k, D

and K , but independent of λ, such that for all k � K and all 0 < λ < DK − D,

0 < ck(λ) � ak log
1

λ
+ bk.

Remark. In the course of the proof of this lemma we establish a lower bound that is a bit more precise than 0 < ck(λ).
We actually show that

ck(λ) � d(DK − D − λ)2 > 0.
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In particular, this implies that

ck(λ) � c > 0 for 0 < λ <
DK − D

2
.

Proof of Lemma 3. We start with the lower bound. Let A be any compact, even subset of Σ with genus(A) � k � K .
As in (37), we know there exists v∗ ∈ A such that 〈φj , v∗〉H 1 = 0 for j = 1, . . . ,K − 1. Here φj is the Steklov
eigenvector corresponding to the eigenvalue Dj , 1 � j � K − 1. This v∗ satisfies the inequality

DK

∫
∂Ω

v2∗ dσx �
∫
Ω

|∇v∗|2 dx.

For 0 < λ < DK − D we thus calculate

Eλ(tv∗) = t2

2

[∫
Ω

|∇v∗|2 dx − (D + λ)

∫
∂Ω

v2∗ dσx

]
− λ

∫
∂Ω

(
cosh(tv∗) − 1 − (tv∗)2

2

)
dσx

� t2

2
B(K,λ,D)

∫
Ω

|∇v∗|2 dx − λ

∫
∂Ω

(
cosh(tv∗) − 1 − (tv∗)2

2

)
dσx, (46)

with B(K,λ,D) = min{1, (1 − (λ + D)/DK)}. We also have that∫
∂Ω

(
cosh(v) − 1 − (v)2

2

)
dσx �

∫
∂Ω

v4 cosh(v)dσx �
(∫
∂Ω

v8 dσx

)1/2(∫
∂Ω

cosh(2v)dσx

)1/2

� C

(∫
Ω

|∇v|2 dx

)2

e
C2‖∇v‖2

L2(Ω) ,

for any v which is orthogonal to φ1 (a constant), and as a consequence∫
∂Ω

(
cosh(tv∗) − 1 − (tv∗)2

2

)
dσx � Ct4

(∫
Ω

|∇v∗|2 dx

)2

e
C2‖∇tv∗‖2

L2(Ω) � C1t
4 eC2t

2
∫
Ω

|∇v∗|2 dx. (47)

For the last inequality we have used that v∗ lies in Σ , so that ‖∇v∗‖2
L2(Ω)

� 1. Let t0 > 0 be given by

t0 = c
√

B(K,λ,D),

with c chosen so small, that

λC1c
2 eC2c

2B(K,λ,D) = λC1c
2 eC2c

2 min{1,(1−(λ+D)/DK)} <
1

4
,

for all 0 < λ < DK − D (C1 being the constant from (47)). A combination of the estimates (46) and (47), with t = t0
now yields

Eλ(t0v∗) � 1

4
t2
0 B(K,λ,D)

∫
Ω

|∇v∗|2 dx � d

(
1 − λ + D

DK

)2

, (48)

where d > 0 depends on DK and D, but is independent of λ (in the interval 0 < λ < DK − D). For the last inequality
we have also used that∫

Ω

|∇v∗|2 dx � d‖v∗‖2
H 1(Ω)

= d > 0,

due to the facts that v∗ is orthogonal to φ1 (a constant) and that v∗ lies in Σ . From (48) we immediately conclude that

sup Jλ(v) � Jλ(v∗) � Eλ(t0v∗) � d(DK − D − λ)2 > 0.

v∈A



518 K. Medville, M.S. Vogelius / Ann. I. H. Poincaré – AN 23 (2006) 499–538
Since A is an arbitrary compact, even subset of Σ , with genus(A) � k, it follows that

ck(λ) = inf
A∈Ak

sup
v∈A

Jλ(v) � d(DK − D − λ)2 > 0,

as desired.
To prove the upper bound, we introduce some special functions. Let {σj }kj=1 be a set of k(� 2) distinct points

on ∂Ω , and let ε and R be two positive numbers. Define

dj,ε(x) := − log
(|x − σj |2 + ε2),

and then the set

Gε,R :=
{

w =
k∑

j=1

αjdj,ε(x):
∫
Ω

|∇w|2 dx +
∫

∂Ω

w2 dσx = R2

}
.

Claim 1. Given D, k � 2 and {σj }kj=1 there exist λ∗ > 0, and functions ε(λ) > 0, R(λ) > 0, such that for 0 < λ < λ∗∫
Ω

|∇v|2 dx − D

∫
∂Ω

v2 dσx − λ

∫
∂Ω

v sinh(v)dσx � 0 ∀v ∈ Gε(λ),R(λ).

Moreover, the functions ε(·) and R(·) may be chosen so that

ε(λ) = O(λ) and R(λ) = O
(√

log(1/λ)
)
,

as λ approaches 0.

For D � 0 this claim follows directly from Lemma 3.4 in [10]; for D < 0 a slightly modified version of the proof
of Lemma 3.4 in [10] is required. We do not reproduce the proof here, instead we proceed with the verification of
the upper bounds of Lemma 3. It clearly suffices to prove each upper bound for λ sufficiently small, since ck(λ), for
fixed k, is bounded on any finite interval [λ∗,Λ∗], λ∗ > 0. Now let ε = ε(λ), R = R(λ) be chosen as in the claim. For
λ sufficiently small, the compact even set Gε,1 ⊂ Σ has genus k, and so

ck(λ) = inf
A∈Ak

sup
v∈A

Jλ(v) � max
v∈Gε,1

Jλ(v) = max
v∈Gε,R

Jλ(v) = Jλ(v
∗)

for some v∗ ∈ Gε,R . We can also estimate

Jλ(v
∗) = Eλ

(
t (v∗)v∗) = (t (v∗))2

2

∫
Ω

|∇v∗|2 dx − D
(t(v∗))2

2

∫
∂Ω

(v∗)2 dσx − λ

∫
∂Ω

(
cosh

(
t (v∗)v∗) − 1

)
dσx

� (t (v∗))2

2

(∫
Ω

|∇v∗|2 dx + |D|
∫

∂Ω

(v∗)2 dσx

)
� (t (v∗))2

2
max

{
1, |D|}R2. (49)

We observe that the function f (t) = Eλ(tv
∗) has a strictly concave derivative

f ′(t) = t

∫
Ω

|∇v∗|2 dx − Dt

∫
∂Ω

(v∗)2 dσx − λ

∫
∂Ω

sinh(tv∗)v∗ dσx,

on the interval (0,∞). To see this, we simply calculate that

f ′′′(t) = −λ

∫
∂Ω

sinh(tv∗)(v∗)3 dσx < 0.

Claim 1 asserts that f ′(1) � 0. Since we also have f ′(0) = 0 and f ′(t (v∗)) = 0, the concavity of f ′ now implies that
t (v∗) � 1. The estimate (49) now yields

ck(λ) � Jλ(v
∗) � Ck log

(
1
)

,

λ
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for λ sufficiently small, as desired. �
With this lemma we have established the existence of solutions to (1) for any λ > 0, indeed we have already

shown that any positive ck(λ) corresponds to a nontrivial solution, uk,λ, with Eλ(uk,λ) = ck(λ). The energy estimates
in Theorem 1 follow directly from the upper bound in Lemma 3, and from the remark following the statement of
Lemma 3. That our process actually leads to infinitely many essentially different (energy-different) solutions follows
from the fact that ck(λ) → ∞ as k → ∞ for any fixed λ > 0 (see [9]). This verifies Theorem 1.

As before, let {Dk} and {φk} be the Steklov eigenvalues and normalized eigenfunctions. We remind the reader of
the definition of the bounded linear projection operator PD :

PD(·) =
∑

k: Dk=D

〈·, φk〉L2(∂Ω)φk =
∑

k: Dk=D

〈·, φk〉H 1(Ω)

〈φk,φk〉H 1(Ω)

φk.

We now have the following H 1 bounds concerning the solutions, whose existence are assured by Theorem 1.

Proposition 5. Let λ∗ < 1 be a fixed positive number, and let uλ, 0 < λ < λ∗, be a family of solutions to (1) (with
shift D) whose energies satisfy the estimate

Eλ(uλ) � a log
1

λ
+ b, (50)

for some positive constants a and b. Set wλ = (I − PD)uλ, so that uλ = wλ + PDuλ. There exist positive constants
C1 and C2, depending on a, b, D and λ∗, but otherwise independent of uλ and λ, such that

‖wλ‖2
H 1(Ω)

� C1 log
1

λ
+ C2, 0 < λ < λ∗,

and

‖PDuλ‖H 1(Ω) � C1 log
1

λ
+ C2, 0 < λ < λ∗.

