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Abstract

In this paper we look for positive solutions of the problem−�u + λu = up−1 in Ω, u = 0 on∂Ω, whereΩ is a bounded
domain inR

n, n � 3,p > 2 andλ is a positive parameter. We describe new concentration phenomena, which occur asλ → +∞,
and exploit them to construct (forλ large enough) positive solutions that concentrate near spheres of codimension 2 asλ → +∞;
these spheres approach the boundary ofΩ asλ → +∞. Notice that the existence and multiplicity results we obtain hold als
contractible domains arbitrarily close to starshaped domains (no solution can exist ifp � 2n

n−2 andΩ is starshaped, because
Pohožaev’s identity). The method we use is completely variational and based on a blow up analysis in the equivarian
In order to avoid concentration phenomena near points and to overcome some difficulties related to the lack of com
we first modify the nonlinear term in a suitable region, then we solve the modified problem by minimizing the related
functional on a suitable infinite dimensional manifold and, finally, we show that the solutions of the modified problem
also our problem, forλ large enough, because they are localized in the prescribed region where the nonlinear term has
modified.
 2005 Elsevier SAS. All rights reserved.

Résumé

Nous démontrons l’existence de solutions positives pour le problème−�u + λu = up−1 en Ω, u = 0 sur∂Ω, où Ω est
un domaine borné deRn, n � 3, p > 2 etλ > 0. Nous décrivons de nouveaux phénomènes de concentration qui appar
quandλ → +∞. Grâce à ceux-ci nous construisons des solutions positives pourλ assez grand donc qui se concentrent p
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des sphères de codimention 2 quandλ → +∞ ; ces sphères approchent du bord de omega quandλ → +∞. Il faut remarquer
que l’existence de solutions est prouvée pour des domaines qui peuvent être arbitrairement proches de domaines éto
p � 2n

n−2 etΩ est étoilé il n’y a pas de solutions, ce qui se déduit de l’identité de Pohožaev). La méthode que nous suiv
la démonstration est complètement variationnelle. Pour surmonter les difficultés liées à la présence d’opérateurs non
d’abord nous modifions le terme non linéaire ; ensuite nous trouvons des solutions du problème modifié en minim
fonctionnelle de l’énergie sur une varieté de dimension infinie ; enfin nous démontrons que les solutions du problèm
sont aussi solutions du problème original, parce-qu’elles sont localisées, dans la région où le terme non linéaire n
modifié.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Let us consider the following problem−�u + λu = up−1 in Ω,

u > 0 in Ω,

u = 0 on∂Ω,

(1.1)

whereΩ is a bounded domain ofRn, n � 3, p > 2 andλ is a positive parameter.
In [13] and [15] this problem has been studied in the casep = 2n

n−2 (the critical Sobolev exponent). In this ca
some concentration phenomena occur whenλ → 0: the solutions tend to concentrate near points of the dom
This fact is used in [13,15] to obtain, forλ > 0 small enough, an arbitrarily large number of positive solutio
having an arbitrarily large number of spikes, under suitable assumptions on the domainΩ .

In the present paper we point out other concentration phenomena, which occur, for allp > 2, asλ → +∞ and
exploit them to construct positive solutions, forλ > 0 large enough, in the same domains considered in [13
Notice that, while the solutions obtained in [13,15] concentrate and blow-up asλ → 0 near a finite number o
points, the solutions we construct in the present paper concentrate near spheres of codimension 2. In [1
proved that for all positive integerk there exist, forλ > 0 small enough, solutions blowing-up asλ → 0 at exactly
k points, which approach the boundary ofΩ ask → ∞; the solutions we obtain in this paper, forλ large enough
concentrate near spheres which approach the boundary ofΩ asλ → +∞ and the rate of concentration is grea
than the rate of approaching the boundary. In [13,15] the basic tool is a finite dimensional reduction me
Lyapunov–Schmidt type; here we use a completely variational method. Thus, it is clear that the conce
phenomena and the methods we used in [13,15] are deeply different in nature with respect to the ones we
present paper; however, they allow us to state existence and multiplicity results in the same domains (see E
2.2 and Remark 2.3) which may be also contractible and even arbitrarily close to starshaped domains in t
we described in [13] (it is well known that the problem cannot have solutions ifΩ is starshaped andp � 2n

n−2, as a
consequence of the Pohožaev’s identity: see [22,4,5]).

Notice that, on the contrary, Dancer and Zhang (see [7]) obtained nonexistence results for supercritical p
in some domains which are nearly starshaped in a different sense with respect to [13] (see also [19,20,25]
nonexistence results concerning supercritical problems in nonstarshaped domains).

It is worth pointing out that also forλ = 0 some concentration phenomena occur, related to the exponep.
Whenp → 2n

n−2, we have concentration near points and this fact has been used to describe the effect of the d
shape on the existence and the multiplicity of solutions (see [1,2,6,23]) and to construct multispike solution
p is sufficiently close to 2n

n−2 (see, for example, [12,14] and the references therein). Whenp is not close to 2n
n−2,

concentration may occur not only near points but also near some more complex sets; for example, in [17] w
that, forλ = 0 andp large enough, there exist solutions which concentrate near spheres asp → +∞.
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The domains we consider in this paper have radial symmetry with respect to thexn-axis (see condition (2.1)
and we look for solutions having the same symmetry. The method we use is completely variational and the
reduces to minimizing the corresponding functional constrained on a suitable manifold. However, let us rem
we do not apply this method directly to problem (1.1): we first modify in a suitable region the nonlinear term
we solve the modified problem and, finally, we show that the solutions of the modified problem solve also p
(1.1) forλ large enough, because they are localized in the prescribed region where the nonlinear term has
modified. This modification of the nonlinear term is due to several reasons, specially whenΩ meets thexn-axis.
In fact (see Remark 3.12) if we try to apply the minimizing arguments without having modified the non
term, we see that the minimum is not achieved ifp � 2n

n−2 (because of concentration phenomena near points o

xn-axis) while, forp < 2n
n−2, the minimum is achieved but the minimum points give solutions which concen

asλ → +∞, near points of thexn-axis, not near spheres (solutions of this type would not be interesting be
already well known).

Finally, let us remark that (unlike the finite dimensional reduction methods of Lyapunov–Schmidt typ
construction does not need to know the limit profile of the solutionuλ; however, the method we use sugge
that, suitably rescaled, the functionwλ(ρ, τ) = uλ(ρ,0, . . . ,0, τ ) converges asλ → +∞ to the unique solution o
problem{−�v + v = vp−1, v > 0 in R

2,

v ∈ H 1,2(R2), v(0) = max
R2

v (1.2)

(see Remark 3.11 for more details).

2. Statement of the main results and examples

Let us consider a bounded domainΩ of R
n, satisfying the following symmetry condition

x = (x1, . . . , xn) ∈ Ω ⇐⇒ (
ρ(x),0, . . . ,0, xn

) ∈ Ω, (2.1)

whereρ(x) = (
∑n−1

i=1 x2
i )1/2. We say that a functionu defined inΩ has radial symmetry with respect to thexn-axis

if u(x) = u(ρ(x),0, . . . ,0, xn) for all x ∈ Ω .
Let us set

Σ(Ω) = {
(ρ, τ ) ∈ R

2: ρ > 0, (ρ,0, . . . ,0, τ ) ∈ Ω
}

(2.2)

and denote byHS(Ω) the subspace ofH 1,2
0 (Ω) consisting of the functions having radial symmetry with respec

thexn-axis.

Theorem 2.1. LetΩ be a bounded domain ofR
n, n � 3, satisfying condition(2.1)and assume that there exists

open subsetA of R
2 such that

0< inf
{
ρ(x): x ∈ Ω,

(
ρ(x), xn

) ∈ A
}

< inf
{
ρ(x): x ∈ Ω,

(
ρ(x), xn

) ∈ ∂A
}
. (2.3)

Also assumep > 2. Then, there exists̄λ > 0 such that, for allλ � λ̄, problem(1.1)has a solutionuλ ∈ HS(Ω).
For all λ � λ̄, uλ is a bounded smooth function and there existscλ = (ρλ, τλ) ∈ Σ(Ω) such that, for allη > 0,

we have

lim
λ→+∞

1

λp−2
sup

{
uλ(x): x ∈ Ω,

(
ρ(x), xn

)
/∈ B(cλ, η)

} = 0, (2.4)

while

supuλ � λp−2 ∀λ � λ̄. (2.5)

Ω



66 R. Molle, D. Passaseo / Ann. I. H. Poincaré – AN 23 (2006) 63–84

ct

.
ber of

r

–14,
ultiplicity

nown
,
a sense
s been
Furthermore,cλ ∈ A for λ > 0 large enough and

lim
λ→+∞ρλ = inf

{
ρ(x): x ∈ Ω,

(
ρ(x), xn

) ∈ A
}
. (2.6)

Moreover,

lim sup
λ→+∞

λ−1/(p−2)‖uλ‖H
1,2
0 (Ω)

< +∞, (2.7)

lim sup
λ→+∞

λ(p−4)/(p−2)‖uλ‖2
L2(Ω)

< +∞, (2.8)

lim sup
λ→+∞

λ−2/(p−2)‖uλ‖p

Lp(Ω) < +∞. (2.9)

The proof is reported in Section 3.

