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Abstract

Let G be a subgroup of GL(R, d) and let (Qn,Mn) be a sequence of i.i.d. random variables with values in Rd � G and law μ.
Under some natural conditions there exists a unique stationary measure ν on R

d of the process Xn = MnXn−1 + Qn. Its tail
properties, i.e. behavior of ν{x: |x| > t} as t tends to infinity, were described some over thirty years ago by H. Kesten, whose
results were recently improved by B. de Saporta, Y. Guivarc’h and E. Le Page. In the present paper we study the tail of ν in the
situation when the group G0 is Abelian and R

d is replaced by a more general nilpotent Lie group N . Thus the tail behavior of ν is
described for a class of solvable groups of type NA, i.e. being semi-direct extension of a simply connected nilpotent Lie group N

by an Abelian group isomorphic to Rd . Then, due to A. Raugi, (N,ν) can be interpreted as the Poisson boundary of (NA,μ).
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Soit G un sous groupe de GL(R, d) et soit (Qn,Mn) ∈ R
d

� G une suite de variables aléatoires indépendantes de loi μ.
Sous des hypothèses convenables il y a une unique mesure stationnaire ν sur R

d pour le processus auto-régressif linéaire Xn =
MnXn−1 + Qn. Les propriétés asymptotiques de la queue ν{x: |x| > t}, t → ∞, ont été étudiées par H. Kesten il y a 30 ans et
plus récemment de nouveaux résultats ont été obtenus par B. de Saporta, Y. Guivarc’h and E. Le Page. Dans cet article on étudie le
cas où G est abélien et R

d est remplacé par un groupe de Lie nilpotent N . On obtient alors le comportement à l’infini de la queue
de ν pour une classe particulière de groupes de tyle NA produits semi-direct d’un groupe N simplement connexe N avec G = R

d .
Dans ce cas pariculier (N,ν) est un bord de Poisson au sens de A. Raugi.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

We study random recursions on solvable Lie groups S, which satisfy the following assumptions

• S is the semi-direct product of an Abelian group A, isomorphic to R
d , acting on a simply connected nilpotent Lie

group N ,
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• there exists a contracting element a0 ∈ A, i.e. for every x ∈ N : limk→∞ δk
a0

(x) = 0, where δa0 stands for the action
of a0 on N , and 0 is the unit element in N .

Various classical objects like symmetric spaces, bounded homogeneous domains in C
n and manifolds of negative

curvature admit simply transitive actions of such groups and therefore they are of considerable interest from many
points of view [1,16,20].

Given a probability measure μ on S we define a random walk

Sn = Xn · · ·X1,

where {Xi}∞i=1 is a sequence of independent identically distributed (i.i.d.) random variables with law μ.
We write

X1 = QM,

with Q = πN(X1) ∈ N , M = πA(X1) ∈ A, where πN and πA denote canonical projections of S onto N and A,
respectively. We shall assume that

• μ is mean-contracting, that is the element of the group corresponding to the vector
∫
S

logM dμ(Q,M) is con-
tracting;

• ∫
S
(| log‖M‖| + log+ |Q|)dμ(Q,M) < ∞, for convenient norms on A and N that will be defined in Section 2.

Under these hypotheses the limit R of πN(Sn) exists in law (A. Raugi [21]) and gives rise to the measure ν that is the
only stationary measure for the Markov chain πN(Sn) i.e.

μ ∗ ν = ν. (1.1)

This means that for every positive, Borel measurable function f on N , we have

μ ∗ ν(f ) =
∫

f
(
πN(g · x)

)
μ(dg)ν(dx) = ν(f ).

Moreover, if μ is spread out (i.e. some power of μ is nonsingular with respect to the Haar measure on S) and its
support generates the group S, A. Raugi [21] proved that (N,ν) is the Poisson boundary of this process, i.e. using the
stationary measure ν one can reconstruct bounded μ-harmonic functions on S, knowing their boundary value on N .

Our aim is to study behavior of

ν
{
x: |x| > t

}= P
[|R| > t

]
as t tends to infinity, provided some further hypothesis on μ.

When the Abelian group is one dimensional, i.e. A = R
+, the tail behavior is well understood. If N = R, it was

observed by H. Kesten [17] that the tail behavior of ν is strictly related to properties of the Laplace transform of πA(μ)

and that under natural conditions there exists α > 0 such that

lim
t→∞ tαP

[|R| > t
]= C,

for some positive constant C. His proof was later essentially simplified by A.K. Grincevičius [12] and Ch. Goldie [11].
The general situation of solvable groups being extensions of nilpotent groups by one-dimensional Abelian group of
automorphisms was studied in [2], where similar results were obtained. Much more can be said about ν when the
measure μ comes from a second-order, subelliptic, left-invariant differential operator L on S, i.e. when instead of μ

we consider a semigroup of measures μt , whose infinitesimal generator is L, and the measure ν satisfies

μ̆t ∗ ν = ν for every t.

Then, the measure ν has a density and its behavior along some rays tending to infinity has been described in [6]
and [3].

The situation when the group A acting on N is multidimensional is much more complicated. In the context of
general solvable groups, the only results we know, concerning behavior at infinity of the stationary measure, were
obtained in some particular cases when the measure μ is connected with an subelliptic operator on S (compare above).
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If X = G/K is a noncompact symmetric space, S is the solvable part of the Iwasawa decomposition of G = SK and L
is the Laplace–Beltrami operator, ν has a smooth density m, called Poisson kernel, which can be explicitly computed
(see e.g. [8]). The formulas however are not very transparent as far as the pointwise decay at ∞ is concerned.

More general situation was studied by E. Damek and A. Hulanicki [4,5]. They considered on solvable groups
S = NA, with diagonal action of A on N , a large class of left-invariant second order, degenerate elliptic operators
L and identified the Poisson boundary of (S,L) with (N1, ν), where N1 is some normal subgroup of N . Then the
stationary measure ν on N1 has again smooth density m and they proved, without knowing an explicit formula for m

that ∫
N1

τN1(x)εm(x)dx < ∞,

for some positive ε, where τN1 is the Riemannian distance of x from the identity, and dx is the Haar measure on N .
The case when N is an Euclidean space, but the measure is general (not coming from a differential operator) was

studied by many authors. Assume N = R
m and there exists a group of matrices G (not necessarily Abelian) acting

on R
m. Consider the stochastic recursion

Rn+1 = Mn+1Rn + Qn+1,

where (Qn,Mn) is a sequence of i.i.d., R
m ×G valued random variables distributed according to the given probability

measure μ. Then under suitable assumptions Rn converges to a random variable R, whose distribution ν is μ-invariant.
Asymptotic properties of R were studied by several authors [17–19,7,14]. Their main assumptions (except mean-
contractivity and finiteness of some exponential moments) were proximality and (or) irreducibility. Let μ̄ be the
canonical projection of μ onto G. Then proximality means that the semigroup generated by the support of μ̄ contains
a proximal element, i.e. a matrix having a unique real dominant eigenvalue (i.e. the corresponding eigenspace is one-
dimensional). The action is called irreducible if there does not exist a finite union of proper subspaces of R

m, which
is invariant under the action of the support of μ̄.

In this paper we study the reducible situation on general solvable groups. Our assumptions are natural generaliza-
tion of one-dimensional situation, i.e. first of all we require finiteness of some exponential moments of πA(μ). The
main results of the paper are presented in Section 3.4 as Main Theorem A and Main Theorem B. In full generality we
prove that there exists a constant χ0 such that for any ε > 0

C1t
−χ0 � P

[|R| > t
]
� Cεt

−(χ0−ε),

where C1 and Cε are positive constants, and Cε depends on ε. Notice that the result is new even in the case when
an Abelian group of matrices A = G acts on N = Rm and the measure μ does not satisfies to the assumptions of
proximality and irreducibility required by the papers mentioned above.

