
Ann. I. H. Poincaré – PR 43 (2007) 461–480
www.elsevier.com/locate/anihpb

Aging for interacting diffusion processes

Amir Dembo a,1, Jean-Dominique Deuschel b,∗,2

a Department of Statistics, Stanford University, Stanford, CA 94305, USA
b TU Berlin, Fachbereich Mathematik, Strasse des 17 Juni 136, 10623, Berlin, Germany

Received 7 July 2005; received in revised form 7 June 2006; accepted 25 July 2006

Available online 13 December 2006

Abstract

We study the aging phenomenon for a class of interacting diffusion processes {Xt (i), i ∈ Z
d }. In this framework we see the effect

of the lattice dimension d on aging, as well as that of the class of test functions f (Xt ) considered. We further note the sensitivity
of aging to specific details, when degenerate diffusions (such as super random walk, or parabolic Anderson model), are considered.
We complement our study of systems on the infinite lattice, with that of their restriction to finite boxes. In the latter setting we
consider different regimes in terms of box size scaling with time, as well as the effect that the choice of boundary conditions has
on aging. The key tool for our analysis is the random walk representation for such diffusions.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Nous considérons le phénomène du vieillissement pour une classe de diffusions en interaction. Dans ce cadre l’effet de la di-
mension du réseau ainsi que le type des fonctions test sont mis en évidence. Nous notons aussi l’influence de certains paramètres
tels que la dégénérescence du coefficient de diffusion, par exemple pour le « super randow walk » ou le modèle d’Anderson para-
bolique. Nous considérons aussi des systèmes restreints à des boîtes finies. Dans ce cas, la taille de la boîte ainsi que les conditions
au bord ont un effet sur le vieillissement. L’outil clef pour notre analyse est la représentation en marche aléatoire.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The object of this work is to study out of equilibrium behavior for a certain class of time homogeneous interacting
diffusion processes {Xt(i), i ∈ Z

d} on the infinite d-dimensional lattice, and for their restriction to finite boxes i ∈ BN .
Such diffusion processes appear in many instances. In the context of statistical mechanics, Xt : i ∈ Z

d → Xt(i) ∈ R
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also called Ginzburg–Landau model represents the height of a phase separation, cf. [15] and [14]. In the context
biological models, Xt represent the intensity of a population at site i and time t � 0, cf. [17].

We focus on the phenomenon of aging, which is of much recent interest in the study of out of equilibrium stochastic
systems. This topic originated in physics, when experiments in glassy materials demonstrate that “older” systems relax
in a slower manner than “younger” ones (cf. [22,12], where the age of a system is the time it spent in the current phase,
e.g. at current temperature in a cooling experiment). The same effect has since been found in many statistical physics
models, most notably spin glasses, where as the starting time s of observation increases, a much larger time t is
required for relaxing the correlation between the configurations of the corresponding dynamical system at times s

and s + t to the same prescribed value. For more on aging, see the surveys [2,4,19] in the physics literature and the
references therein, or [1] for a review of most mathematical studies of aging completed thus far.

We examine aging here via the time correlations between various test functions, that is,

corr
(
f (Xs), g(Xs+t )

)≡ cov(f (Xs), g(Xs+t ))

var(f (Xs))1/2 var(g(Xs+t ))1/2
.

We thus say that aging takes place in the system (as observed by the test functions f and g), when the correlation
corr(f (Xs), g(Xs+t )) decays to zero for some choices of s, t → ∞ but not for some other choices of s, t → ∞ (this
definition follows [2,4,19] and we note in passing that certain transient Markov processes, such as high-dimensional
Brownian motion, shall then exhibit aging).

This framework allows us to examine in Theorem 1.1 the difference in behavior between the recurrent lattice
dimensions d = 1,2 and the transient ones, d � 3, in the context of “local, monotone, approximately linear” test
functions, which in Proposition 1.2 we contrast with other classes of test functions, such as local functions of the
gradient process, “global” differentiable functions, or highly non-linear and possibly oscillatory, test functions. As
we see in Proposition 1.3, the precise degeneracy of the diffusion coefficients can very much alter the way aging
is manifested by the system. Further, in the context of dynamics restricted to a large finite box BN , we show in
Theorem 1.4 that aging is highly sensitive to the scaling of box size N = N(s, t) in terms of time, as well as to the
specific type of boundary condition considered. Finally, in Proposition 1.5 we re-examine some of these questions for
a variant of the original dynamics, corresponding to the conservation of total volume.

We proceed to present our results, starting with the class of diffusion processes considered here, which are given
as the solution of a stochastic differential system (SDS)

Xt(i) = x(i) +
t∫

0

bi(Xs)ds +
t∫

0

σi

(
Xs(i)

)
dWs(i), i ∈ Z

d, (1.1)

where {Wt(i), i ∈ Z
d} is a family of independent 1-dimensional Wiener processes and the initial configuration is

tempered:

x ∈ Er =
{
x ∈ R

Z
d

: ‖x‖2
r =

∑
i∈Zd

x(i)2e−r|i| < ∞
}
.

We make the following assumptions about the drifts and diffusion coefficients:
Assumption on drift. Let J be a symmetric, irreducible set of bounded diameter.3 Set J∗ = {e = (e1, e2): e2 − e1 ∈

J } ⊂ Z
d × Z

d . The drift is of gradient form and depends only on the discrete gradient ∇x(e) = x(e2) − x(e1), e =
(e1, e2) ∈ J∗:

bi(x) = −
∑

j−i∈J
V ′

(i,j)

(
x(i) − x(j)

)= ∑
e∈J∗: e1=i

V ′
e

(∇x(e)
)

= −1

2

( ∑
e∈J∗: e2=i

V ′
e

(∇x(e)
)− ∑

e∈J∗: e1=i

V ′
e

(∇x(e)
))≡ −div

(
V ′(∇x)

)
(i),

3 Symmetric means i ∈ J if −i ∈J , irreducibility means that for each i ∈ Z
d we can find i1, . . . , ik ∈ J , such that i = i1 +· · ·+ ik and bounded

diameter means sup{|i − j |, i, j ∈ J } < ∞.
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where div is the discrete divergence, Ve ∈ C2(R) are even, strictly convex functions such that for some 0 < c− �
c+ < ∞,

c− � V ′′
e � c+, ∀e ∈ J∗. (1.2)

A special case deals with linear drifts:

bi(x) =
∑

j−i∈J
q(i, j)

(
x(j) − x(i)

)
, (1.3)

where {q(i, j)} are the jump rates of a symmetric irreducible finite range random walk on Z
d with the uniform

ellipticity condition:

c− � q(i, j) � c+, ∀(i, j) ∈ J∗.
A special case is the discrete Laplacian

�x(i) = −div(∇x)(i) =
∑

j : |j−i|=1

(
x(j) − x(i)

)
,

which is the linear drift corresponding to the nearest neighbor simple random walk on Z
d .

Assumption on diffusion coefficients. The diffusion coefficients ai = σ 2
i ∈ C1(R) are uniformly elliptic:

α2− � ai � α2+, i ∈ Z
d, (1.4)

for some 0 < α− � α+ < ∞. Here again, a special case deals with constant (independent of x) coefficients:

α− � σi

(
x(i)

)= αi � α+, i ∈ Z
d . (1.5)

In this case, the gradient process {∇Xt(e), e ∈ Z
d∗} is itself a Markov process.

If both (1.3) and (1.5) hold, we have a linear SDS, thus a Gaussian process, the critical Ornstein–Uhlenbeck process:

Xt(i) = x(i) +
t∫

0

∑
j−i∈J

q(i, j)
(
Xs(j) − Xs(i)

)
ds + αiWt(i), i ∈ Z

d . (1.6)

Indeed, aging is examined in [5] for certain Ornstein–Uhlenbeck processes of the type (1.6) and for linear test func-
tions, in which case explicit Gaussian computations are available.

We shall denote by F(·) ≈ G(·) the fact that the function F(·)/G(·) is uniformly bounded and bounded away from
zero. In particular, all aging functions are specified via ≈ up to universal positive, finite constants, which suffices in
order to determine whether aging occurs or not. Further, all aging functions are given by the formulas that are valid
without any such constants in the Gaussian case, that is, for linear functions f and g and an Ornstein–Uhlenbeck
process Xs(·).

