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Abstract

This paper studies the approximation of the Boltzmann equation by the Landau equation in a regime when grazing
prevail. While all previous results in the subject were limited to the spatially homogeneous case, here we manage
the general, space-dependent situation, assuming only basic physical estimates of finite mass, energy, entropy a
production. The proofs are based on the recent results and methods introduced previously in [R. Alexandre, C
Comm. Pure Appl. Math. 55 (1) (2002) 30–70] by both authors, and the entropy production smoothing effects est
in [R. Alexandre et al., Arch. Rational Mech. Anal. 152 (4) (2000) 327–355]. We are able to treat realistic singular
Coulomb type, and approximations of the Debye cut. However, our method only works for finite-time intervals, wh
Landau equation is supposed to describe long-time corrections to the Vlasov–Poisson equation. If the mean-field inte
neglected, then our results apply to physically relevant situations after a time rescaling.
 2003 Elsevier SAS. All rights reserved.

Résumé

Nous étudions l’approximation de l’équation de Boltzmann par l’équation de Landau quand les collisions rasan
dominantes. Alors que tous les résultats connus auparavant en la matière concernaient le cas spatialement homogè
parvenons à couvrir le cas général, spatialement inhomogène, supposant seulement des estimations a priori phy
réalistes portant sur la masse, l’énergie, l’entropie et la production d’entropie. Les preuves reposent sur les résultats e
mis au point récemment par les auteurs dans [R. Alexandre, C. Villani, Comm. Pure Appl. Math. 55 (1) (2002) 30–70], e
effets de régularisation par production d’entropie établis dans [R. Alexandre et al., Arch. Rational Mech. Anal. 152 (4
327–355]. Nos résultats couvrent certaines singularités physiquement réalistes de type coulombien, et des approxim
la coupure de Debye. Cependant, nos résultats s’appliquent sur un intervalle de temps fini, alors que l’équation de L
censée décrire les corrections en temps grand de l’équation de Vlasov–Poisson. Si le terme d’interaction de champ
négligé, nos résultats s’appliquent à des situations physiquement réalistes après un changement d’échelle de temps.
 2003 Elsevier SAS. All rights reserved.
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1. Introduction: binary collisions in plasmas

In 1936, Landau, as part of his important works in plasma physics, established the kinetic equation w
now called after him, modelling the behavior of a dilute plasma interacting through binary collisions. Sinc
this equation has been widely in use in plasma physics, see for instance [5,8,10,20,27] and references t
this paper we shall present what we believe to be an important advance in the problem of rigorously ju
Landau’s approximation. Before we describe the results, let us explain their physical context and motivatio

The unknown in Landau’s equation is the time-dependent distribution functionf (t, x, v) of the plasma in the
phase space (timet , positionx ∈ R3, velocityv ∈ R3), and the Landau equation reads

∂f

∂t
+ v · ∇xf + F(x) · ∇vf =QL(f,f ). (1)

HereF(x) is the self-consistent force created by the plasma,

2F =−∇V ∗ ρ, V (x)= K

4π |x| , ρ(t, x)=
∫
R3

f (t, x, v) dv, (2)

whereK is a physical constant. Moreover,QL is the Landau collision operator, acting only on the veloc
dependence off ,

QL(f,f )=∇v ·
( ∫

R3

dv∗a(v − v∗)
[
f∗∇vf − f (∇vf )∗

])
, (3)

aij (z)= L

|z|
[
δij − zizj

|z|2
]
. (4)

Here the notation∇· stands for the divergence operator. In the expression of the collision operator we hav
the shorthandf∗ = f (v∗) and we have omitted the dependence off on t andx, since these variables are on
parameters in (3). This fact reflects the physical assumption that collisions arelocalized: particles which are no
located at the same (mesoscopic) position interact only via the mean-field forceF . Finally, for simplicity we have
written the equation for a single species of particles, say electrons, while plasma phenomena usually in
least two species (typically, ions and electrons). The values of the physical constantsK andL in (2) and (4) will
be discussed later on.

The novelty of Landau’s equation resided in the collision operatorQL(f,f ), which had been obtained as
approximation of the well-known Boltzmann collision operator,

QB(f,f )=
∫
R3

dv∗
∫
S2

dσB(v − v∗, σ )(f ′f ′∗ − ff∗). (5)

Heref ′ = f (v′) and so on (again,t andx are only parameters in (5)), and the formulae
v′ = v + v∗

2
+ |v − v∗|

2
σ

(
σ ∈ S2

)
,

v′∗ =
v + v∗

2
− |v − v∗|

2
σ

(6)

parameterize the set of all solutions to the laws of elastic collision, namelyv′ + v′∗ = v + v∗, |v′|2 + |v′∗|2 =
|v|2 + |v∗|2. We shall think of(v, v∗) as the velocities of two typical particles before collision, and(v′, v′∗) as their
velocities after collision (actually we should do the reverse, but this has no importance).

The collision kernelB(v − v∗, σ ), which only depends on|v − v∗| (modulus of the relative velocity) an
〈(v − v∗)/|v − v∗|, σ 〉 (cosine of the deviation angle), contains all the necessary information about the inter
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For a given interaction potentialφ(r) (r is the distance between two interacting particles), this kernel ca
computed implicitly via the solution of a classical scattering problem. In all the sequel, we shall use the noθ
for the deviation angle, i.e., the angle betweenv − v∗ andv′ − v′∗, so that〈

v − v∗
|v − v∗| , σ

〉
= cosθ.

We shall also abuse notations by recalling explicitly the dependence ofB upon|v − v∗| and cosθ :

B(v − v∗, σ )= B
(|v − v∗|,cosθ

)
.

Even if we take into account only elastic collisions, there are several types of electrostatic interact
plasmas: Coulomb interaction between two charged particles, Van der Waals interaction between two
particles, or Maxwellian interaction between one neutral and one charged particle. Usually, interactions
charged particles are prevailing; moreover the mathematical analysis of the Boltzmann equation is much
for Van der Waals or Maxwellian interaction, than for Coulomb interaction. Therefore we restrict to this las

When the interaction between particles is governed by the Coulomb potential,

φ(r)= e2

4πε0r
, (7)

thenB is given by the well-known Rutherford formula,

BC(v − v∗, σ )= (e2/(4πε0m))
2

|v − v∗|3 sin4(θ/2)
. (8)

In the above formulae,ε0 is the permittivity of vacuum,m is the mass of the electron ande its charge.
Even though the Boltzmann collision operator is widely accepted as a model for describing binary inter

in dilute gases, it is meaningless for Coulomb interactions. The mathematical reason of this failure is tBC

is extremely singular asθ → 0. This singularity for zero deviation angle reflects the great abundance ofgrazing
collisions, i.e. collisions in which interacting particles are hardly deviated. From the physical point of view,
collisions correspond to encounters between particles which aremicroscopically very far apart, and this abundanc
is a consequence of the long range of Coulomb interaction.

Since grazing collisions hardly have any effect, one may a priori not be convinced that they are a serious
for handling the Boltzmann operator (5). In fact, the Boltzmann equation can be used only if themean transfer
of momentumbetween two colliding particles of velocitiesv, v∗ is well-defined. One can compute that the typi
amount of momentum which is communicated to a particle of velocityv by collisions with particles of velocity
v∗ is ∫

S2

B(v − v∗, σ )(v′ − v) dσ =−|S1|
2

( π∫
0

B
(|v− v∗|,cosθ

)
(1− cosθ)sinθ dθ

)
(v − v∗) (9)

(of course|S1| = 2π ). In the case of the cross-section (8), the integral in the right-hand side of (9) does not co
since

cos(θ/2)(1− cosθ)

sin3(θ/2)
dθ ∼ 4

dθ

θ

defines a logarithmically divergent integral asθ → 0.
A physical consequence of this divergence is that when particles interact by Coulomb interaction,grazing

collisions are so frequent as to be the only ones to count, in some sense: the mechanism of momentum transf
dominated by small-angle deviations, and a given particle is extremely sensitive to the numerous particle
are very far apart. It is widely admitted, though not quite clear a priori, that these collective effects can
described by binary collisions, because corresponding deflections are very small.
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The resulting model is not tractable: the divergence of the integral (9) makes the Boltzmann oper
meaningless, as was certainly guessed by Landau, and recently checked from the mathematical point of
Part I, Appendix 1].

On the other hand, physicists usually agree that the physical phenomenon of thescreeningtends to tame the
Coulomb interaction at large distances, i.e. when particles are separated by distances much larger than the
Debye (or screening) length. The screening effect may be induced by the presence of two species of part
opposite charges: typically, the presence of ions constitutes a background of positive charge which scr
interaction of electrons at large distances [5,10]. Some half-heuristic, half-rigorous arguments suggest to m
interaction between charged particles by the so-called Debye (or Yukawa) potential,e−r/λD/(4πε0r), whereλD is
the Debye length, rather than by the “bare” Coulomb potential 1/(4πε0r). For the Debye interaction the Boltzman
operator can in principle be used. However, it is not very interesting, because the corresponding collision
horribly complicated (and not explicit), and because in most physical applications the Debye length isvery large
with respect to the characteristic lengthr0 for collisions (Landau length), so that the potential is approxima
Coulomb after all. Hence it is desirable to search for an approximation at very large values ofλD .

Of course, in the limitλD/r0 →∞, the Boltzmann operatorQB diverges. But by heuristic physical argumen
Landau was able to show that in this limit, it is to leading order proportional to the operatorQL. The proportionality
factor is the so-calledCoulomb logarithm: essentially, it is log(λD/r0). We refer to [20] for Landau’s origina
argument, to [5,10,28] for more physical background, and to [9] for a slightly more mathematically or
presentation. Also a variant of Landau’s argument can be found in [33].

While the derivation of the Boltzmann equation with screened interaction is still in need of a p
mathematical discussion, the approximation in which it reduces to the Landau equation has been th
of several mathematical works in the nineties [3,9,11,16,30]. Before discussing them briefly, we menti
this approximation procedure (called the Landau approximation in the sequel) is one of the main the
justifications for the Landau equation, but not the only one. As was observed by Balescu [5], the Landau e
can also be recovered as an approximation of the so-called Balescu–Lenard equation. This equation (calle
equation in [5]) has been established independently in various forms by several authors in the sixties: Bal
Bogoljubov [6], Lenard [21], Guernsey [17], and (in some particular cases) Rostoker and Rosenblut
As a good modern source for the Balescu–Lenard equation and its Landau approximation, we recomm
contribution of Decoster in [8].

Some physicists would recommend the Balescu–Lenard equation as a more reliable starting poin
derivation of the Landau equation. However, at present the mathematical theory of the Balescu–Lenard eq
exactly void: to the best of our knowledge, no mathematically oriented paper has ever discussed it. Its co
is just frightening for a mathematician, and a discussion of it would first require a good understanding
influence of the permittivity of a plasma on the collisional mechanism, via the so-called “dynamical screeni. . . .
For the moment, we shall be content with a rigorous derivation of the Landau equation as an approximatio
Boltzmann equation, and this will already turn out to be an extremely technical matter.

