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Abstract

A classical result of Jörgens, Calabi and Pogorelov states that any strictly convex smooth functionu with det(D2u) = constant
in Rn must be a quadratic polynomial. We establish the following extension: any strictly convex smooth functionu with
det(D2u) being 1-periodic in each variable must be the sum of a quadratic polynomial and a function which is 1-per
each variable. Given any positive periodic right-hand side, the existence and uniqueness of such solutions are well kn
 2003 Elsevier SAS. All rights reserved.

Résumé

Selon un théorème classique de Jörgens, Calabi et Pogorelov, toute solution régulière et strictement convexe de
det(D2u) = constante dansRn doit être égale à un polynôme quadratique. On démontre le résultat suivant : siu une fonction
régulière et strictement convexe telle que det(D2u) est 1-périodique par rapport à chaque variable, alorsu est la somme d’un
polynôme quadratique et d’une fonction 1-périodique par rapport à chaque variable. Étant donnée une fonction péri
positivef , l’existence et l’unicité des solutions de det(D2u) = f est un problème bien connu.
 2003 Elsevier SAS. All rights reserved.
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0. Introduction

Solutions of Monge–Ampère equations with periodic right-hand side appear in several contexts of geom
applied mathematics: when lifting the equation from a Hessian manifold, in problems of optimal transpo
vorticity arrays, homogenization, etc. One question is the existence and uniqueness of periodic solutions. T
converse question, from the point of view, for instance, of homogenization, is the classification of entire so
Let f be a positive periodic function and letu be an entire solution of det(D2u) = f , is u the sum of a quadrati
polynomial and a periodic function? The answer is “yes” and this is the main purpose of the present work. N
a particular case is the classical theorem of Jörgens, Calabi and Pogorelov [17,10,21] which asserts that
convex solutions of

det(D2u) = 1, in R
n (1)

must be quadratic polynomials. A simpler and more analytical proof, along the lines of affine geometry
theorem was later given by Cheng and Yau [12]. The first author extended the result for classical solu
viscosity solutions [3]. Trudinger and Wang proved [22] that the only open convex subsetΩ of R

n which admits
a convexC2 solution of det(D2u) = 1 in Ω with limx→∂Ω u(x) = ∞ is Ω = R

n. In an earlier paper [7], we
proved that for any convex viscosity solution of det(D2u) = 1 outside a bounded subset ofR

n, n � 3, there
exist an n × n real symmetric positive definite matrixA, a vectorb ∈ R

n and a constantc ∈ R such that
lim sup|x|→∞ |x|n−2(u − [1

2x ′Ax + b · x + c]) < ∞. Existence of classical solutions to Dirichlet problem
Monge–Ampère equations was studied by Caffarelli, Nirerberg and Spruck in [8].

Description of our results: In the present paper we extend the theorem of Jörgens, Calabi and Pogorelo

det(D2u) = f, in R
n, (2)

wheref is a positive periodic function.
Let f ∈ C0(Rn) satisfy

f (x) > 0 ∀x ∈ R
n, (3)

and, for somea1, . . . , an > 0,

f (x + aiei) = f (x), ∀x ∈ R
n, 1 � i � n, (4)

wheree1 = (1,0, . . . ,0), . . . , en = (0, . . . ,0,1).
We are interested in convex solutions of (2), i.e., solutionsu of (2) satisfying

(D2u) > 0, in R
n. (5)

We establish

Theorem 0.1. Let f ∈ Cα(Rn), 0 < α < 1, satisfy(3) and (4), and letu ∈ C2(Rn) be a convex solution of(2).
Then there existb ∈ R

n and a symmetric positive definiten × n matrix A with det(A) = ∫−�1�i�n[0,ai ] f , such that

v := u − [1
2x ′Ax + b · x] is ai -periodic inith variable, i.e.,

v(x + aiei) = v(x), ∀x ∈ R
n, 1 � i � n. (6)

Some remarks:

Remark 0.1. The theorem of Jögens, Calabi, and Pogorelov is an easy consequence of the above theorem

Remark 0.2. Let f be a bounded positive function inCα(Rn), 0< α < 1, and letu ∈ C0(Rn) be a convex viscosity
of (2). Thenu ∈ C2,α(Rn).
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Remark 0.3. Because of the affine invariance, Theorem 0.1 still holds when the periodicity assumption is as
in anyn linearly independent directions, instead of in thee1, . . . , en directions.

Remark 0.4. By the affine invariance of the problem, we only need to establish Theorem 0.1 forai = 1 ∀i and for
f satisfying in addition∫

[0,1]n
f = 1. (7)

Remark 0.5. We believe that Theorem 0.1 holds for any convex viscosity solutionu under the weaker hypothes
thatf ∈ L∞(Rn), (4) holds a.e., and 0< infRn f � supRn f < ∞.

The existence and uniqueness (modulo constants) of solutions to periodic Monge–Ampère equatio
studied by the second author.

Theorem 0.2 [20]. Let T
n be a flat torus,f ∈ C∞(Tn) be a positive function, and letA be a symmetric positiv

definiten × n matrix satisfying

det(A) =
∫
−
Tn

f. (8)

Then there exists av ∈ C∞(Tn) satisfying

det(A + D2v) = f, onT
n, (9)

(A + D2v) > 0, onT
n. (10)

Moreover, condition(8) is necessary for the solvability of(9), and solutions of(9) and (10) are unique up to
addition of constants.

Remark 0.6. If the smoothness assumption off in Theorem 0.2 is weakened tof ∈ Ck,α(Tn), k � 0, 0< α < 1,
there exists a solutionu ∈ Ck+2,α(Rn). For k � 4, the method in [20] is applicable; for 0� k � 3, this can be
established by a smooth approximation off based on theC2,α theory of the first author in [2], together with th
C0 estimate of solutions in [20]. A different proof of Theorem 0.2 was given by the first author in [4]. Mo
Ampère equations on Hessian manifolds were studied in Cheng and Yau [11] and Caffarelli and Viaclov
We plan to pursue some extensions of Theorem 0.1 in such a more general setting.