Under the above assumption the system (1.1) has for each x ∈ Er a unique solution Xt ∈ Er,∀t � 0. We denote by
E+

r the non-negative configurations and by M1(Er), respectively M1(E
+
r ), the probability distributions concentrated

on Er , respectively E+
r .

We introduce for each p � 1 the set of differentiable functions

C1
p(Er) =

{
f ∈ C1(Er): ‖f ‖p ≡

[∑
i∈Zd

‖∂if ‖p∞
]1/p

< ∞
}
,

where ∂if (x) ≡ ∂f (x)/∂x(i). All our test functions will be from C1
2(Er), and its subset C1

1(Er) is called the set of
local functions.

The initial distribution ν ∈M1(Er) will be a perturbation of i.i.d. measures. More precisely, we assume that

varν(f ) � ‖Cν‖‖f ‖2
2, ∀f ∈ C1

2(Er). (1.7)

Note that (1.7) follows from a covariance inequality of the type∣∣covν(f, g)
∣∣�∑ cν(i, j)‖∂if ‖∞‖∂jg‖∞, ∀f,g ∈ C1

2(Er), (1.8)

i,j
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in case cν(i, j) = cν(j, i) � 0 are such that supi

∑
k cν(i, k) ≡ ‖Cν‖ < ∞. Also whenever a measure ν satisfies the

FKG property, then (1.8) holds with cν(i, k) = √
3 covν(x(i), x(k)), cf. [20].

Next, let C1,↑(Er) denote the set of coordinate-wise continuous functions f :Er → R, that are differentiable with
respect to each coordinate of x ∈ Er and such that ∂if (x) � 0 for all x ∈ Er and i ∈ Z

d . Further, let

C1,↑
1 (Er) = {f ∈ C1,↑(Er): ‖f ‖1 < ∞, |∂if |inf ≡ inf

x
∂if (x) > 0, for some i ∈ Z

d
}
,

be the set of monotone increasing local functions, with respect to which we shall usually examine the aging phenom-
ena.

In this context, our next result provides insight about the relation between aging and the underlying lattice dimen-
sion.

Theorem 1.1. Assume either (1.2) and constant diffusion coefficients (1.5), or (1.4) and linear drifts (1.3). Take an
initial distribution ν ∈ M1(Er) satisfying (1.7). Then, for all f,g ∈ C1,↑

1 (Er), in case of transient lattice dimensions,
d � 3, we have no aging, that is

lim
s,t→∞ corrν

(
f (Xs), g(Xs+t )

)= 0. (1.9)

For recurrent lattice dimensions we have aging, where for d = 1,

lim
s,t→∞, t/s=a

corrν
(
f (Xs), g(Xs+t )

)≈ (1 + a/2)1/2 − (a/2)1/2

(1 + a)1/4
, (1.10)

and for d = 2, we have,

lim
s,t→∞, log t/ log s=a

corrν
(
f (Xs), g(Xs+t )

)≈ (1 − a)+. (1.11)

As we next show, the choice of test functions is very important. In particular if we consider local functions of
the gradient process {∇Xt, t � 0}, then no aging takes place. Also exponential and trigonometric functions, produce
no aging. However, non-local functions produce aging even in higher dimensions. More precisely, for d � q > d/2,
consider the set of non-local monotone differentiable functions

C1,↑
2,q (Er) =

{
f ∈ C1,↑(Er): 0 < inf

i

(
1 + |i|)q |∂if |inf, sup

i

(
1 + |i|)q‖∂if ‖∞ < ∞

}
.

A typical example of such a function f ∈ L2(ν) for ν satisfying (1.7) is the linear function

f (x) =
∑

i

(
1 + |i|)−q(

x(i) − mν(i)
)
, where mν(i) = Eν

[
x(i)

]
. (1.12)

Note that C1,↑
2,q (Er) are for d � q > d/2 subsets of C1

2(Er) that exclude the local monotone functions C1,↑
1 (Er).

Then, we have the following result.

Proposition 1.2.

(i) Let d � 2 and assume (1.2) and constant diffusion coefficients (1.5). Then, for each f,g ∈ C1
1(Er) with f (x) =

f̃ (∇x), g(x) = g̃(∇x)

lim
s,t→∞ corrν

(
f̃ (∇Xs), g̃(∇Xt+s)

)= 0.

(ii) Under the assumptions of Theorem 1.1, take d � 3 and f,g ∈ C1,↑
2,q (Er) with q = (d + 1)/2 or q = (d + 2)/2.

Then, aging takes place and (1.10), respectively (1.11), holds.
(iii) Assume that X0(i) = 0 for all i ∈ Z

d , both linear drifts (1.3) and constant diffusion coefficients (1.5), i.e. consider
the Ornstein–Uhlenbeck process (1.6), then for

f,g ∈ Eρ ≡
{

ρ

(
n∑

α=1

cjαx(jα)

)
, cj > 0

}
no aging takes place (i.e. (1.9) holds), when either ρ = exp(·) or ρ = cos(·), or ρ = sin(·).



A. Dembo, J.-D. Deuschel / Ann. I. H. Poincaré – PR 43 (2007) 461–480 465
Example 1 (Ginzburg–Landau model). Here we assume a nearest neighbor interaction:

bi(x) = −
∑

j : |i−j |=1

V ′(x(i) − x(j)
)
,

and a constant diffusivity coefficient σ 2
i = α2. Introducing the formal Hamiltonian

H(x) = 1

2

∑
i,j : |i−j |=1

V
(
x(i) − x(j)

)
,

we see that this drift is given in terms of the partial derivatives bj (x) = −∂jH(x) of the Hamiltonian. The SDS (1.1)
is thus the Langevin dynamic associated with the Gibbs measure

μ(dx) = 1

Z
exp

(
− 2

α2
H(x)

) ∏
j∈Zd

λ
(
dx(j)

)
, (1.13)

λ being the Lebesgue measure on R. Of course, (1.13) is just formal and is well defined only on finite box with fixed
boundary condition (cf. (1.21) in the sequel). In fact due to the continuous symmetry, that is H(x) = H(x+c),∀c ∈ R,
no infinite Gibbs state exists on the whole of Z

d for lower lattice dimensions d = 1,2, cf. [13].
Note however, that aging is not equivalent to the non-existence of an infinite Gibbs state. For example, the dynamic

with repulsion:

Xt(i) = x(i) +
t∫

0

bi(Xs)ds + 	t (i) + αiWt(i), i ∈ Z
d , (1.14)

where 	t (i) is the local time at 0 for Xs(i), s � t , is delocalized and thus no infinite Gibbs state exists for any
dimension d � 1, cf. [10]. Adapting the proof of Theorem 1.1 for the dynamic (1.14) with drift satisfying (1.2) and
initial distribution ν ∈ M1(Er) satisfying (1.7), the representation of [11, Theorem 2 and Remark 1] yields upper
bounds on covariances that are similar to those we have for the same dynamic without the repulsion term 	t (i). We
consequently deduce that even with the repulsion term, no aging takes place when d � 3, that is, (1.9) then holds for
all f,g ∈ C1,↑

1 (Er).

The aging behavior is quite sensitive to the details of degenerate diffusion coefficients. Our next result illustrates
this for three different model examples, each of which is of considerable independent interest.

Proposition 1.3. Consider local monotone functions f,g ∈ C1,↑
1 (Er).

(i) Let (Xt ) be the solution of the SDS

Xt(i) = x(i) +
t∫

0

bi(Xs)ds +
t∫

0

10(i)σi

(
Xs(i)

)
dWs(i), i ∈ Z

d , (1.15)

where the drift, the diffusion coefficients and the initial distribution are as in Theorem 1.1. Then, no aging takes
place if d � 2, while in this case (1.11) holds for d = 1.