Examples 2.2. It is clear that, because of the behaviour of the solutionuλ as λ → +∞, for λ large enough
Theorem 2.1 guarantees the existence ofk distinct solutions if the domainΩ satisfies condition (2.3) with respe
to k open subsetsA1, . . . ,Ak pairwise disjoint. For example, in domainsΩ such that

	Ω = {
(x1, . . . , xn) ∈ R

n: a � xn � b, ρ1(xn) � ρ(x) � ρ2(xn)
}

(2.10)

for suitablea, b in R, a < b, andρ1, ρ2 nonnegative functions in[a, b], the number of distinct solutions, forλ large
enough, is related to the number of local (strict) minimum points of the functionρ1, with positive minimum values
This fact allows us to construct examples of domains with trivial topology (even contractible) where the num
solutions is arbitrarily large. For example, let us consider, for allk ∈ N, r > 1 ands > 0, the domain

Ωs
r,k = {

x ∈ R
n: 1 < |x| < r, ρ(x) > sxn,dist(x,Cs

m) > 1 for m = 1, . . . , k − 1
}
, (2.11)

where

Cs
m =

{
x ∈ R

n: ρ(x) = 3m, xn = 3m

s

}
.

If r > 3k
s

(1 + s2)1/2, Theorem 2.1 applies withk pairwise disjoint open subsetsA1, . . . ,Ak and guarantees, fo
λ large enough, the existence ofk distinct solutions which concentrate, asλ → +∞, neark distinct (n − 2)-
dimensional spheres of the boundary ofΩs

r,k . Notice that similar domains have been also considered in [12
16,17,21], where concentration phenomena of different type have been used to obtain existence and m
results.

Remark 2.3. The example of the domainΩs
r,k (see (2.11)) is particularly significant whenp � 2n

n−2. In fact, in this
case problem (1.1) has no solution forλ � 0 if Ω is a starshaped domain, as a consequence of the well k
Pohožaev’s identity. The domains of the formΩs

r,k allow us to show that problem (1.1), forλ > 0 large enough
can have an arbitrarily large number of solutions in domains arbitrarily close to starshaped domains in
(introduced in [13]) we describe below (notice that a different definition of nearly starshaped domain ha
given in [7] in order to extend Pohožaev nonexistence result).

For each smooth bounded domainΩ in R
n, let us set

σ(Ω) = sup
x0∈Ω

inf

{
ν(x) · x − x0

|x − x0| : x ∈ ∂Ω

}
, (2.12)

where ν(x) denotes the outward normal to∂Ω in x. We say thatΩ is nearly starshaped ifσ(Ω)− =
max{0,−σ(Ω)} is small (δ-nearly-starshaped ifσ(Ω)− � δ).
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SinceΩs
r,k is not a smooth domain, let us consider its neighbourhood

N η(Ω
s
r,k) = {

x ∈ R
n: dist(x,Ωs

r,k) < η
}
.

Then, if η ∈ ]0,1[, Nη(Ω
s
r,k) is a smooth domain forr ands large enough, limr,s→+∞ σ(Nη(Ω

s
r,k)) = 0 and

Theorem 2.1 guarantees the existence ofk distinct solutions forλ large enough.

3. Preliminary results and proof of the main theorem

Notice that, for allλ > 0, a functionu ∈ H
1,2
0 (Ω) solves the equation−�u + λu = up−1 if and only if the

functionλ−1/(p−2)u solves the equation−λ−1�u + u = up−1. Therefore, if we setε = λ−1/2, finding solutions of
problem (1.1) for largeλ > 0 is equivalent to finding solutions, for smallε, of the following problem{−ε2�u + u = up−1 in Ω,

u > 0 in Ω,

u = 0 on∂Ω.

(3.1)

Let us chooseδ > 0 small enough such that, if we set

Aδ = {
(ρ, τ ) ∈ A: dist

(
(ρ, τ ),R

2 \ A
)
> δ

}
, (3.2)

thenΣ(Ω) ∩ Aδ �= ∅ and

inf
{
ρ(x): x ∈ Ω,

(
ρ(x), xn

) ∈ Aδ

} = inf
{
ρ(x): x ∈ Ω,

(
ρ(x), xn

) ∈ A
}

< inf
{
ρ(x): x ∈ Ω,

(
ρ(x), xn

) ∈ ∂Aδ

}
. (3.3)

Then consider a smooth functionθ :R2 → [0,1] such thatθ(ρ, τ ) = 1 ∀(ρ, τ ) ∈ Aδ andθ(ρ, τ ) = 0 ∀(ρ, τ ) ∈
R

2 \ A.
Let g1 : R → R

+ be the function defined byg1(t) = 0 ∀t � 0, g1(t) = tp−1 ∀t � 0 and consider a smoot
convex functiong0 :R → R

+ such that limt→+∞ g′
0(t) < 1, g0(t) � g1(t) ∀t ∈ R andg0(t) = g1(t) ∀t � t0 for a

suitablet0 > 0.
Then, let us consider the smooth functiong :Ω × R → R defined by

g(x, t) = θ
(
ρ(x), xn

)
g1(t) + [

1− θ
(
ρ(x), xn

)]
g0(t) (3.4)

and the functionalfε :HS(Ω) → R defined by

fε(u) = 1

2

∫
Ω

(
ε2|Du|2 + u2)dx −

∫
Ω

G(x,u)dx, (3.5)

whereG(x, t) = ∫ t

0 g(x, τ )dτ.

Throughout this paper, for everyE ⊆ R
2, we denote bỹE the set defined as follows

Ẽ = {
x = (x1, . . . , xn) ∈ R

n:
(
ρ(x), xn

) ∈ E
}
. (3.6)

Notice that, since inf{ρ(x): x ∈ Ω ∩ Ã} > 0 because of condition (2.3), one can verify thatfε is well defined in
HS(Ω) and is aC2-functional whose critical points (by the maximum principle) solve the problem{−ε2�u + u = g(x,u) in Ω,

u > 0 in Ω,

u = 0 on∂Ω.

(3.7)

It is clear that all nontrivial critical points forfε belong to the set

Mε = {
u ∈ HS(Ω): u �≡ 0, f ′

ε(u)[u] = 0
}
. (3.8)
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The following lemma describes some properties offε andMε and, in particular, shows that looking for nontrivi
critical points forfε is equivalent to searching critical points forfε constrained onMε.

Lemma 3.1. For all p > 2 andε > 0, the following properties hold for the functionalfε.

(a) Assumeu ∈ HS(Ω), u �≡ 0; then, eitherf ′
ε(tu)[u] > 0 ∀t > 0 (what happens, for example, ifu+ ≡ 0 in Ω ∩ Ã)

or there exists a uniquetε > 0 such thattεu ∈ Mε; in this case,f ′
ε(tu)[u] > 0 ∀t ∈ ]0, tε[ andf ′

ε(tu)[u] < 0
∀t > tε (this case occurs, for example, ifu+ �≡ 0 in Ω ∩ Ãδ).

(b) Mε �= ∅ and infMε fε > 0.
(c) Mε is a C1-manifold of codimension1; moreover, every critical point forfε constrained onMε is a critical

point forfε.