We obtain more detailed description of the tail of the measure ν, when the action of A is fully reducible, i.e. A

acts diagonally on N . This corresponds to the classical situations of symmetric spaces and bounded homogeneous
domains. Then we prove, without assuming proximality of μ, the existence of positive constants χ0 and C2 such that

C1t
−χ0 � P

[|R| > t
]
� C2t

−χ0 .

If we assume existence of a dominant root (see Section 3 for precise definitions), that in some sense substitutes the
notion of proximality, we show

lim
t→∞ tχ0P

[|R| > t
]= C3,

for some C3 > 0.
The outline of the paper is as follows. In Section 2 we introduce a class of solvable Lie groups for which our results

holds and describe precisely their structure. In Section 3 we include a brief account of random walks on solvable
groups: existence of an invariant measure and its properties in the case when the group A is one-dimensional. Then
we describe our assumptions and state the main results of the article. Their proofs are contained in Sections 4 and 5,
respectively.

The author is grateful to the referee for helpful comments and corrections, improving the presentation of this paper
and some arguments in the proof.
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2. A class of solvable Lie groups

Let A be an Abelian group isomorphic to R
d , acting on a nilpotent, connected and simply connected Lie group N ,

i.e.

δa(xy) = δa(x)δa(y), a ∈ A, x, y ∈ N, (2.1)

where δa denotes the action of a ∈ A on N .
The semi-direct product N � A is a solvable Lie group denoted by S. We shall denote by ◦ the action of the group

S on N , i.e.

(x, a) ◦ y = x · δa(y), for (x, a) ∈ S and y ∈ N.

Then the group multiplication in S is given by

(x, a) · (y, b) = ((x, a) ◦ y, ab
)
.

Let e (0, I respectively) be the neutral element of S (N , A respectively).
Our main assumption on S is that the action of A on N is contractive i.e. that there exists an element a ∈ A such

that

lim
k→∞ δk

a(x) = 0, for every x ∈ N. (2.2)

The Lie algebras of A,N,S are denoted by A,N and S respectively. Then S = N ⊕ A and of course for every
H ∈ A, adH preserves N . The exponential maps are global diffeomorphisms both between N and N , and between
A and A. Their inverse will be denoted by log. Then for any X ∈N

δa

(
exp(X)

)= exp
(
ead(loga)X

)
. (2.3)

We shall denote the foregoing action of the group A on the Lie algebra N , using the same symbol δa(X). Let N C

(NC) be the complexification of N (N respectively). For any λ in the set (A∗)C of continuous homomorphisms from
A to (C,+) define

N C
λ = {Z ∈N C: there exists k such that (adH − λI)kZ = 0, for any H ∈A

}
. (2.4)

Then, it is known that for λ1, λ2 ∈ (A∗)C[
N C

λ1
,N C

λ2

]⊂ N C
λ1+λ2

. (2.5)

Moreover any space N C
λ is preserved by the action of the group A, i.e.

δa(Z) ∈N C
λ , for Z ∈ N C

λ . (2.6)

We shall say that λ is a root if the appropriate space N C
λ is nonempty. The set of all roots will be denoted by Δ. Then,

of course, if λ ∈ Δ then also λ̄ ∈ Δ and

N C =
⊕
λ∈Δ

N C
λ .

Let iλ = dimC N C
λ . For any λ choose a basis {Zλ,1, . . . ,Zλ,iλ} of N C

λ , such that with respect to this basis A acts
triangularly, i.e. for any H ∈A

adH(Zλ,j ) = λ(H)Zλ,j + Wλ,j−1, (2.7)

for some Wλ,j−1 ∈ span{Zλ,1, . . . ,Zλ,j−1}. Then iλ = iλ̄, moreover may assume that Zλ,j = Zλ̄,j and if λ is real then
all the vectors Zλ,j are real.

For a chosen basis {H1, . . . ,Hd} of A introduce coordinates in A: any element H of A can be uniquely written as
H =∑ ti (H)Hi . Notice that one can compute the action of A on N C, taking (2.3) and (2.7) into account, we obtain

δexpH (Zλ,k) = eλ(H) ·
∑

Pλ,k,j (H)Zλ,j , (2.8)

j�k
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where Pλ,k,k = 1, and Pλ,k,j for j smaller that k are some polynomials of ti (H). One can easily see that the polyno-
mials depend on ti (H) only if λ(Hi) 
= 0.

Thus, the assumption that the action of A is contractive implies that the negative Weyl chamber

A−− = {H ∈ A: Rλ(H) < 0 for all λ ∈ Δ
}

(2.9)

is not empty. Let A++ = −A−− be the positive Weyl chamber.
For any z ∈ NC let zλ,i denotes its λ, i component, i.e.

z = exp
(∑

zλ,iZλ,i

)
.

A root λ0 will be called simple if it cannot be written as a sum of other roots, i.e. for all possible choices of
nonnegative integer numbers {cλ}λ∈Δ, such that

∑
cλ > 1,

λ0 
=
∑
λ∈Δ

cλλ.

The set of all simple roots will be denoted by Δ1.
For instance, let A = R

2, choose two vector fields H1, H2 forming a basis of A, and denote by λ1, λ2 two function-
als on A such that λi(Hj ) = δij . Then, if Δ = {λ1, λ1/2, (λ1 + λ2)/2, λ1 + 2λ2, λ2}, the set of simple roots consists
of three elements: Δ1 = {λ1/2, (λ1 + λ2)/2, λ2}.

We have the following simple lemma

Lemma 2.10. Any root λ0 can be written in the form

λ0 =
∑
λ∈Δ1

cλλ, (2.11)

where cλ are nonnegative integer numbers.

Proof. Suppose H ∈A++ and let us number all the roots λ1, λ2, . . . , λk in the following way

Rλ1(H) � Rλ2(H) � · · · � Rλk(H).

We shall proceed by induction. Of course, λ1 is a simple root and (2.11) holds with cλ1 = 1. Assume the lemma holds
for λ1, . . . , λi−1. If the root λi is simple then it satisfies (2.11). Otherwise, λi can be written as

λi =
∑
λ∈Δ

cλλ,

where cλ are positive integer and
∑

cλ > 1. Therefore Rλi(H) > Rλ(H) for any λ such that cλ is nonzero. But this
set contains either simple roots or other roots satisfying already (2.11). Therefore (2.11) also holds for λi . �

The group multiplication in N is given by the Campbell–Hausdorf formula:

exp(X) · exp(Y ) = exp
(
X + Y + [X,Y ]/2 + · · ·), for X,Y ∈ N . (2.12)

Since the Lie algebra N is nilpotent, the sum above is finite. In particular if we fix a simple root λ0, then in view
of (2.5)

(x · y)λ0,i = xλ0,i + yλ0,i , (2.13)

for x, y ∈ N and i � iλ0 . We shall describe the Campbell–Hausdorf formula more precisely later in Section 5.

2.1. Norms on N and A

Now we are going to construct a norm on N adapted to the action of A. In the case A is one-dimensional and
diagonalizable W. Hebisch and A. Sikora [15] have built on N a smooth outside zero norm, homogeneous on the
action of one-dimensional group of dilations, i.e. satisfying |δa(x)| = a|x|. Their ideas were used later in [2] to
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construct a homogeneous norm with respect to general one-dimensional group of dilations A. Here we shall adopt the
construction for our purpose. Since we will need some further properties of the norm we give some details.

Fix H0 ∈ A++ such that Rλ(H0) > 1 for all roots λ and let A0 = {exp tH0, t ∈ R} be an one parameter subgroup
of A. We change coordinates in A0, identifying

A0 � exp tH0 ∼ et ∈ R
+.