An auxiliary result: in our proof of Theorem 0.1, we need a homogenization type estimate. It states
solutionw of the Monge–Ampère equation with periodic right-hand side differs from the corresponding solut�w,
with constant right-hand side, a power of the diameter of the lattice. LetO ⊂ R

n be a convex open subs
satisfying

B1 ⊂ O ⊂ Bn, (11)

and let�w ∈ C0(O) ∩ C∞(O) denote the convex solution of{
det(D2�w) = 1, in O,

�w = 0, on∂O.

Let ε1, . . . , εn ben linearly independent vectors inRn, and letg ∈ C0(Rn) be a positive function satisfying

g(x + εi) = g(x), ∀x ∈ R
n, 1� i � n, (12)
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whereΩi = {x ∈ R
n | x =∑

i tiεi, 0� ti � 1} is the fundamental domain for the periodicity.
We consider{

det(D2w) = g, in O,

w = 0, on∂O.
(14)

We give an estimate to theL∞ norm of |w − �w| on O:

Theorem 0.3. Let ε1, . . . , εn ∈ R
n and O ⊂ R

n be as above,g ∈ C0(Rn) be a positive function satisfying(12)
and (13), and letw ∈ C2(O) ∩ C0(O) be the convex viscosity solution of(14). Then for some constantsβ,C > 0,
depending only onn and the upper bound ofg, we have

‖w − �w‖L∞(O) � C
∑

i

‖εi‖β. (15)

Remark 0.7. It is easy to see that we only need to establish Theorem 0.3 with an additional hypothes
g ∈ C∞(Rn). The reason is that once we have estimate (15) with the constantC independent of the smoothne
of g, we can approximateg by smoothgj and obtain estimate (15) forwj , the convex solution with respect togj ,
and then letj go to infinity. For the same reason, estimate (15) only requires the regularity ofg be L∞, while
solutionw is in the viscosity sense.

Remark 0.8. In view of a lemma of F. John (see, e.g., [14]),B1 ⊂ O ⊂ Bn can be replaced byBr1 ⊂ O ⊂ Br2,
0 < r1 � r2 < ∞, and then constantsβ andC in Theorem 0.3 depend also onr1 andr2.

Our paper is organized as follows. In Section 1, we establish Theorem 0.3. The first ingredient of our
the power deterioration of all derivatives of solutions to Monge–Ampère equations with constant right-ha
(Lemma 1.1), which we prove by modifying the Pogorelov estimates together with theC2,α estimates of Evan
and Krylov and the Schauder theory. We have found out recently, that step 1 of Lemma 1.1 is a particular
a theorem of Chou and Wang in [13]. The second ingredient is the use of the periodic corrector (Theorem
Section 2 we establish Theorem 0.1. The first step in our proof is to capture the quadratic behavior of th
solution (Proposition 2.1). This follows from the general iteration scheme of the first author developed
together with Theorem 0.3. Our second step is to establish anL∞ bound for the second derivatives of the ent
solution (Proposition 2.2). This is achieved by an application of the theory on the linearized Monge–A
operators developed by Caffarelli and Gutiérrez, with the help of the quadratic behavior of the solution obt
the first step. More specifically, we make use of

Theorem 0.4 [6]. Let O be a convex open subset ofR
n satisfyingB1 ⊂ O ⊂ Bn, n � 2, and letφ ∈ C2(O) be a

convex function satisfying, for some constantsλ andΛ,{
0 < λ � det(D2φ) � Λ < ∞, in O,

φ = 0, on∂O.

Assume thatw ∈ C2(O) satisfies

aij wij � 0, w � 0, in O,
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whereaij = det(D2φ)φij is the linearization of the Monge–Ampère operator atu. Then, for anyr > s > 0,

max
x∈O, dist(x,∂O)>r

w � C

∫
x∈O, dist(x,∂O)>s

w,

whereC depends only onn,λ,Λ, r ands.

Remark 0.9. This type of inequality is known in the literature as local maximum principle (see, e.g., p. 244 of
In our case, it follows by noting that Theorems 1 and 4 in [6] are valid for supersolutions, and thus, the meas
of the proof of Lemma 4.1 in [6] applies to subsolutions. The details then follow exactly those of Theorem 4.8

The third step in our proof of Theorem 0.1 is to capture supRn (2
eu (Proposition 2.3), where(2

eu denotes the
second incremental quotient ofu ande is any period ofu. By the first two steps, the second incremental quot
(2

eu is a subsolution for some uniformly elliptic operator. This step is then achieved by an appropriate us
estimates of Krylov and Safonov on the second incremental quotient ofu. To conclude the proof of Theorem 0.
we make use of the periodic corrector and the Harnack inequality of Krylov and Safonov.

1. Proof of Theorem 0.3

In this section we prove Theorem 0.3. We first show that solutions with constant right-hand side dete
together with all their derivatives, as a power of the distance to the boundary. This combines a modific
Pogorelov estimates [21] together with the theC2,α interior estimates of Evans and Krylov [15,18] and Schau
estimates.

Lemma 1.1. Let O ⊂ R
n be an open convex subset satisfyingB1 ⊂ O ⊂ Bn, and letu ∈ C2(O) ∩ C0(O) be a

convex solution of{
det(D2u) = 1, in O,

u = 0, on∂O.

Then, for some positive constantsCk andβk , depending only onn andk,∣∣Dku(x)
∣∣� Ck dist(x, ∂O)−βk, x ∈ O, k = 1,2, . . . .

Proof. Step1. Second derivative estimates. This is a modification of the original proof of Pogorelov [21
Reader’s convenience, we include the proof. Using1

2(|x|2 −1) and1
2(|x|2 −n2) as comparison functions, we hav

by the maximum principle, that−n2

2 � minO u � −1
2.

We deduce from the above, using the convexity ofu and the fact thatu = 0 on∂O , that

u(x) � − 1

4n
dist(x, ∂O), ∀x ∈ O. (16)

By a barrier argument (see, e.g., Lemma 1 in [1] or Lemma 6.1 in [7]), we have, for any 0< α < 1, that

u(x) �
{−C dist(x, ∂O)2/n, x ∈ O, n � 3,

−C dist(x, ∂O)α, x ∈ O, n = 2.
(17)

Here and in the following,C denotes various positive constants depending only onn whenn � 3, and depend
only onα whenn = 2.

For δ > 0, let

O ′ = {
x ∈ O | u(x) < −δ

}
,
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and letw = u + δ. By (17),

dist(O ′, ∂O) �
{

δn/2/C, n � 3,

δ1/α/C, n = 2.