Proof. (a) First observe that, because of the definition ofg, we have

f ′
ε(tu)[u] = t

∫
Ω

(
ε2|Du|2 + u2)dx > 0 ∀t > 0 (3.9)

for all u such thatu+ ≡ 0. If u+ �≡ 0, the functiont �→ 1
t

∫
Ω

g(x, tu)udx is strictly increasing in]0,+∞[. More-

over, for all t > 0, we haveg(x, tu)u = tp−1(u+)p if x ∈ Ω ∩ Ãδ while 0� g(x, tu)u � [lims→+∞ g′
0(s)] tu2 if

x ∈ Ω \ Ã.
Therefore, property (a) follows easily taking into account that

f ′
ε(tu)[u] = t

[∫
Ω

(
ε2|Du|2 + u2)dx − 1

t

∫
Ω

g(x, tu)udx

]
∀t > 0, (3.10)

where

lim
t→0

1

t

∫
Ω

g(x, tu)udx = 0, (3.11)

1

t

∫
Ω∩Ãδ

g(x, tu)udx = tp−2
∫

Ω∩Ãδ

(u+)p dx ∀t > 0 (3.12)

and, since limt→+∞ g′
0(t) < 1,

0� 1

t

∫
Ω\Ã

g(x, tu)udx �
∫

Ω\Ã
u2 dx ∀t > 0. (3.13)

(b) In order to prove thatMε �= ∅ for all ε > 0 andp > 2, it suffices to choosēϕ ∈ HS(Ω), ϕ̄ � 0, such that
ϕ̄ �≡ 0 in Ω ∩ Ãδ (notice thatΩ ∩ Ãδ �= ∅ because of the choice ofδ). Then, from property (a) we infer that the
existst̄ε > 0 such that̄tεϕ̄ ∈ Mε. Moreover, property (a) implies that, for allu ∈ Mε,

fε(u) � fε(tu) ∀t � 0. (3.14)

On the other hand, we havef ′
ε(0) = 0 andf ′′

ε (0)[u,u] = ∫
Ω

[ε2|Du|2 + u2]dx.

Therefore, there existsrε > 0 andαε > 0 such that

inf

{
fε(u): u ∈ HS(Ω),

∫
|Du|2 dx = r2

ε

}
� αε. (3.15)
Ω
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It follows that

inf
Mε

fε � αε > 0, (3.16)

which completes the proof of (b).
(c) The fact thatMε is a C1 manifold of codimension 1 follows from the implicit function theorem. In fa

consider the functionalΦε :HS(Ω) → R defined by

Φε(u) = f ′
ε(u)[u] ∀u ∈ HS(Ω). (3.17)

Taking into account condition (2.3), one can verify thatΦε is aC1 functional. Moreover,Φ ′
ε(u) �= 0 for all u ∈ Mε.

In fact, if u ∈ Mε, thenu+ �≡ 0 andΦε(u) = 0 that is

ε2
∫
Ω

|Du|2 dx +
∫
Ω

u2 dx −
∫
Ω

g(x,u)udx = 0. (3.18)

Therefore, ifg′(x, t) denotes the derivative ofg(x, t) with respect tot , we have

Φ ′
ε(u)[u] = 2ε2

∫
Ω

|Du|2 dx + 2
∫
Ω

u2 dx −
∫
Ω

g′(x,u)u2 dx −
∫
Ω

g(x,u)udx

=
∫
Ω

[
g(x,u)u − g′(x,u)u2]dx. (3.19)

On the other hand, a direct computation shows thatg(x, t)t − g′(x, t)t2 < 0 ∀t > 0. Therefore, sinceu+ �≡ 0, it
follows thatΦ ′

ε(u)[u] < 0. SoΦ ′
ε(u) �= 0 and the implicit function theorem applies.

Now, let u ∈ Mε be a critical point forfε constrained onMε. Then, there exists a Lagrange multiplierµ such
that

f ′
ε(u) + µΦ ′

ε(u) = 0. (3.20)

It follows, in particular, that

f ′
ε(u)[u] + µΦ ′

ε(u)[u] = 0, (3.21)

which impliesµ = 0 becausef ′
ε(u)[u] = 0 andΦ ′

ε(u)[u] �= 0. Thus,u is a critical point forfε. �
Lemma 3.2. Under the assumptions of Theorem2.1, the following properties hold for the functionalfε and the
manifoldMε:

(a) fε(u) �
(

1

2
− 1

p

){
ε2

∫
Ω

|Du|2 dx + [
1− g′

0(∞)
] ∫
Ω

u2 dx

}
∀u ∈ Mε,

whereg′
0(∞) = limt→+∞ g′

0(t);

(b) inf

{ ∫
Ω∩Ã

(u+)p dx: u ∈ Mε

}
> 0.

Proof. In order to prove (a), let us observe that, for allu ∈ Mε,

0=
∫
Ω

(
ε2|Du|2 + u2)dx −

∫
Ω

g(x,u)udx

=
∫ (

ε2|Du|2 + u2)dx −
∫

θ̃ (x)(u+)p dx −
∫ [

1− θ̃ (x)
]
g0(u)udx, (3.22)
Ω Ω Ω
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whereθ̃ (x) = θ(ρ(x), xn) ∀x ∈ R
n.

Now, setG0(t) = ∫ t

0 g0(τ )dτ and observe that

G0(t) � 1

2
g0(t)t ∀t ∈ R (3.23)

becauseg0 is a convex function. As a consequence, we obtain

fε(u) = 1

2

∫
Ω

(
ε2|Du|2 + u2)dx −

∫
Ω

G(x,u)dx

� 1

2

∫
Ω

(
ε2|Du|2 + u2)dx − 1

p

∫
Ω

θ̃(x)(u+)p dx − 1

2

∫
Ω

[
1− θ̃ (x)

]
g0(u)udx. (3.24)

It follows that, for allu ∈ Mε,

fε(u) �
(

1

2
− 1

p

)[∫
Ω

(
ε2|Du|2 + u2)dx −

∫
Ω

[
1− θ̃ (x)

]
g0(u)udx

]

�
(

1

2
− 1

p

)[∫
Ω

(
ε2|Du|2 + u2)dx −

∫
Ω

g0(u)udx

]
. (3.25)

Now observe that, sinceg0 is convex, we haveg0(t)t � g′
0(∞)t2 ∀t ∈ R, which implies∫

Ω

g0(u)udx � g′
0(∞)

∫
Ω

u2 dx. (3.26)

Thus, (a) follows easily from (3.25) and (3.26).
For the proof of (b), let us first prove that∫

Ω∩Ã

(u+)p dx > 0 ∀u ∈ Mε. (3.27)

For allu ∈ Mε we have∫
Ω∩Ã

(u+)p dx �
∫

Ω∩Ã

g(x,u)udx =
∫
Ω

(
ε2|Du|2 + u2)dx −

∫
Ω\Ã

g(x,u)udx

� ε2
∫
Ω

|Du|2 dx + [
1− g′

0(∞)
] ∫
Ω

u2 dx, (3.28)

which implies (3.27) (becauseg′
0(∞) < 1 andu �≡ 0 ∀u ∈ Mε).

Now observe that, since inf{ρ(x): x ∈ Ω ∩ Ã} > 0 (see condition (2.3)), the subspace ofH 1,2(Ω ∩ Ã) consisting
of the radial functions, is compactly embedded inLp; in particular, for a suitable positive constantc̄p, we have∫

Ω∩Ã

|Du|2 dx � c̄p

( ∫
Ω∩Ã

|u|p dx

)2/p

∀u ∈ HS(Ω). (3.29)

Therefore, taking into account (3.28), we obtain∫
(u+)p dx � ε2

∫
Ω

|Du|2 dx � ε2
∫

|Du+|2 dx � ε2c̄p

( ∫
(u+)p dx

)2/p

∀u ∈ Mε. (3.30)
Ω∩Ã Ω∩Ã Ω∩Ã
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here
Since
∫
Ω∩Ã

(u+)p dx �= 0 (see (3.27)), it follows∫
Ω∩Ã

(u+)p dx � (ε2c̄p)p/(p−2) ∀u ∈ Mε, (3.31)

which implies property (b). �
Lemma 3.3. The minimumminMε fε is achieved for allε > 0. Moreover, every minimizing functionuε solves
problem(3.7).