For b ∈ R
+ and z ∈ NC define

σb(x) = δexp(logb)H0(z). (2.14)

Then σ defines the action of R
+ on NC, preserving N , and the semi-direct product N � R

+ is a solvable group,
belonging to the class of solvable Lie groups studied in [2]. A key step of the construction is the following lemma:

Lemma 2.15. ([15,2]) There exists an open rectangle

Ω =
{
Z =

∑
λ,i

zλ,iZλ,i ∈ N C: |zλ,i | < cλ,i

}
, (2.16)

where cλ,i are some positive constants, such that

if log(z), log(w) ∈ Ω, for z,w ∈ NC and 0 < b < 1 then log
(
σb(z)σ1−b(w)

) ∈ Ω. (2.17)

We define the norm on NC:

|z| = inf
{
b: log

(
σb−1(z)

) ∈ Ω
}= inf

{
et : log

(
δ−1

exp tH0
(z)
) ∈ Ω

}
.

One can easily check that this norm is continuous and satisfies to the following properties

• | · | is symmetric: |z−1| = |z|;
• |z| = 0 if and only if z = 0;
• | · | is subadditive, i.e. |z · w| � |z| + |w|;
• |σb(z)| = b|z|, for any b ∈ R

+.

Finally, we define a norm on A:

‖a‖ = max
|z|=1

∣∣δa(z)
∣∣.

Observe that∣∣δa(z)
∣∣� ‖a‖|z| and ‖a1a2‖ � ‖a1‖‖a2‖.

We shall often use the following constants being closely related to properties of the foregoing norms

dλ = Rλ(H0), λ ∈ Δ,

and their simple property

if λ0 =
∑

cλλ, then dλ0 =
∑

cλdλ. (2.18)

A crucial step in the proof of our main results will be the following lemma:

Lemma 2.19. There exist constants C and D such that

‖a‖ � C max
λ∈Δ

{
e

Rλ(H)
dλ

} ·
(

1 ∨ max
i

∣∣ti (H)
∣∣D)

for any a = expH ∈ A, where ti (H) denotes ith coordinate of H in the fixed basis of A.
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Proof. First, we shall prove that

‖a‖ � max
λ∈Δ

sup
{zλ∈NC

λ : |zλ|=1}

∣∣δa(zλ)
∣∣. (2.20)

In fact, every space N C
λ is invariant under the action of A (2.6), and writing any element of NC as z =

exp(
∑

λ,i zλ,iZλ,i) and using the fact that the action of A on N C is linear we have

‖a‖ = sup
|z|=1

∣∣δa(z)
∣∣= sup

|z|=1
inf

{
b: σb−1δa

(∑
λ,i

zλ,iZλ,i

)
∈ Ω

}

= sup
|z|=1

inf

{
b: σb−1δa

(∑
i

zλ,iZλ,i

)
∈ Ω for all roots λ

}

� max
λ∈Δ

sup
{zλ∈NC

λ : |zλ|=1}

∣∣δa(zλ)
∣∣,

which proves desired inequality (2.20).
Define the function g(H) = maxi |ti (H)|. In view of (2.20) it is enough to justify that for any root λ there exist

constants Cλ,Dλ such that if g(H) > Cλ, then

σ−1
b δexpH (Zλ) ∈ Ω

for b = exp{Rλ(H)
dλ

} · (1 ∨ g(H)Dλ) and any Zλ =∑i zλ,iZλ,i ∈ Ω̄ ∩N C
λ . In view of (2.8)

δa(Zλ) = eλ(H) ·
∑

k

zλ,k

(∑
j�k

Pλ,k,j (H)Zλ,j

)
,

where Pλ,k,j are some polynomials of tj (H) and Pλ,k,k = 1.
Next we have

σ−1
b δa(Zλ) = δexp(− logb)H0δa(Zλ)

= e− logb·λ(H0)+λ(H) ·
∑

k

zλ,k

(∑
j

P̄λ,k,j (H, logb)Zλ,j

)
,

where P̄λ,k,j are some polynomials of tj (H) and logb. Substituting b in the formula above we obtain

σ−1
b δa(Zλ) = (1 ∨ g(H)

)−DλRλ(H0) · e
−iIλ(H0)(

Rλ(H)
Rλ(H0)

+Dλ log+ g(H)) · eiIλ(H)

×
∑

k

(∑
j

¯̄P λ,k,j

(
ti (H),Dλ log+ g(H),Rλ(H)

)
zλ,j

)
Zλ,k,

where ¯̄P λ,k,j are polynomials coming from appropriately modified polynomials P̄λ,k,j and degrees of these polyno-
mials depends only on the structure of the solvable group S. Finally, choosing Dλ large enough, there exists Cλ such
that if g(H) > Cλ then for all k(

1 ∨ g(H)
)−DλRλ(H0)

∑
j

∣∣ ¯̄PPλ,k,j

(
ti (H),Dλ log+ g(H),Rλ(H)

)∣∣|zλ,j | � cλ,k,

which proves the lemma. �
3. Random walks on NA groups and main theorems

3.1. Random walks

Given a probability measure μ on S we define a random walk:

Sn = (Qn,Mn) · · · (Q1,M1),
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where (Qn,Mn) is a sequence of i.i.d. S-valued random variables with a distribution μ. The law of Sn is the nth-
convolution μ∗n of μ.

Our aim is to study the N -component of Sn, i.e. the Markov chain on N generated by the random walk on S:

Rn = πN(Sn) = (Qn,Mn) ◦ Rn−1,

R0 = δ0, (3.1)

where πN denotes the canonical projection πN :S → S/A. By πA we shall denote the analogous projection of S

onto A.
It was proved by A. Raugi [21] that when μ is mean-contracting, i.e.

E logM =
∫

logMμA(dM) ∈A−−, (3.2)

where μA = πA(μ), and under the following integrability condition

E
∣∣log‖M‖ + log+ |Q|∣∣< ∞

(the norms used by A. Raugi were different, but his proof gives the result also in our case) Rn converges in law to a
random variable R, whose distribution will be denoted by ν, and R does not depend on the choice of R0. Moreover,
ν is a unique stationary solution of the stochastic equation

ν = μ ∗ ν,

where

μ ∗ ν(f ) =
∫

f (g ◦ x)μ(dg)ν(dx).

The above equation can be also written in the form

R =d (Q,M) ◦ R,

where R and (Q,M) are independent distributed according to ν and μ, respectively.
The random variable R is constructed as a pointwise limit of the “backward” process:

R∗
0 = 0,

R∗
n = πN

(
(Q1,M1) · · · (Qn,Mn)

)= Q1 · δΠ1(Q2) · · · δΠn−1(Qn), (3.3)

where Πn = M1 · · ·Mn.
Our aim is to study, under some additional hypothesis, behavior of

ν
{
x: |x| > t

}= P
[|R| > t

]
as t tends to infinity.

3.2. Asymptotic behavior of R when dimA = 1

When the Abelian group A is one-dimensional, the behavior of the above sequence is well-known. The simplest
example of a solvable group is the “ax + b” group, i.e. semi-direct product of N = R and A = R

+, with the group
action

(x, a) · (y, b) = (x + ay, ab), x, y ∈ R, a, b ∈ R
+.

Then, Kesten [17] proved (under some further assumptions) that there exist positive constants α and C such that

lim
t→∞ tαP

[|R| > t
]= C.

His proof was later essentially simplified by Grincevičius [12] and Goldie [11]. Their ideas were used in [2] to handle
with general situation of homogeneous groups, when the group S is a semi-direct product of a nilpotent group N and
of an one-dimensional group of dilations A = R

+. In this case the norm | · | is homogeneous for the action of R
+, i.e.

|δa(x)| = a|x| for every a ∈ R+, x ∈ N , and we have the following theorem:
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Theorem 3.4. ([2]) Let S = N � R
+ and assume that

• E logM < 0,
• there exists α > 0, such that EMα = 1,
• the law of λ logM is non-arithmetic, i.e. there does not exist a > 0 such that λ logM ∈ aZ,
• EMα logM < ∞,
• E|Q|α < ∞.