Let us review the existing mathematical literature on the Landau approximation. In his well-known tr
Cercignani [7] had shown, without a precise mathematical formulation, that for a fixed, smoothf , the contribution
of grazing collisions toQB(f,f ) can be modelled by a Landau-type operator. Degond and Lucquin
and Desvillettes [11] gave a more precise discussion. These works were only concerned with the st
approximation: the problem discussed was to show that

QB(f,f )�QL(f,f )

in a certain asymptotic procedure, for a fixed, smoothf depending only on the velocity variable. It is interest
to note [11] that these asymptotic procedures are not necessarily limited to a Coulomb interaction, bu
performed for a whole range of interaction parameters. But the limit in the Coulomb case is the most troub
because of the high singularity of the cross-section (8) in the relative velocity variable.
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Then, emphasis was put on the much more delicate (and of course much more relevant) problem of jus
at the level of solutions. More precisely, the following problem was investigated:prove that solutions of th
Boltzmann equation are well approximated, in certain asymptotics, by solutions of the Landau equation. Under
various assumptions, this problem was solved by Arsen’ev and Buryak [3], Goudon [16], Villani [30]
framework ofspatially homogeneous solutions, i.e. when the distribution functionf is assumed to depend only o
t, v and not on the positionx. The assumption of spatial homogeneity is an enormous mathematical simplific
but even taking this into account, the singularity in the relative velocity variable was still a significant sou
difficulties. It is only in [30] that the Landau approximation for Coulomb-type collision kernels was first han
In the present paper, we shall considerably generalize these previous works, by solving the problem of the
approximation in the general, spatially inhomogeneous setting. However this will be achieved only for the m
which the mean-field term is absent. This restriction looks strange, because the mean-field term is usually n
serious problem; but the point is that the natural time scale for this term is not the same as for the collision o
To include the mean-field term in a physically satisfactory way, we should look at the Landau approximat
a long time correctionto the Vlasov–Poisson equation, and our methods do not apply for this problem.
explanations about these subtleties will be given in the next section.

In all previous works, the true Debye cross-section was never considered. The second author mentione
an application to true Debye, but this is because he had been abused by an ambiguous physical reference
was treating the close approximation which is presented in the Appendix. In the present work we shall in
a very general framework, which in principle makes it possible to cover the true Debye potential; this h
requires to check a few technical assumptions about the precise form of this cross-section, a task which w
find enough courage to accomplish, due to the extremely intricate nature of the Debye cross-section. Here
be content with the treatment of approximations of the Debye cut like the one described in the Appendix, o
presented in the sequel.

The present study rests on recent developments in the study of grazing collisions for the Boltzmann eq

1) a precise understanding of regularizing effects associated with the entropy production, which were
in our joint work [2] with Desvillettes and Wennberg (what we call entropy production here, is called en
dissipation there; this is just a matter of conventions). In short, the mechanism of production of the e
combined with the fact that collisions tend to be grazing in the Landau approximation, prevents the dist
function from “wildly” oscillating in the Landau approximation. This stabilizing effect is a key ingredien
passing to the limit in the nonlinear collision operator;

2) a notion of weak solution for the Boltzmann equation with singular cross-section, which was introduce
previous work [1]. There we showed how to give sense to a so-called renormalized formulation of the Bol
collision operator, allowing singularities in the cross-section, both in the angular and the relative velocity va
The most important features of this formulation is that (a) the basic a priori estimates of finite mass and en
sufficient to make sense of it, (b) contrary to all previous works, it does not rely on the finiteness of the total
cross-section, but rather on the finiteness of the total angular cross-section for momentum transfer. The fa
allows strong kinetic singularities will turn out to be important here.

The plan of the paper is as follows. In Section 2, we give a preliminary discussion of the Landau approxi
which, so we hope, will help the reader to understand its physical and mathematical content. Also the
relevance of our contribution is discussed precisely. In Section 3, we state our main result, the proof of w
performed in the rest of the paper. Sections 4 and 5 are devoted to some preliminary mathematical consi
on the Boltzmann and Landau equations; in particular we shall recall those results of [1] which will be usef
Then Section 6 is devoted to the discussion of the role of the entropy production in our theorem, and there
exploit some results established in [2]. Finally, in Section 7, we complete the proof of the Landau approxi
In the Appendix, we discuss a relevant approximation of the Coulomb potential that can be found in the p
literature.
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2. Preliminary discussion

In this section, we recall some facts from plasma physics, and discuss the asymptotics leading f
Boltzmann to the Landau collision operator, taking into account the physical scales and the most
mathematical difficulties.

As already mentioned, the Rutherford collision kernel can be written

B(v − v∗, σ )=
(

e2

4πε0m

)2
bC(cosθ)

|v− v∗|3 , (10)

where the angular kernelbC is defined by

bC(cosθ)sinθ = 2 cos(θ/2)

sin3(θ/2)
. (11)

The Rutherford cross-section is justB(v − v∗, σ )/|v − v∗|. The factor sinθ in (11) is proportional to the Jacobia
of the integration in spherical coordinates, and should be kept in mind when discussing integrability prope
the kernel.

In a Boltzmann description, the natural scale of velocity is given by the thermal velocity,

vth =
√
kΘ

m
, (12)

wherek is Boltzmann’s constant,m the mass of the electron, andΘ the mean temperature of the plasma. Only t
velocity scale will be considered in the sequel.

On the other hand, when the interaction is Coulomb, the natural length scale is the so-calledLandau lengthr0,
which is the distance between two particles having an interaction energy of the same order as their kinetic

r0 = e2

4πε0kΘ
. (13)

Note that the dimensional constant in front of (10) is(r0v2
th)

2.
The Rutherford cross-section (10) presentstwo singularities of very different nature:
– first, the kinetic collision kernel,|v − v∗|−3, is singular asv − v∗ → 0. It is classical that kinetic singularitie

are well tractable from the mathematical point of view if they arelocally integrable, see for instance the wel
known paper of DiPerna and Lions [14]. Of course, this is not the case here, since|z|−3 /∈ L1

loc(R
3, dz). This will

be a considerable source of complications (but presumably, only of mathematical nature);
– next, the angular kernel,bC(cosθ), is so singular that

bC(cosθ)(1− cosθ) /∈ L1(sinθ dθ).

This second singularity reflects a true physical obstruction, and is directly linked to the divergence of the Bo
collision operator (too many grazing collisions!). It is this angular singularity which makes the Boltzmann op
meaningless for this kernel.

Since the Coulomb interaction cannot be handled, consider now a model in which particles interact
Debye potential

φD(r)= e2

4πε0r
e−r/λD.

Justifications for this screening assumption can be found in many physical textbooks on plasma physics, a
from the mathematical point of view we are still far from understanding it. The screening will result in
important role of collisions with a high impact parameter, therefore a less important role of grazing collisi
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bC(cosθ)1θ�θD
|v− v∗|3 , (14)

where [10]

sin
θD

2
= r0

2λD
. (15)

Let us use the notation

Λ= 2λD
r0

, (16)

which is customary in plasma physics, up to numerical conventions (ours is from [10, Eq. (3.111)]). WheΛ is
large but finite, the cross-section for momentum transfer is finite too:

MΛ(v − v∗)= |S1|
|v− v∗|3

π∫
θD

2(cosθ/2)

sin3(θ/2)
(1− cosθ) dθ = 8|S1|

|v− v∗|3 logΛ.

And because this integral is finite, the corresponding Boltzmann equation is expected to make sense.1 It can be
written

∂f

∂t
+ v · ∇xf = (r0v2

th

)2
QΛ(f,f ), (17)

where QΛ is the Boltzmann collision operator with nondimensional cross-section given by (14),
approximation to the true Debye cross-section. AsΛ goes to infinity, this equation diverges, and therefore
shall look for new physical scales on which there is a meaningful limit equation. Note that for the mome
neglect the effect of mean-field interaction in (17).

Thus, let us now change the scales of time, length and density, and consider as unknown the new dis
functionf̃ in nondimensional variables,

f̃ (t, x, v)= v3
th

N
f (T t,Xx, vthv), (18)

whereN is a typical density,T is a typical time andX is a typical length of the system under study. We have se
velocity scale to bevth, and to be consistent we imposeX = vthT . Thanks to the density scaling, we may assu
the mass off̃ to be of order 1 without physical inconsistency (recall that the Boltzmann equation is estab
in a regime when the density is small enough that only binary collisions should be taken into account). Th
holds true for the kinetic energy because of our choice of the velocity scale.

Plugging (18) into the Boltzmann equation (17), and denotingf̃ byf again, we arrive at therescaled Boltzmann
equation

∂f

∂t
+ v · ∇xf = r2

0vthNTQΛ(f,f ).

In order to make the limitΛ→∞ meaningful, we consider a time scale such that (say)

T = 1

(logΛ)r2
0vthN

. (19)

1 The equation does make sense under known a priori estimates, but it is still not known whether the Cauchy problem admits sol
the discussion in [1, Section 5]. This problem is however an artifact due to a too wild cut-off; if the Rutherford kernel had been repla
less singular, but still singular kernel, then it would not arise.
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With this system of units the rescaled Boltzmann equation now reads

∂f

∂t
+ v · ∇xf = QΛ(f,f )

logΛ
, (20)

and the total angular cross-section for momentum transfer of the rescaled Boltzmann collision operator c
to a finite limit asΛ→∞, namely 8|S1||v− v∗|−3.

Moreover, for anyθ0 > 0, the contribution of deviation anglesθ � θ0 in this total cross-section goes to 0
Λ→∞, because of the division by logΛ. In this sense,only grazing collisions have an influence in the limit.

It is precisely the combination of these two points:

• the total angular cross-section for momentum transfer stays finite;
• only grazing collisions count in the limit,

which ensures that, in the limitΛ→∞, the Boltzmann collision operator reduces to the Landau collision ope
A general mathematical framework for this was introduced in [30]: a family(bn)n∈N of angular collision kernels
was said toconcentrate on grazing collisionsif

∣∣S1
∣∣ π∫

0

bn(cosθ)(1− cosθ)sinθ dθ −−−→
n→∞ µ∞ ∈ (0,+∞)

∀θ0> 0, sup
θ�θ0

bn(cosθ)−−−→
n→∞ 0.

(21)

From this mathematical point of view (contrary to what is often believed), the scalings considered in [
in [11] are just the same, and correspond respectively to the two model cases below:

Case1:
∫ π

0 b(cosθ)(1− cosθ)sinθ dθ =+∞. Then, define

bn(cosθ)= b(cosθ)1θ�n−1

|S1| ∫ π1/n b(cosθ)(1− cosθ)sinθ dθ
;

Case2:
∫ π

0 b(cosθ)(1− cosθ)sinθ dθ <+∞. Then, with the notationζn(θ)= b(cosθ)sinθ , definebn(cosθ)
in such a way that

ζn(θ)= n3ζ(nθ)

(by conventionζ vanishes for angles greater thanπ ).
However, this definition makes sense only when the collision kernels factor into the product of a fixed

kernel and a variable angular kernel. This has no physical basis; in the discussion above such a situation
only because we resorted to a crude approximation of the kernel for Debye potential, wildly truncating
deviation angles. For the “true” kernel associated with a Debye approximation, this factorization property d
hold. Moreover, this “true” kernel is known only via implicit formulas, apparently never used by physicists
provides strong motivation for introducing a very general definition of “concentration on grazing collisions”
a view to cover realistic situations.

In short, our main result on the Landau approximation can be stated as follows. Consider a family of so
(f n) to the Boltzmann equation with respective collision kernelBn, where(Bn)n∈N concentrates on grazin
collisions asn→∞ (in a sense which is made clear in next section), and(fn) satisfies the basic a priori estimat
of finite mass, energy, entropy and entropy production. Then the sequence(f n) converges strongly, up to extractio
of a subsequence, to the solution of a certain Landau-type equation.

Before turning to precise statements, we would like to discuss the physical relevance of these results. Th
who would only care about mathematics may skip all the rest of this section.
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For the Boltzmann equation to be relevant, it is usually required that

Nr3
0 � 1, Nλ3

D � 1.