Proof. Let (ui)i be a minimizing sequence forfε on Mε, that isui ∈ Mε ∀i ∈ N and limi→∞ fε(ui) = infMε fε.
From (a) of Lemma 3.2 we infer that the sequence(ui)i is bounded inH 1,2

0 (Ω). It follows that, up to a subsequenc

it converges to a functionu ∈ HS(Ω) weakly inH
1,2
0 (Ω) and inL2(Ω). Taking into account that the subspace

H 1,2(Ω ∩ Ã) consisting of the radial functions is compactly embedded inLp (because of condition (2.3)), w
obtain

lim
i→∞

∫
Ω∩Ã

(u+
i )p dx =

∫
Ω∩Ã

(u+)p dx, (3.32)

lim
i→∞

∫
Ω

g(x,ui)ui dx =
∫
Ω

g(x,u)udx (3.33)

and

lim
i→∞

∫
Ω

G(x,ui)dx =
∫
Ω

G(x,u)dx. (3.34)

In particular, (3.34) implies

lim
i→∞fε(ui) � fε(u). (3.35)

Therefore, if we show thatu ∈ Mε, we can conclude thatu is a minimizing function forfε constrained onMε.
Notice thatu �≡ 0 because

∫
Ω∩Ã

(u+)p dx > 0, as we can infer from (3.32) taking into account (b) of Lemma
Thus, it remains to prove thatf ′

ε(u)[u] = 0, which (because of (3.33)) is equivalent to showing that

lim
i→∞

∫
Ω

|Dui |2 dx =
∫
Ω

|Du|2 dx. (3.36)

In order to prove (3.36), we argue by contradiction and assume that (up to a subsequence)∫
Ω

|Du|2 dx < lim
i→∞

∫
Ω

|Dui |2 dx, (3.37)

which (because of (3.33)) impliesf ′
ε(u)[u] < 0. As a consequence, taking into account (a) of Lemma 3.1, t

existst ∈ ]0,1[ such thattu ∈ Mε. It follows that

fε(tu) =
∫
Ω

[
1

2
g(x, tu)tu − G(x, tu)

]
dx <

∫
Ω

[
1

2
g(x,u)u − G(x,u)

]
dx

= lim
i→∞

∫ [
1

2
g(x,ui)ui − G(x,ui)

]
dx = lim

i→∞fε(ui) = inf
Mε

fε, (3.38)
Ω
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which is a contradiction (notice that here the strict inequality holds becauseu+ �≡ 0).
Then, we can conclude thatu ∈ Mε andfε(u) = minMε fε.
Finally, notice that every minimizing function forfε on Mε is, in particular, a critical point forfε constrained

onMε; hence, the conclusion follows taking into account (c) of Lemma 3.1.�
For each domainΣ in R

2, let us set

mε(Σ) = inf

{∫
Σ

(
ε2|Dv|2 + v2)dξ : v ∈ H

1,2
0 (Σ),

∫
Σ

|v|p dξ = 1

}
. (3.39)

It is well known (see [3,8,9,26]) that, forΣ = R
2, the minimummε(R

2) is achieved by a positive function whic
is unique modulo translations, radially symmetric with respect to the origin, decreasing when the radial coo
increases and decaying exponentially at infinity together with its derivatives.

Lemma 3.4. For each domainΣ of R
2, the following properties hold for allε > 0 andp > 2:

(a) mε(Σ) = ε2(p−2)/pm1(
1
ε
Σ);

(b) limε→0 ε−2(p−2)/pmε(Σ) = m1(R
2).

Proof. For each functionv ∈ H
1,2
0 (Σ), consider the functionvε in H

1,2
0 (1

ε
Σ) defined by

vε(ξ) = v(εξ) ∀ξ ∈ 1

ε
Σ. (3.40)

A direct computation shows that∫
Σ

(
ε2|Dv|2 + v2)dξ = ε2

[∫
1
ε
Σ

(|Dvε|2 + v2
ε

)
dξ

]
(3.41)

and ∫
Σ

|v|p dξ = ε2
∫

1
ε
Σ

|vε|p dξ. (3.42)

If v �≡ 0, setv̄ = v/‖v‖Lp(Σ) andv̄ε = vε/‖vε‖Lp( 1
ε
Σ)

. Then, the above computations show that∫
Σ

(
ε2|Dv̄|2 + v̄2)dξ = ε2(p−2)/2

∫
1
ε
Σ

(|Dv̄ε|2 + v̄2
ε

)
dξ, (3.43)

which clearly implies (a).
Taking into account (a), the proof of (b) is equivalent to showing that

lim
ε→0

m1

(
1

ε
Σ

)
= m1(R

2). (3.44)

It is clear thatm1(
1
ε
Σ) � m1(R

2) for all ε > 0 because each function ofH
1,2
0 (1

ε
Σ) can be extended by th

value zero inR
2 \ 1

ε
Σ . Then, it is sufficient to show that for allε > 0 there exists a function	wε ∈ H

1,2
0 (1

ε
Σ),

‖	wε‖Lp( 1
ε
Σ)

= 1, such that

lim
ε→0

∫
1Σ

(|D	wε|2 + 	w 2
ε

)
dξ = m1(R

2). (3.45)
ε



R. Molle, D. Passaseo / Ann. I. H. Poincaré – AN 23 (2006) 63–84 73

ows

n

Let 	w ∈ H 1,2(R2) be the positive function (see [3,8,9,26]) such that

sup
R2

	w = 	w(0),

∫
R2

|	w|p dξ = 1,

∫
R2

(|D	w|2 + 	w 2)dξ = m1(R
2). (3.46)

Let us fix ξ0 ∈ Σ and consider a cut-off functionϕ ∈ C∞
0 (Σ), such that 0� ϕ(ξ) � 1 ∀ξ ∈ Σ and ϕ(ξ) = 1

∀ξ ∈ B(ξ0, r0) for a suitabler0 > 0.
Now setwε(ξ) = ϕ(εξ)	w(ξ − ξ0/ε) ∀ξ ∈ 1

ε
Σ and	wε = wε/‖wε‖Lp( 1

ε
Σ)

.

Then, taking into account that	w and its derivatives decay exponentially at infinity, a direct computation sh
that (3.45) holds for the function	wε defined as above.�
Lemma 3.5. For all p > 2, we have

lim sup
ε→0

ε−2 min
Mε

fε < +∞. (3.47)

Proof. Clearly, it suffices to show that for allε > 0 there exists̃uε ∈ Mε such that

lim sup
ε→0

ε−2fε(ũε) < +∞. (3.48)

Chooseξ0 ∈ Σ(Ω) ∩ Aδ and r0 > 0 such thatB(ξ0, r0) ⊂ Σ(Ω) ∩ Aδ . SinceB(ξ0, r0) is a bounded domai
of R

2, for all p > 2 there exists a minimizing functionvε ∈ H
1,2
0 (B(ξ0, r0)), vε � 0 in B(ξ0, r0), such that∫

B(ξ0,r0)
|vε|p dξ = 1 and∫

B(ξ0,r0)

(
ε2|Dvε|2 + v2

ε

)
dξ = mε

(
B(ξ0, r0)

)
. (3.49)

Let uε ∈ H
1,2
0 (Ω) be the function defined byuε(x) = vε(ρ(x), xn) if (ρ(x), xn) ∈ B(ξ0, r0), uε(x) = 0 otherwise.

A simple computation shows that there exist two constantsc1 andc2, depending only onξ0 andr0, such that∫
Ω

(
ε2|Duε|2 + u2

ε

)
dx � c1

∫
B(ξ0,r0)

(
ε2|Dvε|2 + v2

ε

)
dξ (3.50)

and ∫
Ω

|uε|p dx � c2

∫
B(ξ0,r0)

|vε|p dξ = c2; (3.51)

moreover, because of condition (2.3), we can choosec2 > 0.
It follows that, if we setūε = uε/‖uε‖Lp(Ω), we have∫

Ω

(
ε2|Dūε|2 + ū2

ε

)
dx � c3mε

(
B(ξ0, r0)

)
(3.52)

for a suitable constantc3 depending only onξ0, r0 andp.
Taking into account thatg(x, tūε(x)) = |t ūε(x)|p−1 ∀t > 0, we infer that there exists̄tε > 0 such thatũε =

t̄εūε ∈ Mε.
Moreover, a direct computation shows that

fε(ũε) =
(

1

2
− 1

p

)[∫ (
ε2|Dūε|2 + ū2

ε

)
dx

]p/(p−2)

. (3.53)
Ω
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It follows that, for a suitable constantc4 (depending only onξ0, r0,p)

inf
Mε

fε � c4
[
mε

(
B(ξ0, r0)

)]p/(p−2)
. (3.54)

Hence (3.47) follows easily, taking into account (b) of Lemma 3.4.�
Corollary 3.6. For all ε > 0, let uε be a minimizing function forfε constrained onMε. Then

lim sup
ε→0

∫
Ω

|Duε|2 dx < +∞ and lim sup
ε→0

ε−2
∫
Ω

u2
ε dx < +∞ (3.55)

(which, in particular, impliesuε → 0 in L2(Ω) asε → 0).