Proof. Integration by parts combined with the upper bound (50) gives

λ

∫
∂Ω

(
uλ

2
sinh(uλ) − cosh(uλ) + 1

)
dσx = Eλ(uλ) � a log

1

λ
+ b.

Since |u| e|u| � C1(
u
2 sinh(u) − cosh(u) + 1) + C2, it follows that

λ

∫
∂Ω

|uλ| e|uλ| dσx � C1 log
1

λ
+ C2.

A simple convexity argument (see [10] or [12]) now gives

λ

∫
∂Ω

| sinh(uλ)|dσx � λ

∫
∂Ω

cosh(uλ)dσx � C, (51)

for some constant C. Testing Eqs. (21) for wλ against the eigenfunctions, φk , and integrating by parts, we obtain

(Dk − D)

∫
∂Ω

wλφk dσx =
∫

∂Ω

λ sinh(uλ)φk dσx. (52)

As in the proof of Proposition 3 we therefore have

‖wλ‖2
L2(∂Ω)

=
∑

k: Dk �=D

α2
k,λ,

with

αk,λ =
∫

wλφk dσx = 1

Dk − D

∫
λ sinh(uλ)φk dσx.
∂Ω ∂Ω



520 K. Medville, M.S. Vogelius / Ann. I. H. Poincaré – AN 23 (2006) 499–538
If D �= 0 it follows immediately that there exists a constant C such that

‖wλ‖2
L2(∂Ω)

=
∑

k: Dk �=D

|Dk − D|−2
∣∣∣∣∫
∂Ω

λ sinh(uλ)φk dσx

∣∣∣∣2

� C

(∑
k �=1

|Dk|−2
∣∣∣∣∫
∂Ω

λ sinh(uλ)φk dσx

∣∣∣∣2

+
∣∣∣∣∫
∂Ω

λ sinh(uλ)dσx

∣∣∣∣2)
.

Simply take C = max{|D|−2,maxDk �=D |1 − D
Dk

|−2}. If D = 0 it follows similarly that

‖wλ‖2
L2(∂Ω)

=
∑

k: Dk �=D

|Dk − D|−2
∣∣∣∣∫
∂Ω

λ sinh(uλ)φk dσx

∣∣∣∣2

=
∑
k �=1

|Dk|−2
∣∣∣∣∫
∂Ω

λ sinh(uλ)φk dσx

∣∣∣∣2

.

Due to (51), | ∫
∂Ω

λ sinh(uλ)dσx | � C, and so in both cases (D �= 0 and D = 0) we have

‖wλ‖2
L2(∂Ω)

� C

(∑
k �=1

|Dk|−2
∣∣∣∣∫
∂Ω

λ sinh(uλ)φk dσx

∣∣∣∣2

+ 1

)
, (53)

with C depending on a, b, D and λ∗, but otherwise independent of wλ and λ. Now let Wλ denote the solution to

�Wλ = 0 in Ω,
∂Wλ

∂n
= Fλ = λ sinh(uλ) − 1

|∂Ω|
∫

∂Ω

λ sinh(uλ)dσx on ∂Ω,

with
∫
∂Ω

Wλ dσx = 0. Duality and elliptic regularity estimates immediately give that

‖Wλ‖L2(∂Ω) � C‖Fλ‖H−1(∂Ω) � C‖Fλ‖L1(∂Ω) � C
∥∥λ sinh(uλ)

∥∥
L1(∂Ω)

. (54)

Here we have also used the fact that ∂Ω is one-dimensional to obtain that L1(∂Ω) continuously embeds into
H−1(∂Ω). The function Wλ is constructed exactly so that

‖Wλ‖2
L2(∂Ω)

=
∑
k �=1

|Dk|−2
∣∣∣∣∫
∂Ω

λ sinh(uλ)φk dσx

∣∣∣∣2

,

and a combination of (53) and (54) with the L1-bound (51) thus gives

‖wλ‖2
L2(∂Ω)

� C
(‖Wλ‖2

L2(∂Ω)
+ 1

)
� C

(∥∥λ sinh(uλ)
∥∥2

L1(∂Ω)
+ 1

)
� C. (55)

From integration by parts, and the use of (21) and (52) (if D is a Steklov eigenvalue) we get that

1

2

∫
Ω

|∇wλ|2 dx − D

2

∫
∂Ω

w2
λ dσx − λ

∫
∂Ω

(
cosh(uλ) − 1

)
dσx

= 1

2

∫
Ω

|∇uλ|2 dx − D

2

∫
∂Ω

u2
λ dσx − λ

∫
∂Ω

(
cosh(uλ) − 1

)
dσx

= Eλ(uλ) � a log
1

λ
+ b.

By a combination of this estimate with (51) and (55) it follows that∫
Ω

|∇wλ|2 dx � C1 log
1

λ
+ C2. (56)

The estimates (55) and (56) give the desired H 1 bound for wλ.
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The function x → g(x) = cosh(x) is convex, and so Jensen’s inequality, in combination with (51), asserts that

g

(∫
∂Ω

|uλ| dσ

|∂Ω|
)

�
∫

∂Ω

g
(|uλ|

) dσ

|∂Ω| � C

λ
.

In other words

‖uλ‖L1(∂Ω) � |∂Ω| log
1

λ
+ C.

By a combination of this estimate with (55) it follows that

‖PDuλ‖L1(∂Ω) � ‖PDuλ − uλ‖L1(∂Ω) + ‖uλ‖L1(∂Ω) = ‖wλ‖L1(∂Ω) + ‖uλ‖L1(∂Ω)

� |∂Ω|1/2‖wλ‖L2(∂Ω) + ‖uλ‖L1(∂Ω) � |∂Ω| log
1

λ
+ C. (57)

We note that PDuλ lies in the finite dimensional eigenspace VD ⊂ H 1(Ω) spanned by the “harmonically extended”
eigenfunctions (VD = {0} if D is not an eigenvalue). We also note that ‖ · ‖L1(∂Ω) is a norm on VD . Since all norms
are equivalent on VD it now follows from (57) that

‖PDuλ‖H 1(∂Ω) � C1 log
1

λ
+ C2,

as desired. �
We may also establish a lower bound that applies to the solutions constructed in Theorem 1.

Proposition 6. There exists a constant c1 > 0 such that whenever uλn , λn → 0+, is a sequence of solutions to (1) with
the property that ‖uλn‖H 1(Ω) does not converge to 0 as λn → 0+, then we may extract a subsequence, for simplicity
also denoted uλn , with

c1 log
1

λn

� ‖uλn‖2
H 1(Ω)

as λn → 0+.

Proof. It suffices to prove that there exists a constant c1 > 0 such that if uλn , λn → 0+ is a family of solutions to (1)
with

‖uλn‖2
H 1(Ω)

/
log

1

λn

< c1 as λn → 0+,

then

‖uλn‖H 1(Ω) → 0 as λn → 0+.

The argument to show this proceeds exactly as in the proof of Proposition 3. �
Having thus provided asymptotic bounds for the H 1 norm of the variationally constructed solutions, we now

continue with a more detailed blow-up analysis of these solutions as λ → 0+. As we shall see, the fact that λ sinh(uλ)

is bounded in L1(∂Ω), leads to a completely different blow-up pattern than that, which we saw for λ → 0− in the
previous section. For D = 0 a very detailed blow-up analysis has already been carried out in [10] and [12].

Except for D = 0 the analysis is somewhat more complicated (and the results are less complete) when D is a
Steklov eigenvalue. Some of the analysis that follows is directly unnecessary if D is not a Steklov eigenvalue. Indeed,
in that case PDuλ = 0 and so uλ = (I − PD)uλ = wλ. For reasons of completeness we have decided to proceed in a
general framework – however, simplifications for the case when D is not an eigenvalue will be noted when appropriate.

If D is a Steklov eigenvalue, the possibility exists that the contribution of the “mode” corresponding to D becomes
unbounded. That is, writing uλ = PDuλ + wλ, the norm of the component PDuλ can be unbounded (growing like
C1 log 1

λ
+ C2) as λ approaches 0+. We have already seen in the proof of Proposition 5 that

‖PDuλ‖L1(∂Ω,dσ/|∂Ω|) � log
1 + C2, (58)

λ
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i.e., the constant C1 in front of log 1
λ

may be taken to be one, if we use the measure dσ/|∂Ω| in our definition of the
L1-norm. A similar estimate holds for the norm on Lp(∂Ω, dσ/|∂Ω|), however, it is not clear (except when D = 0,
and PDuλ = const) that a similar estimate holds for the L∞ norm. This in turn makes it somewhat unclear whether
‖λ ePDuλ‖L∞(∂Ω) is uniformly bounded, as λ → 0+, in the case when D is an eigenvalue different from 0. We are,
nonetheless, able to establish a partial result in this direction. In order to state this result we first introduce some
notation. By VD we denote, as before, the eigenspace corresponding to D, i.e.,

VD =
{
φ ∈ C∞( 
Ω )

: �φ = 0 in Ω,
∂φ

∂n
= Dφ on ∂Ω

}
,

and given any φ ∈ VD \ {0} we introduce the set Iφ

Iφ = {
x ∈ ∂Ω:

∣∣φ(x)
∣∣ < ‖φ‖C0(∂Ω)

}
,

and the set Mφ

Mφ = ∂Ω \ Iφ = {
x ∈ ∂Ω:

∣∣φ(x)
∣∣ = ‖φ‖C0(∂Ω)

}
.