Then

lim
t→∞ tαP

[|R| > t
]= C. (3.5)

for some constant C. Moreover, if the action of R
+ on N is diagonalizable then the constant C is nonzero if and only

if for every x ∈ N ,

P
[
(Q,M) ◦ x = x

]
< 1.

If the action is not diagonalizable, the constant C is positive under the additional hypothesis that |Q| is bounded
almost surely.

We shall often use description of asymptotic behavior of

P

[
max

n
{M1 · · ·Mn} > t

]
,

where Mi are i.i.d. real valued random variables satisfying the assumptions of Theorem 3.4. It was observed by Kesten,
that the sequence is strictly connected with asymptotic behavior of R. Then it is well known that there exists a positive
constant C such that

lim
t→∞ tαP

[
max

n
{M1 · · ·Mn} > t

]
= C (3.6)

(see [9] for more details).

3.3. Laplace transform

In order to describe the tail of R we shall need some further assumptions on μ. Consider the Laplace transform of
the measure μA = πA(μ):

L(α) =
∫
A

eα(logM)μA(dM) = E
[
eα(logM)

]

where α ∈A∗. We assume that

for any λ ∈ Δ there exists χλ > 0 such that L

(
χλRλ

dλ

)
= E
[
e

χλRλ(logM)

dλ

]= 1. (3.7)

Then it is known that the Laplace transform is well defined for all functionals on A belonging to the convex hull
V of 0 and χλRλ/dλ for all roots λ ∈ Δ. Furthermore L is convex on V and because of (3.2) and (3.7) it is strictly
smaller than 1 on the set

V0 =
{
α ∈A∗: α =

∑
λ∈Δ

cλ · χλRλ

dλ

, for nonnegative numbers cλ satisfying 0 <
∑

cλ < 1

}
,

i.e.

if α ∈ V0 then L(α) < 1. (3.8)

Define

χ0 = min
λ∈Δ

{χλ},
then the following holds
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Lemma 3.9. Let λ0 =∑ cλλ for some nonnegative numbers cλ. Assume that for some root λ1 the constant cλ1 is
nonzero and χλ1 > χ0. Then χλ0 > χ0.

Proof. Let us write
χ0Rλ0

dλ0

=
∑
λ

χ0dλcλ

dλ0χλ

· χλRλ

dλ

,

and notice that because of our assumptions and (2.18) we have∑
λ

χ0dλcλ

dλ0χλ

<
1

dλ0

·
∑

dλcλ = 1.

Therefore by (3.8)

L

(
χ0Rλ0

dλ0

)
< 1,

which implies χ0 < χλ0 . �
Corollary 3.10. There exists a simple root λ0 such that χλ0 = χ0.

We conclude that to compute χ0 it suffices to consider only simple roots:

χ0 = min
λ∈Δ1

{χλ}. (3.11)

3.4. Main theorems

For any root λ and j � iλ, let Vλ,j be the real subspace on N spanned by Zλ,j if λ is real and by RZλ,j and IZλ,j ,
otherwise. Then for X ∈ N , by X|Vλ,j

we shall denote the projection of X on Vλ,j .
Now we can state the main results of the paper

Main Theorem A. Assume

(A1) E logM ∈A−−;

(A2) for any root λ there exists a positive number χλ such that E[e
χλRλ(logM)

dλ ] = 1;
(A3) the Laplace transform of the measure μA is finite in some neighborhood U of 0 in A∗ i.e. if α ∈ U , then

L(α) < ∞;
(A4) E|Q|χ0 < ∞, for χ0 defined in (3.11).

Assume moreover that there exists a simple root λ0 such that χλ0 = χ0 satisfying

(A5) the law of Rλ0(logM) is non-arithmetic;

(A6) E[e
χλ0

Rλ0(logM)

dλ0 |Rλ0(logM)|] < ∞;
(A7) for any X ∈ Vλ0,iλ0

P
[
log
(
(Q,M) ◦ expX

)∣∣
Vλ0,iλ0

= X
]
< 1.

Then there exists a positive constant C1 and for any ε > 0 there exists Cε such that

C1t
−χ0 � P

[|R| > t
]
� Cεt

−(χ0−ε).

A simple root λ0 is called dominant if

χλ = χ0
0
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and if χλ = χ0 for some other root λ, then there exists a constant cλ larger than 1 such that λ = cλλ0.
Of course it may happen that dominant root does not exists, i.e. for two different simple roots λ1, λ2, such that

λ1 
= cλ2 for any constant c, we have χ0 = χλ1 = χλ2 .

Main Theorem B. Assume that the action of A on N is diagonalizable and

(B1) E logM ∈A−−;

(B2) for any root λ there exists a positive number χλ such that E[e
χλλ(logM)

dλ ] = 1;

(B3) for any root λ,E[e
χλλ(logM)

dλ |λ(logM)|] < ∞;
(B4) E|Q|χ0 < ∞;

where χ0 was defined in (3.11). Assume moreover that there exists a simple root λ0 such that χλ0 = χ0 satisfying

(B5) the law of λ0(logM) is non-arithmetic;
(B6) there exists i � iλ0 such that for every X ∈ Vλ0,i , P[log((Q,M) ◦ expX)|Vλ0,i

= X] < 1.

Then there exists a positive number C1 such that

1

C1
t−χ0 � P

[|R| > t
]
� C1t

−χ0 .

Moreover if there exists in Δ1 a dominant root λ0 satisfying both (B5) and (B6), then

lim
t→∞ tχ0P

[|R| > t
]= C2,

for some positive number C2.

4. Proof of Main Theorem A

4.1. Upper estimates

In order to prove the upper bound of the tail of R, we shall use Lemma 2.19 and prove existence of χ th moment of
R for any χ satisfying 0 < χ < χ0 and then the estimates follows immediately (Corollary 4.9).

Lemma 4.1. Under the hypothesis (A1)–(A4) the stationary measure of R has all moments smaller than χ0, i.e.

E|R|χ < ∞
for all χ satisfying 0 < χ < χ0.

Proof. Fix χ ′ such that χ < χ ′ < χ0, then by definition of χ0

L

(
χ ′Rλ

dλ

)
< 1, λ ∈ Δ.

For any root λ let us define a positive number

aλ =
⎧⎨
⎩χ, if L

(
χRλ

dλ

)
> L

(
χ ′Rλ

dλ

)
,

χ ′, otherwise.

Then, since the Laplace transform is convex

L

(
βRλ

dλ

)
< L

(
aλRλ

dλ

)
(4.2)

for any root λ and β ∈ (χ,χ ′). We may choose positive δ satisfying

0 < δ <
1 − 1, for any λ ∈ Δ. (4.3)
L(aλRλ/dλ)
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Consider the function

f (s) = E
[
es
∑

i |ti (logM)|].
For any sequence σ of 0 and 1’s having the length d define the element of A∗ by the formula

ασ (H) =
d∑

i=1

(−1)σ(i)ti (H), H ∈A,

and notice that f can be dominated by the sum

f (s) �
∑

σ∈{0,1}d
L(sασ ).