It follows from the above and the convexity ofu that

|∇w| = |∇u| �
{

Cδ(2−n)/2, in O ′, n � 3,

Cδ(α−1)/α in O ′, n = 2.

Also w is strictly convex and satisfies{
det(D2w) = 1, in O ′,
w = 0, on∂O ′.

For simplicity, we will only treat the casen � 3 since the casen = 2 can be handled the same way.
DefineM > 0 by

eM = max
O′

{|w|w11eδn−2|w1|2/2}.
By a translation of coordinates, the maximum is achieved at 0∈ O ′. Making the following affine transformation{

x ′
1 = x1 +∑n

i=2
w1i (0)
w11(0)

xi,

x ′
j = xj , 2 � j � n,

and then rotatingx ′
2, . . . , x ′

n variables, we may assume without loss of generality that(wij (0)) diagonal.
Let

h := log(−w) + logw11 + δn−2w2
1

2
.

Thenh has a local maximum at 0 withM = h(0). It follows that

hi = wi

w
+ w11i

w11
+ δn−2w1w1i = 0, at 0, 1 � i � n, (18)

and, at 0,

hii = wiiw − w2
i

w2 + w11iiw11 − w2
11i

w2
11

+ δn−2w2
1i + δn−2w1w1ii � 0, 1 � i � n.

So at 0,

0�
∑

i

hii

wii

= n

w
−
∑

i

w2
i

w2wii

+ 1

w11

∑
i

w11ii

wii

−
∑

i

1

wii

(
w11i

w11

)2

+ δn−2w11 + δn−2w1

∑
i

w1ii

wii

.

It follows that at 0,

δn−2|w|w11 � n +
∑

i

w2
i

|w|wii

− |w|
w11

∑
i

w11ii

wii

+ |w|
w2

11

∑
i

w2
11i

wii

− δn−2|w|w1

∑
i

w1ii

wii

. (19)

Applying ∂1 to the equation ofw, we have∑
i,j

wij w1ij = 0,

where(wij ) denotes the inverse matrix of(wij ). In particular,∑ w1ii

wii

= 0 at 0. (20)

i
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Applying ∂1 to (20), we have∑
i

w11ii

wii

+
∑
i,j

∂1
(
wij

)
w1ij = 0, at 0. (21)

A calculation shows that at 0, we have

∂1
(
wij

)= − w1ij

wiiwjj

, 1� i, j � n. (22)

Putting (22) into (21), we have, at 0, that

∑
i

w11ii

wii

= −
∑
i,j

∂1
(
wij

)
w1ij =

∑
i,j

w2
1ij

wiiwjj

. (23)

Using (23) and (20), we deduce from (19) that, at 0,

δn−2|w|w11 � n +
∑

i

w2
i

|w|wii

− |w|
w11

∑
i,j

w2
1ij

wiiwjj

+ |w|
w2

11

∑
i

w2
11i

wii

− δn−2|w|w1

∑
i

w1ii

wii

= n +
∑

i

w2
i

|w|wii

− |w|
w11

∑
j�2, i

w2
1ij

wiiwjj

. (24)

By (18), we have, at 0, that(
wi

w

)2

=
(

w11i

w11
+ δn−2w1w1i

)2

, 1 � i � n.

Write

∑
i

w2
i

|w|wii

= w2
1

|w|w11
+ |w|

∑
j�2

(
wj

w

)2 1

wjj

= w2
1

|w|w11
+ |w|

∑
j�2

1

wjj

(
w11j

w11

)2

= w2
1

|w|w11
+ |w|

w11

∑
j�2

w2
11j

w11wjj

.

Putting the above into (24), we have

δn−2|w|w11 � n + w2
1

|w|w11
+ |w|

w11

∑
j�2

w2
11j

w11wjj

− |w|
w11

∑
j�2, i

w2
1ij

wiiwjj

= n + w2
1

|w|w11
− |w|

w11

∑
i,j�2

w2
1ij

wiiwjj

� n + w2
1

|w|w11
.

It follows that

δn−2|w|w11eδn−2w2
1/2 � neδn−2w2

1/2 + w2
1eδn−2w2

1

|w|w11eδn−2w2
1/2

.

Therefore

δn−2eM � C + C
,

δn−2eM
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eM � C

δn−2 .

Thus

|u11| = |w11| � C

δn−1 , in O ′′,

where

O ′′ = {
x ∈ O ′ | w(x) < −δ

}= {
x ∈ O | u(x) < −2δ

}
.

Sincex1 direction is chosen arbitrarily, we have

|D2u| � C

δn−1 , in O ′′.

Now for anyx ∈ O , setδ = |u(x)|/2. We deduce from the above and (16) that∣∣D2u(x)
∣∣� Cδ1−n � C dist(x, ∂O)1−n.

The second derivative estimate is established forn � 3. As mentioned earlier, the second derivative estimate
n = 2 case can be proved essentially the same way.

Step2. Now we establish higher order derivative estimates, combining the estimates of Evans and Kryl
a normalization argument. Forx ∈ O , let d := 1

2 dist(x, ∂O). Without loss of generality,d < 1/2. Set

v(y) = u(x + y) − u(x) − Du(x) · y, y ∈ Bd.

By the equation ofu and the second derivative estimates ofu, we have, for some positive constantC depending
only onn,

det
(
D2v(y)

)= 1, y ∈ Bd,

and
dα1

C
I �

(
D2v(y)

)
� C

dα1
I, y ∈ Bd.

So for some positive constantsα2 andα3 depending only onn, r1 andr2,

Bdα2 ⊂ {
y | v(y) < dα3

}⊂ Bd/2.

By a lemma of F. John, there exists some affine transformationAy = ay + b with det(a) = 1 such that

BR ⊂ A(Ω) ⊂ BnR,

whereΩ = {y | v(y) < dα3}. Since|Bdα2 | � |Ω | = |A(Ω)| � |Bd/2|, we havedα2/n � R � d/2.
Let

w(z) = 1

R2

(
v
(
A−1(Rz)

)− dα3
)
, z ∈ O := 1

R
A(Ω).

Thenw is a strict convex solution of

det(D2w) = 1, in O,

satisfying

w = 0, on∂O.