When D is a Steklov eigenvalue different from zero, we expect Iφ to be almost all of ∂Ω . For instance, when Ω is a
disk, and D is an eigenvalue different from zero, then Mφ consists of a finite (even) number of equispaced points.

Lemma 4. Suppose D = Dk is a Steklov eigenvalue for the boundary value problem (2). Suppose uλn , λn → 0+, is a
sequence of solutions to (1) (corresponding to that same shift D) whose energies satisfy the estimate

Eλ(uλn) � a log
1

λn

+ b,

for some positive constants a and b. Then we have the following results

D = 0: There exists a constant C depending only on a, b and |∂Ω| such that

λn e|PDuλn | = λn e
1

|∂Ω| |
∫
∂Ω uλn dσ | � C as λn → 0+,

D �= 0: There exists a subsequence, for simplicity also denoted λn, and a Steklov eigenvector φ ∈ VD \ {0} such that,
given any x0 ∈ Iφ ⊂ ∂Ω , we may find an open neighborhood ωx0 ⊂ ∂Ω , of x0, with

sup
x∈ωx0

λn e|PDuλn (x)| → 0 as λn → 0+.

Proof. The result for D = 0 was already used in [10] and [12], and it follows directly from (58). We proceed with
the case D = Dk �= 0. From the estimates (51) and (55) in the proof of Proposition 5 we know that any sequence of
solutions

uλn = PDuλn + wλn, λn → 0+,

to (1), which satisfies the energy bound assumed in the present lemma, also satisfies

λn

∫
∂Ω

e|PDuλn+wλn | dσ � C, (59)

and ∫
∂Ω

w2
λn

dσ � C, (60)

with C only depending on a, b, D and |∂Ω|. Suppose ‖PDuλn‖C0(∂Ω) �= 0. The sequence

φλn = PDuλn

‖P u ‖ 0
D λn C (∂Ω)
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is bounded in VD . Due to the finite dimensionality of VD we may thus extract a subsequence, also denoted φλn , with

φλn → φ ∈ VD (in any norm) as λn → 0+. (61)

The statement of this lemma is trivial if ‖PDuλn‖C0(∂Ω) is bounded (or has a bounded subsequence). We may thus
suppose that

‖PDuλn‖C0(∂Ω) → ∞ as λn → 0+.

The function φ necessarily has ‖φ‖C0(∂Ω) = 1. We may without loss of generality suppose there exists x̄ ∈ ∂Ω

with φ(x̄) = 1. Now suppose x0 is in Iφ , and therefore −1 < φ(x0) < 1. By virtue of (61), there exist open ∂Ω-
neighborhoods ωx0 and ωx̄ , of x0 and x̄, respectively, and a small positive number η, such that

sup
x∈ωx0

∣∣φλn(x)
∣∣ � 1 − 2η � 1 − η � inf

x∈ωx̄

φλn(x), (62)

for n sufficiently large (as λn converges to 0). Based on (59) and (62) we conclude that

sup
x∈ωx0

λn e|PDuλn (x)|
∫
ωx̄

ewλn dσ = sup
x∈ωx0

λn e‖PDuλn‖
C0(∂Ω)

|φλn (x)|
∫
ωx̄

ewλn dσ

� λn e−η‖PDuλn‖
C0(∂Ω)

∫
ωx̄

e‖PDuλn‖
C0(∂Ω)

φλn+wλn dσ

= λn e−η‖PDuλn‖
C0(∂Ω)

∫
ωx̄

ePDuλn+wλn dσ

� C e−η‖PDuλn‖
C0(∂Ω) , (63)

for λn sufficiently close to 0. Now, we also have that

0 < c <

∫
ωx̄

ewλn dx, (64)

because if this lower bound did not hold then we could find a subsequence λnm → 0+ (for simplicity denoted λm,
m → ∞) so that∫

ωx̄

ewλm dσ � |ωx̄ |/2m,

and as a consequence∣∣{x ∈ ωx̄ : ewλm � 1/m
}∣∣ � |ωx̄ |/2.

This would imply that∣∣{x ∈ ωx̄ : wλm � − logm
}∣∣ � |ωx̄ |/2,

and thus∫
ωx̄

|wλm |2 dσ � |ωx̄ |
2

(logm)2, as m → ∞

as m → ∞ (λm → 0+). We have now arrived at a contradiction to the estimate (60). A combination of (63) and (64),
with the fact that ‖PDuλn‖C0(∂Ω) converges to ∞, immediately leads to the assertion of this lemma. �

As already noted in the proof of Proposition 5, any sequence of solutions to (1) (λn → 0+) that satisfies the energy
bound (50) also satisfies the estimate

λn

∫
e±uλn dσ � C.
∂Ω
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We may thus extract a subsequence, {uλn}, which in addition to the conclusion of Lemma 4 has

λn

2
euλn

∣∣∣∣
∂Ω

→ μ+ and
λn

2
e−uλn

∣∣∣∣
∂Ω

→ μ− (65)

for two nonnegative measures μ+ and μ−. The convergence is in the sense of measures (i.e., weak* in the dual of
C0(∂Ω)). With the present blow-up analysis we seek to characterize the limiting behavior of uλn modulo its potential
“eigenfunction part”, i.e., we study the limiting behavior of wλn = (I −PD)uλn (if D is not a Steklov eigenvalue then
wλn = uλn ). As already observed, wλ solves

�wλn = 0 in Ω,

∂wλn

∂n
= Dwλn + λn sinhuλn on ∂Ω, (66)

or in its distributional formulation∫
Ω

wλn�v dx +
∫

∂Ω

Dwλnv dσx = −
∫

∂Ω

λn sinhuλnv dσx,

for all v ∈ C2( 
Ω) with ∂v
∂n = 0 on ∂Ω . As we have already seen, wλn and uλn satisfy the estimates

‖wλn‖L2(∂Ω) � C and ‖λn sinhuλn‖L1(∂Ω) � C.

It now follows quite easily from an application of standard elliptic regularity theory to the boundary value prob-
lem (66), and duality, that

‖wλn‖H 1−ε (Ω) � Cε,

for any ε > 0. The constant Cε is independent of λn → 0+. By extraction of a subsequence (for simplicity also
denoted λn) we may thus achieve convergence in H 1−ε(Ω) for any ε > 0, i.e., we may achieve

wλn → w0 in H 1−ε(Ω), (67)

for any ε > 0. The limit w0 is a solution to the problem

�w0 = 0 in Ω,

∂w0

∂n
= Dw0 + (μ+ − μ−) on ∂Ω, (68)

in the distributional sense that∫
Ω

w0�v dx +
∫

∂Ω

Dw0v dσx = −
∫

∂Ω

v d(μ+ − μ−),

for all v ∈ C2( 
Ω) with ∂v
∂n = 0 on ∂Ω . We also note that, for y ∈ Ω ,

w0(y) = −
∫

∂Ω

N(x, y)
(
Dw0(x)dσx + d(μ+ − μ−)x

) + 1

|∂Ω|
∫

∂Ω

w0 dσx,

where N(·, y) is the “standard” Neumann function, satisfying

�N(·, y) = δy in Ω,
∂N(·, y)

∂n
= 1

|∂Ω| on ∂Ω.

Our blow-up analysis, more specifically, concerns the structure of the measures μ+ and μ−. We now define what it
means to be a regular and a singular point with respect to the measure ν = μ+ + μ−.

Definition 1. We call a point x0 ∈ ∂Ω a regular point if there exists a function ψ ∈ C0(∂Ω) such that 0 � ψ � 1,
ψ ≡ 1 in a neighborhood of x0, and∫

∂Ω

ψ dν <
π

2
.
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A point on ∂Ω is called singular if it is not regular. We denote by S the set of all singular points. Note that it
follows from this definition (and the finiteness of the measure ν) that S is a finite set. We also introduce the notion of
nondegeneracy for a Steklov eigenspace.