Taking into account the definition ofΛ, this is satisfied if

r0

vth(logΛ)
� T � r0

vth

Λ3

logΛ
. (22)

The dimensionless quantity

g = 1

Nλ3
D

(23)

is called theplasma parameter. Classical plasmas are often defined as those in whichg is very small.
In the classical theory of plasmas, the Debye length can be computed in terms of the mean densityN and the

Landau lengthr0:

λD =
√
ε0kΘ

Ne2
= 1√

4πNr0
, (24)

and as a consequence

Λ= 1√
πNr3

0

.

If we use the law (24), we find from (19)

T = r0

vth logΛ

(
1

Nr3
0

)
= πr0Λ

2

vth logΛ
,

and the validity of our limit is ensured if 1�Λ2 �Λ3, which is of course consistent with the asymptoticsΛ→∞.
We note that in plasma physics,Λ ranges from 102 to 1030, so thatΛ is actually very large, but its logarithm is n
so large.

However, it would be dishonest to claim that our results are fully satisfactory. In the above discussion w
assumed that the interaction between particles can be modelled by binary collisions. The resulting Boltzm
Landau equations, as we wrote them down, can be encountered in many physical textbooks (e.g. [5,10]). H
most physicists would agree that a more precise description of a plasma is obtained when one also t
account collective effects modelled by a mean-field self-consistent force term of Poisson type, as the one a
in (1).

It would not be difficult to add such a term at the level of (20), and treat the Landau approximation for the

∂f

∂t
+ v · ∇xf + F · ∇vf = QΛ(f,f )

logΛ
, (25)

where

F(x)=−∇V (x), V (x)= 1

4π |x| ∗ ρ, ρ(t, x)=
∫
R3

f (t, x, v) dv. (26)

Then, the self-consistent coupling can be handled in exactly the same way as in Lions [22,23], and our ma
would apply. But this mathematical problem would not be consistent with physical scales. . . . Actually, writing
down physical constants explicitly, the Boltzmann equation with a mean field term should be

∂f + v · ∇xf + 4π
(
r0v

2
th

)
F · ∇vf = (r0v2

th

)2
QΛ(f,f ),
∂t
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∂f

∂t
+ v · ∇xf + 4π

(
r0v

2
th

)
FΛ · ∇vf = (r0v2

th

)2
QΛ(f,f ),

with FΛ defined asF but with a Debye potential. It is not clear to the authors which equation is the right
and neither has received a convincing mathematical derivation (they should be very similar asΛ→ ∞). These
questions are certainly outstanding problems for future research in kinetic theory.

Then, going back to (18), with the notations of (26) we obtain the following rescaled Boltzmann equatio

∂f

∂t
+ v · ∇xf + 4πr0v2

thNT
2F(Λ) · ∇vf = r2

0vthNTQΛ(f,f ). (27)

Up to numerical constants, the quantity

ω=
√

4πv2
thr0N (28)

is called theplasma oscillation frequency. It is believed to measure the inverse time scale for oscillations due t
Poisson coupling, and plays a major role in plasma physics.

If we now wish to consider physical scalesN , T on which the relevant equation is the Landau equation wi
mean-field term, say

∂f

∂t
+ v · ∇xf + F(Λ) · ∇vf =QL(f,f )

(
� QΛ(f,f )

logΛ

)
,

we have to impose

T = ω−1 = 1

4π
√
v2
thr0N

Identification of this formula with (19) implies that logΛ=√
4π(Nr3

0)
−1/2, or

2(logΛ)2

πΛ3 = g. (29)

Under this assumption (which implies that the typical length for oscillations is much smaller than the
length) we are able to recover the “full” Landau equation (with a mean-field term) from the Boltzmann eq
Unfortunately, Eq. (29) isnotsatisfied in the classical theory of plasmas, since it is incompatible with (24). Ins
one should have

λD = ω−1vth, Λ= 8π

g
. (30)

In particular, up to numerical constants,the typical length for oscillations should coincide with the Debye len
We refer to [10,8] for a more precise discussion, and much more on these scale problems.

The physical content of this obstruction is the following: strictly speaking, in the classical theory of pla
the Landau equation with a mean-field term,

∂f

∂t
+ v · ∇xf + F · ∇vf =QL(f,f ) (31)

is relevant onno physical scale! Indeed, as the parameterΛ goes to infinity, or equivalently asg → 0, the
Boltzmann equation with a mean-field term should converge to the “pure” (collisionless) Vlasov–Poisson eq
and the effect of collisions should only be felt aslarge-time correctionsto the Vlasov–Poisson equation.

Eq. (31) is however of great importance in physics, and it would be stupid to dismiss it. Let us try to sketc
could be a mathematical justification of the Landau approximation when a mean-field term is present and w
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Debye length satisfies (24), (30). There are two natural candidate statements; for each of them we are aw
mathematical discussion, even formal.

1) First possibility: adopt the time scale for the Landau equation,

T = 2πΛ

logΛ
ω−1.

Then the rescaled Boltzmann equation is

∂f

∂t
+ v · ∇xf +

(
2πΛ

logΛ

)2

F(Λ) · ∇vf = QΛ(f,f )

logΛ
.

Problem: prove that on a fixed time interval, asΛ→∞, solutions to this equation are close to solutions of

∂f

∂t
+ v · ∇xf +

(
2πΛ

logΛ

)2

F(Λ) · ∇vf =QL(f,f ).

It is not a priori clear if such a statement has a chance to hold true. AsΛ→∞, the very large mean-field term
expected to induce very fast oscillations, and the strong compactification effects induced by the entropy pr
mechanism will be lost. Passing to the limit in the colllision operator when such oscillations are present s
desperate task, and apparently the only hope would be to prove that solutions to both equations are wildly o
in exactly the same way, but asymptotically close to each other in strong sense. Moreover, this problem s
replaced in the context of a quasi-neutral limit, with a subsequent increase in complexity.

2) Second possibility: adopt the time scale for the Vlasov–Poisson equation,

T = ω−1.

Note that this is consistent with (22) since

1� Λ

logΛ
�Λ3.

Then the rescaled Boltzmann equation is

∂f

∂t
+ v · ∇xf + F(Λ) · ∇vf = 1

2πΛ
QΛ(f,f )= logΛ

2πΛ

QΛ(f,f )

logΛ
. (32)

Problem: prove that, asΛ→∞, on a large time interval of sizeO(Λ/ logΛ), solutions of this equation are clo
to solutions of

∂f

∂t
+ v · ∇xf + F · ∇vf = logΛ

2πΛ
QL(f,f ) (33)

(compare with [9]). Note that on any fixed time interval, solutions of both systems converge to solutions
collisionless Vlasov–Poisson equation (because logΛ/Λ → 0), so that this problem can only be expressed
terms of long-time corrections. Note also that formally,FΛ−F = O(1/Λ), so that the error due to the screening
the level of the mean field should be at most O(1/ logΛ). Finally note that the coefficient in front of the dissipati
collision operator is vanishing asΛ→∞, which suggests a considerable weakening of the regularizing prop
associated with collisions.

It is very difficult to imagine how the techniques once developed by DiPerna and Lions [14] for the Boltz
equation, generalized in [1] and extended for the needs of the present paper, may handle such a s
Indeed, they are mainly based on compactness arguments and convergence of approximate solutions;
just discussed, we should be looking for an asymptotic result, not convergence. A difficulty of the sam
is encountered when trying to retrieve the compressible Navier–Stokes equations from the Boltzmann e
Progress on the Landau approximation from this point of view will certainly require the development of com
new estimates. It seems likely that the recent theorems proven by Guo [18,19] are a plausible starting po
complete treatment of the close-to-equilibrium setting.
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3. Main result

This section is devoted to definitions and a precise statement of our main result. In order to ma
mathematical features of the Landau approximation more transparent, we shall consider general Bo
operators. We set the problem on[0, T ] ×RNx ×RNv : here[0, T ] is an arbitrary time interval fixed once for all, an
both the position and the velocity take values inRN , N � 2. Thus the equations under consideration will be of
form

∂f

∂t
+ v · ∇xf =Q(f,f ), (34)

whereQ is either a general Boltzmann-type operator,

QB(f,f )=
∫

RN

dv∗
∫

SN−1

dσB(v − v∗, σ )(f ′f ′∗ − ff∗), (35)

with the notations (6) still in use, or a general Landau-type operator,

QL(f,f )=∇v
( ∫

RN

dv∗a(v− v∗)[f∗∇vf − f (∇vf )∗]
)
. (36)

In the Boltzmann case the collision kernel will satisfy the usual assumption of dependence upon the mo
the relative velocity and on the cosine of the deviation angle, and we shall write freely

B(v − v∗, σ )= B
(|v − v∗|,cosθ

)
, cosθ =

〈
v − v∗
|v − v∗| , σ

〉
.

Moreover, we shall assume thatθ ranges only from0 to π/2. Not only is this sometimes considered as physic
realistic, but it is actually always possible to reduce to this case upon replacing the kernelB by[

B(v − v∗, σ )+B(v − v∗,−σ)
]
1cosθ�0. (37)

Indeed, the productf ′f ′∗ is invariant under this operation (from the physical point of view, this means that d
the undiscernability of particles, one may freely rename particles after collision). Finally, we shall denote bk the
unit vector parallel tov − v∗, so that

k = v− v∗
|v− v∗| , cosθ = k · σ.

More precisions will be given later on the assumptions thatB has to satisfy for us to be able to handle
corresponding Boltzmann equation.

On the other hand, in the Landau case, the matrix-valued functiona(z) will be of the form

a(z)= Ψ
(|z|)Π(z), Πij (z)= δij − zizj

|z|2 ,

whereΨ is a nonnegative measurable function. Of courseΠ(z) is the orthogonal projection uponz⊥.
In our previous study of the Boltzmann equation [1], we found that two mathematical objects play a cent

for the Boltzmann equation:
1) The cross-section for momentum transfer(at a given relative velocity),

M
(|v − v∗|)= ∫

SN−1

B(v − v∗, σ )(1− k · σ) dσ (38)

= ∣∣SN−2
∣∣ π/2∫

B
(|v− v∗|,cosθ

)
(1− cosθ)sinN−2 θ dθ. (39)
0
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We shall always think ofM as a function ofv− v∗, but we abuse notations by writingM(|v− v∗|) to recall that it
is a radially symmetric function.

2) The compensated integral kernel forQB(· ,1),

S
(|v− v∗|)= ∣∣SN−2

∣∣ π/2∫
0

[
1

cosN(θ/2)
B

( |v− v∗|
cos(θ/2)

,cosθ

)
−B(|v− v∗|,cosθ

)]
sinN−2 θ dθ. (40)

Here

QB(g,f )=
∫

RN×SN−1

B(v − v∗, σ )(g′∗f ′ − g∗f ) dv∗ dσ

stands for the bilinear Boltzmann operator. The kernelS is linked to the bilinear operator by the relation that
established in [1]: iff (v) is a distribution function, then

Sf ≡ S ∗ f =QB(f,1)=
∫

RN×SN−1

B(v − v∗, σ )(f ′∗ − f∗) dv∗ dσ ≡ Sf. (41)

Remark. By the change of variablez→ z/cos(θ/2),

∫
A

S(|z|) dz=
π/2∫
0

dθ sinN−2 θ

[ ∫
A/cos(θ/2)

B
(|z|,cosθ

)
dz−

∫
A

B
(|z|,cosθ

)
dz

]
.

This is an alternative way of definingS as a measure (note that the integral ofS on a domain which is starshape
with respect to the origin is always nonnegative).

It was shown in [1,2] that many properties of the Boltzmann collision operator were governed byM andS. Our
new definition of the Landau asymptotics is based on these two objects.