We also know that

w(z̄) = min
O

w,

wherez̄ = 1 A(0).

R
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By the usual comparison argument and some barrier function argument, we know that

w(z̄) � −C, and dist(z̄, ∂O) � 1

C
,

whereC > 0 is some number depending only onn. By the Pogorelov estimates, Evans and Krylov estimates
Schauder estimates, we have∣∣Dkw(z̄)

∣∣� C(k,n).

Since

D2w(z̄) = (
a−1)tD2v(0)

(
a−1),

and since(D2v(0)) � C−1dα1I and(D2w(z̄)) � CI , we have(a−1)t (a−1) � Cd−α1I , i.e.,‖a−1‖ � Cd−α1/2. On
the other hand, det(a) = 1, so we have‖a‖ � Cd−(n−1)α1/2. The higher derivative estimates then follow from t
above estimates of|Dkw(z̄)|. Lemma 1.1 is established.✷

Now we prove the homogenization estimate: The main idea consists in showing that, if large, the ma
of the difference betweenw and �w occurs far from the boundary, in the region where�w is regular, and we ma
use there the periodic corrector plus a small quadratic polynomial to make out ofw a super (sub) solution of th
equation satisfied by�w.

Proof of Theorem 0.3. By Remark 0.7, we may assume without loss of generality thatg ∈ C∞(Rn). Our proof
makes use of Lemma 1.1 and Theorem 0.2. Throughout the proof, and unless otherwise stated,βi,µi ∈ (0,1) and
Ci > 1 denote various positive constants depending only onn and the upper bound ofg. Let

m = max
O

|w − �w|.

By a barrier function argument,

−C1 dist(x, ∂O)β1 � w, �w � 0. (25)

In particularm � C1.
We will only treat the case

m = max
O

(w − �w) > 0,

since the other case can be handled similarly.
Let x̄ ∈ O be a maximum point ofw − �w:

m = w(x̄) − �w(x̄).

By (25),

dist(x̄, ∂O) � µ1m1/β1. (26)

Let

u(x) = w(x) + m

(6n)2 |x − x̄|2.

Then

(u − �w)(x̄) = m.

On the other hand, since

|u − w| � m
, onO, (27)
9
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we have

(u − �w) � m

9
, on∂O.

So for some interior point̃x ∈ O ,

(u − �w)(x̃) = max
O

(u − �w) � m. (28)

By (28) and (27),

(w − �w)(x̃) � (u − �w)(x̃) − m

9
� 8m

9
.

It follows, by (25), that

dist(x̃, ∂O) � µ1m1/β1. (29)

Here the values ofµ1 andβ1 are possibly smaller than previous values.
Let ξ ∈ C∞(Rn) be the unique solution of

det

(
D2
[

1

2
x ′D2�w(x̃)x + ξ(x)

])
= g(x), x ∈ R

n,

satisfying(
D2
[

1

2
x ′D2�w(x̃)x + ξ(x)

])
> 0, x ∈ R

n,

ξ(x + εi) = ξ(x), x ∈ R
n, 1 � i � n,

and ∫
Ωi

ξ = 0.

The existence and uniqueness ofξ follows from Theorem 0.2.

Claim.

‖ξ‖L∞(Rn) � C2m−β2
∑

i

‖εi‖2. (30)

Proof. Let

ϕ(x) = 1

2
x ′D2�w(x̃)x + ξ(x), x ∈ R

n,

and for any fixedy ∈ R
n and 1� i � n, let

h(t) = ξ(y + tεi ), t ∈ R.

Since(D2ϕ) > 0 in R
n, we haved2

dt2 ϕ(y + tεi ) > 0 for t ∈ R. Consequently,

h′′(t) � −ε′
iD

2�w(x̃)εi � −‖εi‖2
∥∥D2�w(x̃)

∥∥� −C2‖εi‖2m−β3.

Sinceh is a periodic function of period 1, we can argue as in [20]: lett̄ ∈ [−1,0] be a point whereh′ = 0. For all
0 < t < s < 1, we have, by the above lower bound ofh′′, that

h(s) − h(t) =
s∫

h′(τ1) dτ1 =
s∫ τ1∫

h′′(τ2) dτ2 dτ1 � −4C2‖εi‖2m−β3.
t t t̄
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)

The above estimate, together with the fact thath is 1-periodic, implies that the oscillation ofh is bounded by
4C2‖εi‖2m−β3. Sinceh is 1-periodic, the oscillation ofh is bounded by 4C2‖εi‖2m−β3, and the estimate (30
follows easily. ✷

Sincex̃ is an interior maximum point ofu − �w, we have(
D2(u − �w)(x̃)

)
� 0,

i.e.,

0 <
(
D2w(x̃)

)
�
(
D2�w(x̃)

)− 2m

(6n)2 I. (31)

Let

v(x) = �w(x) + ξ(x) − m

(6n)2 |x − x̄|2 + m

(12n)2 |x − x̃|2.

Then

w(x) − v(x) = u(x) −
(

�w(x) + ξ(x) + m

(12n)2
|x − x̃|2

)
.

By (29) we can findβ3 andC3 such that

Bmβ3/C3
(x̃) ⊂ O,

and ∣∣D3�w(x)
∣∣� C3m−β3, ∀x ∈ Bmβ3/C3

(x̃).

Thus, we can find largerβ4 andC4 such that

Bmβ4/C4
(x̃) ⊂ Bmβ3/C3

(x̃),

(
D2v(x)

)=
(

D2�w(x) + D2ξ(x) − 6m

(12n)2I

)

�
(

D2�w(x̃) + n2C3m−β3|x − x̃|I + D2ξ(x) − 6m

(12n)2I

)

�
(

D2�w(x̃) + D2ξ(x) + n3C3

C4
mβ4−β3I − 6m

(12n)2I

)
<
(
D2�w(x̃) + D2ξ(x)

)
, ∀x ∈ Bmβ4/C4

(x̃).

It follows that for everyx ∈ Bmβ4/C4
(x̃) with (D2v(x)) � 0, we have

det
(
D2v(x)

)
< det

(
D2�w(x̃) + D2ξ(x)

)= g(x) = det
(
D2w(x)

)
. (32)

Now

(w − v)(x̃) = u(x̃) − �w(x̃) − ξ(x̃)

� (u − �w)(x̃) − C2m−β2
∑

i

‖εi‖2.