(ii) Consider the super random walk, that is, the solution of the SDS

Xt(i) = x(i) +
t∫

0

(�Xs)(i)ds +
t∫

0

αX
1/2
s (i)dWs(i), i ∈ Z

d , (1.16)

with α > 0 and an initial measure ν ∈ M1(E
+
r ) satisfying (1.7) for which mν(i) = m for all i ∈ Z

d , cf. [17].
Then, (1.9), (1.10) and (1.11) hold for d � 3, d = 1 and d = 2, respectively, just as in Theorem 1.1.
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(iii) Consider the parabolic Anderson model, that is, the solution of the SDS

Xt(i) = x(i) +
t∫

0

(�Xs)(i)ds +
t∫

0

αXs(i)dWs(i), i ∈ Z
d , (1.17)

with α > 0 and initial condition ν ∈ M1(E
+
r ) composed of i.i.d. coordinates of positive mean and finite variance,

cf. [3]. Then, no aging takes place, at all dimensions.

This last result just shows that no aging takes place in the parabolic Anderson model for approximately linear test
functions, but of course it does not exclude aging for other test functions. In fact this is best understood in view of
non-aging for exponentials of the Ornstein–Uhlenbeck process, cf. part (iii) of Proposition 1.2, since both SDS of
{Xt } in (1.17) and {exp(Xt )} for Xt of (1.1) are very similar. In fact we expect that aging takes place for f,g ∈ Elog(·)
in d = 1,2 for any α > 0 and in d � 3 for all α > αc(d) > 0.

We now turn to dynamics on a finite box and study the effect the different boundary conditions have on whether the
system exhibits aging or not. To this end, let BN = [0,N − 1]d ∩Z

d be the box of size N . We will consider a dynamic
XN

t (i) for i ∈ BN which is the solution of SDS (1.1) restricted to BN with drift bN
i corresponding to different types

of boundary conditions, as follows.

Fixed boundary conditions. For a given fixed y ∈ Er ,

bN
i (x) = −

∑
j∈(J+i)∩BN

V ′
(i,j)

(
x(i) − x(j)

)− ∑
j∈(J+i)∩Bc

N

V ′
(i,j)

(
x(i) − y(j)

)
. (1.18)

Free boundary condition.

bN
i (x) = −

∑
j∈(J+i)∩BN

V ′
(i,j)

(
x(i) − x(j)

)
. (1.19)

Periodic boundary condition.

bN
i (x) = −

∑
j∈(J+i)

V ′
(i,j)

(
x(i) − x(j modN)

)
. (1.20)

We observe in passing that setting all diffusion coefficients to the same finite, positive constant α, the drift (1.18)
corresponds to a Langevin dynamic associated with the Gibbs measure on BN equipped with the boundary condition
y ∈ R

Bc
N , that is,

μ
y
BN

(dx) = 1

Z
y
N

exp

(
− 2

α2
H

y
N(x)

) ∏
j∈BN

λ
(
dx(j)

) ∏
j /∈BN

δy(j)

(
dx(j)

)
, (1.21)

where

H
y
N(x) = 1

2

∑
j,i∈BN : j−i∈J

V
(
x(i) − x(j)

)+ ∑
i∈BN, j /∈BN : j−i∈J

V
(
x(i) − y(j)

)
.

However, no Gibbs distribution exists for the periodic or free boundary conditions in this model.
We will fix a time horizon s + t and consider a solution {XN

u ,0 � u � s + t} with fixed N , allowing also for
N = N(s, t) → ∞ as s, t → ∞. We next examine the sensitivity of aging with respect to boundary conditions and
with respect to the box size scaling. Indeed, for fixed b.c. we find aging only for sufficiently large box size, in which
case the dynamics behaves as if it is on the infinite lattice, hence also requiring d � 2. In contrast, even for d � 3
aging is present for free or periodic b.c. if the dynamics can feel the boundary condition, that is, when the box size
grows slowly enough with respect to time.

Theorem 1.4. Consider a dynamic on a finite box BN under the same hypothesis as Theorem 1.1.
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(i) For fixed b.c. as in (1.18), the conclusions of Theorem 1.1 apply when s, t = o(N2/ logN), whereas when
N(s, t) = o((t/ log t)1/2) no aging takes place, for all d � 1.

(ii) For d � 3 and either free or periodic b.c. as in (1.19) or (1.20), no aging takes place when s = o(Nd), whereas if
N = o(s1/d), then

lim
s,t→∞, t/s=a

corrν
(
f (Xs), g(Xs+t )

)≈ 1√
a + 1

. (1.22)

Another interesting variation of the Ginzburg–Landau model, cf. [21], is the dynamic with preserved volume, as
follows. We denote by TN the discrete torus (−N/2,N/2]d ∩ Z

d equipped with periodic bonds T ∗
N = {e = (e1, e2):

ei ∈ TN, |e1 − e2 modN | = 1}. Recall the definition of the discrete divergence

divf (i) = 1

2

( ∑
e∈T ∗

N , e2=i

f (e) −
∑

e∈T ∗
N , e1=i

f (e)

)
and the discrete periodic Laplacian �f (i) = −div(∇f )(i). For a family {Wt(e), e ∈ T ∗

N, t � 0} of independent
Brownian motions, we set Ŵt (i) = √

2 div(Wt )(i), noting that

cov
(
Ŵs(i), Ŵt (j)

)= (t ∧ s)(−�1i )(j).

A direct application of Ito’s formula shows that the total volume in the dynamics

Xt(i) = x(i) +
t∫

0

�b·(Xs)(i)ds + αŴt (i), i ∈ TN, (1.23)

remains constant over time. That is,

vol(Xt ) ≡
∑
i∈TN

Xt (i) = vol(X0), ∀t � 0.

Further, for each given v ∈ R, the SDS (1.23) is the Langevin dynamic associated with a micro-canonical Gibbs
distribution on TN with fixed vol(x) = v (cf. [21]). For this dynamics, and for linear drifts, we have the following
(aging) behavior.

Proposition 1.5. Consider the SDS

Xt(i) = x(i) −
t∫

0

(�)2(Xs)(i)ds + αŴt (i), i ∈ TN . (1.24)

Then, for f (x) = f (x(0)) and g(x) = g(x(0)) with bounded and bounded away from zero derivatives, we have no
aging when N → ∞ and either d � 3, or d = 2 and N4 = o(t), or d = 1 and N4 logN = o(t). On the other hand, if
(t + s)N−4 is held bounded, then the relation (1.11) holds when d = 2, while for d = 1 we have that

lim
s,t→∞, t/s=a

corrν
(
f (Xs), g(Xs+t )

)≈ (1 + a/2)1/4 − (a/2)1/4

(1 + a)1/8
. (1.25)

As our proofs rely on the random walk representation for the SDS (1.1), we devote the next section to a short
exposition of this approach, with Section 3 containing the proof of all results pertaining to SDS on the infinite lattice,
and Section 4 containing our counterpart results for the dynamics on a finite box.

2. The random walk representation

We provide here a short overview of the random walk representation, cf. [9] or [8], see also [16,18], on which most
of our proofs are based. To this end, we denote by (Pt , t � 0) the semi-group for the SDS (1.1) and by L its generator.
Let

C2
1(Er) =

{
f ∈ C2(Er):

∑
‖∂if ‖∞ +

∑∥∥∂2
i f
∥∥∞ < ∞

}
.

i i
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Acting on f ∈ C2
1(Er), we have

Lf (x) =
∑

i

(
bi(x)∂if (x) + 1

2
ai

(
x(i)

)
∂2
i f (x)

)
, (2.1)

where ai = σ 2
i are such that supi,y ai(y) < ∞. Next let Γ be the bilinear form on C2

1(Er) × C2
1(Er),

Γ (f,g)(x) = L(fg)(x) − f (x)Lg(x) − g(x)Lf (x)

=
∑

i

ai

(
x(i)

)
∂if (x)∂ig(x), (2.2)

with Γ (f,g) then defined as
∑

i ai(x(i))∂if (x)∂ig(x) which is finite for all f,g ∈ C1
2(Er).

In view of Proposition 1.3 of [8], we have that

covν

(
f (Xs), g(Xs+t )

)= covν(Psf,Ps+t g) +
s∫

0

E
[
Γ (Puf,Pu+t g)(Xs−u)

]
du, (2.3)

for any f,g ∈ C1
2(Er). It is not hard to show that C1

2(Er) is invariant under the semi-group (Pt , t � 0), and by (1.7) it is
also a subset of L2(ν). Therefore, while the random walk representation and in particular the decomposition formula
(2.3) are derived in [8] only for local functions f,g ∈ C1

1(Er), one can adapt the proof so it applies for all functions in
C1

2(Er).
Recall (1.7), due to which we just need an estimate for ∂iPtf in order to use (2.3). We consider first the case (1.5),

with constant diffusion coefficients σi . Let �Xt = (ξt ,Xt ) ∈ Z
d × Er be the process generated by

L̄f (i, x) = (Lf (i, ·))(x) +
∑

j :j−i∈J
V ′′

(i,j)

(
x(i) − x(j)

)(
f (j, x) − f (i, x)

)
.