The proof is a direct consequence of Lemma 3.5 and (a) of Lemma 3.2 (taking into account thatg′
0(∞) < 1).

Lemma 3.7. For all ε > 0, let uε be a critical point forfε constrained onMε. Then

sup
Ω

uε � 1. (3.56)

Proof. Arguing by contradiction, assume that, for someε > 0,

sup
Ω

uε < 1. (3.57)

Then, we have

0< g
(
x,uε(x)

)
< uε(x) ∀x ∈ Ω (3.58)

because of the maximum principle and the definition ofg.
Let e1 be a function inH 1,2

0 (Ω) such thate1 > 0 in Ω and�e1+λ1e1 = 0, whereλ1 denotes the first eigenvalu

of the Laplace operator−� in H
1,2
0 (Ω). Sinceuε solves problem (3.7), a direct computation shows that∫

Ω

[
g(x,uε) − uε − ε2λ1uε

]
e1 dx = 0, (3.59)

which is a contradiction because of (3.58).�
Lemma 3.8. For all ε > 0, let uε be a minimizing function forfε constrained onMε. Thenuε is bounded inΩ and
it is a smooth solution of problem(3.7).

Proof. First observe that, since
∫
Ω

|Duε|2 dx < +∞ and inf{ρ(x): x ∈ Ω ∩ Ã} > 0, the functionuε (which has
radial symmetry with respect to thexn-axis) belongs toLq(Ω ∩ Ã) for all q � 1. In particular, forq > (p − 1) n

2 ,
it follows that the functionwε defined by

wε(x) = 1

n(n − 2)ωnε2

∫
Ω∩Ã

u
p−1
ε (y)

|x − y|n−2
dy,

whereωn denotes the measure of the unit ball ofR
n, is a bounded function inHS(Ω). Taking into account tha

g0(t) � t ∀t � 0, we have�(wε − uε) � 0 (in weak sense) inΩ ; sincewε � 0 on ∂Ω , it follows thatuε � wε

in Ω . Therefore,uε is bounded too; thus, sinceg(x, t) is a smooth function, it follows thatuε is a smooth solution
of (3.7). �
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Lemma 3.9. For all α ∈ ]0,1[ andε > 0, let uε be a minimizing function forfε constrained onMε and consider
the set

Σα
ε = {

(ρ, τ ) ∈ Σ(Ω): uε(ρ,0, . . . ,0, τ ) > α
}
. (3.60)

Then

(a) meas(Σα
ε ) > 0, ∀ε > 0, ∀α ∈ ]0,1[;

(b) limε→0 meas(Σα
ε ) = 0, ∀α ∈ ]0,1[;

(c) for all ε > 0 andα ∈ ]0,1[, there existcα,ε = (ρα,ε, τα,ε) ∈ Σ(Ω) andrα,ε > 0 such that

Σα
ε ⊆ B(cα,ε, rα,ε) and lim

ε→0
rα,ε = 0 ∀α ∈ ]0,1[. (3.61)

Moreover, we have

lim
ε→0

dist(cα,ε,A) = 0. (3.62)

Proof. Property (a) is a direct consequence of Lemma 3.7, while (b) follows from Corollary 3.6 (becauseuε → 0
in L2(Ω) asε → 0).

Property (c) is a consequence of the fact thatfε(uε) = minMε fε, which implies the existence ofcα,ε ∈ Σ(Ω)

and rα,ε > 0 such that (3.61) holds. In fact, let us argue by contradiction and assume that, for someα ∈ ]0,1[,
(3.61) does not hold for any choice ofcα,ε andrα,ε . Taking into account the definition ofg(x, t), we can fixᾱ > 0,
small enough, such thatg(x,α) − α < 0 ∀α ∈ ]0, ᾱ[, ∀x ∈ Ω . SinceΣα′,ε ⊆ Σα,ε for α′ > α, it is clear that, in
order to prove our assertion, it suffices to consider only the caseα ∈ ]0, ᾱ[.

Then, fixα ∈ ]0, ᾱ[, consider the setAθ = {(ρ, τ ) ∈ R
2: θ(ρ, τ ) > 0} and observe thatΣα,ε ∩ Aθ �= ∅ ∀ε > 0;

in fact, otherwise, we should haveg(x,uε(x)) − uε(x) < 0 a.e. inΩ (sinceg0(t) < t ∀t > 0) which is impossible
(by the maximum principle) becauseuε > 0.

If the diameter ofΣα,ε does not tend to zero asε → 0 (as we are assuming by contradiction), thenΣ̃α,ε

(see (3.6)) has at least two connected components forε > 0 small enough.
In fact, assume that (up to a subsequence)

lim
ε→0

diam(Σα,ε) > 0 (3.63)

and, arguing by contradiction, assume also that (up to a subsequence)Σ̃α,ε is connected for allε > 0.
From (3.63) and condition (2.3) we infer that there existsd > 0 such that

d < min

{
1

2
lim
ε→0

diam(Σα,ε), inf
{
ρ: (ρ, τ ) ∈ Σ(Ω) ∩ A

}}
. (3.64)

SinceΣα,ε ∩ Aθ �= ∅ ∀ε > 0 andAθ ⊂ A, we can choose a pointpε in Σα,ε ∩ A ∀ε > 0; then, forε > 0 small
enough, there existp′

ε ∈ Σα,ε, such that dist(pε,p
′
ε) = d , and a continuous path inΣα,ε ∩ B(pε, d), joining pε

andp′
ε (in factΣα,ε is open connected, just as̃Σα,ε, and cannot be contained inB(pε, d) as diam(Σα,ε) > 2d).

Now observe that, because of (3.64), we can chooseρ̄ > 0 such that

2ρ̄ + d < inf
{
ρ: (ρ, τ ) ∈ Σ(Ω) ∩ A

}
. (3.65)

Then, consider a smooth functionζ :R → [0,1] such thatζ(t) = 0 ∀t � ρ̄, ζ(t) = 1 ∀t � 2ρ̄ and setϕε(ρ, τ ) =
ζ(ρ)uε(ρ,0, . . . ,0, τ ) ∀(ρ, τ ) ∈ Σ(Ω). It is clear thatϕε is a smooth function inH 1

0 (Σ(Ω)) and ϕε(ρ, τ ) =
uε(ρ,0, . . . ,0, τ ) ∀(ρ, τ ) ∈ Σ(Ω) ∩ B(pε, d).

Moreover, sincēρ > 0, Corollary 3.6 implies that

lim sup
ε→0

∫
|Dϕε|2 dρ dτ < +∞ and lim sup

ε→0

1

ε2

∫
ϕ2

ε dρ dτ < +∞. (3.66)
Σ(Ω) Σ(Ω)
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Now, consider a ballB in R
2 with centre in (0,0) and radius large enough so thatΣ(Ω) ⊂ B; set

Sd =
{
(ρ, τ ) ∈ R

2: ρ = 0, |τ | � d

2

}
(notice thatSd ⊂ B) and denote bȳϕε the function inH 1

0 (B) which realizes the following minimum (see, fo
example, [11])

min

{∫
B

|Dϕ|2 dρ dτ : ϕ ∈ H 1
0 (B), ‖ϕ‖L2(B) = ‖ϕε‖L2(Σ(Ω)), ϕ � α onSd in the sense ofH 1

0 (B)

}
. (3.67)

Sinceϕε � α in the sense ofH 1
0 (B) on a continuous path inB, joining pε andp′

ε, and since dist(pε,p
′
ε) = d , we

have ∫
B

|Dϕ̄ε|2 dρ dτ �
∫

Σ(Ω)

|Dϕε|2 dρ dτ ∀ε > 0

(symmetry reasons justify this minimality property of the segmentSd with respect to all the continuous paths inB

joining two arbitrary points having distanced).
It follows that lim supε→0

∫
B

|Dϕ̄ε|2 dρ dτ < +∞ (because of (3.66)). On the other hand,ϕ̄ε → 0 in L2(B) as
ε → 0, becauseϕε → 0 in L2(Σ(Ω)) (see (3.66) and (3.67)). Therefore, up to a subsequence,ϕ̄ε → 0 asε → 0
weakly inH 1

0 (B). Now, applying a theorem of Banach and Saks (see, for example, [24] and [11]), we infe

there exists a sequence(εi)i , εi → 0 asi → +∞, such that1
k

∑k
i=1 ϕ̄εi

→ 0 ask → ∞ (strongly) inH 1
0 (Ω).