Definition 1. Let (Bn)n∈N be a sequence of admissible collision kernels for the Boltzmann equation, and
corresponding kernelsMn, Sn be defined as in formulas (38), (40). We say that(Bn) concentrates on grazin
collisions if

(i) Sn(|z|), |z|Mn(|z|) define sequences of measures which are bounded in total variation on compa
uniformly in n;

(ii) there exists a nonnegative, radially symmetric measurable functionM∞ such that

zMn

(|z|)−−−→
n→∞ zM∞

(|z|) locally weakly in the sense of measures;
(iii) for all θ0> 0,

Sθ0n
(|z|), |z|Mθ0

n

(|z|)−−−→
n→∞ 0 locally weakly in the sense of measures,

whereSθ0n ,Mθ0
n are associated to the truncated cross-sectionsB

θ0
n = Bn1θ�θ0 via formulas similar to (38), (40).

Remarks.

(1) The class of admissible cross-sections for the Boltzmann equation will be defined in Section 4. Ess
admissible cross-sections are those such thatM andS define meaningful mathematical objects.
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(2) Assumption (ii) is formally equivalent to the convergence ofMn toM∞, but our formulation is less sensitive
the behavior ofMn at the origin. This is important because of the nonintegrable singularity of the Ruthe
collision kernel.

(3) Condition (iii) means that only grazing collisions count in the limit.

Example. In view of Proposition 5 in Section 4, the family

Bn(z,σ )=Φn
(|z|)bn(cosθ)+ βn(cosθ)

|z|N
concentrates on grazing collisions as soon asΦn →Φ in L1

loc(R
N),

sup
1<λ�

√
2

Φn(λ|z|)−Φn(|z|)
λ− 1

∈L1
loc

(
RNz

)
, uniformly in n,

andbn, βn concentrate on grazing collisions in the sense of (21).

Actually we shall also be led to introduce a few additional technical conditions. The first one is a decay co
at infinity (this is to control large velocities). The second one ensures that “on the whole”, the sequence o
sections is truly long-range (this is to ensure the immediate damping of oscillations via the entropy prod
The third one is a smoothness technical condition used in the passage to the limit.

Condition of decay at infinity.

Mn

(|z|)= o(1) as|z|→∞, uniformly in n. (42)

Overall singularity condition. We require that

Bn(z,σ )�Φ0(|z|)b0,n(k · σ), (43)

whereΦ0(|z|) is a continuous nonnegative function, nonvanishing for|z| �= 0, and

∣∣SN−2
∣∣ π/2∫

0

b0,n(cosθ)(1− cosθ)sinN−2 θ dθ −−−→
n→∞ µ> 0. (44)

Smoothness of the approximation out of the origin.We require that

1√
Mn

−−−→
n→∞

1√
M∞

(45)

locally uniformly onRN \ {0}.

In realistic cases, this assumption is always satisfied, becauseMn is uniformly smooth away from the origin
Certainly this technical condition could be significantly relaxed, but we do not see any real motivation for th
overall singularity condition could be relaxed by only requiring (43) and (44) to hold for|z| ∈ (r,R), wherer and
R are arbitrary positive real numbers, andb0,n could be allowed to depend onr andR.

The three conditions above will be sufficient to prove the Landau approximation. Thanks to the gener
our definition, we shall be able to treat more complicated cases than the ones previously seen; for instanc

Bn
(|v − v∗|,cosθ

)
sinθ = |v− v∗|sinθ

(|v − v∗|2 sin2(θ/2)+ 1/n)2
, (46)

This family of collision kernels, used in quantum physics, is discussed in the Appendix.
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Another kind of kernels that we should now be able to handle is the one associated with the true Deby
section. Even if all the tools seem there to perform this study, we were discouraged by the extremely
computations involved (although there does not seem to be any real conceptual difficulty). Therefore we
check that the true Debye cross-section satisfies all our technical assumptions; for any interested reade
provide the partial results that we obtained.

Before formulating a statement we have to make our notion of solutions precise. We shall use the wea
introduced in [1] as a generalization of the well-known renormalized solutions of DiPerna and Lions [14].
motivations for this definition are given in the next section.

Definition 2. Let f ∈C(R+;D′(RNx ×RNv )) be a nonnegative function with finite mass and energy, in the se

sup
t�0

∫
f (t, x, v)

(
1+ |v|2)dx dv <+∞. (47)

Let B be the set of all functions of the formβ(f )= f/(1+ δf ), δ > 0. We say thatf is a renormalized solution
of Eq. (34)with a defect measureif

∀β ∈ B, ∂β(f )

∂t
+ v · ∇xβ(f )� β ′(f )Q(f,f ),

∀t � 0,
∫

R2N

f (t, x, v) dx dv =
∫

R2N

f (0, x, v) dx dv.
(48)

In the rest of the paper, we shall simply say thatf is a weak solution of Eq. (34).
Let us make some comments on this definition:
1. The classB can be considerably enlarged, but the interest of this extension is not clear. The imp

properties of the functionsβ in B are that they are strictly concave, vanish at the origin and thatβ ′(f ) decreases a
infinity faster than 1/(1+ f ).

2. If the inequality sign in the first line of (48) was replaced by an equality sign, then (formally, after u
the chain-rule formula) this equation would just be Eq. (34) multiplied byβ ′(f ). Thus definition 2 would coincid
with the usual definition of renormalized solutions.

3. The mass-conservation condition in the second line of (48) ensures that any smooth weak solutio
satisfy the equality in the first line of (48). If not,f would have to lose some mass for positive times (to see
multiply the equation by 1/β ′(f ) and integrate). Thus, this mass-conservation condition implies thatany smooth
weak solution is a strong, classical solution.

4. The precise meaning ofβ ′(f )Q(f,f ), i.e., therenormalized formulationof the collision operator, will be
given in Section 4 whenQ is the Boltzmann collision operator, in Section 5 whenQ is the Landau collision
operator. The important point is that we shall be able to define it using only the physical assumptions of b
mass and energy.

5. This notion may seem quite weak, and it is! These solutions cannot be considered as completely sat
answers to the Cauchy problem for Boltzmann or Landau equations. But in this work, we do not really w
construct well-behaved solutions to these equations: our goal is to prove that solutions to the Boltzmann
converge to solutions of the Landau equation in a certain asymptotic regime, using only the basic physical e
The weakness of the concept of solutions is a price that we pay for such a generality. Note also that our ma
is nontrivial even for smooth solutions. We however believe that developing a complete theory of smooth s
is the way towards further progress in the field.

We are now ready to state our main theorem.

Theorem 3. Let (f n) be a sequence of weak solutions to the Boltzmann equation with respective co
kernelBn, on[0, T ]×RNx ×RNv . Assume that(Bn) concentrates on grazing collisions, in the sense of Definitio1,
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and satisfies the conditions(42), (43), (45). Further assume that the sequence(f n) satisfies the physica
assumptions of finite mass, energy and entropy, together with a localization condition in the space variable:

sup
n

sup
t∈[0,T ]

∫
RNx ×RNv

f n(t, x, v)
[
1+ |v|2 + |x|2 + logf n(t, x, v)

]
dx dv <+∞, (49)

as well as the assumption of finite entropy production, i.e.

T∫
0

dt

∫
RNx

dxDn
(
f n(t, x, ·))<+∞, (50)

whereDn is the entropy production functional associated with the cross-sectionBn, as defined in Section6. Assume
without loss of generality, that for allp ∈ (1,+∞), f n → f weakly in w-Lp([0, T ];L1(RNx ×RNv )) asn→∞.

Then,f is a weak solution of the Landau equation with collision kernel

Ψ (|z|)= |z|2M∞(|z|)
4(N − 1)

. (51)

Moreover, the convergence off n to f is automatically strong.

The proof of this theorem is performed in Sections 6 and 7. Before undertaking it, we recall some fact
the Boltzmann equation and about the Landau equation (just what we will need in the sequel).

4. Reminders from the theory of the Boltzmann equation

The lack of strong enough a priori estimates for the Boltzmann equation has hindered the developme
theory for a very long time. To overcome this problem, DiPerna and Lions [13,14] suggested to write the e
in renormalized form, i.e., as in Definition 2. The main idea is that the renormalized operatorβ ′(f )QB(f,f ) is
expected to be sublinear ifβ ′(f )� C/(1+ f ), and therefore should make sense under the assumptions of
mass and energy. The problem of therenormalized formulation of the collision operatoris to give a meaningfu
definition ofβ ′(f )QB(f,f ) for all β in a large enough classB of nonlinearities, under the basic physical a pri
estimates.

When the Boltzmann collision kernel is locally integrable, then it is quite easy to find a renorm
formulation [14]. But this formulation does not cover the case of angular singularities. Moreover, it is defi
not well-suited for the limit of the Landau approximation. A more general renormalized formulation, suitab
our purposes, was introduced in our recent work [1].

Definition 4 (Renormalized formulation). By convention,

β ′(f )QB(f,f )≡ (R1)+ (R2)+ (R3), (52)

where

(R1)=
[
fβ ′(f )− β(f )] ∫

RN×SN−1

dv∗ dσB(f ′∗ − f∗), (53)

(R2)=
∫

N N−1

dv∗ dσB
[
f ′∗β(f ′)− f∗β(f )

]=QB

(
f,β(f )

)
, (54)
R ×S
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(R3)=−
∫

RN×SN−1

dv∗ dσBf ′∗Γ (f,f ′), (55)

Γ (f,f ′)= β(f ′)− β(f )− β ′(f )(f ′ − f ).

In the case which we shall consider,β(f )= f/(1+ δf ), then

Γ (f,f ′)= δ(f ′ − f )2
(1+ δf )2(1+ δf ′)

. (56)

Let us examine successively each of the three terms(R1), (R2), (R3).
1) First of all, by (41),

(R1)=
[
fβ ′(f )− β(f )]Sf,

whereS is the linear convolution operator with kernelS defined in (40). This should be taken as a definit
of (R1).

2) As for the second term(R2), it is defined by duality as follows,∫
(R2)ϕ(v) dv =

∫
R2N×SN−1

dv dv∗ dσB
[
f ′∗β(f ′)− f∗β(f )

]
ϕ

=
∫

R2N

dv dv∗f∗β(f )
[ ∫
SN−1

B(v − v∗, σ )(ϕ′ − ϕ)dσ,
]
.

For future use we introduce the linear adjoint Boltzmann operator: for givenv∗, it is defined by

T :ϕ  →
∫

SN−1

B(v − v∗, σ )(ϕ′ − ϕ)dσ. (57)

Equivalently, for a givenv∗ ∈ RN , T ϕ(v, v∗) is the adjoint off  →Q(δv∗, f ). And, of course,∫
(R2)ϕ(v) dv =

∫
R2N

dv dv∗f∗β(f )T ϕ(v). (58)

3) Finally, the third term isnonnegative, and can be given a sense as a locally integrable function.

In [1], we gave some sufficient conditions on the collision kernelB for getting satisfactory estimates o
(R1), (R2), (R3). Assumption B.1 below ensures thatB is not too singular in the angular variable (this mea
essentially that the cross-section for momentum transfer is finite, with an additional very slight reg
assumption), and also not too singular in the velocity variable (but borderline nonintegrable singularit
allowed). As for Assumption B.2 below, it controls the large-velocity behavior.

Assumption B.1 (At most borderline kinetic singularity). Assume that

B(z,σ )= β0(k · σ)
|z|N +B1(z, σ ), k = z

|z| , (59)

for some nonnegative measurable functionsβ0 andB1, and define

µ0 =
∫
N−1

β0(k · σ)(1− k · σ) dσ, (60)
S
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(|z|)= ∫

SN−1

B1(z, σ )(1− k · σ) dσ, (61)

M ′
1

(|z|)= ∫
SN−1

B ′
1(z, σ )(1− k · σ) dσ, (62)

where

B ′
1(z, σ )= sup

1<λ�
√

2

|B1(λz,σ )−B1(z, σ )|
(λ− 1)|z| .