Since(u − �w)(x̃) is the maximum value ofu − �w, we have, for allx ∈ ∂B β4 (x̃), that
m /C4
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ation
(w − v)(x) = (u − �w)(x) − ξ(x) − m

(12n)2
|x − x̃|2

� (u − �w)(x̃) + C2m−β2
∑

i

‖εi‖2 − m1+2β4

(12nC4)2 .

If

2C2m−β2
∑

i

‖εi‖2 � m1+2β4

(12nC4)2 ,

we are done. Otherwise,

(w − v)(x) < (w − v)(x̃), ∀x ∈ ∂Bmβ4/C4
(x̃).

Let x1 ∈ Bmβ4/C4
(x̃) be an interior maximum point ofw − v, then (D2v(x1)) � (D2w(x1)) > 0 and

det(D2v(x1)) � det(D2w(x1)). This violates (32). Theorem 0.3 is established.✷

2. Proof of Theorem 0.1

In this section we prove Theorem 0.1. We follow the three steps sketched in the introduction.
Step1. Modulo an affine transformation, the behavior ofu at infinity is 1

2|x|2:

Proposition 2.1. There exist somen × n symmetric positive definite matrixA with det(A) = 1, and some positive
constantsε andC, such that∣∣∣∣u(x) − 1

2
x ′Ax

∣∣∣∣� C|x|2−ε, ∀|x| � 1. (33)

We can always normalizeu so that

u(0) = 0 and u � 0 in R
n. (34)

By Lemma 2.1 in [7],

lim inf|x|→∞
u(x)

|x|2/n
> 0. (35)

For M > 0, let

ΩM = {
x ∈ R

n; u(x) < M
}
.

By Propositions 2.4, 2.5 in [7],

C−1Mn/2 � |ΩM | � CMn/2 for all M � 1 (36)

for some positive constantC depending only onn, maxRn f and minRn f .
By a normalization lemma of John–Cordoba and Gallegos (see [14]), there exists some affine transform

AM(x) = aMx + bM,

with det(aM) = 1 such that

BR ⊂ AM(ΩM) ⊂ BnR, (37)

for someR = RM > 0. It follows from (36) that

C−1
√

M � R � C
√

M, (38)
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whereC � 1 depends only onn,maxRn f and minRn f .
By Proposition 2.6 in [7],

2nR � dist
(
aM(ΩM/2), ∂aM(ΩM)

)
� C−1R, (39)

and consequently

BR/C ⊂ aM(ΩM) ⊂ B2nR, (40)

whereC � 1 depends only onn,maxRn f and minRn f .
For convenience, we make a normalization to unit size. Let

uM(x) = 1

R2
u
(
a−1

M (Rx)
)
, x ∈ OM := 1

R
aM(ΩM).

By (40),

B1/C ⊂ OM ⊂ B2n. (41)

It is clear that

uM(0) = 1

R2 u(0) = 0,

det
(
D2uM(x)

)= f
(
a−1

M (Rx)
)
, x ∈ OM, (42)

and by (38),

uM |∂OM = M

R2
∈ [C−1,C

]
.

Then, by the convexity ofuM ,

0� uM � C in OM.

Let

E = {
k1e1 + · · · + knen; k1, . . . kn are integers, k2

1 + · · · + k2
n > 0

}
,

and

Ej = {
e ∈ E; e = k1e1 + · · · + knen, |ki| � j

}
.

For e ∈ E, let

ẽ = 1

R
aM(e)

be the grids corresponding toe, for functionuM .

Lemma 2.1. For some positive constantsα andC, depending only onn, maxRn f andminRn f ,

‖ẽ‖ � CR−α‖e‖, ∀e ∈ E.

Proof. For anyx ∈ ∂OM , we have, by [1],

uM

(
1

2
x

)
� 1

C
uM(x),

from which we deduce

u

(
1

y

)
� 1

u(y), ∀|y| � 1.

2 C
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tion
he only
Consequently, for some positive constantsβ,C depending only onn, maxRn f and minRn f ,

u(y) � C|y|β, ∀|y| � 1. (43)

For λe ∈ ∂ΩM , we have, by (43),

M = u(λe) � C|λe|β.

On the other hand, since1
R

aM(λe) ∈ ∂OM ⊂ B2n, we have

|λ|‖ẽ‖ =
∣∣∣∣ 1

R
aM(λe)

∣∣∣∣� 2n.

Lemma 2.1 follows from the above two inequalities.✷
Let ξ̄ be the convex solution of{

det(D2ξ̄ ) = 1, OM,

ξ̄ = M
R2 , ∂OM.

Proof of Proposition 2.1. Given Theorem 0.3, the proof of Proposition 2.1 follows from the general itera
scheme of the first author in [2]. A proof can also be found in [7], see Propositions 3.1, 3.2 and (41) there; t
difference is that‖uM − ξ̄‖L∞(OM ) � CR−1 is known there instead of‖uM − ξ̄‖L∞(OM) � CR−α which we have
here. But the modification of the proof is very minor.✷

One consequence of Proposition 2.1 is that for some positive constantC,

‖aM‖,‖a−1
M ‖ � C, ∀M � 1. (44)

Let

F(D2u) = det
(
D2u

)1/n
,

and

Fij (D2u) = ∂F

∂uij

.

A consequence of the concavity ofF is the following

Lemma 2.2. Let f satisfy(4) (with ai = 1), and letu satisfy(2). Then for everye ∈ E,

Fij

(
D2u(x)

)
∂ij

[
u(x + e) + u(x − e) − 2u(x)

]
� 0 onR

n. (45)

Remark 2.1. For (45) to hold, we only need thatf is e-periodic andu satisfies (2).

Proof of Lemma 2.2. By the concavity ofF , the equation ofu, and the periodicity off , we have

F
(
D2w(x)

)
� 1

2

[
F
(
D2u(x + e)

)+ F
(
D2u(x − e)

)]= 1

2

[
f (x + e) + f (x − e)

]= f (x),

wherew(x) := 1
2[u(x + e) + u(x − e)].

On the other hand, by the concavity ofF and the equation ofu,

F(D2w) � F(D2u) + Fij (D2u)∂ij (w − u) = f + Fij (D2u)∂ij (w − u).