Clearly, this gives a contradiction because1
αk

∑k
i=1 ϕ̄εi

� 1 onSd in the sense ofH 1
0 (B) for all k ∈ N and

capSd := min

{∫
B

|Dϕ|2 dρ dτ : ϕ ∈ H 1
0 (B),ϕ � 1 onSd in the sense ofH 1

0 (B)

}
> 0.

Therefore, forε > 0 small enough,̃Σα,ε must have at least two connected components; as a consequen
ε > 0 small enough, there existv1,ε and v2,ε in H 1

0 (Ω), v1,ε � 0, v2,ε � 0,
∫
Ω

v1,ε dx > 0,
∫
Ω

v2,ε dx > 0,∫
Ω

v1,εv2,ε dx = 0, such thatuε = uε ∧ α + v1,ε + v2,ε.
Notice that, asΣα,ε ∩ Aθ �= ∅ ∀ε > 0, we must have

meas(Ãθ ∩ suppv1,ε) > 0 (3.68)

or meas(Ãθ ∩ suppv2,ε) > 0. So we can assume that (3.68) holds for everyε > 0.
Then, let us consider the functionūε = uε ∧ α + v1,ε = uε − v2,ε. It is clear thatūε ∈ H 1

0 (Ω); moreover, notice
that

f ′
ε(ūε)[ūε] > 0; (3.69)

in fact,ūε > 0 in Ω , ε2�uε −uε +g(x,uε) = 0 in Ω (see Lemma 3.8),g(x,α)−α < 0 ∀x ∈ Ω becauseα ∈ ]0, ᾱ[,
ūε = uε wherev2,ε = 0, ūε = α < uε wherev2,ε > 0 (indeed,−ε2�ūε + ūε − g(x, ūε) is a nonnegative measu
onΩ).

Now, for everyt ∈ R, let us consider the functionuε,t = uε ∧ α + tv1,ε and observe that, since (3.68) holds
everyε > 0, we have

lim
t→+∞f ′

ε(uε,t )[uε,t ] = −∞ ∀ε > 0. (3.70)

From (3.69) and (3.70) it follows that there existst̄ > 1 such thatf ′
ε(uε,t̄ )[uε,t̄ ] = 0, that isuε,t̄ ∈ Mε.

We shall prove thatfε(uε,t̄ ) < fε(uε), which gives a contradiction becausefε(uε) = minMε fε anduε,t̄ ∈ Mε.
First we prove thatfε(ūε) < fε(uε); in fact, for everyt ∈ [0,1],
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d

dt
fε(uε − tv2,ε) = f ′

ε(uε − tv2,ε)[−v2,ε]

= −
∫
Ω

[
ε2D(uε − tv2,ε)Dv2,ε + (uε − tv2,ε)v2,ε − g(x,uε − tv2,ε)v2,ε

]
dx; (3.71)

for t = 0, we havef ′
ε(uε)[−v2,ε] = 0 because of Lemma 3.8; fort = 1, taking into account that̄uε = α where

v2,ε �= 0, we obtain

f ′
ε(ūε)[−v2,ε] = −

∫
Ω

[
α − g(x,α)

]
v2,ε dx < 0 (3.72)

becauseα < ᾱ. Thus, sinceg(x, ·) is convex, it follows thatf ′
ε(uε − tv2,ε)[−v2,ε] < 0 for everyt ∈ ]0,1[, which

impliesfε(ūε) < fε(uε).
Now we prove thatfε(uε,t̄ ) < fε(ūε); in fact

d

dt
fε(uε,t ) = f ′

ε(uε,t )[v1,ε] =
∫
Ω

[
ε2Duε,tDv1,ε + uε,t v1,ε − g(x,uε,t )v1,ε

]
dx; (3.73)

for t = 0, sinceuε,0 = α wherev1,ε �= 0, we obtain

f ′
ε(uε,0)[v1,ε] =

∫
Ω

[
α − g(x,α)

]
v1,ε dx > 0 (3.74)

becauseα < ᾱ; for t = 1, sinceuε,1 = uε wherev1,ε �= 0, we have

f ′
ε(uε,1)[v1,ε] =

∫
Ω

[
ε2DuεDv1,ε + uεv1,ε − g(x,uε)v1,ε

]
dx = f ′

ε(uε)[v1,ε] = 0 (3.75)

because of Lemma 3.8. Therefore, sinceg(x, ·) is convex, it follows thatf ′
ε(uε,t )[v1,ε] < 0 for everyt > 1, which

impliesfε(uε,t̄ ) < fε(uε,1) becausēt > 1.
Thus, sinceuε,1 = ūε, we havefε(uε,t̄ ) < fε(ūε) < fε(uε), which is impossible.
In order to prove (3.62), let us argue by contradiction and assume that (up to a subsequence) limε→0 dist(cα,ε,A)

> 0. Then, sinceuε is a smooth solution of problem (3.7) (see Lemma 3.8), forε > 0 small enough there exis
a maximum pointxε for uε, such that dist(xε, Ã) > 0 anduε(xε) � 1. It is clear that this gives a contradictio
becauseg(xε, t) = g0(t) < t for all t > 0; in particular, fort = uε(xε), we obtain�uε(xε) > 0 which is impossible
becausexε is a maximum point foruε. �
Lemma 3.10. For all α ∈ ]0,1[ andε > 0, let cα,ε = (ρα,ε, τα,ε) ∈ Σ(Ω) be as in Lemma3.9. Then, we have

lim
ε→0

ρα,ε = inf
{
ρ(x): x ∈ Ω,

(
ρ(x), xn

) ∈ A
} ∀α ∈ ]0,1[. (3.76)

Proof. Let us argue by contradiction and assume that, for someᾱ ∈ ]0,1[, (up to a subsequence) we ha
limε→0 cᾱ,ε = c̄ = (ρ̄, τ̄ ) ∈ Ā ∩ Σ(Ω) with

ρ̄ > inf
{
ρ(x): x ∈ Ω,

(
ρ(x), xn

) ∈ A
}
. (3.77)

Lemma 3.9 implies that, if we set

vε(ρ, τ ) = uε(ρ,0, . . . ,0, τ ) ∀(ρ, τ ) ∈ Σ(Ω), (3.78)

then vε → 0, asε → 0, uniformly in Σ(Ω) \ B(c̄, η) for all η > 0; in fact, since limε→0 rα,ε = 0 ∀α ∈ ]0,1[
and Σα′,ε ⊆ Σα,ε for α′ > α, we have limε→0 cα,ε = c̄ for every α ∈ ]0,1[; so, for everyα ∈ ]0,1[, we have
Σα,ε ⊆ B(c̄, η) for ε > 0 small enough.
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Now observe that, for everyη ∈ ]0, ρ̄[, we have∫
Ω

(
ε2|Duε|2 + u2

ε

)
dx �

∫
Ω∩B̃(c̄,η)

(
ε2|Duε|2 + u2

ε

)
dx

= (n − 1)ωn−1

∫
Σ(Ω)∩B(c̄,η)

(
ε2|Dvε|2 + v2

ε

)
ρn−2 dρ dτ

� (n − 1)ωn−1(ρ̄ − η)n−2
∫

Σ(Ω)∩B(c̄,η)

(
ε2|Dvε|2 + v2

ε

)
dρ dτ. (3.79)

Therefore, taking into account Corollary 3.6, we infer that

lim sup
ε→0

ε−2
∫

Σ(Ω)∩B(c̄,η)

(
ε2|Dvε|2 + v2

ε

)
dρ dτ < +∞, (3.80)

that is (if we setvε(ρ, τ ) = 0 ∀(ρ, τ ) ∈ B(c̄, η) \ Σ(Ω))

lim sup
ε→0

∫
B(c̄/ε,η/ε)

(|Dwε|2 + w2
ε

)
dρ dτ < +∞, (3.81)

wherewε denotes the function defined bywε(ρ, τ ) = vε(ερ, ετ).
For all ε > 0, let (ρ′

ε, τ
′
ε) ∈ Σ(Ω) be a maximum point forvε (i.e. vε(ρ

′
ε, τ

′
ε) = maxΣ(Ω) vε) and consider the

function	wε defined by

	wε(ρ, τ ) = wε(ρ + ρ′
ε/ε, τ + τ ′

ε/ε) = vε(ερ + ρ′
ε, ετ + τ ′

ε).