Definition 2. A nonzero Steklov eigenvalue Dk for the boundary value problem (2) is said to have a nondegenerate
eigenspace, if any eigenfunction φ in VDk

\ {0} attains its extremal values at only a finite number of points (on ∂Ω),
i.e., if Mφ consists of a finite number of points, for any φ ∈ VDk

\ {0}.

The blow-up analysis follows along the same lines as in [10] and [12], and depends crucially on the following
inequality. Suppose g is a non-trivial, smooth function on ∂Ω (with

∫
∂Ω

g dσ = 0) and suppose v is a classical
solution to{

�v = 0 in Ω,
∂v
∂n = g on ∂Ω,

normalized by
∫
∂Ω

v dσ = 0. Then, for any 0 < δ < π , there exists a constant Cδ , independent of g, such that∫
∂Ω

exp

(
(π − δ)|v(x)|

‖g‖L1

)
dσx � Cδ. (69)

This is a special version of an inequality, first proved in [4]. For a proof of this special version, see [10].

Lemma 5. Suppose uλn , λn → 0+ is a sequence of solutions to (1) (corresponding to the shift D) whose energies
satisfy the estimate

Eλn(uλn) � a log
1

λn

+ b,

for some positive constants a and b. Suppose the sequence is selected so that (65) holds for the two regular Borel
measures μ±. If D is a nonzero Steklov eigenvalue we additionally suppose the sequence has been selected according
to the conclusion of Lemma 4. Let x0 ∈ ∂Ω be a regular point with respect to the measure ν = μ+ + μ− in the sense
of Definition 1. Then we have the following results

D is not a Steklov eigenvalue: There exist r0 > 0 and C < ∞ such that

sup
y∈∂Ω∩B(x0,r0)

∣∣uλn(y)
∣∣ � sup

y∈ 
Ω ∩B(x0,r0)

∣∣uλn(y)
∣∣ � C.

As a consequence λn e±uλn → 0 uniformly on ∂Ω ∩ B(x0, r0) as λn → 0+.

D = 0: There exist r0 > 0 and C < ∞ such that

sup
y∈∂Ω∩B(x0,r0)

∣∣wλn(y)
∣∣ � sup

y∈ 
Ω ∩B(x0,r0)

∣∣wλn(y)
∣∣ � C.

D is a Steklov eigenvalue �= 0: Suppose x0 also lies in Iφ where φ is the Steklov eigenvector arising in the conclusion
of Lemma 4. There exist r0 > 0 and C < ∞ such that

sup
y∈∂Ω∩B(x0,r0)

∣∣wλn(y)
∣∣ � sup

y∈ 
Ω∩B(x0,r0)

∣∣wλn(y)
∣∣ � C.

Furthermore λn e±uλn → 0 uniformly on ∂Ω ∩ B(x0, r0) as λn → 0+.

Proof. The proof of this lemma when D is not a Steklov eigenvalue is simpler than when D is such an eigenvalue
(when D is not an eigenvalue PDuλ = 0 and uλ = wλ). We shall thus only consider the case where D is a Steklov
eigenvalue. A proof for D = 0 has already been given in [10]. The proof for D �= 0 has considerable overlap with that
proof, however, for the convenience of the reader we present the details here. Let x0 ∈ ∂Ω be a regular point, with
x0 ∈ Iφ , where φ is the Steklov eigenvector arising in the conclusion of Lemma 4. Let ψ be a smooth function with
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the properties described in the definition of a regular point; by a simple regularization procedure we may arrange that
ψ ∈ C∞(∂Ω). We decompose the function wλn = w1 + w2 + w3 + C∗, into three harmonic functions and a constant
(for simplicity of notation we drop the λn label on the functions wi , 1 � i � 3, and the constant C∗). The harmonic
functions are normalized by

∫
∂Ω

w1 dσ = ∫
∂Ω

w2 dσ = ∫
∂Ω

w3 dσ = 0. In addition these harmonic functions satisfy
the Neumann boundary conditions

∂w1

∂n
= λnψ sinh(uλn) − λn

|∂Ω|
∫

∂Ω

ψ sinh(uλn)dσ,

∂w2

∂n
= λn(1 − ψ) sinh(uλn) − λn

|∂Ω|
∫

∂Ω

(1 − ψ) sinh(uλn)dσ,

∂w3

∂n
= Dwλn − D

|∂Ω|
∫

∂Ω

wλn dσ.

By (55)∣∣∣∣ 1

|∂Ω|
∫

∂Ω

wλn dσ

∣∣∣∣ � 1

|∂Ω|1/2
‖wλn‖L2(∂Ω) � C,

and ∥∥∥∥wλn − 1

|∂Ω|
∫

∂Ω

wλn dσ

∥∥∥∥
L2(∂Ω)

� ‖wλn‖L2(∂Ω) � C.

It follows immediately that the constant C∗ = 1
|∂Ω|

∫
∂Ω

wλn dσ is bounded independently of λn. From elliptic reg-
ularity theory it follows that ‖w3‖H 3/2(Ω) is bounded independently of λn. Using Sobolev’s imbedding theorem we
conclude that

‖w3‖C0( 
Ω) � C, (70)

independently of λn. Again, by elliptic regularity

‖w2‖Lp(Ω) � Cp

∥∥∥∥∂w2

∂n

∥∥∥∥
L1(∂Ω)

� Cp,

for any 1 < p < ∞. Suppose that r1 > 0 is picked sufficiently small so that ψ ≡ 1 on B(x0, r1) ∩ ∂Ω . Since

∂w2

∂n
= − λn

|∂Ω|
∫

∂Ω

(1 − ψ) sinh(uλn)dσ, a bounded constant,

on B(x0, r1) ∩ ∂Ω , local elliptic estimates give that

‖w2‖C0(B(x0,r1/2)∩∂Ω) � ‖w2‖C0(B(x0,r1/2)∩ 
Ω )

� C

(∣∣∣∣ λn

|∂Ω|
∫

∂Ω

(1 − ψ) sinh(uλn)dσ

∣∣∣∣ + ‖w2‖L2(Ω)

)
� C. (71)

Lastly, since∣∣sinh(x)
∣∣ = cosh(x) − e−|x|

the convergence in measure of λn coshuλn towards μ+ + μ− = ν means that

λn

∫
ψ

∣∣sinh(uλn)
∣∣dσ →

∫
ψ dν <

π

2
.

∂Ω ∂Ω
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Therefore, for δ sufficiently small,∥∥∥∥∂w1

∂n

∥∥∥∥
L1(∂Ω)

=
∫

∂Ω

∣∣∣∣∂w1

∂n

∣∣∣∣dσ < π − 2δ,

for all sufficiently small λn. We may thus apply (69) with v = w1 and g = ∂w1/∂n to obtain∫
∂Ω

ep∗|w1| dσ � Cp∗ , (72)

for some 1 < p∗ = (π − δ)/(π − 2δ) � (π − δ)/‖∂w1/∂n‖L1(∂Ω).
Suppose r1 is chosen sufficiently small that

sup
x∈∂Ω∩B(x0,r1/2)

λn e|PDuλn (x)| � C, (73)

which is possible since x0 ∈ Iφ . Using (70), (71), (72), (73) and the boundedness of the constant C∗, we can now
estimate

λ
p∗
n

∫
∂Ω∩B(x0,r1/2)

ψp∗
ep∗|uλn | dσ � C

∫
∂Ω∩B(x0,r1/2)

λ
p∗
n ep∗(|PDuλn |+|w1|+|w2|+|w3|+|C∗|) dσ

� C

∫
∂Ω

ep∗|w1| dσ � C,

for some fixed p∗ > 1, and all λn sufficiently small. Therefore, Sobolev’s imbedding theorem yields∥∥∥∥∂w1

∂n

∥∥∥∥
H−s∗ (∂Ω∩B(x0,r1/2))

� C

∥∥∥∥∂w1

∂n

∥∥∥∥
Lp∗(∂Ω∩B(x0,r1/2))

� C

(∥∥λnψ sinh(uλn)
∥∥

Lp∗(∂Ω∩B(x0,r1/2))
+

∫
∂Ω

λn

∣∣sinh(uλn)
∣∣dσ

)
� C,

for some fixed s∗ < 1
2 . Interior elliptic estimates and duality now give

‖w1‖H 3/2−s∗(Ω∩B(x0,r1/4)) � C

(∥∥∥∥∂w1

∂n

∥∥∥∥
H−s∗ (∂Ω∩B(x0,r1/2))

+ ‖w1‖L2(Ω∩B(x0,r1/2))

)
� C.