The lemma follows immediately from the above two inequalities.✷
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rization

l

es.

d

Step2. L∞ estimate of the Hessian ofu:

Proposition 2.2. There exists some positive constantC such that

I

C
�
(
D2u(x)

)
� CI, ∀x ∈ R

n. (46)

For nonzeroe ∈ R
n, we introduce a notation for the second incremental quotient:

(2
eu(x) = u(x + e) + u(x − e) − 2u(x)

‖e‖2 ,

where‖e‖ denotes the Euclidean norm ofe.
The following lemma is a consequence of Theorem 0.4, a result of Caffarelli and Gutiérrez on the linea

of the Monge–Ampère operator.

Lemma 2.3. For r > 0 ande ∈ E, there existsM0, depending onu, r and‖e‖, such that for allM � M0,∫
x∈OM, dist(x,∂OM)>r

(2
ẽuM � C, (47)

and

0 < (2
ẽuM(x) � C, ∀x ∈ OM, and dist(x, ∂OM) > r, (48)

whereC depends only onn, r,maxRn f andminRn f .

Remark 2.2. We emphasize that the constantC in Lemma 2.3 does not depend on‖e‖.

Proof of Lemma 2.3. Let e ∈ E, (2
ẽ
uM is positive sinceu is strictly convex follows from the strict convexity ofu.

By Lemma 2.1,|ẽ| → 0 asM → ∞. So, there existsM0 such that forM � M0, |ẽ| � r/8. LetL be a line paralle
to ẽ, we have, by Lemma A.1 in Appendix A, that∫

L∩{x∈OM, dist(x,∂OM)>r/4}
(2

ẽuM � C, ∀M � M0,

whereC depends onn, r,maxRn f and minRn f . Estimate (47) follows by integrating the above over all such lin
To prove (48), we observe thatuM satisfies

0 < minf � det(D2uM) = f
(
A−1

M (Rx)
)
� maxf < ∞,

By Lemma 2.2,w := (2
ẽ
uM satisfies

aij (x)wij (x) � 0, x ∈ OM and dist(x, ∂OM) > r/2,

where aij is the linearization of the Monge–Ampère operator atuM . Estimate (48) follows from (47) an
Theorem 0.4, withr replaced byr/2. ✷
Lemma 2.4.

γ := sup
e∈E

sup
y∈Rn

(2
eu(y) < ∞. (49)

Proof. For e ∈ E andy ∈ R
n, let x = 1

R
aM(y). TakeM large so thaty ∈ ΩM/2, we have, by (39),

dist(x, ∂OM) � 1
C
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for some constantC depending only onn,minRn and maxRn f . Then by (48) and (44),

(2
eu(y) = ‖aM(e)‖2

‖e‖2 (2
ẽuM(x) � C‖aM‖2 � C. ✷

The following lemma is a consequence of Lemma 2.1 in [7].

Lemma 2.5. For λ > 0 andr � 2, let u ∈ C2((−3,3)n−1 × (−r, r)) satisfy

(D2u) > 0, det(D2u) � λ, in (−3,3)n−1 × (−r, r),

and

0� u � 1 in (−2,2)n.

Then, for some positive constantC = C(n) > 0,

max
|s|�r

u(0′, s)n �
(

rλ

C
− 1

)
.

The next lemma is a consequence of the Pogorelov estimate.

Lemma 2.6. Let g ∈ C4(B1) be a positive function, and letv ∈ C4(B1) ∩ C0(B1) be a convex function satisfying

det(D2v) = g, onB1,

and

v(0) = 0.

We assume that

0 < µ � v � µ−1, on∂B1.

Then for somer0 ∈ (0,1) andC > 0, depending only onn, µ, minB1
g, and‖g‖C4(B1), we have that

|D2v| � C, onBr0.

Remark 2.3. In the above lemma,B1 can be replaced by any bounded open subsetΩ , thenC, r0 will depend on
dist(0, ∂Ω) and diam(Ω).

Proof of Lemma 2.6. We only need to show that there exists somer̄ > 0, depending only onµ, such that

B2r̄ ⊂ {
x ∈ B1; v(x) < µ/2

}
. (50)

Indeed letv(x̄) = µ/2, by the convexity ofv,

v(x) � v(x̄) + ∇v(x̄)(x − x̄), ∀x ∈ B1. (51)

In particular,

0= v(0) � v(x̄) − ∇v(x̄)x̄,

i.e.,
µ = v(x̄) �

∣∣∇v(x̄)
∣∣|x̄|. (52)
2
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l

Takingx ∈ ∂B1 such that∇v(x̄) andx − x̄ point the same direction, we have, by (51) and (52),

µ−1 � v(x) � v(x̄) + ∣∣∇v(x̄)
∣∣|x − x̄| � µ

2
+ ∣∣∇v(x̄)

∣∣(1− |x̄|). (53)

It follows from (52) and (53) that

µ

2
�
∣∣∇v(x̄)

∣∣|x̄| � µ−1 − µ/2

1− |x̄| |x̄|.
Clearly |x̄| � 3r̄ for somer̄ depending only onµ. ✷

Now we give the

Proof of Proposition 2.2. Forx ∈ R
n, let

ũ(z) = u(z + x) − [
u(x) + ∇u(x)z

]
.

Then

ũ(0) = 0, ũ � 0 in R
n.

Since

sup
e∈E

sup
z∈Rn

(2
eũ(z) = sup

e∈E

sup
y∈Rn

(2
eu(y) � γ,

we have (using supe∈E (2
e ũ(0) � γ and the convexity of̃u)

sup
Br

ũ � C(n)γ r2, ∀1 � r < ∞.

On the other hand, for̄z ∈ ∂Br , we have (using supe∈E (2
e ũ(z̄/2) � γ )

ũ

(
z̄

2
+ e

)
+ ũ

(
z̄

2
− e

)
− 2ũ

(
z̄

2

)
� γ ‖e‖2, ∀e ∈ E.

It follows, by the convexity of̃u and the fact that̃u(0) = 0, that

ũ(z) � 2ũ

(
z̄

2

)
+ C(n)γ � ũ(z̄) + C(n)γ, ∀z ∈ z̄

2
+ (−2,2)n.