Notice that Lemma 3.9 implies limε→0(ρ
′
ε, τ

′
ε) = c̄; therefore, for every bounded subsetΣ of R

2, we haveεΣ +
(ρ′

ε, τ
′
ε) ⊆ B(c̄, η) that is

Σ + (ρ′
ε/ε, τ

′
ε/ε) ⊆ B(c̄/ε, η/ε) (3.82)

for ε > 0 small enough.
It follows that, for allε > 0 small enough,∫

Σ

(|D	wε|2 + 	w 2
ε

)
dρ dτ �

∫
B(c̄/ε,η/ε)

(|Dwε|2 + w2
ε

)
dρ dτ, (3.83)

which, because of (3.81), implies

lim sup
ε→0

∫
Σ

(|D	wε|2 + 	w 2
ε

)
dρ dτ < +∞ (3.84)

for every bounded domainΣ of R
2.

As a consequence, there exists	w ∈ H 1(R2) such that (up to a subsequence)	wε → 	w weakly inH 1(R2), a.e. in
R

2 and inLq(Σ) ∀q � 1 for every bounded domainΣ of R
2.

Now observe that the function̂uε, defined byûε(x) = uε(εx + x′
ε), with x′

ε = (ρ′
ε,0, . . . ,0, τ ′

ε), solves the
following problem{−�ûε + ûε = g(εx + x′

ε, ûε) in Ωε,

ûε > 0 in Ωε, (3.85)

ûε = 0 on∂Ωε,
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whereΩε = 1
ε
(Ω − x′

ε). Therefore, taking also into account that limε→0 ρ′
ε = ρ̄ > 0 and thatûε(0) = 	wε(0) =

maxΩ uε � 1, we can say that, in its support,	w solves the equation

−�	w + 	w = g(x̄, 	w), (3.86)

wherex̄ = (ρ̄,0, . . . ,0, τ̄ ), and that	w �≡ 0 (in fact, if 	w ≡ 0, since	wε → 	w in Lq(Σ) ∀q � 1 for every bounded
domainΣ of R

2 andûε solves problem (3.85), we could infer that	wε(0) → 0, which is a contradiction).
Now, consider the functional̄f :H 1(R2) → R defined by

f̄ (w) = 1

2

∫
R2

(|Dw|2 + w2)dρ dτ −
∫
R2

G(x̄,w)dρ dτ

and observe that, sincēf (	w ) = maxt>0 f̄ (t	w ) andG(x̄, t) � 1
p
|t |p ∀t ∈ R, thenf̄ (	w ) � maxt>0 f̂ (t	w ), where

f̂ is the functional defined inH 1(R2) by

f̂ (w) = 1

2

∫
R2

(|Dw|2 + w2)dρ dτ − 1

p

∫
R2

|w|p dρ dτ. (3.87)

On the other hand, we have∫
R2

(|D	w|2 + 	w 2)dρ dτ � m1(R
2)

(∫
R2

|	w|p
)2/p

; (3.88)

thus, we obtain

f̄ (	w ) � max
t>0

{
1

2
m1(R

2)t2‖	w‖2
Lp(R2)

− tp

p
‖	w‖p

Lp(R2)

}
=

(
1

2
− 1

p

)[
m1(R

2)
]p/(p−2)

. (3.89)

Now observe that, sinceuε ∈ Mε and 1
2g(x, t)t − G(x, t) � 0 ∀x ∈ Ω , ∀t ∈ R, we have

fε(uε) =
∫
Ω

[
1

2
g(x,uε)uε − G(x,uε)

]
dx

�
∫

Ω∩B̃(c̄,η)

[
1

2
g(x,uε)uε − G(x,uε)

]
dx

� (n − 1)ωn−1(ρ̄ − η)n−2
∫

Σ(Ω)∩B(c̄,η)

[
1

2
g(ρ,0, . . . ,0, τ, vε)vε − G(ρ,0, . . . ,0, τ, vε)

]
dρ dτ.

(3.90)

It follows that

lim inf
ε→0

ε−2fε(uε) � (n − 1)ωn−1(ρ̄ − η)n−2 lim inf
ε→0

ε−2
∫

Σ(Ω)∩B(c̄,η)

[
1

2
g(ρ,0, . . . ,0, τ, vε)vε

− G(ρ,0, . . . ,0, τ, vε)

]
dρ dτ (3.91)

that is (since we setvε = 0 in B(c̄, η) \ Σ(Ω))
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s

lim inf
ε→0

ε−2fε(uε) � (n − 1)ωn−1(ρ̄ − η)n−2 lim inf
ε→0

∫
B(c̄/ε,η/ε)

[
1

2
g(ερ,0, . . . ,0, ετ,wε)wε

− G(ερ,0, . . . ,0, ετ,wε)

]
dρ dτ. (3.92)

Taking into account (3.82), for every bounded domainΣ of R
2 we have

lim inf
ε→0

ε−2fε(uε) � (n − 1)ωn−1(ρ̄ − η)n−2 lim inf
ε→0

∫
Σ

[
1

2
g(ερ + ρ′

ε,0, . . . ,0, ετ + τ ′
ε, 	wε)	wε

− G(ερ + ρ′
ε,0, . . . ,0, ετ + τ ′

ε, 	wε)

]
dρ dτ. (3.93)

Since	wε → 	w in Lp(Σ), we obtain

lim inf
ε→0

ε−2fε(uε) � (n − 1)ωn−1(ρ̄ − η)n−2
∫
Σ

[
1

2
g(x̄, 	w )	w − G(x̄, 	w )

]
dρ dτ (3.94)

for every bounded domainΣ in R
2, which implies

lim inf
ε→0

ε−2fε(uε) � (n − 1)ωn−1(ρ̄ − η)n−2
∫
R2

[
1

2
g(x̄, 	w )	w − G(x̄, 	w )

]
dρ dτ. (3.95)

On the other hand, we have∫
R2

[
1

2
g(x̄, 	w )	w − G(x̄, 	w )

]
dρ dτ = f̄ (	w ), (3.96)

because
∫

R2 g(x̄, 	w )	w dρ dτ = ∫
R2(|D	w|2 + 	w 2)dρ dτ.

Thus, by (3.89), we get

lim inf
ε→0

ε−2fε(uε) �
(

1

2
− 1

p

)
(n − 1)ωn−1(ρ̄ − η)n−2[m1(R

2)
]p/(p−2) ∀η ∈ ]0, ρ̄[ (3.97)

and, lettingη → 0,

lim inf
ε→0

ε−2fε(uε) �
(

1

2
− 1

p

)
(n − 1)ωn−1ρ̄

n−2[m1(R
2)

]p/(p−2)
. (3.98)

In order to prove that (3.98) gives a contradiction, observe that, sinceρ̄ > inf{ρ(x): x ∈ Ω, (ρ(x), xn) ∈ A},
because of the choice ofδ (see (3.3)) there exists̄c0 = (ρ̄0, τ̄0) ∈ Aδ ∩ Σ(Ω) such thatρ̄0 < ρ̄. Fix η̄ > 0 small
enough so thatB(c̄0, η̄) ⊂ Aδ ∩ Σ(Ω); then consider a function̄vε ∈ H

1,2
0 (B(c̄0, η̄)), v̄ε > 0 in B(c̄0, η̄), such that∫

B(c̄0,η̄)

v̄p
ε dρ dτ = 1 and

∫
B(c̄0,η̄)

(
ε2|Dv̄ε|2 + v̄2

ε

)
dρ dτ = mε

(
B(c̄0, η̄)

)
. (3.99)

Let ūε be the function inHS(Ω) defined byūε(x) = v̄ε(ρ(x), xn) if (ρ(x), xn) ∈ B(c̄0, η̄), ūε(x) = 0 otherwise;
notice that, sinceB(c̄0, η̄) ⊆ Aδ , there exists̄tε > 0 such that̄tεūε ∈ Mε. Moreover, a direct computation show
that

fε(t̄εūε) =
(

1

2
− 1

p

)[(∫
ūp

ε dx

)−2/p ∫ (
ε2|Dūε|2 + ū2

ε

)
dx

]p/(p−2)

. (3.100)
Ω Ω
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Now, observe that∫
Ω

(
ε2|Dūε|2 + ū2

ε

)
dx � (n − 1)ωn−1(ρ̄0 + η̄)n−2

∫
B(c̄0,η̄)

(
ε2|Dv̄ε|2 + v̄2

ε

)
dρ dτ

= (n − 1)ωn−1(ρ̄0 + η̄)n−2mε

(
B(c̄0, η̄)

)
(3.101)

and ∫
Ω

ūp
ε dx � (n − 1)ωn−1(ρ̄0 − η̄)n−2. (3.102)

It follows that

fε(t̄εūε) �
(

1

2
− 1

p

)
(n − 1)ωn−1(ρ̄0 + η̄)(n−2)p/(p−2)(ρ̄0 − η̄)−2(n−2)/(p−2)

[
mε

(
B(c̄0, η̄)

)]p/(p−2)
,

(3.103)

which, because of Lemma 3.4, implies

lim sup
ε→0

ε−2fε(t̄εūε) �
(

1

2
− 1

p

)
(n − 1)ωn−1(ρ̄0 + η̄)(n−2)p/(p−2)(ρ̄0 − η̄)−2(n−2)/(p−2)

[
m1(R

2)
]p/(p−2)

.

