
Ann. I. H. Poincaré – PR 43 (2007) 101–138
www.elsevier.com/locate/anihpb

Limiting behavior of a diffusion
in an asymptotically stable environment

Arvind Singh

Laboratoire de Probabilités et Modèles Aléatoires, Université Pierre et Marie Curie, 175, rue du Chevaleret, 75013 Paris, France

Received 28 June 2005; received in revised form 24 November 2005; accepted 23 January 2006

Available online 7 July 2006

Abstract

Let V be a two sided random walk and let X denote a real valued diffusion process with generator 1
2 eV[x] d

dx
(e−V[x] d

dx
). This

process is the continuous equivalent of the one-dimensional random walk in random environment with potential V. Hu and Shi
(1997) described the Lévy classes of X in the case where V behaves approximately like a Brownian motion. In this paper, based on
some fine results on the fluctuations of random walks and stable processes, we obtain an accurate image of the almost sure limiting
behavior of X when V behaves asymptotically like a stable process. These results also apply for the corresponding random walk in
random environment.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Étant donnée une marche aléatoire V, on considère une diffusion aléatoire réelle X de générateur 1
2 eV[x] d

dx
(e−V[x] d

dx
). Ce

processus est l’équivalent continu de la marche aléatoire en milieu aléatoire au plus proche voisin en dimension 1. Hu et Shi
(1997) ont déterminé les classes de Lévy de X lorsque V se comporte approximativement comme un mouvement Brownien. Dans
cet article, une étude fine des fluctuations du potentiel V nous permet d’obtenir des résultats précis sur le comportement limite
presque-sûre de la diffusion lorsque V est dans le domaine d’attraction d’une loi stable. Ces résultats se transposent également au
cas discret de la marche aléatoire en milieu aléatoire.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let (Vx, x ∈ R) be a càdlàg, real-valued locally bounded stochastic process on some probability space (Ω,P) with
V0 = 0 almost surely. Let also (Xt )t�0 be the coordinate process on the space of continuous functions C([0,∞))

equipped with the topology of uniform convergence on compact set and the associated σ -field. For each realization
of V, let PV be a probability on C([0,∞)) such that X is a diffusion process with X0 = 0 and generator
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2
eVx

d

dx

(
e−Vx

d

dx

)
.

It is well known in [13] that X may be constructed from a standard Brownian motion through a change of scale and
a change of time. We consider the annealed probability P on Ω = Ω × C([0,∞)) defined as the semi-direct product
P = P × PV. X under P is called a diffusion in the random potential V. This process was first studied by Schumacher
[19] and Brox [6] who proved that, when V is a Brownian motion, Xt/ log2 t converges in law as t goes to infinity
to some non-degenerate distribution on R. Extension of this result when V is a stable process may be found in [7,15,
19]. In this paper, we are concerned with the case where V is a two sided random walk. More precisely, (Vx, x ∈ R)

satisfies:⎧⎪⎪⎨⎪⎪⎩
V is identically 0 on (−1,1),
V is flat on (n,n + 1) for all n ∈ Z,
V is right continuous on [0,∞) and left continuous on (−∞,0],
(Vn+1 − Vn)n∈Z is a sequence of i.i.d. variables under P.

Our goal is to describe the almost sure asymptotics of Xt , sups�t Xs and sups�t |Xs |. This has been done by Hu and
Shi [12] in the case where V behaves roughly like a Brownian motion. We will instead consider the more general
setting where a typical step of the random walk is in the domain of attraction of a stable law. Precisely, we make the
following assumption which is similar to that of Kawazu, Tamura and Tanaka [15].

Assumption 1. There exists a positive sequence (an)n�0 such that

Vn

an

law−→
n→∞ S,

where S is a random variable whose law is strictly stable with index α ∈ (0,2] and whose density is everywhere
positive on R.

This implies of course that V−n/an converges in law toward −S. It is known that the norming sequence (an) is
regularly varying with index 1/α and we can without loss of generality assume that (an) is strictly increasing with
a1 = 1. We will denote by a(·) a continuous, strictly increasing interpolation of (an) and a−1(·) will stand for its
inverse. It is to be noted that a(·) and a−1(·) are respectively regularly varying with index 1/α and α. Let p denote
the positivity parameter of S and q its negativity parameter, namely:

p = P(S > 0) = 1 − P(S < 0) = 1 − q.