That is, the second coordinate (Xt , t � 0) is just the original diffusion solution of the SDS (1.1), while for a given
realization (Xt , t � 0), the process (ξt , t � 0) is the time inhomogeneous random walk on Z

d with symmetric jump
rates from i to j given by V ′′

(i,j)(Xt (i) − Xt(j)). The random walk representation gives

∂iPtf (x) =
∑
j∈Zd

Ei,x

[
∂jf (Xt )1j (ξt )

]= ∑
j∈Zd

Ex

[
∂jf (Xt )p

X
t (i, j)

]
, (2.4)

where X0 = x and

pX
t (i, j) = Ei

[
1j (ξt )|FX

t

]
,

is the conditional probability of the random walk starting at i to be at time t in position j given FX
t ≡ σ(Xs,0 � s � t).

Let p∗
t (i − j) = Pi (ξ

∗
t = j) denote the transition function of the nearest neighbor simple random walk on Z

d . It
is well known that p∗

t (i − j) behaves for large time t � |i − j | like the Gaussian kernel and for large |i − j | like the
Poissonian kernel, that is, we can find constants4 ci , such that, for any i, j ∈ Z

d and all t � 0,
c1

1 + td/2
exp
(−E

(
c2t, |i − j |))� p∗

t (i − j) � c3

1 + td/2
exp
(−E

(
c4t, |i − j |)), (2.5)

where (cf. Proposition 3.4 [6]),

E(t, r) = sup
λ

{
rλ − t (coshλ − 1)

}= r · arg sinh

(
r

t

)
− t

(√
1 + r2

t2
− 1

)
.

Next, set p̄t (i, j) = supX pX
t (i, j) and p

t
(i, j) = infX pX

t (i, j). In view of inequality (1.2) of [9] we can estimate

p̄t (i, j) and p
t
(i, j) in terms of p∗

t (i − j). More precisely, we can find constants ci such that for any t � 0, i, j ∈ Z
d ,

c1p
∗
tc2

(i − j) � p
t
(i, j) � p̄t (i, j) � c3p

∗
tc4

(i − j). (2.6)

4 In what follows, c1, c2, c3, c4 are positive constant, which do not depend the time t , but may differ from line to line.
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In case of linear drift but non-constant diffusion coefficients, consider the process �Xt = (ξ̂t , X̂t ) generated by

L̄f (i, x) = (Lf (i, ·))(x) + 1

2
a′
i

(
x(i)

)
∂if (i, x) +

∑
j∈(J+i)

q(i, j)
(
f (j, x) − f (i, x)

)
.

Thus (ξ̂t , t � 0) is a random walk with symmetric, time homogeneous jump rate, while for given (ξ̂t , t � 0), the
diffusion process (X̂t , t � 0) is the solution of the SDS

dX̂t (i) =
(

bi(X̂t ) + 1

2
1i (ξ̂t )a

′
i

(
X̂t (i)

))
dt + σi

(
X̂t (i)

)
dWt(i), i ∈ Z

d .

The random walk representation gives in this case (cf. Theorem 1.1 of [8]),

∂iPtf (x) =
∑
j∈Zd

Ei,x

[
∂jf (X̂t )1j (ξ̂t )

]
. (2.7)

Let p̂t (i, j) = Pi (ξ̂t = j) denote the transition function of the random walk ξ̂t on Z
d , noting that the estimate (2.6)

then applies also for p̂t (i, j) (again, by inequality (1.2) of [9]).

3. Aging for interacting diffusions on Z
d

Equipped with the random walk representation, we next prove our main result, Theorem 1.1, dealing with aging
for local monotone test functions.

Proof of Theorem 1.1. Take f ∈ C1
1(Er). Then, using either (2.4) or (2.7), in combination with (2.6), we get that

‖∂iPtf ‖∞ �
∑

l

c3p
∗
tc4

(i − l)‖∂lf ‖∞. (3.1)

In particular, for f ∈ C1
1(Er) and ν ∈M1(Er) satisfying (1.7), we can find a constant c1(ν, f ) < ∞ such that by (2.5)

and (3.1),

varν(Psf ) � ‖Cν‖
∑
i,j,k

c2
3p

∗
sc4

(i − j)‖∂jf ‖∞p∗
sc4

(i − k)‖∂kf ‖∞

= ‖Cν‖c2
3

∑
j,k

p∗
2sc4

(k − j)‖∂jf ‖∞‖∂kf ‖∞

� c2
3‖f ‖2

1‖Cν‖max
i

{
p∗

2sc4
(i)
}

� c1(ν, f )(s + 1)−d/2.

Applying the same bound for varν(Ps+t g) we get that∣∣covν(Psf,Ps+t g)
∣∣� varν(Psf )1/2 varν(Ps+t g)1/2

�
√

c1(ν, f )c1(ν, g) (s + 1)−d/4(s + t + 1)−d/4. (3.2)

For Γ of (2.2) and with ai(x(i)) bounded, by (3.1) and (2.5) we can similarly find c2(f, g) < ∞ such that

Γ (Psf,Ps+t g) � c2(f, g)(2s + t + 1)−d/2.

Using again (2.4) or (2.7), in combination with (2.6), we get that

|∂iPtf |inf � c1

∑
j

p∗
tc2

(i − j)|∂jf |inf. (3.3)

Recall that if f,g ∈ C1,↑
1 (Er) then |∂lf |inf > 0 and |∂mg|inf > 0 for some l,m ∈ Z

d , hence by uniform ellipticity and
(2.5) we have the lower bound
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Γ (Psf,Ps+t g) � (c1α−)2
∑
i,j,k

p∗
sc2

(i − j)p∗
(s+t)c2

(i − k)|∂jf |inf|∂kg|inf

� (c1α−)2p∗
(2s+t)c2

(l − m)|∂lf |inf|∂mg|inf

� c3(f, g)(2s + t + 1)−d/2,

for some c3(f, g) > 0. Thus, in view of (2.3), we see that

varν
(
f (Xs)

)≈
⎧⎪⎨⎪⎩

(s + 1)1/2, d = 1,

log(s + 1), d = 2,

1, d � 3,

with a similar expression for varν(g(Xs+t )), while for some s0 < ∞ and all s � s0, t � 0,

covν

(
f (Xs), g(Xs+t )

)≈ { (2s + t + 1)1/2 − (t + 1)1/2, d = 1,

log(2s + t + 1) − log(t + 1), d = 2,

whereas for d � 3 and some finite c4 = c4(ν, f, g),∣∣covν

(
f (Xs), g(Xs+t )

)∣∣� c4
[
(s + t + 1)−d/4 + (t + 1)−d/2+1 − (2s + t + 1)−d/2+1].

This of course implies the stated results. �
Continuing with a similar type of arguments, we next prove Proposition 1.2, about aging as observed by different

types of test functions.

Proof of Proposition 1.2. (i) Take f (x) = f̃ (∇x), noting that ∂if (x) = 2 div(∂f̃ (∇x))(i), so by (2.4) and summa-
tion by parts,

∂i(Ptf )(x) = Ex

[∑
j

∂jf (Xt )p
X
t (i, j)

]
= Ex

[∑
e

∂∇x(e)f̃ (∇Xt)∇pX
t (i, ·)(e)

]
.

Next we have the Nash type inequality, whereby we can find ε > 0, such that∣∣∇pX
t (i, ·)(e)∣∣� c1(1 ∨ t)−εp∗

c2t
(i − e1),

cf. inequality (1.3) of [9]. So, we have the bound of (3.1) with the additional factor t−ε , from which we proceed as
before to show the absence of aging when d � 2.