By (A3) for small values of s the Laplace transform L(sti) is well-defined, moreover it is continuous as a function of
s and tends to 1 as t goes to 0. Therefore also f is continuous and tends to 1. So, there exists θ , such that

f (s) < 1 + δ, for s � θ. (4.4)

Next, choose a positive number ε satisfying

ε < min

{
θ(χ ′ − χ)

χχ ′ ,
θ

2χ

}
. (4.5)

Finally, define

q = θ

εχ
, p = θ

θ − εχ
. (4.6)

Then notice that 1
p

+ 1
q

= 1, by (4.5)

q > 2 and p < 2 (4.7)

and moreover

χ < pχ < χ ′. (4.8)

Recall that R was constructed as the limit in distribution of Rn. Therefore it is enough to estimate χ th moment of
Rn independently on n. We have

(
E|Rn|χ

) 1
χ = [E∣∣Qn · δMn(Qn−1) · · · δM1...Mn(Q0)

∣∣χ ] 1
χ

�
(

E

[
n−1∑
k=0

‖Mk+1 · · ·Mn‖|Qk|
]χ) 1

χ

+ (E|Qn|χ
) 1

χ

�
n−1∑
k=0

(
E
[‖Mk+1 · · ·Mn‖|Qk|

]χ ) 1
χ + (E|Qn|χ

) 1
χ

�
(
E|Q|χ ) 1

χ

(
1 +

∞∑
k=1

(
E‖M1 · · ·Mk‖χ

) 1
χ

)
.

Thus, we have to prove that the series

∞∑
k=1

(
E‖M1 · · ·Mk‖χ

) 1
χ

is convergent.
For this purpose, observe that by Lemma 2.19, the Hölder inequality and (4.6)
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E‖M1 · · ·Mk‖χ � CE

[
max

λ

{
e

χRλ(logΠk)

dλ

} ·
(

1 ∨ max
i

∣∣ti (logΠk)
∣∣χD
)]

� C
(
E

[
max

λ

{
e

pχRλ(logΠk)

dλ

}]) 1
p ·
(
E

[
1 ∨ max

i

∣∣ti (logΠk)
∣∣qχD

]) 1
q

� C′
(

E

[∑
λ

e
pχRλ(logΠk)

dλ

]) 1
p ·
(

E

[∏
i

eεqχ
∑

j�k |ti (logMj )|
]) 1

q

� C′′∑
λ

(
E
[
e

pχRλ(logM)
dλ

]) k
p · (E[eεqχ

∑
i |ti (logM)|]) k

q .

Therefore, applying (4.6), (4.8) and (4.2) we obtain

∞∑
k=1

(
E‖M1 · · ·Mk‖χ

) 1
χ � C

∞∑
k=1

(∑
λ

L

(
pχRλ

dλ

) k
p · f (εqχ)

k
q

) 1
χ

� C′∑
λ

∞∑
k=1

[
L

(
aλRλ

dλ

) 1
p · (1 + δ)

1
q

] k
χ

� C′∑
λ

∞∑
k=1

[(
L

(
aλRλ

dλ

)
· (1 + δ)

) 1
2χ
]k

,

where for the last inequality we used (4.7).
Finally by (4.3)(

L

(
aλRλ

dλ

)
· (1 + δ)

) 1
2χ

< 1,

therefore the series above converges. �
Corollary 4.9. For any ε there exists Cε such that

P
[|R| > t

]
� Cεt

−(χ0−ε)

Proof. We have

tχ0−ε
P
[|R| > t

]
�

∫
{x: |x|>t}

|x|χ0−εν(dx) � E|R|χ0−ε

and by the lemma above the value is finite. �
4.2. Lower estimates

To prove the lower estimate we choose a simple root λ0 such that χλ0 = χ0, satisfying (A5)–(A7), and then study
projection of the random walk Rn on a suitable one or two dimensional linear subspace of Nλ0 or N C

λ0
⊕ N C

λ̄0
,

respectively, depending whether λ0 is real or complex. In both cases the projected random walk can be explicitly
computed. If λ0 is real we obtain just a random walk on R generated by the action of “ax + b” group on R, described
in Section 3.2, and we conclude the result from Theorem 3.4. The case when λ0 is complex is more complicated. Then
we obtain a random walk on R

2 generated by the action of R
+ × O(2) on R

2, as studied in [2]. But our assumptions
are different and we cannot apply the results proved there, so we shall give here a complete proof based on some ideas
of A.K. Grincevičius [13] and Ch. Goldie [11].

Fix a simple root λ0 satisfying all the assumptions (A1)–(A7). We shall consider two cases.

Case I. λ0 is real.
Then we have the following lemma.
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Lemma 4.10. If λ0 is real then there exists a positive constant C such that

P
[|R| > t

]
� Ct−χ0 .

Proof. Notice that by (2.8)(
δa(x)

)
λ0,iλ0

= eλ0(loga)xλ0,iλ0
,

for x = exp(
∑

xλ,iZλ,i). We shall prove that

|x| �
( |xλ0,iλ0

|
cλ0,iλ0

) 1
dλ0 for x ∈ N. (4.11)

Note that if for some x ∈ N∣∣xλ0,iλ0

∣∣� cλ0,1t
dλ0

then ∣∣(σt−1(x)
)
λ0,iλ0

∣∣= ∣∣(δ(exp(− log t)H0)(x)
)
λ0,iλ0

∣∣= t−dλ0 |xλ0,iλ0
| � cλ0,iλ0

hence |x| � t , which gives (4.11).
Thus, we have

P
[|R| > t

]
� P
[|Rλ0,iλ0

| > cλ0,iλ0
tdλ0
]
. (4.12)

But notice that because λ0 is simple, in view of (2.13), we have

(Rn)λ0,iλ0
= M̄n(Rn−1)λ0,iλ0

+ Q̄n,

where

M̄n = eλ0(logMn),

Q̄n = (Qn)λ0,iλ0
.

The foregoing formula defines a random walk on R, generated by the action of the “ax + b” group on R, which is a
special case of the situation described in Section 3.2. Moreover all the assumptions of Theorem (3.4) are satisfied for
χ̄ = χ0/dλ0 :

EM̄χ̄ = E
[
e

χ0λ0(logM)

dλ0
]= 1

and by (4.11)

E
∣∣Q̄∣∣χ̄ � CE|Q|χ0 < ∞.

Rλ0,iλ0
is the limit in law of (Rn)λ0,iλ0

, therefore there exists a positive constant C such that

P
[|Rλ0,iλ0

| > cλ0,iλ0
tdλ0
]
� Ct−χ̄ ·dλ0 = Ct−χ0 .

Combining the inequality above with (4.12) we obtain the lemma. �
Case II. λ0 is complex.
To simplify our notation we shall write Z instead of Zλ0,iλ0

, then Z̄ = Zλ̄0,iλ0
. Define

X = 1

2

(
Z + Z̄

)
,

Y = − i

2

(
Z − Z̄

)
.

For any x ∈ N let x|V denotes the projection of logx onto the real space V , spanned by X and Y . Let | · |0 be the
usual Euclidean norm on V , i.e. |v|0 =√α2 + β2 for v = αX + βY ∈ V .
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Lemma 4.13. We have

P
[|R| > t

]
� P
[|R|V |0 � 2cλ0,iλ0

tdλ0
]
.

Proof. It is enough to prove that for any x ∈ N

|x| �
( |x|V |0

2cλ0,iλ0

) 1
dλ0

. (4.14)

Assume

|x|V |0 � 2cλ0,iλ0
· tdλ0 and x|V = αX + βY.

By (2.8) we have

δa(expZ) = exp
(
eλ0(loga)Z + W

)
,

δa

(
exp Z̄

)= exp
(
eλ̄0(loga)Z̄ + W̄

)
, (4.15)

where W ∈ span{Zλ0,1, . . . ,Zλ0,iλ0−1}.
Then

σt−1(x) = σt−1

(
exp

(
α − iβ

2
· Z + α + iβ

2
· Z̄ + W ′

))

= exp

(
α − iβ

2
· t−λ0(H0)Z + α + iβ

2
· t−λ0(H0)Z̄ + W ′′

)
.