The assumption that S has a positive density in the whole of R implies that p,q ∈ (0,1). More precisely, for α > 1 it
is known in [22] that 1 − 1/α � p,q � 1/α. In any case, we have

0 < αp,αq � 1.

Note also that the Fourier transform of S is well known to be

E
(
eiλS

)= e−γ |λ|α(1−i λ
|λ| tan(πα(p− 1

2 )))
, (1.1)

where γ is some strictly positive constant. Let us now extend S into a two sided strictly stable process (Sx, x ∈ R) such
that S1 has same law as S. By two sided, we mean that the processes (St , t � 0) and (−S−t , t � 0) are independent,
both càdlàg, and have the same law. Notice in particular that, when α = 1, S is a symmetric Cauchy process with
drift, whereas for α = 2 we have p = 1/2 and S is a Brownian motion. Furthermore, the extremal cases αp = 1 (resp.
αq = 1) can only happen when α > 1 and are equivalent to the assumption that S has no positive jumps (resp. no
negative jumps). When S has no positive jumps, it is known that the Fourier transform can be extended such that

E
(
eλS1

)= eγ ′λα

for all λ � 0, (1.2)

where γ ′ is a positive constant that we will assume to be 1 (we can reduce to this case by changing the norming
sequence (an)). Similarly, when S has no negative jumps, we will assume E(exp(−λS1)) = exp(λα) for all λ � 0. Let
Eα denote the Mittag–Leffler function with parameter α:

Eα(x) =
∞∑ xn

�(αn + 1)
for x ∈ R.
n=0
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Define −ρ1(α) to be the first negative root of Eα and −ρ2(α) to be the first negative root of αxE′′
α(x)+ (α −1)E′

α(x).
The first result of this paper is a law of the iterated logarithm for the limsup of the diffusion X in the random environ-
ment V.

Theorem 1. We have, almost surely,

lim sup
t→∞

Xt

a−1(log t) log log log t
= 1

K# ,

where K# ∈ (0,∞) is a constant that only depends on the limit law S and is given by

K# = − lim
t→∞

1

t
log P

(
sup

0�u�v�t

(Sv − Su) � 1
)
.

Furthermore, when S is completely asymmetric, the value of K# is given by

K# =
{
ρ1(α) when S has no positive jumps,
ρ2(α) when S has no negative jumps.

Note that Xt and sups�t Xs have the same running maximum, hence Theorem 1 also holds with sups�t Xs in place
of Xt . A symmetry argument yields

lim sup
t→∞

− infs�t Xt

a−1(log t) log log log t
= 1

K̃#
a.s.,

where K̃# = − limt→∞ log P(sup0�u�v�t (S−v − S−u) � 1)/t . Hence,

lim sup
t→∞

sups�t |Xt |
a−1(log t) log log log t

= 1

K̃# ∧ K#
a.s.

In the case where α = 2, we have Eα(−x) = cos(
√

x) for all x � 0, therefore K̃# = K# = π2/4, and we recover the
law of the iterated logarithm of Theorem 1.6 of [12].

Let Tn denote the nth strictly descending ladder time of the random walk V, formally,{
T0 = 0,

Tn+1 = min(k > Tn,Vk < VTn
).

Since V is oscillatory, Tn is finite for all n. Theorem 4 of [18] states that T1 is in the domain of attraction of a positive
stable law with index q . Moreover, T1 is in the domain of normal attraction of this distribution if and only if

∞∑
n=1

P(Vn < 0) − q

n
< ∞. (1.3)

Let (bn) denote a (strictly increasing) sequence of norming constants for T1 and b(·) will stand for a continuous,
strictly increasing interpolation of this sequence. The function b−1(·) is therefore regularly varying with index q . The
next theorem characterizes the liminf behavior of sups�t Xs .

Theorem 2. For any positive, non-decreasing function f define

J (f ) =
∞∫

b−1(a−1(log t)/f (t))dt

b−1(a−1(log t))t log t
.

We have, almost surely,

lim inf
t→∞

f (t)

a−1(log t)
sup
s�t

Xs =
{

0,

∞ ⇐⇒ J (f )

{= ∞,

< ∞.