(ii) Fixing ν ∈ M1(Er) for which (1.7) holds, let

hα(x) =
∑

k

(
1 + |k|)−qα

(
x(k) − mν(k)

)
, α = 1,2

where qα = (d +α)/2 and mν(·) is per (1.12). We first study the aging properties of hα ∈ C1,↑
2,qα

(Er), for which we use
the Fourier representation for the simple random walk. To this end, letting

â(θ) =
∑
|k|=1

(
1 − eik·θ )= 2

d∑
l=1

(1 − cos θl), (3.4)

for θ = (θ1, . . . , θd), we have that

p̂∗
t (θ) =

∑
k

p∗
t (k) eik·θ = e−t â(θ).

Define

∂̂hα(θ) =
∑

k

(
1 + |k|)−qα eik·θ ,

noting that for c5 = (c3α+)2 < ∞, we get by (2.6) along the lines of proof of Theorem 1.1 that,
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Γ (Pshα,Ps+t hα) � c5

∑
j,k

‖∂jhα‖∞p∗
(2s+t)c4

(j − k)‖∂khα‖∞

= c5

∑
j,k

(
1 + |j |)−qα

(
1 + |k|)−qαp∗

(2s+t)c4
(j − k)

= c5

(2π)d

∫
[−π,π]d

∣∣∂̂hα(θ)
∣∣2 exp

(−c4(2s + t)â(θ)
)

dθ,

with the last equality due to Plancherel’s identity. Further, with ∂jhα independent of x, the converse inequality

Γ (Pshα,Ps+t hα) � c6

(2π)d

∫
[−π,π]d

∣∣∂̂hα(θ)
∣∣2 exp

(−c2(2s + t)â(θ)
)

dθ,

also holds for c6 = (c1α−)2 > 0 and c2 > 0 of (2.6). Note that for some finite c+ and positive c−,

c−|θ |2 � â(θ) � c+|θ |2, θ ∈ [−π,π]d , (3.5)

and |∂̂hα(θ)|2 ≈ |θ |−2d+2qα for θ → 0 (cf. Theorem 1.9 of [7]). Consequently, it is not hard to check that as a function
of both x and s, t � 0,

Γ (Pshα,Ps+t hα) ≈
{

(2s + t + 1)−1/2, q = q1,

(2s + t + 1)−1, q = q2.

The same argument also provides the bound

ϕ(s) ≡
∑

i

[∑
k

(
1 + |k|)−qαp∗

sc4
(i − k)

]2

=
∑
j,k

(
1 + |j |)−qα

(
1 + |k|)−qαp∗

2sc4
(j − k) � c0(2s + 1)−α/2, (3.6)

for some c0 = c0(c4, d,α) < ∞ and all s � 0.
Turning to the general case of f,g ∈ C1,↑

2,q (Er), we can find constants 0 < c1 < c2 < ∞ such that for all k ∈ Z
d ,

c1
(
1 + |k|)−q � |∂kf |inf � ‖∂kf ‖∞ � c2

(
1 + |k|)−q

.

Using the random walk representation, we thus see from (2.4) and (2.7) that for q = qα , all k ∈ Z
d , x ∈ Er and t � 0,

c1∂kPthα(x) � ∂kPtf (x) � c2∂kPthα(x).

The same applies for g ∈ C1,↑
2,qα

(Er). Hence, by (2.2) and uniform ellipticity it follows that also,

Γ (Psf,Ps+t g) ≈
{

(2s + t + 1)−1/2, q = q1,

(2s + t + 1)−1, q = q2.
(3.7)

Further, for ν ∈ M1(Er) that satisfies (1.7) and any f,g ∈ C1,↑
2,qα

(Er), we get in view of (3.6) that for some finite
c1(ν, f, g) and c2(ν, f, g),∣∣covν(Psf,Ps+t g)

∣∣� varν(Psf )1/2 varν(Ps+t g)1/2

� c1ϕ(s)1/2ϕ(s + t)1/2 � c2(2s + 1)−α/4(2(s + t) + 1
)−α/4

.

Since covν(Psf,Ps+t g) → 0 for s → ∞, uniformly in t , we proceed to get the stated aging results from (3.7) just as
we did at the end of the proof of Theorem 1.1.

(iii) Considering the Ornstein–Uhlenbeck process starting at deterministic X0(i) = 0 we take f (x) = ρ(	1(x)) ∈
Eρ and g(x) = ρ(	2(x)) ∈ Eρ for monotone local functions 	1(x) and 	2(x) of the form

∑n
α=1 cjαx(jα), with cjα > 0.

Since 	1(Xs) and 	2(Xs+t ) are then jointly Gaussian and of zero mean, we can compute explicitly the correlations for
such f and g when either ρ = exp, or ρ = cos, or ρ = sin, via the following Gaussian identities.
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Lemma 3.1. Let X,Y be jointly Gaussian. Then,

corr
(
eX, eY

)= exp(cov(X,Y )) − 1

(exp(var(X)) − 1)1/2(exp(var(Y )) − 1)1/2
. (3.8)

Further, if both E[X] = E[Y ] = 0, then

corr
(
cos(X), cos(Y )

)= cosh(cov(X,Y )) − 1

(cosh(var(X)) − 1)1/2(cosh(var(Y )) − 1)1/2
, (3.9)

and

corr
(
sin(X), sin(Y )

)= sinh(cov(X,Y ))

(sinh(var(X)))1/2(sinh(var(Y )))1/2
. (3.10)

Proof. Let �X = X − E[X], �Y = Y − E[Y ], then corr(eX, eY ) = corr(e�X, e�Y ), with

E
[
e
�X+�Y ]= exp

(
1

2
var(X + Y)

)
= E

[
e
�X]

E
[
e
�Y ] exp

(
cov(X,Y )

)
,

which implies (3.8). Next using the fact that E[X] = E[Y ] = 0 we have

E
[
cos(X)

]= E
[
eiX]= e− 1

2 var(X)

and

E
[
cos(X) cos(Y )

]= 1

2
E
[
ei(X+Y) + ei(X−Y)

]
= 1

2

(
exp

(
−1

2
var(X + Y)

)
+ exp

(
−1

2
var(X − Y)

))
= E

[
eiX]

E
[
eiY ] cosh

(
cov(X,Y )

)
,

from which we deduce (3.9), whereas by symmetry E[sin(X)] = E[sin(Y )] = 0 and

E
[
sin(X) sin(Y )

]= −1

2
E
[
ei(X+Y) − ei(X−Y)

]
= −1

2

(
exp

(
−1

2
var(X + Y)

)
− exp

(
−1

2
var(X − Y)

))
= E

[
eiX]

E
[
eiY ] sinh

(
cov(X,Y )

)
,

respectively, yielding (3.10). �
Indeed, by the random walk representation, if d � 3 then var(	1(Xs)) and var(	2(Xs+t )) are uniformly bounded

away from 0, while cov(	1(Xs), 	2(Xs+t )) → 0 whenever s, t → ∞. Thus, in view of Lemma 3.1 it is clear that no
aging takes place. Turning to d = 1,2, we have that var(	1(Xs)) → ∞ and var(	2(Xs+t )) → ∞, so it suffices to
consider those s, t → ∞ for which cov(	1(Xs), 	2(Xs+t )) → ∞. By Lemma 3.1 we then have that

corr
(
f (Xs), g(Xs+t )

)≈ exp

(
cov
(
	1(Xs), 	2(Xs+t )

)− 1

2
var
(
	1(Xs)

)− 1

2
var
(
	2(Xs+t )

))
= exp

(
−1

2
var
(
	2(Xs+t ) − 	1(Xs)

))
,

and using the Markov property and Gaussian distribution of 	2(Xs+t ) and 	1(Xs),

var
(
	2(Xs+t ) − 	1(Xs)

)
� E

[
var
(
	2(Xs+t ) − 	1(Xs)|FX

s

)]= var
(
	2(Xt )

)→ ∞,

as t → ∞, ruling out aging, even in this case. �
We conclude with the proof of Proposition 1.3, dealing with the effect that degenerate diffusion coefficients have

on aging.
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Proof of Proposition 1.3. (i) In view of (3.2) the term covν(Psf,Ps+t g) is negligible, no matter how t, s → ∞.
Turning to deal with the other term in (2.3), recall that Γ (f,g)(x) = a0(x0)∂0f (x)∂0g(x), see (2.2). Thus, by the
estimate (3.1), for local functions,

Γ (Puf,Pu+t g) � c2
3

∑
i,j

‖∂if ‖∞‖∂jg‖∞p∗
uc4

(0 − i)p∗
(u+t)c4

(0 − j)

� c1(f, g)(u + 1)−d/2(u + t + 1)−d/2.