Applying Lemma 2.5 tõu(z̄/2 + ·)/(ũ(z̄) + C(n)γ ) (modulo a rotation, i.e., think of̄z/|z̄| asen), we have (recal
that ũ(0) = 0)

ũ(z̄)n = max
|s|�|z̄|/2

ũ

(
z̄

2
+ s

z̄

|z̄|
)n

�
(

r minRn f

C(n)[ũ(z̄) + γ ]n − 1

)(
ũ(z̄) + C(n)γ

)n
.

If ũ(z̄) � γ , then

ũ(z̄)n � γ n

(
r minRn f

C(n)γ n
− 1

)
.

Fix some suitably larger, depending only onn, γ and minRn f , such that

γ n

(
r minRn f

C(n)γ n
− 1

)
� 1,

we haveũ(z̄) � 1. So, for suchr, we have

minũ � min{γ,1}.

∂Br
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5]).
Since

det
(
D2ũ(z)

)= f
(
z + x − [x]),

where[x] denotes the integer part ofx. We have, by Lemma 2.6, that∣∣D2u(x)
∣∣= ∣∣D2ũ(0)

∣∣� C(r).

Since 0< minf � det(D2u) � maxf < ∞, estimate (46) follows from the above.✷
Step3. To capture sup

Rn (2
eu for e ∈ E:

Proposition 2.3.

sup
Rn

(2
eu = e′Ae

‖e‖2
, ∀e ∈ E. (54)

First, two lemmas:
For λ � 1, let

uλ(x) = u(λx)

λ2
, x ∈ R

n.

We denote

Q(x) = 1

2
x ′Ax.

Lemma 2.7. For 0 < β < 1,

uλ → Q in C
1,β

loc

(
R

n
)

asλ → ∞.

Proof. By Proposition 2.1,

uλ → Q in C0
loc

(
R

n
)

asλ → ∞.

On the other hand, by Proposition 2.2, we have, for some constantC independent ofλ, that∣∣D2uλ
∣∣� C, onR

n.

Lemma 2.7 follows immediately.✷
We will need a standard result for subsolutions of uniformly elliptic equations (see, e.g., Lemma 6.3 in [

Lemma 2.8. Let 0 < λ � Λ < ∞, and

λI �
(
aij (x)

)
� ΛI, onB1.

Assume that

aij (x)vij � 0, onB1,

v � 1, onB1,

and, for someε,µ > 0,

|{v � 1− ε} ∩ B1| � µ.
|B1|
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Then, for someC = C(n,λ,Λ, ε,µ) > 0,

v � 1− C−1, onB1/2.

Now we give the

Proof of Proposition 2.3. Let

α = sup
Rn

(2
eu, β = e′Ae

‖e‖2 .

By (49),α < ∞. Let ê = λ−1e, we know

0 < (2
êuλ(x) � α, x ∈ R

n. (55)

It follows from Lemma A.2 and the Lebesgue dominated convergence theorem that

lim
λ→∞

∫
B1

(2
êuλ =

∫
B1

β = β|B1|. (56)

In particular, by (55) and (56),α � β . We want to prove thatα = β . Suppose the contrary,

α > β. (57)

It follows from (56) that

lim sup
λ→∞

(
α + β

2

∣∣∣∣
{

(2
êk

uλ � α + β

2

}
∩ B1

∣∣∣∣
)

� lim
λ→∞

∫
B1

(2
êuλ = β|B1|.

Consequently, for largeλ,

|{(2
ê
uλ � (α + β)/2} ∩ B1|

|B1| � 1− µ,

where, by (57),µ = 1
2(1− 2β

α+β
) > 0. Or, equivalently, for largeλ,

|{(2
ê
uλ � (α + β)/2} ∩ B1|

|B1| � µ.

Applying Lemma 2.8 tov = 2
α+β

(2
ê
uλ, we have, for someC > 0,

sup
B1/2

(2
êuλ � α − C−1, for largeλ.

It follows that

α = sup
Rn

(2
eu = lim

λ→∞ sup
B1/2

(2
ê
uλ < α,

a contradiction. ✷
We are about to complete the proof of Theorem 0.1: chooseb ∈ R

n so that

w(ek) = w(−ek), 1 � k � n,

where

w(x) = u(x) − Q(x) − b · x.
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Clearly,w(0) = 0, and, by Proposition 2.3,(2
ek

w � 0 for 1� k � n. Then, by Lemma A.3,

w(jek) � 0, ∀1 � k � n, ∀j = 0,±1,±2, . . . . (58)

Since

sup
x∈Rn

∣∣D2w(x)
∣∣< ∞,

it follows from (58) that

w(λek) � C, ∀1 � k � n, λ ∈ R. (59)

By Theorem 0.2 and Remark 0.6, there exists a uniqueg ∈ C2,α(Rn) satisfying

det
(
D2(Q + g)

)= f, D2(Q + g) > 0,

g(x + ek) = g(x), ∀1 � k � n, x ∈ R
n,

and ∫
[0,1]n

g = 0.

Set

h = w − g.

We will show thath is a constant onRn.
Since

det
(
D2(Q + g)

)= f,
I

C
�
(
D2(Q + g)

)
� CI, in R

n,

and

det
(
D2(Q + w)

)= f,
I

C
�
(
D2(Q + w)

)= (D2u) � CI, in R
n,

h = (Q + w) − (Q + g) satisfies

aij (x)∂ij h = 0, in R
n,

where the coefficients(aij (x)) satisfies, for some constants 0< λ � Λ < ∞, that

λI �
(
aij (x)

)
� ΛI, ∀x ∈ R

n.

Soh is an entire solution to a uniformly elliptic equation.
Theorem 0.1 will follow from the following

Lemma 2.9.

sup
Rn

h < ∞. (60)

Proof. Let

Mi = sup
x∈[−i,i]n

h(x), i = 1,2, . . . .

Suppose the contrary of (60), we have

lim Mi = ∞. (61)

i→∞
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Then we can show that for some constantC,

M2i � 4M2i−1 + C, ∀i = 1,2, . . . . (62)

Indeed, let(k1, . . . , kn) ∈ [−m,m]n. Define

εj =
{

1, if kj is odd,
0, if kj is even.