In particular, with probability 1,

lim inf
t→∞

(log log t)β

a−1(log t)
sup
s�t

Xs =
{

0, if β < 1/q,

∞, if β > 1/q.
(1.4)
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Notice that (1.3) holds whenever V1 is strictly stable or when E(V2
1) < ∞ (according to Theorem 1 of [10],

p. 575). In those cases, V1 is also in the domain of normal attraction of S so that we can both choose a(x) = x1/α and
b(x) = x1/q and the last theorem is simplified:

lim inf
t→∞

f (t)

(log t)α
sup
s�t

Xs =
{

0
∞ ⇐⇒

∞∫
dt

f q(t)t log t

{= ∞,

< ∞.

In particular, the lim inf for the critical case β = 1/q in (1.4) is infinite.
We are also interested in the asymptotic behavior of the bilateral supremum sups�t |Xs |. We already mentioned

that the limsup behavior of this process may be deduced from Theorem 1. Although we were not able to deal with
the general case (as it seems that many different behaviors may occur in the completely asymmetric case, depending
on the distribution tail of V1), we can still obtain, when the limiting process has jumps of both signs, the following
integral test:

Theorem 3. When the limiting stable process S has jumps of both signs, we have, for any non-decreasing positive
function f , almost surely,

lim inf
t→∞

f (t)

a−1(log t)
sup
s�t

|Xs | =
{

0
∞ ⇐⇒

∞∫
dt

tf (t)2 log t

{= ∞,

< ∞.

In particular, with probability 1,

lim inf
t→∞

(log log t)β

a−1(log t)
sup
s�t

|Xs | =
{

0, if β � 1/2,

∞, if β > 1/2.

Notice that in this case, the limiting behavior does not depend on the symmetry parameter and notice also that this
behavior is quite different from the Brownian case (Theorem 1.7 of [12]). This may be informally explained from the
facts that when the limiting process has jumps of both signs, typical valleys for the diffusion are much deeper than in
the Brownian case.

Although we are mainly concerned with the almost-sure behavior of X, our approach also allows us to prove a
convergence in law for the supremum process.

Theorem 4. There exists a non-degenerate random variable Ξ depending only on the limiting process S such that
under the annealed probability P,

sups�t Xs

a−1(log t)

law−→
t→∞Ξ.

Moreover, when S has no positive jumps the law of Ξ is characterized by its Laplace transform,

E
(
e−qΞ

)= �(α + 1)
E′

α(q)

Eα(q)
for q � 0,

and in the case where S has no negative jumps, we have

E
(
e−qΞ

)= (α − 1)
E′

α(q)

αqE′′
α(q) + (α − 1)E′

α(q)
for q � 0.

This paper is organized as follows: in Section 2, we prove sharp results on the fluctuations of the potential V as
well as on the limiting stable process S. These estimates, which may be of independent interest, ultimately play an
important role in the proof of the main theorems. In Section 3, we reduce the study of the hitting times of (Xt ) to the
study of some functionals of the potential process V. This step is similar to [12], namely, we make use of Laplace’s
method and the reader may refer to [20] for an overview of the key ideas. The proofs of the main theorems are given
in Section 4. We shall eventually discuss these results in the last section, in particular, we show that Theorems 1–4
still hold when V is a strictly stable process. We also explain how similar results can be obtained for a random walk
in a random environment with an asymptotically stable potential.
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2. Fluctuations of V and S

In this section we prove several results about fluctuations of the random walk V. Some of these estimates will be
obtained via the study of the limiting process S. In the first subsection, we recall elementary properties of the stable
process S as well as a result of functional convergence of the random walk toward the limiting stable process. In the
following, for any process Z, we will use indifferently the notation Zx or Z(x).

2.1. Preliminaries and functional convergence in D

We introduce the space D(R+,R) of càdlàg functions Z : R+ → R equipped with the Skorohod topology. Let θ

stand for the shift operator, that is, for any Z ∈ D(R+,R) and any x0 � 0, we have(
(θx0Z)x, x � 0

)= (Zx+x0 − Zx0 , x � 0). (2.1)

Since our processes are double-sided, we will also need the space D(R,R) of functions f : R → R which are right
continuous with left limits on [0,∞) and left continuous with right limits on (−∞,0] considered jointly with the
associated Skorohod topology. Recall that S and V have paths on D(R,R). We will be interested in the following
functionals: for any a ∈ R and for any Z ∈ D(R,R) we define (we give two notations for each definition):