Sobolev’s imbedding theorem then yields the local C0 bound

‖w1‖C0(∂Ω∩B(x0,r1/4)) � ‖w1‖C0( 
Ω ∩B(x0,r1/4)) � C. (74)

A combination of (70), (71), and (74) with the fact that the constant C∗ is bounded leads to the desired estimate
for wλn , with r0 = r1/4. Once this uniform estimate is proven, it follows immediately from the estimate

λn e|uλn | � λn e|PDuλn |+|wλn |,

and the fact that

sup
x∈ωx0

λn e|PDuλn (x)| → 0 as λn → 0+,

that λn e|uλn | converges uniformly to zero on ∂Ω ∩ B(x0, r0), for r0 sufficiently small. �
Based on this lemma we are now able to establish the following theorem characterizing the possible limits of

λn sinh(uλn). The proof of this theorem entirely parallels that of Theorem 1 in [12], and we refer the interested reader
to that paper for the details.
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Theorem 2. Suppose uλn , λn → 0+, is a sequence of solutions to (1) (corresponding to shift D) whose energies satisfy
the estimate

Eλ(uλn) � a log
1

λn

+ b,

for some positive constants a and b. Suppose this sequence has been selected so that

λn e±uλn → 2μ± weak* in C0(∂Ω)∗,

i.e., in the sense of measures, and

wλn → w0 in H 1−ε(Ω), as λn → 0+,

for any ε > 0 (see (65) and (67)). If D is a nonzero Steklov eigenvalue we additionally suppose λn has been selected
according to the conclusion of Lemma 4. Let S denote the set of singular points relative to the measure ν = μ+ +μ−.
Then we have the following results concerning the limits of λn e±uλ |∂Ω

D is not a Steklov eigenvalue: The nonlinear boundary terms λn e±uλ |∂Ω converge in the sense of measures towards
2μ± = ∑

xi∈S 2α±
i δxi

, with α±
i � 0.

D = 0: The nonlinear boundary terms λne±uλ |∂Ω converge in the sense of measures towards 2μ± = ∑
xi∈S 2α±

i δxi
+

d± e±w0 , with α±
i � 0, d± � 0, and d+ · d− = 0.

D is a Steklov eigenvalue �= 0: Suppose additionally that D has a nondegenerate eigenspace in the sense of Defi-
nition 2. Then there exists a finite set of points M ⊂ ∂Ω such that the nonlinear boundary terms λn e±uλ |∂Ω

converge in the sense of measures towards 2μ± = ∑
xi∈S∪M 2α±

i δxi
, with α±

i � 0.

In all cases we have that α+
i + α−

i > 0 for points xi ∈ S (or xi ∈ S ∪ M), and w0 is C∞ in 
Ω \ S (or 
Ω \ (S ∪ M)).
S (or S ∪ M) may possibly be empty; an empty sum of delta functions should be interpreted as 0.

Remarks. Concerning the structure of the limit of λn e±uλn and wλn :
(1) When D = 0 it was proven in [12] that (since Eλn(uλn) blow up as λn approaches 0+) the sets S, corresponding

to our variationally constructed solutions, are nonempty and the measure μ+ + μ− = limλn| sinh(uλn)| as well as
the measure μ+ − μ− = limλn sinh(uλn) has nonzero delta functions at all the points in S. A similar result is easy
to verify when D is not a Steklov eigenvalue. We have no proof that the sets S, corresponding to our variationally
constructed solutions, are nonempty when D is a nonzero Steklov eigenvalue, even though we suspect this to be true.

(2) As reported in [12] there is numerical evidence to support the presence of the “regular part” d± e±w0 in the case
D = 0, i.e., there is numerical evidence of cases in which not both d+ and d− is zero.

(3) When D is a nonzero Steklov eigenvalue, Theorem 2 at present leaves open the possibility that there may be
delta functions in μ+ or μ− at points (in M) outside of S. In the next theorem we verify that the point-mass locations
for the measures μ+ + μ− and μ+ − μ− are the same, and that the absolute weight of any point-mass in these two
measures is greater than or equal to 2π . As a corollary to the last statement it follows that S ∪ M = S.

(4) When D is not a positive Steklov eigenvalue, it is not difficult to see that wλn stays uniformly bounded near
points in 
Ω \ S, and that given any point x ∈ S one may find points xn ∈ 
Ω , xn → x. so that |wλn(xn)| → ∞ as
λn → 0+ (for the details of a proof of this see for example [10] Lemma 4.8). When D is a positive Steklov eigenvalue
(with a nondegenerate eigenspace) similar arguments may be used to prove that wλn stays uniformly bounded away
from a finite set of boundary points. In many interesting cases the contribution PDuλn vanishes or stays uniformly
bounded, and so the variationally defined sequence of solutions, uλn , blows up “pointwise” in the same places as wλn .
It is this behavior which is markedly different than that which we have seen for λn → 0− (cf. Proposition 3) where
we may either find a subsequence along which uλn and wλn blow up almost everywhere in Ω , or the entire original
sequence uλn converges to zero in H 1(Ω) (and thus, by elliptic estimates, also in C0( 
Ω)).

We can also obtain information about the strength and locations of the boundary singularities in the limit w0,
similar to that which we have already obtained for the case D = 0 in [12].
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There are two related approaches to establish such results that we know of. One is complex analytic, and was
originally introduced in [13] to study “interior” blow-up for positive solutions (to a conceptually related problem).
This approach was the basis for the analysis for the case D = 0, presented in [10]. The other approach is based on a
clever Pohozaev-like integral identity, and its asymptotic limit on shrinking neighborhoods of the singularities; it was
originally introduced in [3] and was also used in [6]. Both approaches may be adapted to the present case. Since we
have already demonstrated how to apply the first approach on a very related problem (the case D = 0) we will here for
completeness give a fairly detailed outline of how to apply the second approach. According to Theorem 2 all the point-
mass locations of the measures limλne±uλn = 2μ± lie inside the finite set of singular points S, or inside the finite set
S ∪ M . In both cases we shall use {xi}Ki=1 to denote the set of point-mass locations (of μ+ + μ−). Let {α±

i }Ki=1 be the
coefficients (weights) associated with the point masses of the measures μ±; we shall use the notation αi = α+

i − α−
i

for the coefficients associated with the measure μ+ − μ−. For any fixed xi , let (r, θ), 0 < r , −π/2 � θ < 3π/2, be a
polar coordinate system around xi , selected so that θ = −π/2 lines up with the outward normal to Ω , and define

φi(r, θ) = 1

π

(
− log r + Dr sin θ log r + Dr cos θ

(
θ − π

2

))
. (75)

Using “complex notation” (z = r cos θ + ir sin θ ) this definition is equivalent to

φi(z) = − 1

π
Re

(
log z + Dz

(
i log z + π

2

))
,

with log z = log r + iθ .

Theorem 3. Let the situation be as in Theorem 2. If D = 0 suppose d± = 0. The weights of the point-masses of the
measures μ± = ∑K

i=1 α±
i δxi

and μ+ − μ− = ∑K
i=1 αiδxi

satisfy

α2
i

2π
= (

α+
i + α−

i

)
, 1 � i � K. (76)

Moreover, the point-mass locations {xi}Ki=1 satisfy the conditions

∂

∂τx

(
w0(x) − αiφi(x)

)|x=xi
= 0, 1 � i � K, (77)

where w0 is the limit of the sequence wλn , τx is the tangent to ∂Ω at the point x, and the functions φi , 1 � i � K , are
as defined in (75).

Proof. Let H denote the upper halfplane H = {(y1, y2): y2 > 0} and let B(R) = B(0,R) denote the disk of radius R

centered at the origin. Given a point-mass location xi ∈ ∂Ω , let Φ : H∩B(R) → Ω be a local conformal straightening
of the boundary. By appropriate selection of Φ and an orthonormal coordinate system we may arrange that Φ(0) = xi

is also the origin, and that ∇Φ(0) = I . By selecting R sufficiently small we may assume that {xj }Kj=1 ∩ Φ(∂H ∩
B(R)) = xi = 0. Defining the function vλn = wλn ◦ Φ{

�vλn = 0 in H ∩ B(R),
∂vλn

∂ny
= h(y)Dvλn + λnh(y) sinh(vλn) on ∂H ∩ B(R),

(78)

where h(y) = |det(∇Φ(y))|1/2. We have arranged that h(0) = 1. Moreover, we can choose h′(0) = hy1(0) arbitrarily:
in complex notation, Φ can be written Φ(z) = z + γ

2 z2 + O(z3) with z = y1 + iy2. When written like this, h′(0) can
be computed to be Re(γ ). Now use the change of variable Ψ (z) = 1

k
(ekz − 1), for k real, to form a new conformal

map Φ̂ = Φ ◦ Ψ (which again locally “straightens” the boundary). Φ̂ is conformal from a half-ball (which may be
smaller) and can be expanded as Φ̂(z) = z + γ̂

2 z2 + O(z3) where γ̂ = γ + k.
Choosing 0 < ε < R, we multiply (78) by ∂

∂y1
vλn . Let Ωε = H ∩ B(ε), and write the outward unit normal vector

n = (n1, n2). Integration by parts gives

1

2

∫
∂

∂y1

(∇vλn

)2 dy =
∫

∇vλn∇
∂

∂y1
vλn dy
Ωε Ωε
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=
∫

∂H∩B(ε)

(
Dhvλn

∂

∂y1
vλn + λnh sinh(vλn)

∂

∂y1
vλn

)
dy1 +

∫
∂B(ε)∩H

∂

∂n
vλn

∂

∂y1
vλn dσy

=
∫

∂H∩B(ε)

(
D

2
h

∂

∂y1
(vλn)

2 + λnh
∂

∂y1
cosh(vλn)

)
dy1 +

∫
∂B(ε)∩H

∂

∂n
vλn

∂

∂y1
vλn dσy.