We require that

µ0<+∞, and M1
(|z|), |z|M ′

1

(|z|) ∈ L1
loc

(
RN

)
.

Assumption B.2 (Behavior at infinity). As |z| →∞,

M
(|z|)= o(1), |z|M ′(|z|)= o

(|z|2). (63)

Example.Consider the model case where

B(v − v∗, σ )= |v − v∗|γ b(cosθ), sinN−2 θb(cosθ)∼Kθ−1−ν,

ν > 0,K > 0. Then Assumptions B.1 and B.2 allow 0> γ � −N , 0� ν < 2.

Remarks.

(1) Assumption B.1 is just a “simple” sufficient condition for the kernelsS and|z|M(|z|) to be bounded, locally
in the sense of measures. In fact this last property would suffice.

(2) Assumption B.2 could be relaxed to consider positive values ofγ such thatγ + ν < 2, but when dealing with
the Landau approximation this would not be interesting.

The following estimates were established in [1].

Proposition 5. If B satisfies AssumptionsB.1 andB.2, then
(i) S is bounded in the sense of measures, and more precisely,

S
(|z|)= λδ0 + S1

(|z|), (64)

whereδ0 is the Dirac mass at the origin,

λ=−∣∣SN−2
∣∣∣∣SN−1

∣∣ π/2∫
0

β0(cosθ) logcos(θ/2)sinN−2 θ dθ,

andS1 is a locally integrable function,∣∣S1
(|z|)∣∣� 2(N−4)/2

cos2(π/8)

[
NM1

(|z|)+ |z|M ′
1

(|z|)].
(ii) The linear operatorT is bounded fromW2,∞ to L∞, in the sense∣∣T ϕ(v)∣∣� 1

2
‖ϕ‖W2,∞|v − v∗|

(
1+ |v− v∗|

2

)
M
(|v− v∗|).
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Note thatλ in (i) satisfiesλ� |SN−1|/(4 cos2(π/8))µ0. As a consequence of this proposition, we obtained
following a priori control of(R1), (R2), (R3):

Proposition 6. Assume that the cross-sectionB satisfies AssumptionsB.1 and B.2, and letf be a weak solution
of the Boltzmann equation. LetBR(v) = {v ∈ RN, |v| � R}. Then, for allR > 0, the following a priori estimates
hold:

(i) (R1) ∈ L∞([0, T ];L1(RNx ×BR(v)));
(ii) (R2) ∈ L∞([0, T ];L1(RNx ;W−2,1(BR(v))));
(iii) (R3) ∈ L1([0, T ];L1(RNx ×BR(v))).

Even if we do not write it explicitly, all these estimates are quantitative and depend only on the estimatS
andT , and on the a priori estimates of mass and energy. Therefore, they will beuniformin n when we perform the
limit leading to the Landau approximation.

To conclude this section, we recall the existence results established in [14] and in [1]. They depend on
the collision kernel is singular or not.

Definition 7. The collision kernelB is said to benonsingularif B(z,σ ) ∈ L1
loc(R

N × SN−1). On the other hand, i
is said to present anangular singularityif, for all r,R > 0 there exists a functionb0(k · σ) such that

r � |z|�R "⇒ B(z,σ )� b0(k · σ),
where∫

SN−1

b0(k · σ) dσ =+∞.

Of course, for singularity to hold true, it is sufficient thatB(z,σ )�Φ0(|z|)b0(k · σ), whereb0 is as above, and
Φ0 is a nonnegative continuous function,Φ0> 0 if |z| �= 0.

Proposition 8.LetB satisfy conditionsB.1 andB.2. If in addition, eitherB is nonsingular, or presents an angul
singularity, then for all initial datumf0 satisfying∫

R2N

f0(x, v)
[
1+ |v|2 + |x|2 + logf0(x, v)

]
dx dv <+∞,

there exists a weak solution of the Boltzmann equation with initial datumf0.

We note that this proposition leaves open the case whereB does not present an angular singularity, bu
still nonintegrable (due to a kinetic singularity). Such cases are not supposed to be realistic, but they a
encountered in the physical literature as approximations of more realistic kernels: see Section 2.

5. Reminders from the theory of the Landau equation

Most of the considerations in the previous section easily adapt to the Landau equation. The renor
formulation of the Landau collision operator was already given several years ago by Lions [24], and further
in Villani [29]. Our presentation here differs only by details. Leta = aij (z) be the matrix appearing in the definitio
of the Landau collision operator. We define

b=∇ · a, c=∇ · b,
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where∇· denotes the divergence operator. More explicitly,

bj =
∑
i

∂iaij , c=
∑
ij

∂ij aij .

Because the matrixa is of the forma(z)= Ψ (|z|)Π(z), with Π a projection operator,

b(z)=−(N − 1)
zΨ (|z|)
|z|2 , c(z)=−(N − 1)∇ ·

[
zΨ (|z|)
|z|2

]
. (65)

We also define

ā = a ∗ f, b̄ = b ∗ f, c̄= c ∗ f,
and we immediately note that the Landau operator can be rewritten as

QL(f,f )=∇v · (ā∇vf − b̄f ).
In order to define a renormalized formulation of the Landau equation, it is sufficient to make the foll

assumptions.

Assumption L.1 (Integrability). We require that|b(z)| ∈L1
loc(R

N), and|c(z)| be a locally bounded measure.

Assumption L.2.Ψ (|z|)= o(|z|2) as|z|→∞.

Remark. WhenN � 3 andΨ (|z|)= |z|−(N−2), then

c(z)=−(N − 1)∇ ·
(

z

|z|N
)
=−(N − 1)

∣∣SN−1
∣∣δ0(z).

Definition 9. Let f be a distribution function with finite mass and energy, satisfying the additional a priori est

ā∇vβ(f )∇vβ(f ) ∈L1
loc

([0, T ];RNx ×RNv
)
. (66)

Then, by convention, the renormalized Landau collision operator is given by

β ′(f )QL(f,f ) = −c̄[fβ ′(f )− β(f )] (RL
1 )

+∇v ·
[∇v · (āβ(f ))− 2b̄β(f )

]
(RL

2 )

− β ′′(f )
β ′(f )2

ā∇vβ(f )∇β(f ) (RL
3 ).

(67)

Remarks.(1) Expressions(RL
1 ) and(RL

2 ) in (67) are well-defined sincēa, b̄, c̄ ∈L1
loc. In view of assumption (66)

the expression(RL
3 ) is also well-defined as an almost everywhere finite function. Moreover,(RL

3 ) is nonnegative
sinceβ is concave. Forδ = 1, we find−β ′′(f )/β ′(f )2 = 2(1+ f ).

(2) Formally,

∇v ·
(
āβ(f )

)− 2b̄β(f )= ā∇vβ(f )− b̄β(f ),
so that(RL

2 ) can be rewritten as

QL

(
f,β(f )

)
,

whereQL is now the bilinear Landau operator, defined by duality:∫
N

QL

(
f,β(f )

)
dv =

∫
2N

f∗β(f )TLϕ dv dv∗,

R R
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[TLϕ](v, v∗)= 2b(v− v∗) · ∇ϕ(v)+ a(v− v∗) :D2ϕ(v). (68)

Here we used the notationA : B =∑
AijBij . Thus there is an excellent analogy between(R2) and(RL

2 ). And
since(RL

1 ) has the form−[fβ ′(f )− β(f )]Sf , whereS is a convolution operator, there is a complete anal
between (52) and (67).

(3) The exact analogues of estimates (i)–(iii) of Proposition 6 hold for the Landau equation
Assumptions L.1 and L.2. In particular, this includes the additional estimate (66) which is required in the de
of the renormalized formulation. Details (under somewhat different assumptions) can be found in Lions [2

(4) One could be curious about a precise a priori definition ofā∇vβ(f )∇vβ(f ), for a functionf which is only
assumed to have finite mass and energy. A simple (and natural) way to define it is by

lim inf
ε→0

āε∇vβ(f )∇vβ(f ),

whereāε is defined as̄a, except thatΨ (|z|) is replaced by a cutoffed versionΨε(|z|) = Ψ (|z|)χε(|z|), with χε
smooth, identically vanishing for|z|� ε and identically equal to 1 for|z|� 2ε (this definition does not depend o
the particular choice ofχε). Then we can say thatāε∇vβ(f )∇vβ(f ) lies inL1

loc([0, T ] ×RNx ×RNv ) if

√
Ψε(|v − v∗|)Π(v − v∗)

√
f∗∇β(f ) ∈ L2([0, T ] ×RNv∗;L2

loc

(
RNx ×RNv

))
.

This last object always makes sense as a distribution sinceβ(f ) ∈ L∞,
√
f∗ ∈ L2, and∇ · (Π√

Ψε) =√
Ψε(∇ ·

Π) ∈ L2 (becauseΨε vanishes near the origin). Note that the identity∇ · (Π√
Ψε) =√

Ψε(∇ ·Π) follows from
Π∇√

Ψε = 0. This remark was already used in the end of [12] for a similar problem.
(5) In the proof of our main result, we shall show that Assumptions L.1 and L.2 are automatically satisfi

the limitΨ , and that the a priori estimate (66) automatically holds for the limit distribution function.

6. Damping of oscillations via entropy production

Our main result asserts that the limit of a sequence of solutions of particular Boltzmann equations is it
solution of a Landau equation. As is well-known, passing to the limit in such nonlinear equations is mos
time impossible if the sequence of solutionsoscillatestoo much, in the sense that the convergence is only w
A noticeable exception to this rule is the case of the Boltzmann equation with cutoff, for which one can pas
limit using only weak compactness [14].

The point which we want to discuss in this section, and which is a crucial first step towards our main re
that in the limit that we are investigating,there are no such oscillations.

If we consider a sequence(f n) of solutions to a given Boltzmann equation, satisfying the usual a priori bo
and converging to a weak limitf , it is known from [1] (see [25] for preliminary results) that the convergenc
automatically strong if the collision kernel is singular (and this is not true if the collision kernel is not singular
The situation that we are investigating now is almost the same: even if the collision kernels that we conside
necessarily singular, they become singular in the limit of grazing collisions, as ensured by the “overall sin
condition” (43). This is whystrong compactness will appear in the limit of grazing collisions.
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The basic ingredient towards the proof of this immediate damping of oscillations is the following propo
extracted from [2].

Proposition 10(Control of velocity oscillations).Assume that(Bn) concentrates on grazing collisions, and satisfi
the overall singularity condition(43). Then, there exists a sequenceα(n)→ 0, such that

α(n)∫
0

b0,n(cosθ)(1− cosθ)sinN−2 θ dθ −−−→
n→∞ µ> 0,

π/2∫
α(n)

b0,n(cosθ)sinN−2 θ dθ ≡ψ(n)−−−→
n→∞ +∞.

(69)

LetχR(v) be a smooth cutoff function, identically1 for |v|�R and identically 0 for|v| �R+ 1, andf n(v) be
a distribution function depending on thev variable. Letf nR = χRf

n be the localized distribution function, and l
F
√
f nR be the Fourier transform of its square root. Then for allA> 0, andn large enough,∫
|ξ |�A

∣∣F√f nR(ξ)∣∣2dξ � C(N,χR,f
n)

min[ψ(n),µA2]
[
Dn
(
f n
)+ ∫

RNv

f n(v)
(
1+ |v|2)dv]. (70)

Moreover, the constantC depends onf n only via an upper and a lower bound on the density
∫
f n dv, and upper

bounds on the energy
∫
f n|v|2 dv and the entropy

∫
f n logf n dv.