Similarly, for monotone local functions f,g,

Γ (Puf,Pu+t g) � c2(f, g)(u + 1)−d/2(u + t + 1)−d/2.

Consequently, with u−d integrable for d � 2, we see that no aging takes place then. In case d = 1 and monotone, local
f,g, using (2.3) we get that

varν
(
f (Xs)

)≈ log(s + 1), varν
(
g(Xs+t )

)≈ log(s + t + 1)

and

covν

(
f (Xs), g(Xs+t )

)≈ s∫
1

u−1/2(u + t)−1/2 du

= 2 log
(√

s + √
s + t

)− 2 log
(
1 + √

1 + t
)

which implies (1.11).
(ii) Note that the dynamics for the mean of the super random walk

EXt(i) = EX0(i) +
t∫

0

(�EXs)(i)ds,

is linear and translation invariant. Consequently, starting with an initial measure of constant mean, the mean remains
constant over time and space:

E
[
Xt(i)

]= E
[
X0(i)

]≡ m. (3.11)

Since X0 � 0, we have that X·(·) remains non-negative, and so for monotone functions we get by (3.1) that for some
finite c = c(α),

Γ (Puf,Pu+t g)(Xs−u) = α2
∑

i

Xs−u(i)(∂iPuf )(Xs−u)(∂iPu+t g)(Xs−u)

� c
∑
i,j,k

Xs−u(i)p
∗
uc4

(i − j)p∗
(u+t)c4

(i − k)‖∂jf ‖∞‖∂kg‖∞.

Consequently, by (3.11), for local monotone functions f , g, and some constant C = C(f,g,m,α) < ∞, we have that

E
[
Γ (Puf,Pu+t g)(Xs−u)

]
� Cp∗

(2u+t)c4
(0) � c(2u + t + 1)−d/2. (3.12)

Using (3.3), the same argument produces for f,g ∈ C1,↑
1 (Er) a lower bound which is comparable up to a universal,

finite, positive ratio to the upper bound of (3.12). As the bound (3.2) applies here as well, we conclude by following
the computations done in the course of proving Theorem 1.1.

(iii) Similarly to part (ii), the bound (3.2) takes care of the first term in (2.3). We have here too that E[Xt(i)] =
E[X0(i)] ≡ m > 0,

Γ (f,g)(x) = α2
∑

i

x(i)2∂if (x)∂ig(x), (3.13)

and as the law of Xs(·) is invariant under translations, we have that for local monotone functions f , g,

E
[
Γ (Puf,Pu+t g)(Xs−u)

]≈ E
[
Xs−u(0)2]p∗ (0). (3.14)
(2u+t)c4
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It is well known that

v(s) = E
[
X2

s (0)
]≈

⎧⎨⎩
exp(κs + o(s)), α > αc,

(1 + s)d/2−1, α = αc,

1, α < αc,

(3.15)

for αc(d) = (
∫∞

0 p∗
2u(0)du)−1/2 (so in particular, αc(d) = 0 when d � 2), and where κ(α, d) > 0 for any α > αc

(cf. [3]). Combining (3.14) and (3.15) it is not hard to verify that no aging applies in this case.
For completeness, we provide here a proof of (3.15), as a simple application of the random walk representation.

Indeed note that ∂iPu(x(0)) = p̂u(i,0) = p∗
u(i) due to (2.7), whereby Pu(x(0)) =∑i x(i)p∗

u(i). Further, from (3.13)
we thus get that Γ (Pu(x(0)),Pu(x(0))) = α2∑

i x(i)2p∗
u(i)

2. With E[Xs(i)
2] = v(s) for all i ∈ Z

d and s � 0, it
follows from (2.3) and the independence of {X0(i)}i that

v(s) − m2 = σ 2p∗
2s(0) + α2

s∫
0

v(s − u)p∗
2u(0)du, (3.16)

where σ 2 = varν(X0(0)) < ∞. Let P ∗
τ (λ) = ∫ τ

0 e−λsp∗
2s(0)ds. As P ∗

τ (λ) ↑ P ∗∞(λ) ∈ (0,∞) for τ ↑ ∞ and any fixed
λ > 0, it is easy to check that Vτ (λ) = ∫ τ

0 e−λsv(s)ds satisfies the inequality

Vτ (λ) � m2

λ

(
1 − e−λτ

)+ σ 2P ∗
τ (λ) + α2Vτ (λ)P ∗

τ (λ).

We thus conclude that V∞(λ) < ∞ as long as 1 − α2P ∗∞(λ) > 0, in which case it is not hard to check directly from
(3.16) that

V∞(λ) = m2 + σ 2λP ∗∞(λ)

λ(1 − α2P ∗∞(λ))
< ∞.

As λ ↓ 0 we have that P ∗∞(λ) ↑ P ∗∞(0) (which is finite for d � 3 and infinite for d = 1,2), so the condition α > αc =
P ∗∞(0)−1/2 implies that κ = inf{λ > 0: 1 − α2P ∗∞(λ) > 0} is strictly positive, with V∞(λ) < ∞ if and only if λ > κ ,
hence v(s) = exp(κs + o(s)). Similarly, when d � 3 and α < αc, it follows that λV∞(λ) is bounded as λ ↓ 0, and with
v(s) differentiable on (0,∞) (by (3.16) and differentiability of p∗

2s(0)), we get by integration by parts that v(s) � m2

is also bounded above. Analyzing the rate of decay of [P ∗∞(0) − P ∗∞(λ)] as λ ↓ 0, it is easy to resolve also the case
α = αc. �
4. Aging for dynamics on finite large boxes

Proof of Theorem 1.4. (i) Assuming fixed boundary conditions, we consider first the case of constant diffusion
coefficients (1.5). Then, the random walk representation is of the form

∂iPtf (x) =
∑
j

Ei,x

[
∂jf (Xt )1j (ξt ); t < τN

]
(4.1)

with τN = inf{s � 0: ξs /∈ BN } (see [8, formula (1.7)], where the killing at Bc
N is represented by the usual Feynman–

Kac term exp(
∫ t

0 u(ξs,Xs)ds), for u(i, x) = −∑j /∈BN ,j−i∈J V ′′
(i,j)(x(i) − y(j))). Set

p
X,N
t (i, j) = Ei

[
1j (ξt ); t < τN |FX

t

]
(4.2)

noting that a time reversing argument implies that for all u � 0, k, i ∈ BN ,

pX,N
u (i, k) = pρu(X),N

u (k, i), with ρu(X)s ≡ Xu−s , 0 � s � u.

For two trajectories X· and X̃·, and u > 0 let P
X,X̃,u
k , denote the law of the time inhomogeneous random walk

{ξ̃s , s � 0} on Z
d starting at k with jump rate

qs(i, j) = V ′′ (
Xu−s(i) − Xu−s(j)

)
1s�u + V ′′ (

X̃s−u(i) − X̃s−u(j)
)
1s>u
(i,j) (i,j)
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and write

p
X,X̃,N,u
2u+t (k, j) =

∑
i∈BN

pX,N
u (i, k)p

X̃,N
u+t (i, j) = E

X,X̃,u
k

[
1j (ξ̃2u+t ); τN > 2u + t

]
.

Next let

p̄
N,u
2u+t (k, j) = sup

X,X̃

p
X,X̃,N,u
2u+t (k, j), pN,u

2u+t
(k, j) = inf

X,X̃
p

X,X̃,N,u
2u+t (k, j).