A second integration by parts with respect to y1 gives

1

2

∫
∂B(ε)∩H

(∇vλn

)2
n1 dσy = −D

2

∫
∂H∩B(ε)

∂h

∂y1
v2
λn

dy1 − λn

∫
∂H∩B(ε)

∂h

∂y1
cosh(vλn)dy1

+
∫

∂B(ε)∩H

∂

∂n
v

∂

∂y1
v dσy +

(
D

2
h(vλn)

2 + λnh cosh(vλn)

)∣∣∣∣y1=ε, y2=0

y1=−ε, y2=0
.

Now we can take this limit as λn → 0+, to get the identity

1

2

∫
∂B(ε)∩H

(∇v0
)2

n1 dσy = −D

2

∫
∂H∩B(ε)

∂h

∂y1
(v0)

2 dy1 − (
α+

i + α−
i

)( ∂h

∂y1
(0)

/
h(0)

)

+
∫

∂B(ε)∩H

∂

∂n
v0

∂

∂y1
v0 dσy +

(
D

2
h(y)

(
v0(y)

)2
)∣∣∣∣y1=ε, y2=0

y1=−ε, y2=0
, (79)

for v0 = limvλn . Here we have used that λnh cosh(vλn) converge uniformly to zero away from a finite set of points
(which are disjoint from the points (±ε,0), for 0 < ε sufficiently small). We now decompose v0 into a regular and a
singular part by first performing this decomposition on w0. Using “complex notation” (z = x1 + ix2) we define

ws = −αi

π
Re

(
log z + Dz

(
i log z + π

2

))
,

where the logarithm log z is chosen to have its “cut” along the negative imaginary axis (which coincides with the
outward normal to Ω). It is not hard to see that wr = w0 − ws satisfies �wr = 0 in Ω ∩ B(ε), with ∂

∂nwr − Dwr ∈
H 3/2−t (∂Ω ∩ B(ε)) for ε sufficiently small, and any t > 0. In other words

w0 = ws + wr,

where wr is in H 3−t (Ω ∩ B(ε)) for any t > 0. In particular, wr is in C1,β in an 
Ω neighborhood of 0 for any β < 1.
Define vs = ws ◦ Φ and vr = wr ◦ Φ . We thus have the decomposition

v0 = vs + vr

with vr locally in C1,β , for any β < 1, and

vs(z) = ws

(
Φ(z)

)
, Φ(z) = z + a + ib

2
z2 + S(z),

with |S(z)| � C|z|3, | d
dz

S(z)| � C|z|2, and a = h′(0). We easily calculate that

logΦ(z) + DΦ(z)

(
i logΦ(z) + π

2

)
= log z + a + ib

2
z + Dz

(
i log z + π

2

)
+ O

(|z2 log z|),
and

d

dz

(
logΦ(z) + DΦ(z)

(
i logΦ(z) + π

2

))
= 1

z
+ a + ib

2
+ D

(
i + i log z + π

2

)
+ O

(|z log z|),
and so in polar coordinates (with z = y1 + iy2 = r cos θ + ir sin θ )

vs(y) = −αi

(
log r + a

r cos θ − b
r sin θ − Dr sin θ log r − Dr cos θ

(
θ − π

))
+ O

(
r2| log r|), (80)
π 2 2 2
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and

∇yvs(y) = −αi

π

[(
r−1 cos θ, r−1 sin θ

) + 1

2
(a,−b) − D

(
θ − π

2
,1 + log r

)]
+ O

(
r| log r|), (81)

with a = h′(0). We now substitute the decomposition v0 = vs + vr into (79), and consider the case of infinitesimally
small ε. It is not difficult to see that some of the terms are o(1); indeed we obtain (remembering that h(0) = 1)

1

2

∫
∂B(ε)∩H

(|∇vs |2 + 2∇vs∇vr

)
n1 dσy = −(

α+
i + α−

i

) ∂h

∂y1
(0) +

(
D

2
h(y)

(
vs(y)2 + 2vs(y)vr (y)

))∣∣∣∣y1=ε, y2=0

y1=−ε, y2=0

+
∫

∂B(ε)∩H

(
∂

∂n
vs

∂

∂y1
vs + ∂

∂n
vs

∂

∂y1
vr + ∂

∂n
vr

∂

∂y1
vs

)
dσy + o(1). (82)

Using the formula (81) we can now compute the limits

lim
ε→0

1

2

∫
∂B(ε)∩H

|∇vs |2n1 dσy = h′(0)

4π
α2

i ,

lim
ε→0

∫
∂B(ε)∩H

∇vs∇vrn1 dσy = −αi

2

∂

∂y1
vr(0),

lim
ε→0

∫
∂B(ε)∩H

∂

∂n
vs

∂

∂y1
vs dσy = 3h′(0)

4π
α2

i ,

lim
ε→0

∫
∂B(ε)∩H

∂

∂n
vs

∂

∂y1
vr dσy = −αi

∂

∂y1
vr(0),

lim
ε→0

∫
∂B(ε)∩H

∂

∂n
vr

∂

∂y1
vs dσy = −αi

2

∂

∂y1
vr(0).

The point-boundary terms in (82) (at y1 = ±ε) converge to zero as ε → 0. For example, by invoking (80),∣∣vs(ε,0)2 − vs(−ε,0)2
∣∣ = ∣∣vs(ε,0) + vs(−ε,0)

∣∣ · ∣∣vs(ε,0) − vs(−ε,0)
∣∣

� C
∣∣log(ε)

∣∣ · ∣∣vs(ε,0) − vs(−ε,0)
∣∣ � C

∣∣log(ε)
∣∣ε,

so that∣∣h(ε,0)vs(ε,0)2 − h(−ε,0)vs(−ε,0)2
∣∣

�
∣∣h(ε,0)

∣∣ · ∣∣vs(ε,0)2 − vs(−ε,0)2
∣∣ + ∣∣h(ε,0) − h(−ε,0)

∣∣ · ∣∣vs(−ε,0)2
∣∣

� C
∣∣log(ε)

∣∣ε + Cε
∣∣log(ε)

∣∣2
.

The term involving vs · vr may be estimated similarly. In all we have therefore reduced (82) to the following limiting
identity

h′(0)

4π
α2

i − αi

2

∂

∂y1
vr(0) + (

α+
i + α−

i

)
h′(0) = 3h′(0)

4π
α2

i − 3

2
αi

∂

∂y1
vr(0),

or

αi

∂

∂y1
vr(0) = h′(0)

(
α2

i

2π
− (

α+
i + α−

i

))
.

Since h′(0) can be chosen arbitrarily, and since ∂
∂y1

vr(0) = ∂
∂τ

wr(0) is independent of h′(0) this identity can only be
satisfied if both sides are zero. It follows that

α2
i = α+

i + α−
i
2π
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and because α+
i + α−

i > 0 on S ∪ M (so αi �= 0) it also follows that

∂

∂τ
wr(0) = ∂

∂y1
vr(0) = 0.

These are the desired identities. �
Remarks. For α±

i � 0, α+
i + α−

i > 0 the equations

(α+
i − α−

i )2

2π
= α2

i

2π
= α+

i + α−
i

imply that |αi | = |α+
i − α−

i | � 2π . The case |αi | = 2π arrives if and only if either α+
i or α−

i is zero. We suspect
(but are unable to prove) that this is the case for solutions satisfying the energy bounds established in Theorem 1.
Whenever αi = ±2π , the corresponding equations

∂

∂τx

(
w0(x) ∓ 2πφi(x)

)∣∣∣∣
x=xi

= 0,

may be used to determine the potential singularities. For D = 0, d+ = d− = 0, when φi(x) = − 1
π

log |x − xi |, this has
been done in a few cases in [12]. Just like in [3] there is a strong relation between these equations and the stationarity
of an appropriate “renormalized” energy – we refer the interested reader to [5] and [11] for more details.