Combining Proposition 10 with the a priori estimate (50), the renormalized formulation, velocity-ave
lemmas [15,22] and some work, one concludes to the statement in Theorem 3 thatthe convergence is automatica
strong. The complete proof is not so short, but it is exactly similar to the one given in [1] for sequences of so
to the Boltzmann equation; so we skip it and refer to this work for details.

We conclude this section by displaying two basic examples for the sequencesα(n),ψ(n) which control the
oscillations in Proposition 10.

Examples. (1) Consider the case sinN−2 θbn(cosθ) = ζn(θ), and letζn(θ) = n3ζ(nθ), whereζ has compac
support in[0,π/2]. This framework is equivalent to the one considered in Desvillettes [11]. Then ifa is any
point such that

∫ a
0 ζ and

∫ π/2
a

ζ are positive, we can letα(n)= an−1, and it follows that

α(n)∫
0

ζn(θ)(1− cosθ) dθ =
a∫

0

n2
(

1− cos
θ

n

)
ζ(θ) dθ−−−→

n→∞
1

2

a∫
0

θ2ζ(θ) dθ.

On the other hand,

π/2∫
an−1

ζn(θ) dθ = n2

π/2∫
a

ζ(θ) dθ−−−→
n→∞ +∞.

(2) For the approximate Debye potential discussed in the Appendix, Eq. (A.1) below, we write

Bn
(|z|,cosθ

)
�
( |z|

4

)(
1 1θ�(π/2)n−1

4

)
,

4 max(|z|,1) logn sin (θ/2)
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and we chooseα(n)= n−1/2, so that on one hand

1

logn

n−1/2∫
(π/2)n−1

(1− cosθ)

sin4(θ/2)
sinθ dθ ∼ 8

logn

n−1/2∫
(π/2)n−1

dθ

θ
−−−→
n→∞ 4,

while on the other hand

1

logn

π/2∫
n−1/2

sinθ dθ

sin4(θ/2)
∼ n

4 logn
−−−→
n→∞ +∞.

7. Proof of the Landau approximation

We begin with two important lemmas.

Lemma 11.If (Bn) concentrates on grazing collisions, in the sense of Definition1 in Section3, then

Sn
(|z|)−−−→

n→∞
1

4
∇ · (zM∞

(|z|))
weakly in the sense of measures.

Remarks.

(1) Formally,∇ · (zM∞(|z|)) = |z|M ′∞(|z|) + NM∞(|z|), whereM ′∞ denotes the (distributional) derivative
M∞ on the real line.

(2) The limit coincides with the negative of the kernelc in (65) if M∞(|z|)= 4(N − 1)Ψ (|z|)/|z|2.
(3) As a particular case, ifBn(|v − v∗|, σ ) = bn(k · σ)/|z|N , with an total angular cross-section for moment

transferµn→ µ∞, thenSn = λnδ0, where

λn ≡−∣∣SN−1
∣∣∣∣SN−2

∣∣ π
2∫

0

dθ sinN−2 θbn(cosθ) logcos(θ/2) dθ−−−→
n→∞

|SN−1|
4

µ∞.

Proof of Lemma 11. From Definition 1, we know that, up to extraction of a subsequence,Sn converges to a signe
measure, locally weakly in the sense of measures, and that, for allθ0,

π/2∫
θ0

[
1

cosN(θ/2)
Bn

( |z|
cos(θ/2)

,cosθ

)
−Bn

(|z|,cosθ
)]

sinN−2 θ dθ → 0

(weakly). Thus we may consider only the contribution of anglesθ � θ0, whereθ0 is small enough.
Next, letϕ(z) be a test-function with compact support. By the change of variablesz→ z/cos(θ/2),

∣∣SN−2
∣∣ ∫
RN

dz

θ0∫
0

dθ sinN−2 θ

[
1

cosN(θ/2)
Bn

( |z|
cos(θ/2)

,cosθ

)
−Bn

(|z|,cosθ
)]
ϕ(z) dz

= ∣∣SN−2
∣∣ ∫
N

dz

θ0∫
dθ sinN−2 θBn

(|z|,cosθ
)[
ϕ
(
zcos(θ/2)

)− ϕ(z)]. (71)
R 0
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Sinceϕ is smooth and compactly supported,

ϕ
(
zcos(θ/2)

)− ϕ(z)=−∇ϕ(z) · z(1− cos(θ/2)
)+ O

(|z|2θ4).
The error termO(|z|2θ4) is negligible in the limit: indeed,

|z|2
θ0∫

0

Bn
(|z|,cosθ

)
θ4 sinN−2 θ dθ = O

(
θ2

0 |z|2
)
Mn(|z|)

converges to 0 locally in measure. Therefore, up to a small error O(θ2
0), the expression in (71) is well approximat

by

−|SN−2|
4

∫
RN

dz

[ θ0∫
0

dθ sinN−2 θBn
(|z|,cosθ

)
(1− cosθ)

]
z · ∇ϕ(z)−−−→

n→∞ −1

4

∫
RN

[
M∞

(|z|)z] · ∇ϕ(z) dz.
This proves our claim. ✷

In the next lemma, we are interested in the behavior of theTn ’s as defined in (57).

Lemma 12.Let Tn be the operator associated withBn as in formula(57), where(Bn) is a sequence of collisio
kernels concentrating on grazing collisions. Then,

Tn → T∞ in distributional sense,

where

T∞ϕ(v)=−1

2
M∞

(|v− v∗|)(v − v∗) · ∇ϕ(v)+ M∞(|v− v∗|)|v− v∗|2
4(N − 1)

Π(v − v∗) :D2ϕ(v). (72)

Remarks.

(1) This property is underlying already existing proofs of the Landau approximation in a spatially homog
context. But the variants which had been used so far, were based on symmetrization with respectv, v∗,
which would be a bad idea in the present case.

(2) If we setM∞(|z|)= 4(N − 1)Ψ (|z|)/|z|2, then the linear operatorT∞ coincides withTL in formula (68).

Proof of Lemma 12. Let us recall from [1, proof of Proposition 4] that

Tnϕ =−
∫

SN−1

dσBn(v − v∗, σ )(1− k · σ)v − v∗
2

· ∇ϕ(v)

+
∫

SN−1

dσBn(v − v∗, σ )|v − v∗|2
1∫

0

ds(1− s)
〈
D2ϕ

(
v + s(v′ − v)) · v′ − v|v − v∗| ,

v′ − v
|v − v∗|

〉
. (73)

Here we have used the fact that|v′ − v| = |v− v∗|sin(θ/2).
Our goal is to show thatTnϕ converges toT∞ϕ in D′(RNv ×RNv∗); so we can assume that(v, v∗) stays within a

bounded subset ofRN ×RN . By using assumption (iii) of Definition 1 and estimate (ii) in Proposition 5, it is e
to show that the contribution of “large” deviation angles in (73) is negligible and therefore one can assu
θ � θ0 whereθ0 is arbitrarily small.
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We change variables to separateθ from the other coordinates, writing the spherical decomposition

σ = (cosθ,sinθφ), φ ∈ SN−2,

where the first component is the projection ontoRk . We note that

v′ − v
|v− v∗| =

σ − k
2

.

Sinceϕ is smooth and compactly supported, we find that, up to an errorε(θ0) which goes to 0 asθ0 → 0, Tnϕ
is well approximated by

−Mn

(|v− v∗|)v − v∗
2

· ∇ϕ(v)+
π/2∫
0

dθ sinN−2 θBn
(|v − v∗|,cosθ

)|v − v∗|2
× 1

2

[ ∫
SN−2

〈
D2ϕ(v) · σ − k

2
,
σ − k

2

〉
dφ

]
.

We shall now study the behavior of the integral in square brackets. Let(λij )1�i,j�N be the components of th
symmetric matrixD2ϕ(v), where the first component corresponds to the axisk. If we separate the first compone
from the other ones, the components ofσ − k are((cosθ − 1),sinθφ). Therefore, in the term involvingλ11 there
is a factor(cosθ − 1)2, of order 4 inθ , and this term disappears in the limitn→∞. By symmetry with respect to
φ, the terms withλjk , j �= k, also disappear. We are only left with theλii , i = 2, . . . ,N , and they all appear with
the same coefficient, which is

1

4
sin2 θ

∫
SN−2

(e · φ)2dφ, |e| = 1.

By a classical computation,∫
SN−2

(e · φ)2 dφ = ∣∣SN−2
∣∣ ∫ π0 cos2α sinN−3α dα∫ π

0 sinN−3α dα
= |SN−2|
N − 1

.

On the whole, using sin2 θ � 2(1− cosθ) asθ → 0, we find∫
SN−2

dφ

〈
D2ϕ(v) · σ − k

2
,
σ − k

2

〉
� |SN−2|(1− cosθ)

2(N − 1)
Π(v − v∗) :D2ϕ(v).

Here, by “�” we mean again “up to an error which goes to 0 asθ0 → 0”. The conclusion follows immediately.✷
After these preparations, we finally turn to the proof of our main result.

Proof of Theorem 3. Let (f n) be a sequence of weak solutions of the Boltzmann equation, satisfyin
assumptions of Theorem 3. Without loss of generality we can assume thatf n → f weakly, and our goal is to
pass to the limit in the renormalized equation satisfied byf n. By the strong compactness discussed in Sectio
we have in fact strong convergenceoff n tof ; therefore it is immediate that(∂t+v ·∇x)β(f n)→ (∂t+v ·∇x)β(f )
in the sense of distributions. Next, combining Lemmas 11 and 12 above, the estimates recalled in Sections
the technical assumption (42) and the strong compactness again, it is an easy task to show that

(R1)
n→ (R1)

∞, (R2)
n→ (R2)

∞ in weak sense,
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with obvious notations. The proofs follow the very same lines as in [1, Section 4] and we skip them to
repetition.

It remains to show that

(R3)
∞ � lim inf

n→∞ (R3)
n. (74)

This is considerably more difficult that the similar problem treated in [1] because we cannot rely on F
lemma any more. All the rest of this section is devoted to the proof of (74), which will conclude the pr
Theorem 3. ✷

Without loss of generality, we only consider the caseδ = 1, i.e.β(f )= f/(1+ f ). In view of (55) and (56),

(R3)
n =

∫
RN×SN−1

dv∗ dσ
(
f n
)′
∗
(
1+ f n)′Bn(v − v∗, σ )[β(f n)′ − β(f n)]2.

Our argument is somewhat lengthy and a little bit intricate, and we shall sometimes skip easy verificat
a preliminary step, we establish a crucial a priori bound stemming out (once again) of the entropy pro
estimate.

Lemma 13(Entropy production bounds).

sup
n∈N

T∫
0

dt

∫
RN×R2N×SN−1

dx dv dv∗ dσBn(v − v∗, σ )
[
f n∗ + (f n)′∗][β(f n)− β(f n)′]2<+∞.

Proof of Lemma 13. By the standard inequality(x − y) log(x/y)� 4(
√
x −√

y)2, we deduce from the entrop
production bounds that

sup
n∈N

∫
dt dx dv dv∗ dσBn

(√(
f n
)′(
f n
)′
∗ −

√
f nf n∗

)2
<+∞.