Take f,g ∈ C1,↑
1 (Er) with |∂k0f |inf > 0 and |∂j0g|inf > 0. Since p

X,N
t (i, j) � pX

t (i, j) of (2.4), the upper bound of
(3.2) applies so we shall hereafter neglect the first term of (2.3). Turning to deal with the other term of (2.3), note that
by (2.2) and (4.1) we have that for any u, t � 0,

c5(f, g)pN,u

2u+t
(k0, j0) � Γ (Puf,Pu+t g) � c6(f, g) sup

j,k

p̄
N,u
2u+t (k, j), (4.3)

taking k0 = j0 if f = g. Clearly,

p̄
N,u
2u+t (k, j) � p̄2u+t (k, j) ∀u, t � 0, k, j ∈ Z

d . (4.4)

Further, infu�1 pN,u
2u

(k, k) � c3(k) > 0 for any k and all N , which implies by (2.3) and the lower bound of (4.3) that
for some finite s0,

inf
N

inf
s�s0

varν
(
f (Xs)

)
> 0, inf

N
inf

s+t�s0
varν

(
g(Xs+t )

)
> 0. (4.5)

Consequently, by the same computations as in proof of Theorem 1.1, it follows that no aging takes place when d � 3.
Turning to deal with d = 1,2, note that for all j, k,

p
X,X̃,N,u
2u+t (k, j) � P

X,X̃,u
k (τN > 2u + t) (4.6)

and further, for all j, k,

p
X,X̃,N,u
2u+t (k, j) � p

X,X̃,u
2u+t (k, j) − P

X,X̃,u
k (τN < 2u + t). (4.7)

We claim that for any N and all u, t � 0,

sup
k∈BN

P
X,X̃,u
k (τN > 2u + t) � c1 exp

(−c2(2u + t)/N2), (4.8)

whereas for any N and all u, t � 0,

P
X,X̃,u
k0

(τN < 2u + t) � c3(2u + t + 1)
[
exp
(−c4N

2/(2u + t)
)+ exp(−c5N)

]
. (4.9)

In view of (4.3) and (4.5), it easily follows from (4.6) and (4.8) that no aging takes place for “small boxes”, that is,
N = o((t/ log t)1/2), regardless of the value of d � 1. In contrast, for “large boxes”, that is, when s, t = o(N2/ logN),
the uniform (in X, X̃ and over u � s + t), upper bound of (4.9) decays faster than any fixed power of s + t . Thus, by
(4.7) and (2.6), it follows that for any N � N0 and all u ∈ [0, s + t],

2pN,u

2u+t
(k0, j0) � pu

2u+t
(k0, j0) � c2

1p
∗
(2u+t)c2

(k0 − j0) � c5(2u + t + 1)−d/2.

Combining (4.4) with the upper bounds of (4.3) and (2.6), we hence conclude that

c−(2u + t + 1)−d/2 � Γ (Puf,Pu+t g) � c+(2u + t + 1)−d/2,

for positive, finite constants c− and c+ that are independent of u � t + s = o(N2/ logN) and N � N0. This of course
implies the same aging statements as in Theorem 1.1.

Turning to prove (4.8), fixing � > 0, let 	 = �(2u + t)/�N2�, noting that by the Markov property at integer
multiples of �N2 we have that,

P
X,X̃,u
k (τN > 2u + t) � P

X,X̃,u
k (ξ̃m�N2 ∈ BN,1 � m � 	) �

[
sup
i∈BN

∑
p̄�N2(i, j)

]	

.

j∈BN
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In view of the upper bounds of (2.5) and (2.6), we can choose � < ∞ sufficiently large such that for all N and any
i ∈ BN ,∑

j∈BN

p̄�N2(i, j) � 1

2
,

resulting with (4.8).
Moving to deal with (4.9), recall that the random walk ξ̃s has bounded jump rates qs(i, j) � c+ for all i, j , and

moreover for some R < ∞ we have qs(i, j) = 0 whenever |j − i| > R. Consequently, with Z denoting a Poisson(c+)
random variable, it follows that for any X, X̃, m � 0 and u > 0,

P
X,X̃,u
k0

(
sup

0�θ�1
|ξ̃m+θ − ξ̃m| � N/2

)
� P

(
Z � N/(2R)

)
� c6 exp(−c5N),

for some c6 < ∞ and c5 > 0 depending only on c+ and R. Further, k0 ∈ BN/4 for all N sufficiently large, in which
case, the upper bounds in (2.5) and (2.6) imply that for some c4 > 0 and c7 < ∞, all u, t � 0, X, and X̃,

sup
m�2u+t

P
X,X̃,u
k0

(|ξ̃m| � N/2
)
� c7

[
exp
(−c4N

2/(2u + t)
)+ exp(−c5N)

]
.

Combining these two bounds results with (4.9), since

P
X,X̃,u
k0

(τN < 2u + t) � P
X,X̃,u
k0

(
max

0�θ�2u+t
|ξ̃θ | > N

)
�

�2u+t�∑
m=0

[
P

X,X̃,u
k0

(|ξ̃m| � N/2
)+ P

X,X̃,u
k0

(
max

0�θ�1
|ξ̃m+θ − ξ̃m| � N/2

)]
.

In case of linear drift as in (1.3) but non-constant diffusion coefficients we re-run the exact same proof, where
by [8, formula (1.7)] we then have that

∂iPtf (x) =
∑
j

Ei,x

[
∂jf (X̂t )1j (ξ̂t ); t < τ̂N

]
(4.10)

for τ̂N = inf{s � 0: ξ̂s /∈ BN }, instead of (4.1), and throughout

p̂N
t (i, j) = Pi (ξ̂t = j ; t < τ̂N) = p̂N

t (j, i)

replaces p
X,N
t (i, j) (hence also replacing pN,u

t
(i, j) and p̄

N,u
t (i, j)).

(ii) In this case we can also work with the random walk representation, the only change being that the random
walk ξ̃s (or ξ̂s , respectively), is restricted to BN . Depending on the situation we have periodic jumps or the random
walk stays inside BN . Thus, the bounds of (4.3) are also valid here, but of course for the corresponding random walk.
Let vol(BN(i, r)) ≈ (r ∧ N)d be the volume of the discrete ball of radius r centered at i within BN . Then, for any
k, j ∈ Z

d , any N such that k, j ∈ BN , and all u � 0, t > 0, we have the estimates

0 <
c1(k, j)

vol(BN(k,1 ∨ t1/2))
� P

X,X̃,u
k (ξ̃t = j) � c2

vol(BN(k,1 ∨ t1/2))
< ∞, (4.11)

cf. [6]. We thus get from the lower bound of (4.3) that for d � 3 and local monotone functions f and g,

varν
(
f (Xs)

)
� c3

s∫
1

(
u1/2 ∧ N

)−d du � c4
(
1 + sN−d

)
,

and varν(g(Xs+t )) � c4(1 + (s + t)N−d). Combining the obvious bound∑
i

‖∂iPsf ‖2∞ �
∑
j,k

‖∂jf ‖∞‖∂kf ‖∞
∑
i∈BN

sup
X,X̃

P
X,X̃,s
k (ξ̃s = i, ξ̃2s = j),

with the upper bound of (4.11), which applies also for the above sum over the state i of the random walk at an
intermediate time s, we get along the same route we took when deriving (3.2), that∣∣covν(Psf,Ps+t g)

∣∣� c(ν, f, g)
(
(1 + s)1/2 ∧ N

)−d/2(
(1 + s + t)1/2 ∧ N

)−d/2
.
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Since this decays to zero whenever N,s → ∞ and stays bounded when N does not grow to infinity, we neglect
hereafter this term of (2.3), and then get by the upper bounds of (4.3) and (4.11) that

covν

(
f (Xs), g(Xs+t )

)
� c5

s∫
1

(
(2u + t)1/2 ∧ N

)−d du � c6
(
(1 + t)1−d/2 + sN−d

)
.

Consequently, for d � 3 and s = o(Nd) we have that corrν(f (Xs), g(Xs+t )) → 0 as s, t → ∞.
Keeping with d � 3, when N = o(s1/d) we get from (4.3) and (4.11) matching upper bounds on varν(f (Xs)) and

varν(g(Xs+t )) as well as a matching lower bound on covν(f (Xs), g(Xs+t )). Thus, in this case, varν(f (Xs)) ≈ sN−d ,
varν(g(Xs+t )) ≈ (s + t)N−d , and covν(f (Xs), g(Xs+t )) ≈ sN−d , resulting with the stated aging of (1.22). �
Proof of Proposition 1.5. Using the notation (�)(i, j) = (�1i )(j), the generator of the process Xt(·) of (1.24) is

Lf (x) =
∑

i

−(�)2(x)(i)∂if (x) + α2

2

∑
i,j

(−�)(i, j)∂i∂j f (x),

and consequently,

Γ (f,g) = α2
∑
i,j

∂if (−�)(i, j)∂j g.