Let

e =
(

k1 ± ε1

2
, . . . ,

kn ± εn

2

)
.

Since

(2
eh(e) = (2

ew(e) � 0,

we have

h(k1 ± ε1, . . . , kn ± εn) = h(2e) = h(2e) + h(0) � 2h(e) � 2M[(m+1)/2]+1.

Since supRn |D2h| < ∞, it follows from the above that for someC independent ofi,

h(k1, . . . , kn) � 2M[(m+1)/2]+1 + C.

It follows that

Mm � 2M[(m+1)/2]+1 + C.

Replacingm by [(m + 1)/2] + 1 in the above, we have

M[(m+1)/2]+1 � 2M[(m+3)/4]+1 + C.

Takingm = 2i and using[(2i + 3)/4] + 1� 2i−1 for i � 3, we have

M2i � 4M[(2i+3)/4]+1 � 4M2i−1 + 3C.

Estimate (62) is established.
Let

Hi(x) = h(2ix)

M2i

, x ∈ [−1,1]n.

By (59),

Hi(λek) � C

M2i

, 1 � k � n, i = 1,2, . . . . (63)

By (62), for some positive constantC,

max[−1/2,1/2]n Hi = M2i−1

M2i

� M2i − C

4M2i

1

8
, for largei. (64)

We know thath satisfies an uniformly elliptic equation, so doesHi (with ellipticity constants independent ofi).
By the definition,

Hi � 1 on[−1,1]n,

and,

Hi(0) = h(0) → 0, asi → ∞.

M2i
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is

2.9,
is
Since 1− Hi is non-negative, we have, by the Harnack inequality of Krylov and Safonov [19], that

max
[−8/9,8/9]n

(1− Hi) � C
(
1− Hi(0)

)= C
(
1+ o(1)

)
� 2C,

and there exists some 0< α < 1 andH such that

Hi → H in Cα

([
−3

4
,

3

4

]n)
along a subsequencei → ∞.

By (64),

max
[−1/2,1/2]n

H � 1

8
, (65)

and by (63),

H(λek) � 0, 1 � k � n, |λ| � 3

4
. (66)

We also know that

H(0) = lim
i→∞ Hi(0) = 0. (67)

Since(2
eh � 0 for e ∈ E, we have

(2
2−ie

Hi � 0, ∀e ∈ E.

Since the convergence ofHi to H is uniform, we know from the above thatH is concave.
Now H is a concave function satisfying (65), (66) and (67). MoreoverH is the uniform limit of{Hi}, for which

a uniform Harnack inequality holds. This leads to contradiction. Indeed, sinceH is concave andH(0) = 0, let l(x)

be a linear function such thatl − H � 0 in (−3
4, 3

4)n. Sincel − H is the uniform limit of{l − Hi}, the Harnack
inequality applies tol − H as well, thusl − H ≡ 0. By (66),H ≡ l ≡ 0 which contradicts to (65). Lemma 2.9
established. ✷

Finally the

Proof of Theorem 0.1. Since h is an entire solution to a uniformly elliptic equation and, by Lemma
h is bounded from above, it then follows from the Harnack inequality thath is a constant. Theorem 0.1
established. ✷

Appendix A

Lemma A.1. Let g ∈ C2(−1,1) be a strictly convex function, and let0 < |h| � ε. Then

(2
hg(x) > 0, ∀|x| � 1− 2ε, (A.1)

and
1−2ε∫

−1+2ε

(2
hg � C

ε
osc(−1,1)g, (A.2)

whereC is some universal constant, andosc(−1,1)g := sup−1<s<t<1 |g(s) − g(t)|.

Proof. For−1 < a < b < 1,
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or
b∫
a

(2
hg = 1

h2

b∫
a

1∫
0

d

ds

[
gi(x + sh) + g(x − sh)

]
ds dx

= 1

h

1∫
0

[ b+sh∫
b−sh

g′(y) dy −
a+sh∫

a−sh

g′(y) dy

]
ds. (A.3)

By the convexity ofg,

max
|x|�1−ε

∣∣g′(x)
∣∣� C

ε
osc(−1,1)g.

Lemma A.1 follows easily from the above.✷
Our next lemma is elementary.

Lemma A.2. Let gi converges tog in C1[−1,1], g ∈ C2(−1,1), and|hi | → 0. Then for all−1 < a < b < 1,

lim
i→∞

b∫
a

(2
hi

gi = g′(b) − g′(a) =
b∫

a

g′′.

Proof. By (A.3),

b∫
a

(2
hi

gi = 1

hi

1∫
0

[ b+shi∫
b−shi

g′
i (y) dy −

a+shi∫
a−shi

g′
i (y) dy

]
ds.

By theC1 convergence ofgi to g,

lim
i→∞

(
1

hi

1∫
0

a+shi∫
a−shi

∣∣g′
i (y) − g(y)

∣∣dy ds + 1

hi

1∫
0

b+shi∫
b−shi

∣∣g′
i (y) − g(y)

∣∣)= 0.

It follows that

lim
i→∞

b∫
a

(2
hi

gi = lim
i→∞

1

hi

1∫
0

[ b+shi∫
b−shi

g′(y) dy −
a+shi∫

a−shi

g′(y) dy

]
ds = g′(b) − g′(a).

Lemma A.2 is established.✷
Lemma A.3. Let g ∈ C0(R), g(0) = 0, g(1) = g(−1), and(2

1g(x) � 0 for all x ∈ R. Then

g(m + 1) � g(m), g(−m − 1) � g(−m), for all non-negative integerm. (A.4)

Consequently,g(m) � 0 for all integerm.

Proof. Since the hypothesis is satisfied also byg(−x), we only need to establish the first inequality in (A.4). F
every integerk, we have

g(k + 1) + g(k − 1) − 2g(k) = (2
1g(k) � 0. (A.5)
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Takek = 0 in (A.5), we have

2g(1) = g(1) + g(−1) � 2g(0) = 0.

So the first inequality in (A.4) holds form = 0. We prove (A.4) by induction. Assuming that the first inequa
in (A.4) holds form − 1 for somem � 1, takek = m in (A.5), we have

g(m + 1) + g(m − 1) � 2g(m) � g(m) + g(m − 1).

Sog(m + 1) � g(m), i.e., the first inequality in (A.4) holds form. ✷
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