Let us introduce an increasing Lipschitz functionP , to be precised later. Clearly,

sup
n∈N

∫
dt dx dv dv∗ dσBn

(√(
f n
)′(
f n
)′
∗ −

√
f nf n∗

)2[P(f n)′ − P(f n)
(f n)′ − f n

]
<+∞. (75)

Just as in [31], we write√
f ′f ′∗ −

√
ff∗ = 1

2

(√
f ′ +√f )(√f ′∗ −

√
f∗
)+ 1

2

(√
f ′ −√f )(√f ′∗ +

√
f∗
)
,

plug this inside (75) and expand the square, to find

sup
n

{ ∫
Bn
[√(

f n
)′
∗ +

√
f n∗
]2(√

f n −
√(
f n
)′ )2P(f n)′ − P(f n)

(f n)′ − f n

+
∫
Bn
[(
f n
)′
∗ − f n∗

][(
f n
)′ − f n]P(f n)′ − P(f n)

(f n)′ − f n
}
<+∞ (76)

(there is also another nonnegative term, that we throw away). By pre-postcollisional change of variab
symmetry, the second integral can be rewritten as∫

Bn
[(
f n
)′
∗ − f n∗

][
P
(
f n
)′ − P (f n)]= ∫ BnP

(
f n
)[(
f n
)′
∗ − f n∗

]
=
∫
dt dx dv dv∗Sn

(|v − v∗|)P (f n)f n∗ ,
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,

where we have used the Cancellation Lemma, formula (41). This integral is a priori bounded as soon asP ∈ L∞,
since in that case(Sn ∗ P)(v∗)� C(1+ |v∗|2). ChoosingP(f )= β(f )= f/(1+ f ), from the preceding remark
formula (76) and the identity(√

f ′ −√f )2β(f ′)− β(f )
f ′ − f = [β(f ′)− β(f )]2 (1+ f )(1+ f ′)

(
√
f +√f ′)2

,

we get

sup
n

∫
Bn
[√(

f n
)′
∗ +

√
f n∗
]2[
β
(
f n
)′ − β(f n)]2 (1+ f n)(1+ f n)′

[√f n +√(f n)′]2 <+∞.

To conclude, it suffices to note that(1+ f )(1+ f ′)/(
√
f +√f ′)2 � 1/2. ✷

Remark. Lemma 13 will imply the estimate

T∫
0

dt

∫
RN×R2N

dx dv dv∗ ā∇vβ(f )∇vβ(f ) <+∞.

To see this, writeBn(g′ −g)2 = Bn|v−v∗|2 sin2(θ/2)(g′ −g)2/|v′ −v|2 (whereg = β(f )) and pass to the limit a
n→∞ in the same way as below. This remark shows that the estimateā∇vβ(f )∇vβ(f ) ∈L1

loc, which is required
in our definition of renormalized solutions, is satisfied. In fact, we could even remove the “loc”!

We now come back to the main argument.

Proof of (74). In view of our a priori bounds, we only need to show that for all smooth nonnegative test-fun
ϕ(t, x, v) with compact support in[0, T ] ×RNx ×RNv ,∫

(R3)
∞ϕ2dv dx dt � lim inf

n→∞

∫
(R3)

nϕ2dv dx dt. (77)

We divide the proof into six steps.
Step1. By the usual pre-postcollisional change of variables(v, v∗, σ )→ (v′, v′∗, k), which has unit Jacobian

we rewrite
∫
(R3)

nϕ2 as∫
(R3)

nϕ2dv dx dt =
∫
f n∗
(
1+ f n)Bn(|v − v∗|,cosθ

)[
β
(
f n
)′ − β(f n)]2(ϕ′)2dσ dv dv∗ dx dt.

Step2. By monotonicity, we only need to prove the result whenBn is replaced byχε(|v−v∗|)Bn(|v−v∗|,cosθ),
whereε > 0 andχε(|z|) is a smooth cutoff function, identically vanishing for|z| � ε, |z| � ε−1. This truncation
will save us from considerable trouble associated with small relative velocities.

Step3. Let us introduce

δn
(|v − v∗|, θ)= |SN−2|sinN−2 θBn(|v− v∗|,cosθ)|v− v∗|2(1− cosθ)

Mn(|v − v∗|)|v − v∗|2 .

By construction,
∫ π/2

0 δn(|v − v∗|, θ) dθ = 1. We again introduce a spherical system of coordinates(θ,φ) for σ .
By Jensen’s inequality,

∫
(R3)

nϕ2 is greater than

1

2

∫
f n∗
(
1+ f n)Mn

(|v − v∗|)|v − v∗|2[ π/2∫
δn
(|v− v∗|, θ)ϕ′β(f n)′ − β(f n)|v′ − v| dθ

]2

dφ dv dv∗ dx dt

0
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= 1

2

T∫
0

dt

∫
RN

dx

∫
R2N

dv dv∗
∫

SN−2

dφ(a)2n, (78)

where

(a)n ≡
√
f n∗
√

1+ f n
π/2∫
0

dθ sinN−2 θ
|SN−2|Bn(|v − v∗|,cosθ)|v− v∗|2(1− cosθ)√

Mn(|v− v∗|)|v− v∗|2
ϕ′
[
β(f n)′ − β(f n)

|v′ − v|
]

=√f n∗√1+ f n
π/2∫
0

|v− v∗|ηn
(|v − v∗|, θ)ϕ′[β(f n)′ − β(f n)|v′ − v|

]
dθ.

The factor 1/2 in (78) comes from the identity

1

|v− v∗|2 = 1

2

(
1− cosθ

|v′ − v|2
)
,

and we have introduced the quantity

ηn
(|v− v∗|,cosθ

)= ∣∣SN−2
∣∣sinN−2 θ

Bn(|v− v∗|,cosθ)(1− cosθ)√
Mn(|v − v∗|) . (79)

From the fact that(Bn) concentrates on grazing collisions, we deduce thatηn
√
Mn converges toM∞(|z|)δθ=0,

locally in the sense of measures, onRN ×[0,π/2]. Combining this with (45), we deduce that for all bounded o
setΩ ⊂ RN with 0 /∈ 'Ω ,

ηn
(|z|,cosθ

)−−−→
n→∞

√
M∞(|z|)δθ=0 (80)

weakly in the sense of measures onΩ × [0,π/2].
To conclude the proof it is sufficient to show that

(a)n→ (a)∞ (81)

in the sense of distributions, where

(a)∞ =√f∗√1+ f
√
M∞(|v− v∗|)|v− v∗|2ϕ∇vβ

(
f n
) · eφ.

Here eφ = eφ(v, v∗) is a unit vector orthogonal tok = (v − v∗)/|v − v∗|, with coordinateφ in our system of
spherical coordinates. The convergence of(a)n to (a)∞ should hold inD′([0, T ] × RNx × RNv ×RNv∗ × SN−2

φ ) (as
in the other weak limits considered below). If (81) holds true, then the proof of (77) follows by Jensen’s ine
(convexity of the square function) in the form∫

(a)2∞ � lim inf
n→∞

∫
(a)2n,

and the formula

∀K ∈ RN,

∫
SN−2

(K · eφ)2dφ = |SN−2|
N − 1

|ΠK|2

(cf. the proof of Lemma 12).
We immediately note a mathematical subtlety: it is not always possible to defineeφ in a smooth way on

the sphereSN−1 (think that there is no smooth field of unit tangent vectors on spheres of even dimensio
convergence inD′(RNv × RNv∗ × SN−2

φ ) seems meaningless. But what we really wish to prove is a local prop

that is
∫
(a)2∞ � lim inf

∫
(a)2n for all (bounded) open setA in [0, T ] × RNx × RNv × RNv × SN−2; so we only
A A ∗ φ
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have to prove(a)n → (a)∞ on “sufficiently small” open sets; the general case can then be obtained by
partitions of unity, etc. And since we have already cut out small values ofv − v∗, we may assume that th
projection ofA onto RNv × RNv∗ lies in a neighborhood on which one can define spherical coordinates with
(v − v∗)/|v − v∗|, in a smooth way (with respect tov, v∗). From now on, we work in such an open subsetA of
[0, T ] ×RNx ×RNv × RNv∗ × SN−2

φ , which will also be assumed to be smooth and bounded.
Also, we shall not really prove that(a)n→ (a)∞, because the lack of smoothness of the square root functi√
f n∗ might cause technical problems. Instead, we shall replace

√
f n∗ by sα(f n∗ ), wheresα is a smooth (Lipschitz

bounded approximation of the square root,sα(f )�
√
f , sα(f )→√

f asα→ 0, the convergencebeing monoton
Denoting by(̃a)n,α this modification of(a)n, we shall prove (with obvious notations) that

(̃a)n,α−−−→
n→∞ (̃a)∞,α in the sense of distributions. (82

This will entail that, for eachα > 0,∫
(̃R3)∞α ϕ2 � lim inf

n→∞

∫
(̃R3)nαϕ

2 � lim inf
n→∞

∫
(R3)

nϕ2, (83)

where(̃R3)∞α , (̃R3)nα are just the same as(R3)
∞, (R3)

n, but withf∗ replaced bysα(f∗)2. Once (83) is established
if we let α→ 0, Beppo Levi’s monotone convergence theorem will imply the same inequality with(R3)

∞ in place

of (̃R3)∞α , and the conclusion will follow.
In the sequel, we shall drop the subscriptα and write justs(f ), (a)n, etc.
Step4. From the strong convergence of the sequencef n we know that

√
1+ f n → √

1+ f , strongly in
L2

loc([0, T ] × RNx × RNv ). Therefore, to prove (82) it is sufficient to prove the convergence of the distrib

(b)n ≡ s
(
f n∗
) π/2∫

0

ηn
(|v − v∗|, θ)|v − v∗|[ϕ′β(f n)′ − β(f n)|v′ − v|

]
dθ, (84)

in weakL2([0, T ] ×RNx ×RNv × RNv∗ × SN−2
φ ), or more rigorously inL2(A), whereηn is defined in (79), to

(b)∞ = s(f∗)
√
M∞(|v − v∗|)|v− v∗|2ϕ∇vβ(f ) · eφ.

From (80) and the boundedness ofA, we have

ηn|v − v∗|→ δθ=0 ⊗
√
M∞(|v− v∗|)|v− v∗|2

weakly in the sense of measures. By Lemma 13 and Jensen’s inequality, we can see that

sup
n

∥∥(b)n∥∥L2 <+∞;
therefore we only have to check that

(b)n−−−→
n→∞ (b)∞ in distributional sense. (85

Step5. At this point, we want to partly symmetrize the integrand in (84). This will be done with the help o
following auxiliary lemma:

Lemma 14. If χ(t, x, v, v∗, φ, θ) is a smooth function supported inA × [0,π/2], and if Fn andGn converge
to F andG respectively, locally inLp([0, T ] × RNx × RNv ) and in Lq([0, T ] × RNx × RNv ) respectively, with
(1/p)+ (1/q)= 1, then

π/2∫
0

dθ ηn
(|v− v∗|, θ)χ(t, x, v, v∗, φ, θ)Fn(v′)Gn(v′∗)→√

M∞(|v − v∗|)χ(t, x, v, v∗, φ,0)F (v)G(v∗) (86)

in D′(A).