Next let vt (i, x) = ∂iPtf (x), which is the unique solution of

∂tvt (i, x) = L
(
vt (i, ·)

)
(x) −

∑
j

(�)2(i, j)vt (j, x),

subject to the initial condition v0(i, x) = ∂if (x), where (�)2(i, j) = (�21i )(j) = ∂i(�
2)(x)(j). Let At(i, j) =

At(j, i) = At(0, j − i) for i, j ∈ TN be the solution of

At(i, j) = 1i (j) −
t∫

0

∑
k

(�)2(j, k)As(i, k)ds. (4.12)

Noting that the symmetric matrices (�)2 and At commute, it is not hard to check that

vt (i, x) =
∑
j

Pt (∂j f )(x)At (i, j). (4.13)

Thus,

Γ (Puf,Pu+t g) = α2
∑

i,j,	,k

Pu(∂	f )Au(	, i)(−�)(i, j)Pu+t (∂kg)Au+t (k, j).

Considering f (x) = f (x(0)) and g(x) = g(x(0)) with 0 < c1 � f ′, g′ � c2 < ∞, we have that κ = α2Pu(f
′)Pu+t (g

′)
is bounded and bounded away from zero, with

Γ (Puf,Pu+t g) = κ
∑

i,j∈TN

Au(0, i)(−�)(i, j)Au+t (0, j).

To evaluate this convolution sum, recall the Fourier transform

ĥ
(
θ(k)

)= ∑
j∈TN

h(j)eiθ(k)·j

of h :TN → R, with θ(k) = 2π
N

k, k ∈ TN , which has the inversion formula,

h(j) = 1

Nd

∑
ĥ
(
θ(k)

)
e−iθ(k)·j .
k∈TN



478 A. Dembo, J.-D. Deuschel / Ann. I. H. Poincaré – PR 43 (2007) 461–480
Then, the Fourier transform of (−�)(0, j) is

â
(
θ(k)

)= 2
d∑

	=1

(
1 − cos

(
θ(k)	

))
,

and it follows from (4.12) that the Fourier transform of Au(0, j) is

Âu

(
θ(k)

)= exp
(−uâ

(
θ(k)

)2)
,

resulting with

Γ (Puf,Pu+t g) = κ

Nd

∑
k∈TN

Âu

(
θ(k)

)
â
(
θ(k)

)
Âu+t

(
θ(k)

)
.

Recall that κ ∈ [(αc1)
2, (αc2)

2] is bounded and bounded away from zero. Thus, with â(θ) non-negative, so is
Γ (Puf,Pu+t g). Further, â(θ) � 4d for all θ , implying that infu�1 Γ (Puf,Pug) > 0 and hence both varν(f (Xs))

and varν(g(Xs+t )) are bounded away from zero uniformly in s � 1, t and N .
By (3.5), we can find 0 < c− < c+ such that for any N and all k ∈ TN ,

c−(2π)2 |k|2
N2

� â
(
θ(k)

)
� c+(2π)2 |k|2

N2
, (4.14)

implying that for some positive, finite constants ci , and all N , u, t � 0,

c3γN

(
(2u + t)c4

)
� Γ (Puf,Pu+t g) � c5γN

(
(2u + t)c6

)
, (4.15)

where

γN(τ) = 1

Nd

∑
k∈TN

exp
(−τ |k|4N−4)|k|2N−2. (4.16)

Next note that by (1.7), (4.13), Plancherel’s identity for the Fourier transform on TN and (4.14), we have that for
some c0(ν, f ) < ∞, c1 > 0 and all N ,

varν(Psf ) � ‖Cν‖
∑

i

∥∥vs(i, ·)
∥∥2

∞ � ‖Cν‖c2
2

∑
i

∣∣As(i,0)
∣∣2

= ‖Cν‖c2
2

Nd

∑
k∈TN

Âs

(
θ(k)

)2 � c0(ν, f )ηN(s),

where

ηN(s) ≡ 1

Nd

∑
k∈TN

exp
(−c1s|k|4N−4). (4.17)

Turning to bound the covariance of f (Xs) and g(Xs+t ), note that ηN(s) � 1. Hence,∣∣covν(Psf,Ps+t g)
∣∣2 � varν(Psf )varν(Ps+t g) � c2

2ηN(s + t), (4.18)

for some c2 = c2(ν, f, g) < ∞.
Consequently, by (2.3), (4.15), and (4.18)

−c2
√

ηN(t + s) + c3

s∫
0

γN

(
(2u + t)c4

)
du � covν

(
f (Xs), g(Xs+t )

)

� c5

s∫
0

γN

(
(2u + t)c6

)
du + c2

√
ηN(t + s). (4.19)

Next we claim that as long as τN−4 is bounded above (and τ � 1),

γN(τ) ≈ τ−(d+2)/4, ηN(τ) ≈ τ−d/4. (4.20)
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Indeed, taking N(τ) = N/τ 1/4 (which is bounded below), we have that

τ (d+2)/4γN(τ) = 1

N(τ)d

∑
k∈TN

exp
(−∣∣k/N(τ)

∣∣4)∣∣k/N(τ)
∣∣2

≈ 1

N(τ)d

∑
k∈Zd

exp
(−∣∣k/N(τ)

∣∣4)∣∣k/N(τ)
∣∣2

≈
∫
Rd

exp
(−|θ |4)|θ |2 dθ,

which is finite and positive. Similarly, then

τd/4ηN(τ) ≈
∫
Rd

exp
(−|θ |4)dθ,

verifying (4.20). From the latter and (4.19), it follows that for d � 3 and (t + s)N−4 bounded, there exists finite c1, c2
such that

covν

(
f (Xs), g(Xs+t )

)
� c1(s + t)−d/8 + c2t

−(d−2)/4,

hence no aging. Similarly, for d = 2, t � 1 and (t + s)N−4 bounded we have

covν

(
f (Xs), g(Xs+t )

)≈ s∫
1

(2u + t)−1 du ≈ log(2s + t) − log(t),

while for s � 2,

varν
(
f (Xs)

)≈ s∫
1

(2u)−1 du ≈ log(s), varν
(
g(Xs+t )

)≈ s+t∫
1

(2u)−1 du ≈ log(s + t).

Finally, for d = 1, t � 1 and s � 1,

covν

(
f (Xs), g(Xs+t )

)≈ s∫
1

(2u + t)−3/4 du ≈ (2s + t)1/4 − t1/4

with

varν
(
f (Xs)

)≈ s∫
1

(2u)−3/4 du ≈ s1/4,

varν
(
g(Xs+t )

)≈ s+t∫
1

(2u)−3/4 du ≈ (s + t)1/4.

This implies the stated aging results in case (t + s)N−4 is bounded. Next consider the small box regime with N4 =
o(s + t). Then, by (4.20) and the monotonicity of τ �→ ηN(τ), for some c < ∞ and any N → ∞,

ηN(t + s) � c

Nd
→ 0,

regardless of d � 1. Further, in this case, by integration also

s∫
γN

(
(2u + t)c

)
du �

∞∫
γN

(
(2u + t)c

)
du
0 0
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� c3

Nd

∑
k∈TN ,k �=0

exp
(−ct

(|k|/N)4)(N/|k|)2
≈ 1

N

N∑
r=1

exp
(−ct (r/N)4)(r/N)d−3,

which converges to zero if t → ∞ with N bounded, or even with N4 = o(t) in case d � 2, or N4(logN) = o(t) in
case d = 1. Consequently, we have no aging when N → ∞ such that N4(logN) = o(t), if d = 1 and even N4 = o(t)

if d � 2. We complete the proof by showing that for d � 3 there is no aging even when tN−4 is bounded while
sN−4 → ∞. Indeed, for τ � N4 we have by (4.16) and (4.20) that

γN(τ) � γN

(
N4) exp

(−(τ − N4)N−4)� c2N
−(d+2) exp

(−τN−4),
which implies that

∞∫
N4

γN(τ)dτ � c3N
−(d−2) → 0,

for N → ∞ and d � 3, thus excluding aging in this case. �
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