Notice that∣∣∣∣α − iβ

2
· t−λ0(H0)

∣∣∣∣= |x|V |0
2

· t−dλ0 � cλ0,iλ0
,

therefore logσt−1(x) /∈ Ω , which implies |x| � t and proves (4.14). �
The lemma reduces the problem to prove existence of a positive constant C such that

P
[|R|V |0 � t

]
� Ct

− χ0
dλ0 . (4.16)

Let us restrict the random walk Rn to the linear space V , defining R̄n = Rn|V . Then the following holds

Lemma 4.17. The random variables R̄n satisfy the following stochastic recursion

R̄n = M̄nR̄n−1 + Q̄n,

where Q̄n = Qn|V and M̄n = r(M̄n)O(M̄n), where

r
(
M̄n

)= eRλ0(logMn)

is an element of one parameter group of dilations of R
2, and

O
(
M̄n

)= ( cos(Iλ0(logMn)) sin(Iλ0(logMn))

− sin(Iλ0(logMn)) cos(Iλ0(logMn))

)

belongs to the orthogonal group O(2).

Proof. By (4.15)

δa(expX) + iδa(expY) = δa(expZ) = exp
(
eλ0(loga)Z + W

)
= exp

(
eRλ0(loga)

(
cos(Iλ0(loga))X − sin

(
Iλ0(loga)

)
Y
)

+ ieRλ0(loga)
(
cos
(
Iλ0(loga)

)
Y + sin

(
Iλ0(loga)

)
X
)+ W

)
.
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Since the action of A is real we have

δa(expX)|V = eRλ0(loga)
(
cos
(
Iλ0(loga)

)
X − sin

(
Iλ0(loga)

)
Y
)
,

δa(expY)|V = eRλ0(loga)(cos
(
Iλ0(loga)

)
Y + sin

(
Iλ0(loga)

)
X).

which, in view of (2.13), implies the lemma. �
Denote S̄ = V � (R+ × O(2)) to be the semi-direct product of V and R

+ × O(2), then R̄n define a random walk
on V analogous to (3.1) i.e. R̄n is a projection onto V of (Q̄n, M̄n) · · · (Q̄1, M̄1) where (Q̄n, M̄n) are i.i.d. S̄-valued
random variables.

Projecting our assumptions (A1)–(A7) onto V we obtain

• E log r(M̄) < 0,

• Er(M̄)χ̄ = 1, for χ̄ = χ0
dλ0

,

• E[r(M̄)χ̄ | log r(M̄)|] < ∞,
• E|Q̄|χ̄0 < ∞.

Moreover R̄ = R|V is the limit in distribution of R̄n. Random walks of this type were studied in [2], where asymptotic
of their tails has been described:

lim
t→∞ t χ̄P

[|R̄|0 > t
]= C.

In order to prove positivity of the constant C the authors needed some additional hypothesis: boundedness of |Q̄|0 and
larger moments of r(M̄). The argument used there, based on a theorem of Landau, cannot be applied here. To prove
positivity of C we shall apply to our settings an approach of Grincevičius [13] and Goldie [11], who considered the
problem on the “ax + b” group.

Define the “backward” process R̄∗
n:

R̄∗
0 = 0,

R̄∗
n = πV

((
Q̄1, M̄1

) · · · (Q̄n, M̄n

))= Q̄1 + Π̄1Q2 + · · · + Π̄n−1Q̄n,

where

Π̄k = M̄1 · · · M̄k.

Recall that R̄∗
n converges pointwise to R̄, and

R̄ = R̄∗
n + Π̄nR̄

∗,n, (4.18)

where

R̄∗,n =
∞∑

k=n+1

(
M̄n+1 · · · M̄k−1

)
Q̄k,

hence for any n, R̄∗,n and R̄ have the same distribution.

Lemma 4.19. There exists a positive constant C such that

P
[∣∣R̄∣∣0 > t

]
� Ct−χ̄ .

Proof. Fix two positive numbers η and δ. There exists a ball U in V centered at some point u of radius δ such that
ε = P[R̄ ∈ U ] is positive. Then by (4.18) we have

P

[
inf
x∈U

∣∣R̄∗
n + Π̄nx

∣∣
0 > t for some n

]
=
∑

P

[
max
i<n

inf
x∈U

∣∣R̄∗
i + Π̄ix

∣∣
0 � t and inf

x∈U

∣∣R̄∗
n + Π̄nx

∣∣
0 > t

]

n
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= 1

ε

∑
n

P

[
max
i<n

inf
x∈U

∣∣R̄∗
i + Π̄ix

∣∣
0 � t and inf

x∈U

∣∣R̄∗
n + Π̄nx

∣∣
0 > t

]
P
[
R̄∗,n ∈ U

]

= 1

ε

∑
n

P

[
max
i<n

inf
x∈U

∣∣R̄∗
i + Π̄ix

∣∣
0 � t and inf

x∈U

∣∣R̄∗
n + Π̄nx

∣∣
0 > t and |R̄|0 > t

]

� 1

ε
P
[∣∣R̄∣∣0 > t

]
.

Define

Un = R̄∗
n + Π̄nu − (R̄∗

n−1 + Π̄n−1u
)= Π̄n−1

(
Q̄n + (M̄n − I

)
u
)
.

Then we have

P
[|R̄|0 > t

]
� εP

[
inf
x∈U

∣∣R̄∗
n + Π̄nx

∣∣
0 > t for some n

]
� εP

[∣∣R̄∗
n + Π̄nu

∣∣
0 − r

(
Π̄n

)
δ > t for some n

]
� εP

[|Un|0 − (r(Π̄n

)+ r
(
Π̄n−1

))
δ > 2t for some n

]
= εP

[
r
(
Π̄n−1

)(∣∣Q̄n + (M̄n − I )u
∣∣
0 − (r(M̄n

)+ 1
)
δ
)
> 2t for some n

]
� εP

[∣∣Q̄ + (M̄ − I
)
u
∣∣
0 − (r(M̄)+ 1

)
δ > η

]
P

[
max

n
r
(
Π̄n

)
> 2t/η

]
� CP

[∣∣Q̄ + (M̄ − I
)
u
∣∣
0 − (r(M̄)+ 1

)
δ > η

]
t−χ̄ ,

where the last inequality follows from (3.6). Finally we have to justify that for sufficiently small η and δ the constant
above is positive.

By (A7) there exist positive numbers η, θ such that

P
[∣∣Q̄ + (M̄ − I

)
u
∣∣
0 > 2η

]= θ.

Moreover by (A2) there is a large number N such that

P
[
r
(
M̄
)
� N

]
� θ

2
,

hence taking δ = η
N+1 we obtain

P
[∣∣Q̄ + (M̄ − I

)
u
∣∣
0 − (r(M̄)+ 1

)
δ > η

]
� P
[∣∣Q̄ + (M̄ − I

)
u
∣∣
0 > 2η and r

(
M̄
)
< N

]
� P
[∣∣Q̄ + (M̄ − I

)
u
∣∣
0 > 2η

]− P
[
r
(
M̄
)
� N

]
� θ

2
,

which finishes the proof. �
Finally, in view of Lemma 4.13, the foregoing result implies the lower estimate of the tail of R when λ0 is complex.

5. Proof of Main Theorem B

5.1. Diagonal action of A on N

In this section we shall change slightly our notation. From now we shall assume that the action of A on N is
diagonalizable. Then all the roots are real and the real vectors {Zλ,j }λ∈Δ

j�iλ

form a basis of N . Let us denote these

vectors by X1, . . . ,Xn0 (n0 = dimN ), then for any H ∈ A

ad(H)Xj = λj (H)Xj , j = 1, . . . , n0,

for some root λj . In this notation it may of course happen that λi = λj for i 
= j .
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Then the action of A on N is given by

δa(x) = exp

(∑
j

eλj (H)xjXj

)
, (5.1)

for x = exp(
∑

xjXj ).
We change also numeration of constants defined in previous chapters. If Xj = Xλ,i then we define

χj = χλ,

cj = cλ,i ,

dj = dλ.