(3.104)

Notice that, sincēρ0 < ρ̄, we can choosēη small enough so that, in addition, it satisfies the condition

(ρ̄0 + η̄)(n−2)p/(p−2)(ρ̄0 − η̄)−2(n−2)/(p−2) < ρ̄n−2. (3.105)

Thus, from (3.98) and (3.105) we infer thatfε(t̄εūε) < fε(uε) for ε > 0 small enough. It is clear that it is
contradiction becausefε(uε) = minMε fε andt̄εūε ∈ Mε. �
Proof of Theorem 2.1. Let uε be a minimizing function forfε constrained onMε (which there exists for allε > 0
because of Lemma 3.3). Sinceuε is a solution of problem (3.7), in order to prove that it solves also problem (
it suffices to observe that, forε small enough,g(x,uε(x)) = [uε(x)]p−1 for all x ∈ Ω , which follows easily from
Lemmas 3.9 and 3.10, since they imply that

lim
ε→0

sup
{
uε(x): x ∈ Ω,

(
ρ(x), xn

)
/∈ Aδ

} = 0. (3.106)

Therefore, since the solvability of problem (1.1) for largeλ is equivalent to the solvability of (3.1) for smallε, the
existence of a solution of (1.1) for largeλ is proved.

Lemma 3.8 guarantees that the solution is bounded and smooth inΩ .
Property (2.4) is a direct consequence of Lemma 3.9, while (2.5) is proved in Lemma 3.7. The asy

behaviour ofcλ, asλ → +∞, follows from Lemmas 3.9 and 3.10.
Finally, Corollary 3.6 guarantees (2.7), (2.8) and (taking into account thatuε ∈ Mε) also (2.9). �

Remark 3.11. The rescaling arguments used in the proof of Theorem 2.1 and the concentration-comp
principle (see [10]) can be also used to obtain information on the asymptotic shape of the solutionuλ asλ → +∞.
In particular, using this methods, one can show that there exists(ρ̃λ, τ̃λ) ∈ R

2 (for all λ � λ̄) such that the function

vλ(ρ, τ ) = λ−1/(p−2)uλ

(
ρ − ρ̃λ√

λ
,0, . . . ,0,

τ − τ̃λ√
λ

)
converges, asλ → +∞, to the solution of problem (1.2).
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Remark 3.12. Notice that solutions of problem (3.1) can be also obtained as critical points for the functionFε

defined by

Fε(u) = 1

2

∫
Ω

[
ε2|Du|2 + u2]dx − 1

p

∫
Ω

(u+)p dx, (3.107)

constrained on the manifold

Vε =
{
u ∈ HS(Ω): u �≡ 0,

∫
Ω

(
ε2|Du|2 + u2)dx =

∫
Ω

(u+)p dx

}
. (3.108)

In particular, one can try to minimizeFε on Vε. But, if Ω meets thexn-axis, this approach gives solutions
different nature whenp < 2n

n−2 and does not work whenp � 2n
n−2. In fact, if p < 2n

n−2, one can show that th
minimizing functions forfε on Vε concentrate near points of thexn axis, asε → 0, while a functionuε which
minimizesfε onMε concentrates near a sphere of codimension 2; the arguments used in this section for th
of Theorem 2.1 show thatFε(uε) behaves asε2 whenε → 0; on the contrary, minVε Fε behaves asεn, as one can
verify in the following way. Letx̄ = (0, . . . ,0, x̄n) be a point of thexn-axis belonging toΩ ; choose a function
ū ∈ C∞

0 (B(0,1)) radially symmetric with respect to the origin,ū− ≡ 0, ū+ �≡ 0, and, for allε > 0, consider
the functionūε defined byūε(x) = ū( x−x̄

ε
) (ū is extended by the value zero outsideB(0,1)); for ε > 0 small

enough,ūε ∈ HS(Ω) and there exists a uniquētε > 0 such that̄tεūε ∈ Vε; then, a direct computation shows th
limε→0 ε−nFε(t̄εūε) < +∞.

If Ω meets thexn-axis andp = 2n
n−2, then the infimum infVε Fε is not achieved for anyε > 0. In fact, if x̄ is a

point of thexn-axis belonging toΩ , we can consider the functionsũδ ∈ HS(Ω) defined by

ũδ(x) = ζ(x)
[
δ2 + |x − x̄|2](2−n)/2 ∀x ∈ Ω, (3.109)

whereζ ∈ C∞
0 (Ω) ∩ HS(Ω) is a cut-off function, 0� ζ � 1, ζ ≡ 1 in a neighbourhood of̄x. Notice that, for

all δ > 0 andε > 0, there exists̃tδ,ε > 0 such thatt̃δ,εũδ ∈ Vε . Since the functions[δ2 + |x − x̄|2](2−n)/2 are
minimizing functions for the best Sobolev constant (see [27]), lettingδ → 0 one can see that infVε Fε is related to
the best Sobolev constant and, arguing for example as in [4,5], one can prove that infVε Fε cannot be achieved fo
anyε > 0 because of the nonexistence result of Pohožaev (see [22]). However, even if the infimum is not a
for p = 2n

n−2, under suitable assumptions onΩ , one can find critical points forFε constrained onVε as local

minimum points arguing as in [18]. On the contrary, whenp > 2n
n−2 andΩ meets thexn-axis,Fε constrained on

Vε does not admit neither minimum, nor local minimum points (this difficulty has been first pointed out in [2
fact, infVε Fε = 0, as one can verify in the following way: consider, as above, the functionsūδ(x) = ū( x−x̄

δ
), which

belong toHS(Ω) for δ > 0 small enough; then, a direct computation shows that, for allε > 0, there exists a uniqu
t̄δ,ε > 0 such that̄tδ,εūδ ∈ Vε and (sincep > 2n

n−2) limδ→0 Fε(t̄δ,εūδ) = 0.
In order to prove thatFε constrained onVε does not have any local minimum point, it suffices to prove

for all u ∈ Vε there exists a sequence(ui)i in Vε, which converges tou in H
1,2
0 (Ω) and inLp(Ω), such that

Fε(ui) < Fε(u) for all i ∈ N.
In order to find such a sequence, let us consider the functions

ūi,δ =
(

1− 1

i

)1/p

u +
(

1

i

)p ‖u‖Lp(Ω)

‖ūδ‖Lp(Ω)

ūδ (3.110)

andui,δ = t̄ε,i,δūi,δ , whereūδ is defined as above andt̄ε,i,δ is the unique positive number such thatt̄ε,i,δūi,δ ∈ Vε.
One can verify that

lim
δ→0

∫
ū

p
i,δ dx =

∫
up dx ∀i ∈ N (3.111)
Ω Ω
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and, sincep > 2n
n−2,

lim
δ→0

∫
Ω

(
ε2|Dūi,δ|2 + ū2

i,δ

)
dx =

(
1− 1

i

)2/p ∫
Ω

(
ε2|Du|2 + u2)dx

<

∫
Ω

(
ε2|Du|2 + u2)dx ∀i ∈ N, (3.112)

where the strict inequality holds becauseu �≡ 0 in Ω (asu ∈ Vε). It follows that there exists a sequence of posit
numbersδi → 0 such that, if we setui = t̄ε,i,δi

ūi,δi
, then the sequence(ui)i satisfies the desired properties.
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