Corollary 1. Let the situation be as in Theorem 2. Let S ∪ M be the finite set of point-mass locations introduced in
the case when D is a nonzero Steklov eigenvalue. Then S ∪ M = S.

Proof. Suppose D is a nonzero Steklov eigenvalue, and let xi be a point in S ∪M (a point-mass location for μ+ +μ−
with weight α+

i + α−
i ). From the previous remarks it follows that α+

i + α−
i � |α+

i − α−
i | � 2π , and so

∫
∂Ω

ψ dν =∫
∂Ω

ψ d(μ+ + μ−) � 2π for any ψ ∈ C0(∂Ω), 0 � ψ � 1, with ψ ≡ 1 in a neighborhood of xi . It follows that xi is a
singular point relative to ν = μ+ + μ−, i.e., xi ∈ S. �
3. A general discussion

So far we have focused on solutions to

�uλ = 0 in Ω,
∂uλ

∂n
= Duλ + λf (uλ) on ∂Ω, (83)

with f (x) having exponential growth. In the first of the following two sections we briefly discuss, and provide some
numerical results for, the case of different f . As we shall see, the existence structure described in Sections 2.1 and 2.2
(finitely many solutions for any λ in the interval −D < λ < 0 and infinitely many solutions for any positive λ)
is preserved for a much larger class of odd, superlinear f . However, as we shall also see, the “finite point blow-
up” observed when λ → 0+ is very much related to exponential growth. It was already noted that the solutions
for f = sinh, that we constructed variationally, and that we studied asymptotically in the previous section, do not
necessarily represent all solutions for λ > 0. There may be other solutions whose energy (and “essential” H 1-norm
squared: ‖wλ‖2

H 1(Ω)
) grow faster than log 1

λ
as λ → 0+. In Section 3.2 we discuss two different cases, both with

f = sinh, when such “additional” solutions are present (one case has D negative, the other has a domain with a
nontrivial topology). Associated to these “high energy” solutions are secondary bifurcations, as illustrated by some of
our computational examples.

3.1. Other nonlinear fluxes

For the examples in this section, we let the domain Ω be the unit ball, Ω = B(0,1) ⊂ R
2. In order to compare with

the numerical results for the exponential case, that are displayed in Fig. 1, we first calculate a bifurcation plot for the
case when f (u) = u+ u3, and D = 2. The left frame in Fig. 4 shows the H 1(Ω)-norm, and the right frame shows the
energy Eλ as a function of λ for seven different solutions to the boundary value problem (83). The Steklov eigenvalues
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Fig. 4. Left frame: the H 1(Ω)-norm as a function of λ for different solutions to (83) with f (u) = u + u3. Right frame: the energies Eλ for the
same solutions.

Fig. 5. The H 1(Ω)-norm of vλ = λ1/2uλ as a function of λ for different solutions to (83), f (u) = u + u3.

consist of all integers � 0. Fig. 4 clearly indicates an existence structure much like for the exponential case, namely:
finitely many solutions for any λ in the interval −D < λ < 0, and infinitely many solutions for any positive λ. The
nature of the blow-up near λ = 0 is, however, different from what we witnessed in the exponential case. To support
this assertion consider the following formal scaling argument. Define vλ = λ1/2uλ, then

�vλ = 0 in Ω,
∂vλ

∂n
= (D + λ)vλ + v3

λ on ∂Ω.

It is to be expected that any of the solution “branches” for this boundary value problem as λ → 0 approaches one of
the infinitely many solutions to the boundary value problem

�v0 = 0 in Ω,
∂v0

∂n
= Dv0 + v3

0 on ∂Ω.

That this “limiting behavior” is indeed what transpires is seen from the plots of the H 1(Ω) norms of the solutions vλ,
displayed in Fig. 5. The solutions uλ = λ−1/2vλ therefore blow up almost everywhere, as do the nonlinear flux terms
λ(uλ + u3

λ) (whether λ → 0−, or λ → 0+). Similar behavior would be found for any odd, superlinear polynomial. We
now briefly turn to the case of a bounded f , and the case of an asymptotically linear f . In both of these cases we take
D = 0. Consider first an f (x) that is odd and bounded, and let λ > 0 be fixed. If we require that f be nondecreasing,
then it is not hard to see that there exists a constant C = C(f,λ) such that ‖uλ‖H 1(Ω) � C. If we additionally require
that f ′ be bounded, then there exists a λ∗ > 0 such that the only solution for λ �= 0 on the half-axis λ < λ∗ is the
zero solution. For more details, see [11]. As a specific example we take f (u) = arctan(u). The left frame in Fig. 6
shows a plot of the H 1(Ω)-norm for “the first” five nontrivial solutions to the corresponding boundary value problem.
Secondly consider an f of the form f (u) = cu + g(u), where the constant c is positive, and where the function g(u)

is odd and bounded. Here we can again prove a bound on the H 1(Ω)-norm of uλ, for any λ > 0, such that cλ is not a
positive integer. The bound deteriorates as cλ approaches any positive integer. We also illustrate this with a bifurcation
plot. As a specific example we take f (u) = 1

2 (u + sin(u)). Note that f ′(0) = 1, and so the bifurcation points from the
trivial solution (the Steklov eigenvalues for the “linearized” boundary value problem) remain the nonnegative integers.
The right frame in Fig. 6 shows a plot of the H 1(Ω)-norm for “the first” five nontrivial solutions to the corresponding
boundary value problem. The plot exhibits the generic behavior, but it has an interesting additional feature (which we
believe is associated with the oscillatory behavior of sin(u)) namely: there seem to be an infinite number of solutions to
the problem when cλ = λ

2 is a positive integer. This feature is somewhat reminiscent of a feature found in connection
with the so-called Gelfand–Liouville Problem (cf. [2] and [8]).
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Fig. 6. The H 1(Ω)-norm of “the first” five solutions to (83) with f (u) = arctan(u) (left frame) and f (u) = 1
2 (u + sin(u)) (right frame). In both

cases D = 0.

Fig. 7. H 1(Ω)-norms of solutions to (1), with D = 0 on the annulus, Ω = B(0,1) \ B(0,1/2). Only primary bifurcations are plotted.

3.2. High energy solutions, secondary bifurcations

In [12] we provided numerical examples of solutions to (1) (i.e., (83) with f = sinh) on simply connected domains,
different from a disk, in order to display families of solutions with special properties (we were looking for solutions for
D = 0, whose flux converges to a measure with a nonzero regular part). To obtain a more “complicated” bifurcation
diagram than that shown in Fig. 1 (including a family of solutions whose H 1(Ω)-norm grows faster than (log 1

λ
)1/2 as

λ → 0+) we now consider (1) on a domain Ω in the shape of the annulus, Ω = B(0,1) \ B(0,1/2). Fig. 7 shows the
solutions bifurcating off the zero solution at the (first 10) positive Steklov eigenvalues, for D = 0. As usual, we plot
the H 1(Ω)-norm of the solutions versus λ. The solution structure at first sight appears much more complicated than
that seen in the bifurcation plot for the unit disk (or any simply connected domain, for that matter). In order to make
the solution structure more transparent, it is convenient to divide the solutions into three classes. One class consists of
a single branch only, namely the nonconstant radial solution; it is given by

uλ = aλ log r + bλ, with the coefficients aλ and bλ satisfying the equations

aλ = λ sinh(bλ), −2aλ = λ sinh(−aλ log 2 + bλ).

This branch bifurcates from the zero solution at the Steklov eigenvalue D6 = 3/ log 2 ≈ 4.328085. This radial solution
has an H 1(Ω)-norm that blows up faster than the other solutions (at a rate of log 1

λ
as λ → 0+). The remaining

branches, bifurcating from the zero solution at Steklov eigenvalues with nonradial eigenfunctions, can conveniently
be divided into two separate classes, A and B.

The separated energy plots look a lot cleaner, (there are no more intersections) but more importantly this separation
appears to distinguish the solutions according to the form of the possible limiting measures μ = limλn→0 ∂uλn/∂n.
For {uλn} on any of the branches in class A, we have

μ = 2π

2N∑
i=1

(−1)i−1δσi
,

and for {uλn} on any of the branches in class B, we have

μ = 2π

2N∑
(−1)i−1δσi

− 2π

2N∑
(−1)i−1δ 1

2 σi
.

i=1 i=1
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Fig. 8. Primary bifurcations on the annulus. The left frame shows the H 1(Ω)-norms associated with the (first 6) solutions we have designated
class A. The right frame shows the H 1(Ω)-norms associated with the (first 3) solutions we have designated class B.