Notice that in this case both norms, on N and on A, can be explicitly computed:

|x| = inf
{
b: log(σb−1(x)) ∈ Ω ∩N

}= inf

{
b:
∑
j

b−λj (H0)xjXj ∈ Ω ∩N
}

= inf
{
b: |xj | < cjb

dj for j = 1, . . . , n0
}= inf

{
b:

|xj |
1
dj

c

1
dj

j

< b

}
= max

j

{
c̄j |xj |

1
dj
}

(5.2)

for c̄j = c
− 1

dj

j , and next

‖a‖ = max
|x|=1

∣∣δa(x)
∣∣= max

j

{
e

λj (loga)

dj
}
. (5.3)

Let us define the lower central sequence in N

N0 = N ,

Ni+1 = [Ni ,N ],
for i = 1, . . . ,m0 and Nm0+1 = {0}. Then we may assume that there is a sequence 0 = i0 � i1 � · · · � im0 = n0 such
that Xij +1, . . . ,Xij+1 are a basis of Nj /Nj+1.

Define

I1 = {1, . . . , i1}
and notice the set of indices of simple roots is a subset of I1.

We shall use the lower central sequence to obtain a better description of the Campbell–Hausdorf formula [10]. If
(x · y)i denotes ith coordinate of x · y, for x = exp(

∑
xiXi), y = exp(

∑
yiXi) elements of N , then

(x · y)i = xi + yi for i ∈ I1,

(x · y)i = xi + yi + Pi(x, y) for i ∈ Ip, for p > 1, (5.4)

where Pi are polynomials depending on x1, . . . xip−1, y1, . . . yip−1 and they can be written as

Pi(x, y) =
∑
a,b

ca,bP
a,b
i (x, y) =

∑
a,b

ca,bxayb, (5.5)

where ca,b are some real constants (most of them are zero, then we assume P
a,b
j = 0, but for at least one pair (a,b)

the constant ca,b is nonzero), a and b are multi-indexes of natural numbers of the length ip−1, and we have used the
notation (which will be used also in the rest of the paper without any saying):

• 00 = 1;
• if c is a multi-index of the length i and z is a vector of length at least i (usually it will be longer than i) then

zc =
∏
j�i

z
cj

j .
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Moreover, we shall strongly rely on the following properties of the Campbell–Hausdorf formula: if ca,b is nonzero
then:

both a and b are nonzero and
∑
j<i

(aj + bj )λj = λi. (5.6)

In order to prove the last equation we shall use (5.1). Fix H ∈A, then for any x, y ∈ N we have(
δexpH (xy)

)
i
= eλi(H)(x · y)i,

but on the other side, by (2.1) we write(
δexpH (xy)

)
i
= (δexpH (x) · δexpH (x)

)
i

=
∑
a,b

ca,b
(
δexpH (x)

)a(
δexpH (y)

)b =
∑
a,b

ca,be
∑

j<i (aj +bj )λj (H)
xayb.

Comparing last two equations we obtain (5.6).

5.2. Proof of the first part of Main Theorem B

To prove the theorem we shall compute explicitly R. Recall that R is the pointwise limit of the “backward”
process R∗

n , by definition (3.3) and the Campbell–Hausdorf formula (5.4) we have(
R∗

n+1

)
j

= (R∗
n · δΠn(Qn+1)

)
j

= (R∗
n

)
j
+ eλj (logΠn)(Qn+1)j +

∑
a,b

ca,b(R∗
n)a(δΠn(Qn+1)

)b

=
n∑

k=0

eλj (logΠk)(Qk+1)j +
∑
a,b

ca,b

n∑
k=0

(
R∗

k

)a(
δΠk

(Qk+1)
)b

.

Hence

(
R∗

n+1

)
j

=
{

T
j
n , for j ∈ I1,

T
j
n +∑a,b ca,b

∑n
k=0(R

∗
k )a(δΠk

(Qk+1))
b, for j /∈ I1,

(5.7)

where

T
j
n =

n∑
k=0

eλj (logΠk)(Qk+1)j .

Notice that T
j
n is the “backward” process for a random walk generated by i.i.d. random variables (eλj (logMk), (Qk)j ),

which converges pointwise to some random variable T j . We shall later estimate T
j
n by

T̄
j
n =

n∑
k=0

eλj (logΠk)
∣∣(Qk+1)j

∣∣,
then T̄

j
n is also the “backward process” generated by (eλj (logMk), |(Qk)j |). T̄

j
n converges monotonously to a random

variable T̄ j , which by Theorem 3.4 satisfies

P
[
T̄ j > tdj

]
� Ct−χj . (5.8)

Lemma 5.9. For any i

P
[∣∣(R∗

k

)
i

∣∣> tdi for some k
]
� Ct−χ0 .
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Proof. For j ∈ I1 we have

P
[∣∣(R∗

n

)
j

∣∣> tdj for some n
]= P

[∣∣T j
n

∣∣> tdj for some n
]
� P
[
T̄

j
n > tdj for some n

]
= P
[
T̄ j > tdj

]
� Ct−χj � Ct−χ0 . (5.10)

Fix j /∈ I1 and assume that the lemma holds for i < j . Then by (5.7), for C =∑ |ca,b| + 1, we have

P
[∣∣(R∗

n+1

)
j

∣∣> tdj for some n
]

� P

[
T̄ j >

tdj

C

]
+

∑
{a,b: ca,b 
=0}

P

[
n∑

k=0

∣∣(R∗
k

)a(
δΠk

(Qk+1)
)b∣∣> tdj

C
for some n

]

� C′t−χj +
∑

{a,b: ca,b 
=0}
P

[(
max
k�n

∣∣(R∗
k )a∣∣) ·

(
n∑

k=0

|(δΠk
(Qk+1)

)b|
)

>
tdj

C
for some n

]

� C′t−χj +
∑

{a,b: ca,b 
=0}
P

[(
max

1�k<∞

∣∣∣∣∏
i<j

(
R∗

k

)a i

i

∣∣∣∣
)

·
(

n∑
k=0

∏
i<j

(
eλi(log(Πk))

∣∣(Qk+1)i
∣∣)b i

)
>

tdj

C
for some n

]

� C′t−χi +
∑

{a,b: ca,b 
=0}
P

[∏
i<j

((
max

1�k�∞
∣∣(R∗

k

)
i

∣∣)a i · (T̄ i
)b i

)
>

tdj

C

]
. (5.11)

If ca,b is nonzero, then by (5.6) and (2.18)

dj =
∑
i<j

(a i + b i )di . (5.12)

Therefore the above expression can be dominated by

C′t−χj +
∑

{a,b: ca,b 
=0}

∑
i<j

(
P

[
max

k

∣∣(R∗
k

)
i

∣∣> tdi

C′′

]
+ P

[
T̄ i >

tdi

C′′

])
� Ct−χ0 ,

by the induction assumption and (5.8). �
Corollary 5.13. There exists a positive constant C such that

1

C
t−χ0 � P

[|R| > t
]
� Ct−χ0 .

Proof. By the lemma above we have

P
[|R| > t

]
�
∑
j

P
[|Rj | > cj t

dj
]
�
∑
j

P
[∣∣(R∗

n

)
j

∣∣� cj t
dj for some n

]
� Ct−χ0 .