90 R. Alexandre, C. Villani / Ann. I. H. Poincaré – AN 21 (2004) 61–95

les,

as

,

we

e same

it

t

Proof of Lemma 14. Letψ be a test-function in the variables(t, x, v, v∗, φ). We have∫
dt dx dv dv∗ dφ dθ ηn

(|v − v∗|, θ)ψχ(Fn)′(Gn)′∗
=
∫
dt dx dv dv∗ dσ

ηn(|v − v∗|, θ)
|SN−2|sinN−2 θ

ψχ
(
Fn
)′(
Gn
)′
∗

whereσ can be seen as a function ofv, v∗, θ andφ via our choice of spherical coordinates; and similarlyφ can be
seen as a function ofv, v∗ andσ : φ = φ(v, v∗, σ ). We can now perform a pre-postcollisional change of variab
and find that the integral above coincides with∫

dt dx dv dv∗ dσ
ηn(|v− v∗|, θ)
|SN−2|sinN−2 θ

ψ(t, x, v′, v′∗, φ′)χ(v′, v′∗, φ′, θ)
(
Fn
)(
Gn
)
∗,

whereφ′ = φ(v′, v′∗, k) (the notationk = (v − v∗)/|v− v∗| still in use). Of course this integral can be rewritten∫
dt dx dv dv∗ dθ dφηn

(|v − v∗|, θ)ψ(t, x, v′, v′∗, φ′)χ(v′, v′∗, φ′, θ)(Fn)(Gn)∗.
As θ → 0, we havev′ → v, v′∗ → v∗, σ → k andφ′ → φ; and all of this is uniform onA. In particular,∫

dθ dφηn
(|v − v∗|, θ)ψ(t, x, v′, v′∗, φ′)χ(v′, v′∗, φ, θ)

→√
M∞(|v − v∗|)ψ(t, x, v, v∗, φ)χ(v, v∗, φ,0),

at least in weak sense. Combining this with the strong convergenceofFn(t, x, v)Gn(t, x, v∗) toF(t, x, v)G(t, x, v∗)
we easily conclude the proof of the lemma.✷

Now, let us write(b)n as

s
(
f n∗
)∫

ηn|v− v∗|
(
ϕ′ − ϕ

2

)
β(f n)′ − β(f n)

|v′ − v| dθ

+ s(f n∗ )∫ ηn|v− v∗|
(
ϕ′ + ϕ

2

)
β(f n)′ − β(f n)

|v′ − v| dθ. (87)

Sinceϕ is smooth, we have|ϕ′ −ϕ|� C|v′ − v|. It is easy to see that the first integral in (87) is bounded inL2. We
want to check that it actually goes weakly to 0, and for this we just have to check that it converges to 0 inD′(A).
Sinceβ(f n) converges toβ(f ) in all Lploc spaces, 1� p <∞, this will be a consequence of Lemma 14, where
setχ(t, x, v, v∗, φ)= (ϕ−ϕ′)/|v− v′|, Fn = β(f n) andGn = 1 (note thatχ is not a smooth function of(v, v′)!).
Then we see that the first integral in (87) can be written as the difference of two integrals which have th
weak limit asn→∞.

Next, we wish to prove that

(e)n ≡
∫
dθηn

(|v − v∗|, θ)[s(f n)∗ − s(f n)′∗](ϕ + ϕ′
2

)
β(f n)′ − β(f n)

|v′ − v| −−−→
n→∞ 0 (88)

in weak sense.
Let κ(v, v′) be a smooth cut-off function with support in(|v− v′|� δ). By another application of Lemma 14,

is not difficult to show that(e)nκ converges weakly to 0; thus we only have to worry about small values of|v′ − v|.
We can assume thats is chosen in such a way that|s(x)− s(y)| � C|β(x)− β(y)|; then, using the fact tha

|v′∗ − v∗| = |v′ − v|, we can bound the integral of|(e)n| over the region(|v − v′|� δ) by
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Cδ

∫
ηn
(|v − v∗|, θ)∣∣∣∣β(f n)∗ − β(f n)′∗|v′∗ − v∗|

∣∣∣∣∣∣∣∣β(f n)− β(f n)′|v′ − v|
∣∣∣∣dσ dv dv∗ dx dt

� Cδ

∫
ηn
(|v − v∗|, θ)(β(f n)∗ − β(f n)′∗|v′∗ − v∗|

)2

dσ dv dv∗ dx dt,

where we have used the Cauchy–Schwarz inequality. By Lemma 13, this expression is bounded like O(δ) and
hence negligible asδ→ 0.

As a conclusion of Step 5, using (88) we see that (85) holds if

(c)n−−−→
n→∞ (c)∞ (89)

in distributional sense, where(c)n is the symmetric expression∫
dθηn

(|v− v∗|, θ) [s(f n)∗ + s(f n)′∗]
2

(
ϕ + ϕ′

2

)
β(f n)′ − β(f n)

|v′ − v| ,

and

(c)∞ = s(f∗)
√
M∞

(|v− v∗|)ϕ∇vβ(f ) · eφ.
Step6. Now that we have obtained a symmetric enough expression, we can use a duality argument to pr

Let us multiply(c)n by a smooth, compactly supported test-functionψ(v, v∗). Let alsoκ be a smooth test-functio
in the variablest, x,φ. The functionsψ andκ are chosen in such a way thatψκ is supported inA. We shall use
the shorthandψ ′ =ψ(v′, v′∗). What we have to prove is∫

(c)nψκ dθ dφ dv dv∗ dx dt−−−→
n→∞

∫
(c)∞ψκ dθ dφ dv dv∗ dx dt. (90)

One should be careful in writing down the weak formulation for the integral on the right-hand side of (90
formula

ψ(v, v∗)−ψ(v′, v′∗)� |v − v′|(∇v −∇v∗)ψ(v, v∗) · eφ (θ → 0) (91)

shows that this integral can be rewritten as

1

2

∫
dt dx dφ dv dv∗ dθ κs(f∗)

√
M∞ϕβ(f )(∇v −∇v∗)ψ(v, v∗) · eφ. (92)

One should not be surprised by the non-appearance of derivatives of
√
M∞: this can be attributed to the fact th

∇√
M∞ is parallel tov − v∗.

By the pre-postcollisional change of variables, the integral on the left-hand side of (90) is

1

2

∫
dt dx dφ dv dv∗ dθ κ

[s(f n)∗ + s(f n)′∗]
2

ηn
(|v− v∗|, θ)(ϕ + ϕ′

2

)[
β
(
f n
)+ β(f n)′]ψ ′ −ψ

|v′ − v| . (93)

Taking into account (93) and (92), the convergence of (90) follows by a last application of Lemma 14. Th
of (74) is now complete. ✷

Appendix: An approximate Yukawa cross-section

In this appendix, we check our technical assumptions on a rather realistic model coming from p
Computations are a little bit long and we shall present them in a slightly sketchy way. Most of the foll
physical discussion below is taken from [34].
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The Yukawa potential is just the same as the Debye potential, except that it is usually considered in a q
context (for instance, scattering of electrons or ions by neutrons). Up to a dimensional multiplicative fac
Yukawa potential is given by

V (r)= e−r/λ

r
,

whereλ is the screening length. When dealing with quantum collision processes, one can “show” that (ess

λ= h̄2

me2
.

When the relative velocityz satisfies theBorn approximation, i.e.

|z| � e2

h̄
,

then the scattering cross-section can be approximated in such a way that

B
(|z|,cosθ

)
sinθ = 1

4

|z|(e2/m)2

(|z|2 sin2(θ/2)+ (h̄/(2mλ))2)2 .

This expression does not take into account exchange terms due to Pauli’s exclusion principle. At the lev
Rutherford cross-section, these corrective terms can be computed explicitly, see for instance [10, Eq. (3.
it is clear that they are negligible for small deviation angles. We shall admit that the same holds true here.

Note that(
h̄

2mλ

)2

= e2

4mλ
.

Turning to nondimensional units, we denote this parameter by 1/n; so, up to a multiplicative factor,n coincides
with the screening length. Then we may rewrite the approximate cross-section as

B
(|z|,cosθ

)
sinθ = |z|sinθ

(|z|2 sin2(θ/2)+ 1/n)2
.

Now, we rescale this expression by a factor logn (the Coulomb logarithm). This leads us to our final expressio

Bn
(|z|,cosθ

)
sinθ = 1

logn

|z|sinθ

(|z|2 sin2(θ/2)+ 1/n)2
. (A.1)

We claim that the sequence of collision kernels(Bn)n�1 concentrates on grazing collisions, in the sense
Definition 1, and satisfies the technical assumptions of Section 3 as well. Let us sketch the proof of this cla

First of all,Bn is admissible (for fixedn), because it is just a nonsingular cross-section.
Next, let

Mn

(|z|)= |S1|
logn

π/2∫
0

|z|sinθ(1− cosθ) dθ

(|z|2 sin2(θ/2)+ 1/n)2
. (A.2)

For anyθ0> 0,

Mθ0
n

(|z|)� C(θ0)

3
,
|z| logn
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f
,

ll

f

and from Proposition 5 in Section 4 we see thatM
θ0
n � λnδ0, with λn → 0 asn→∞. Hence the contribution o

large angles in (A.2) is asymptotically negligible, and we can assume thatθ � θ0 whereθ0 is very small. Then
locally in z, we can replace the integrand by its equivalent, andMn by

|S1||z|
2 logn

θ0∫
0

θ3dθ

(|z|2θ2/4+ 1/n)2
= 4|S1|

|z|3
[
1+ 1

logn
log

( |z|2
4
θ2

0 + 1

n

)
+ O

(
1

logn

)]
.

As a consequence,zMn(|z|) converges weakly (locally) in the sense of measures tozM∞(|z|), with

M∞
(|z|)= |S1|

|z|3 .

Further note that, since(2/π)θ � sinθ � θ and 1− cosθ � θ2/2 for θ ∈ [0,π/2], we also have

∣∣Mn

(|z|)∣∣� C|z|
π/2∫
0

θ3dθ

(|z|2θ2/2+ 1/n)2
−−−→|z|→∞0,

uniformly in n, by the same estimate as above. Thus assumption (42) holds.
Next, we compute (see (40))

sn
(|z|, θ)= sinθ

[
1

cos3(θ/2)
Bn

( |z|
cos(θ/2)

,cosθ

)
−Bn

(|z|,cosθ
)]
, (A.3)

and investigate the behavior of theθ -integral of this expression, which gives the kernelS(|z|). Again, one can
check that the contribution of large deviation angles is negligible in the limitn→∞, and we concentrate on sma
values ofθ . For smallθ we find that (A.3) is equivalent to

1

logn

4

|z|3θ
1/(|z|2(θ2n/4))

(1+ 1/(|z|2(θ2n/4)))3
.

By the changes of variablesθ → (
√
n/2)θ andz→ zθ ,

1

logn

∫
|z|�A

dz

π/2∫
0

dθ

|z|3θ
1/(|z|2(θ2n/4))

(1+ 1/(|z|2(θ2n/4)))3
= 1

logn

(
√
n/2)π/2∫
0

dθ

θ

( ∫
|z|�Aθ

dz

|z|3
1/|z|2

(1+ 1/|z|2)3
)
.

Since ∫
|z|�Aθ

dz

|z|3
1/|z|2

(1+ 1/|z|2)3 � Cmax
(
θ4,1

)
,

we see that
∫
|z|�A Sn(|z|) dz =

∫
|z|�A

∫
dθsn(|z|, θ) is bounded uniformly inn (this is the remaining part o

assumption (i) in Definition 1).
Next, for anyθ0> 0,

sn
(|z|, θ)1θ�θ0 � C

n logn

|z|
(|z|2 + 1/n)3

1θ�θ0,

which easily leads to∫
dz

π/2∫
sn
(|z|, θ)dθ � C(θ0)

logn

∫
3

|z|dz
(|z|2 + 1)3

−−−→
n→∞ 0.
|z|�A θ0 R
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0 (1989)

997) 751–
ThusSθ0n converges to 0 inL1
loc(R

3).
As for the technical conditions (43) and (80): the first one was established in Section 6, and the second

consequence of the uniform smoothness ofBn in thez variable away from the origin.

Remarks.

(1) We have not considered the part of the kernelB which comes from deviation angles larger thanπ/2 (recall
formula (37)). This part has no influence on the estimates.

(2) If we denote bya = 1/(4|z|2), we have, again by a homogeneous change of variable,

1

logn

π/2∫
0

dθ

θ

a/(θ2n)

(1+ a/(nθ2))3
= 1

logn

√
nπ/2∫
0

dθ

θ

a/θ2

(1+ a/θ2)3
� Ca

n logn
.

This expression goes to 0 for eachz, and in fact uniformly for|z| � ε, which shows thatSn will converge
weakly to a Dirac measure at the origin. This was expected in view of Lemma 12 and formula (64).
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