Za = F (1)
a (Z) =

{
supy∈[0,a] Zy, for a � 0,

supy∈[a,0] Zy, for a < 0,

Z a = F (2)
a (Z) =

{
infy∈[0,a] Zy, for a � 0,

infy∈[a,0] Zy, for a < 0,

Z∗
a = F (3)

a (Z) =
{

supy∈[0,a] |Zy |, for a � 0,

supy∈[a,0] |Zy |, for a < 0,

ZR
a = F (4)

a (Z) = Za − Za,

Z#
a = F (5)

a (Z) =
{

sup0�y�a ZR
y , for a � 0,

supa�y�0 ZR
y , for a < 0,

σZ(a) = F (6)
a (Z) =

{
inf (x � 0,Zx � a) , for a � 0,

inf (x � 0,Zx � a) , for a < 0,

σ̃Z(a) = F (7)
a (Z) =

{
inf(x � 0,Z−x � a), for a � 0,

inf(x � 0,Z−x � a), for a < 0,

UZ(a) = F (8)
a (Z) = a − Z

(
σZ(a)

)
, for a � 0,

ŨZ(a) = F (9)
a (Z) = a − Z

(
σ̃Z(a)

)
, for a � 0,

G̃Z(a) = F (10)
a (Z) = ŨZ(
Za) ∨ Z#

a, for a � 0.

Let Di (a) for i ∈ {1, . . . ,10} denote the set of discontinuity points in D(R,R) of F
(i)
a and for v � 1 let V

(v) =
(Vvx/a(v), x ∈ R). From a theorem of Skorohod [21], Assumption 1 implies that (V(v), v � 1) converges in law
in the Skorohod space towards S as v → ∞. It remains to check that the previously defined functionals have nice
continuous properties (with respect to S) in order to obtain results such as F

(i)
a (V(v)) → F

(i)
a (S) in law as v → ∞.

For Z ∈ D(R,R) and a ∈ R, we will say that

Z is oscillating at a− if ∀ε > 0, inf
(a−ε,a)

Z < Za− < sup
(a−ε,a)

Z,

Z is oscillating at a+ if ∀ε > 0, inf
(a,a+ε)

Z < Za+ < sup
(a,a+ε)

Z.

The following lemma collects some easy results about the sample path of S.
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Lemma 2.1. We have

(1) sup[0,∞) S = sup(−∞,0] S = ∞ almost surely.
(2) With probability 1, any path of S is such that if S is discontinuous at a point x, then S is oscillating at x− and x+.
(3) For any fixed a ∈ R, S is almost surely continuous at a and oscillating at a− and a+.

Proof. (1) and (2) come from Lemma 3.1 of [15], p. 531. As for (3), it is well known that S is almost surely continuous
at any given point and the fact that it is oscillating follows from the assumption that |S| is not a subordinator. �

Note that (2) implies that, almost surely, S is continuous at all its local extrema. (2) also implies that, with proba-
bility 1, S attains its bound on any compact interval. These facts enable us to prove the following:

Proposition 2.2. For any fixed a ∈ R and i ∈ {1, . . . ,10}, we have

P
(
S ∈ Di (a)

)= 0.

Proof. Let a be fixed. The functionals F
(i)
a , i ∈ {1,2,3,4,5}, are continuous at all Z ∈ D(R,R) such that Z is

continuous at point a (refer to Proposition 2.11 on p. 305 of [14] for further details) and the result follows from (3)
of the previous lemma. It is also easily checked from the definition of the Skorohod topology that the functionals
F

(i)
a , i ∈ {6,8}, are continuous at all Z which have the following properties:

(a) σZ(a) < ∞,
(b) Z is oscillating a σZ(a)+,
(c) Z attains its bounds on any compact interval.

Using again the previous lemma, we see that (a) and (c) hold for almost any path of S. Notice that, from the Markov
property, part (3) of the lemma is unchanged when a is replaced by an arbitrary stopping time. Hence, (b) is also true
for almost any path of S. The proof for F

(i)
a , i ∈ {7,9}, is of course similar. Finally, the result for F

(10)
a may easily be

deduced from previous ones using the independence of (Sx, x � 0) and (S−x, x � 0). �
We will also use the fact that the random variables F

(i)
a have continuous cumulative functions (except for the

degenerated case a = 0).