On the other hand, choose j0 such that λj0 is a simple root, χj0 = χ0 and satisfies (A3) and (A4). Then by (5.2) and
Theorem 3.4

P
[|R| > t

]
� P
[|Rj0 | � cj0 t

dj0
]
� P
[∣∣T j0

∣∣� cj0 t
dj0
]
� Ct−χ0 . �

5.3. Dominant root

Now, we shall assume that there exists in Δl1 a dominant root. Let us denote it by λ0 and let j0 be an index such
that λj0 = λ0. Define

I0 = {j : λj is a multiple of λ0}.
Then by Lemma 3.9
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E
[
e

χ0λj (logM)

dj
]= 1, for j ∈ I0

E
[
e

χ0λj (logM)

dj
]
< 1, for j /∈ I0. (5.14)

Let N0 be the Lie algebra defined by

N0 = Lie span{Xj }j∈I0 =
⊕

{λ: λ is a multiple of λ0}
Nλ.

For any j ∈ I0 let sj be the unique number such that λj = sjλ0. Put N0 = expN0. Notice that for x ∈ N0 and any
a ∈ A, by (5.2)

δa(x) = exp

(∑
j∈I0

eλj (loga)xjXj

)
= exp

(∑
j∈I0

bsj λ0(H0)xjXj

)
= σb(x), (5.15)

where b = e
λ0(loga)

λ0(H0) , hence the action of A on N0 depends only on the value of λ0(loga).
Let S0 = N0 � R

+ be the semi-direct product of N0 and R
+ with the group multiplication

(x, b) · (x′, b′) = (x · σb(x
′), bb′), x, x′ ∈ N0, b, b′ ∈ R

+.

Denote by | · |0 the restriction of | · | to N0, i.e. |x|0 = |x| for x ∈ N0, by (5.2)

|x|0 = max
j∈I0

{
c̄j |xj |

1
dj
}
.

For any x = exp(
∑

xλ,jXλ,j ) ∈ N let x|N0 denotes its restriction to N0, i.e.

x|N0 = exp

(∑
j∈I0

xjXj

)
.

We shall prove two lemmas

Lemma 5.16. We have

lim
t→∞ tχ0P

[∣∣R̄∣∣0 > tdλ0
]= C+,

for some positive constant C+, where R̄ = R|N0 .

Lemma 5.17. For any j not being an element of I0

lim
t→∞ tχ0P

[|Rj |
1
dj > t

]= 0.

Notice, that the lemmas imply the second part of Main Theorem B.

Proof of Main Theorem B. We have

P
[|R| > t

]
� P

[
max
j∈I0

{
c̄j |Rj |

1
dj
}

> t
]
+ P

[
max
j /∈I0

{
c̄j |Rj |

1
dj
}

> t
]

� P
[∣∣R̄∣∣0 > t

]+∑
j /∈I0

P
[
c̄j |Rj |

1
dj > t

]
hence

lim
t→∞ tχ0P

[|R| > t
]
� C+.

On the other hand

P
[|R| > t

]
� P

[
max

{
c̄j |Rj |

1
dj
}

> t
]

= P
[|R̄|0 > t

]
,

j∈I0
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which gives

lim
t→∞ tχ0P

[|R| > t
]
� C+. �

5.4. Proofs of Lemmas 5.16 and 5.17

Lemma 5.18. For any x, y ∈ N

x|N0 · y|N0 = (x · y)|N0 .

Proof. Suppose j ∈ I0, then by the Campbell–Hausdorf formula (5.4)

(x · y)j = xj + yj +
∑

ca,bxayb.

To prove the Lemma we have to justify that in the formula above do not appear coordinates xi and yi for i /∈ I0. In
other word we should infer that if ca,b is not zero and a i + b i 
= 0 for some index i, then i belongs to the set I0.

Assume ca,b 
= 0. Then by (5.6)

λj =
∑
i<j

(a i + b i )λi .

λj is a multiple of λ0, therefore χj = χ0. By Lemma 3.9, this implies that if a i + b i 
= 0 then χi = χ0, but (5.14) says
that then χi is a multiple of λ0 and we conclude the proof. �
Proof of Lemma 5.16. For random variable (Qj ,Mj ) as in (3.1) define

Q̄j = Qj |N0 ,

M̄j = e
λ0(logMj )

λ0(H0) .

Then (Q̄j , M̄j ) are i.i.d. S0-valued random variables and satisfy assumptions of Theorem 3.4. Consider the random
walk on S0

S̄n = (Q̄n, M̄n

) · · · (Q̄1, M̄1
)
,

by Lemma (5.18) and (5.15)

R̄j = πN0

(
S̄n

)= Rj |N0,

therefore R̄j converges in law to R̄, and we may apply Theorem 3.4, which finishes the proof. �
Lemma 5.19. If j does not belong to I0, then there exists ε > 0 such that

P
[∣∣(R∗

k

)
j

∣∣> tdj for some k
]
� Ct−(χ0+ε).

Proof. The idea of the proof is the same as of Lemma 5.9, but now we shall proceed more delicate.
If j ∈ I1, then by (5.10)

P
[∣∣(R∗

k

)
j

∣∣> tdj for some k
]
� Ct−χj .

Next assume that j /∈ I1 ∪ I0 and the Lemma holds for i < j . Then arguing as in (5.11) we obtain

P
[∣∣(R∗

n+1

)
j

∣∣> tdj for some n
]
� Ct−χj +

∑
{a,b: ca,b 
=0}

P

[∏
i<j

((
max

k

∣∣(R∗
k

)
i

∣∣)a i · (T̄ i
)b i

)
>

tdj

C

]
.

By (5.14) χj > χ0, therefore it is enough to estimate, for any nonzero ca,b the appropriate factor in the sum above.
The root λj is not a multiple of λ0, therefore, if ca,b 
= 0, then by (5.6) there exists an index i0 < j such that λi0 is

not a multiple of λ0 and a i0
+ b i0

> 0. We shall consider two cases

Case 1. a > 0.
i0
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By the induction hypothesis there exists χ ′ > χ0 such that

P
[∣∣(R∗

k

)
i0

∣∣> tdi0 for some k
]
� Ct−χ ′

. (5.20)

Then take any positive number δ satisfying

δ <
di0(χ

′ − χ0)

χ ′ (5.21)

and define

δ′ = δa i0∑
i 
=i0,i<j (a i + b i ) + b i0

.

Then, in view of (5.12)

dj = a i0
(di0 − δ) +

∑
i 
=i0,i<j

(a i + b i )(di + δ′) + b i0
(di0 + δ′)

and by Lemma 5.9 and (5.20)

P

[∏
i<j

((
max

k

∣∣(R∗
k

)
i

∣∣)a i · (T̄ i
)b i

)
>

tdj

C

]

� P

[
max

k

∣∣(R∗
k

)
i0

∣∣> tdi0−δ

C′

]
+

∑
i 
=i0 ,i<j

P

[
max

k

∣∣(R∗
k

)
i

∣∣> tdi+δ′

C′

]
+
∑
i<j

P

[
T̄ i >

tdi+δ′

C′

]

� C

(
t
−χ ′· di0

−δ

di0 +
∑
i<j

t
−χ0· di+δ′

di

)
� Ct−χ

for some χ > χ0.

Case 2. b i0
> 0.

Then take δ as in (5.21) and define

δ′′ = δb i0∑
i 
=i0,i<j (a i + b i ) + a i0

.

Arguing as above we obtain

P

[∏
i<j

((
max

k

∣∣(R∗
k

)
i

∣∣)a i · (T̄ i
)b i

)
>

tdj

C

]

� P

[
T̄ i0 >

tdi0−δ

C′

]
+
∑
i<j

P

[
max

k

∣∣(R∗
k

)
i

∣∣> tdi+δ′′

C′

]
+

∑
i 
=i0, i<j

P

[
T̄ i >

tdi+δ′′

C′

]

� C

(
t
−χ ′· di0

−δ

di0 +
∑
i<j

t
−χ0· di+δ′′

di

)
� Ct−χ

for some χ > χ0. �
Proof of Lemma 5.17. The lemma is an immediate consequence of the above lemma. �
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