Here N may be any positive integer and {σi}2N
i=1 may be any set of 2N distinct, equispaced points on the unit circle.

Another reasonable way to think about this classification of families of solutions is through eigenvalue and eigen-
function data, rather than the limiting measure. With this in mind, we label each family by a pair (γ,φ) where φ is
a Steklov eigenfunction associated with the eigenvalue γ , at which the family bifurcates from the 0 solution. For the
annulus with outer radius 1 and inner radius 1/R for R > 1, these Steklov eigenfunctions and values can be found by
a separation of variables approach. There are two radial eigenfunctions corresponding to the simple eigenvalues 0 and
(R + 1)/ logR, respectively. As far as nonradial eigenfunctions are concerned, they are all, modulo a rotation, of the
form

um = amrm sin(mθ) + bmr−m sin(mθ),

for some m � 1. The Neumann boundary conditions give rise to the two equations

mam − mbm = γ (am + bm), and

mbmRm+1 − mamR−m+1 = γ
(
bmRm + amR−m

)
.

For each fixed m � 1 this 2 × 2 linear system possesses nontrivial solutions (a, b) for two different values of γ . For
each fixed m � 1 we thus have two eigenvalue-eigenfunction pairs (γ 1

m,φ1
m) and (γ 2

m,φ2
m). Suppose the eigenvalues

are ordered such that γ 1
m < γ 2

m. Then the branch of solutions labelled by the pair (γ 1
m,φ1

m) falls into the classification A,
and the branch of solutions labeled by (γ 2

m,φ2
m) falls into classification B. The eigenfunction φ1

m achieves its extremal
values on the outer circle, whereas φ2

m achieves its extremal values on the inner circle. For each family of solutions
the integer m coincides with the integer N , that appears in the limiting measure, i.e., it determines the number of
δ-functions that emerge.

The branch of nonconstant radial solutions (whose H 1(Ω)-norm blows up at the rate log 1
λ

as λ → 0+) is also
interesting from the point of view of higher order bifurcations. The simplicity of this family of solutions means we
can easily apply a separation of variables argument to identify an infinite (countable) set of λ-values at which we
should expect secondary bifurcations. For details on this calculation, see [11]. The presence of these secondary (as
well as higher order) bifurcations can be verified by computational experiments, such as that provided in Fig. 9.
Based on our computational experience it appears that the limiting measures, proceeding directly along the secondary
bifurcations, for the annulus Ω = B(0,1) \ B(0,1/2) take the form

μ = lim
λ→0+

∂uλ

∂n
= 2π

N∑
i=1

δσi
− 2π

N∑
i=1

δ 1
2 σi

,

where N is an arbitrary positive integer, and {σi}Ni=1 is a set of N distinct, equispaced points on the unit circle. It
appears that the secondary bifurcations have H 1(Ω)-norms that blow up like (log 1

λ
)1/2 as λ → 0+.

Returning to the domain Ω = B(0,1), there is a situation where we may apply a similar separation of variables
argument, to predict an infinite number of secondary bifurcations. If we let D = −1, then we have one family of
solutions to (1) that are constant, for 0 < λ < 1. The H 1(Ω)-norm of this family of solutions also blows up at the rate
of log 1

λ
as λ → 0+. Fig. 10 shows some of the bifurcation diagram in this situation.

With the appearance of these instances of secondary bifurcations a natural question arises: do all (or most) families
have secondary bifurcations, or do such bifurcations only emanate from families of solutions whose H 1(Ω)-norm
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Fig. 9. The radial solution, with a collection of secondary and, what appears to be, one tertiary bifurcation.

Fig. 10. Two views of solutions to (1) for D = −1 on the unit ball. The left frame shows the first 8 primary bifurcations from the zero solution. The
right frame shows the constant solution with its first 4 secondary bifurcations.

blows up faster than (log 1
λ
)1/2? The answer to the second question appears to be no (in Fig. 9, the tertiary bifurcation

developing seems to disprove this). However, at the same time it appears that a large number of families possess no
secondary bifurcations. We examine this phenomenon in more detail in two different situations. We first note that a
necessary condition for a bifurcation at a solution Uλ, is the existence of a nonzero function h that solves{

�h = 0 in Ω,
∂h
∂n = (D + λ cosh(Uλ))h on ∂Ω.

(84)

Let Vλ(x) ∈ C∞(∂Ω) be the function defined by Vλ(x) = D + λ cosh(Uλ). Given λ > 0 we define the set of “gener-
alized real eigenvalues” to be the values {γ (λ)} ⊂ R for which the equation{

�h = 0 in Ω,
∂h
∂n = γVλ(x)h on ∂Ω

(85)

admits a nonzero solution. Clearly, for a given λ > 0, the set of generalized real eigenvalues includes the value 1, if
and only the necessary condition (84) for bifurcation is satisfied.

We now focus on the possibility of finding secondary bifurcations in two different situations pertaining to the
unit disk. In the first situation we take Uλ to be the constant solution to (1) with D = −1. This is a simple case.
Experimentally we know this family of solutions admits bifurcations – as evidenced by the right plot in Fig. 10. But it
is instructive to see the correlation with the presence of γ = 1 as a generalized real eigenvalue for (85). The curves in
Fig. 11 depict the first five nonzero, generalized real eigenvalues as a function of λ ∈ (0,1) (the smallest generalized
real eigenvalue is 0). Each of these five curves seem to intersect the γ = 1 line at a value of λ, close to which we
have previously noticed a secondary bifurcation appear from the constant solution. In this case it is actually not hard
to show that each curve gives rise to exactly one intersection with the line γ = 1, resulting in an infinite (countable)
set of potential secondary bifurcations. All the nonzero, generalized real eigenvalues converge to ∞ as λ → 1− and
they all converge to zero as λ → 0+.

For the second situation we consider one of the families of exact solutions to (1), constructed in [5]. These solutions
pertain to D = 0, Ω = B(0,1); the particular family we consider bifurcates from the zero solution at λ = 1, and it has
the form

Uλ(x) = 2 log
∣∣x − ρ(λ)σ1

∣∣ − 2 log
∣∣x − ρ(λ)σ2

∣∣, (86)
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Fig. 11. Two views of the smallest five generalized real eigenvalues, as calculated from (85) with D = −1 and Uλ in the form of the constant
solution. We expect a bifurcation whenever a curve of generalized eigenvalues crosses γ = 1. This expectation is confirmed by comparison with
the bifurcation plot, shown in Fig. 10.

Fig. 12. Two views of the smallest five generalized real eigenvalues, as calculated from (85) with D = 0, using the solutions Uλ , given by (86).

with ρ(λ) = ( 1+λ
1−λ

)1/2 and {σ1, σ2} = {(1,0), (−1,0)} (or any two diametrically opposed points on the boundary of
the unit disk). The fact that we have solutions in closed form is helpful when calculating the generalized eigenvalues.
These solutions happen to provide the simplest example of a family, for which the flux converges to a pure sum of
δ-functions. Fig. 12 shows the five smallest nonzero generalized real eigenvalues for the problem (85) in the case
when Uλ is given by (86). We see a marked difference, when compared to Fig. 11. Two of the generalized eigenvalues
start at the value 1 (when λ = 1). One of these remains at 1 for all values 0 < λ < 1, the other clearly falls below. The
third generalized real eigenvalue approaches 1 from above as λ nears zero, whereas all the others seem to stay strictly
above 1. That the nonzero generalized real eigenvalues converge in pairs to the set of positive integers as λ → 1− is
consistent with the fact that the positive integers are (double) Steklov eigenvalues for the problem

�φ = 0 in Ω,
∂φ

∂n
= γφ on ∂Ω.

The fact that one of the generalized eigenvalues remains 1 for all values 0 < λ < 1 does not mean that we should
expect all elements of the family of solutions given by (86) to be a “true” bifurcation point, rather it should be seen as
a reflection of the symmetry of the set of solutions. An examination of the eigenfunctions confirms what we should
expect: for any given λ ∈ (0,1) an eigenfunction corresponding to γ = 1 is h = ∂

∂τ
Uλ. The form of this eigenfunction

is consistent with the fact that uλ ◦ R(θ) is also a solution to the boundary value problem (1) if uλ is a solution and
R(θ) is any rotation. The fact that no other generalized eigenvalue ever equals 1 indicates, that we should expect
no points of “true” secondary bifurcation from the solution given by (86). We have similar expectations for all the
solutions constructed in [5]. Based on our numerical experience we are also inclined to believe that the solution classes
denoted A and B (see Fig. 8) which we encountered in connection with the annulus, have no associated secondary
bifurcations.
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