Proposition 2.3. For all a �= 0 and b ∈ R and i ∈ {1, . . . ,10}, we have

P
(
F (i)

a (S) = b
)= 0.

We skip the proof as this may be easily checked from the facts that S has a continuous density and the assumption
that it is not a subordinator.

Finally, throughout the rest of this paper, the notation Ci will always denote a finite strictly positive constant
depending only on our choice of P. In the case of a constant depending on some other parameters, these parameters
will appear in the subscript. We will also repeatedly use the following lemma easily deduced from the Uniform
Convergence Theorem for regularly varying functions ([4], p. 22) combined with monotonicity property.

Lemma 2.4. Let f : [1,∞) �→ R+ be a strictly positive non-decreasing function which is regularly varying at infinity
with index β � 0. Then, for any ε > 0 there exist C1,ε,f ,C2,ε,f such that for any 1 � x � y,

C1,ε,f

(
x

y

)β+ε

� f (x)

f (y)
� C2,ε,f

(
x

y

)β−ε

.

2.2. Supremum of the reflected process

We now give some bounds and asymptotics about V
#. These estimates which may look quite technical will play a

central role in the proof of Theorem 1. This subsection is devoted to the proofs of the following three propositions.
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Proposition 2.5. We have

lim
x→∞

v/a−1(x)→∞

a−1(x)

v
log P

(
V

#
v � x

)= −K#,

where K# = − limv→∞ 1
v

log P(S#
v � 1) is strictly positive and finite.

Proposition 2.6. For all 0 < b < 1, there exists C3,b > 0 such that for all x large enough (depending on b) and all
v > 0,

C3,bP
(
V

#
v � x

)
� P

(
V

#
v � x,
Vv � bx

)
� P

(
V

#
v � x

)
.

Proposition 2.7. There exists C4 > 0 such that for all x large enough and all v1, v2 > 0,

C4P
(
V

#
v1

� x
)
P
(
V

#
v2

� x
)
� P

(
V

#
v1+v2

� x
)
.

Notice that using Proposition 2.6 we deduce that Proposition 2.5 is unchanged if we replace P(V#
v � x) by

P(V#
v � x,
Vv � bx) for all b > 0. The proof of the first proposition relies on the following lemma:

Lemma 2.8. There exists a constant K# ∈ (0,∞) such that, for any a, c > 0 and any b � 0,

lim
t→∞

aα

t
log P

(
S

#
t � a,S t � −b,St − S t � c

)= −K#.

In particular K# = − limv→∞ 1
v

log(P(S#
v � 1)).

Proof. Using the scaling property, we only need to prove the lemma in the case a = 1. For the sake of clarity, let

E1 = {
S

#
t � 1,S t � −b,St − S t � c

}
,

and let f (t) = log P(S#
t � 1). Using the Markov property of the stable process S, we deduce that f (t + s) �

f (t) + f (s) for any s, t � 0. Since f is subadditive, elementary analysis shows that the limit K# = − limt→∞ f (t)/t

exists and furthermore K# ∈ (0,∞]. In order to prove that K# < ∞, note that {S#
t � 1} ⊃ {S∗

t � 1/2} which implies
f (t)/t � log P(S∗

t � 1/2)/t . Using Proposition 3 of [1], p. 220, the r.h.s. of this last inequality converges to some
finite constant when t converges to infinity. Therefore K# must be finite. So we have obtained

lim sup
t→∞

1

t
log P(E1) � lim

t→∞
1

t
f (t) � −K#.

It remains to prove the lower bound. Let 0 < ε < min(c,1) and let t > 1. Define

E2 = {
S

#
t−1 � 1 − ε

}
,

E3 = {
(θt−1S)#

1 � ε, (θt−1S)
1
� −b − 1

}
.

We have E1 ⊃ E2 ∩E3. Since S has independent increments, E2 and E3 are independent. Therefore P(E1) � P(E2)P(E3).
Furthermore, using scaling, P(E2) = f ((t − 1)/(1 − ε)α). Hence

1

t
log P(E1) � log P(E3)

t
+ 1

t
f

(
t

(1 − ε)α

)
, (2.2)

and P(E3) = P(S#
1 � ε,S1 � −b − 1) does not depend on t and is not zero (this is easy to check since S is not a

subordinator). Taking the limit in (2.2) we conclude that

lim inf
t→∞

1

t
log P(E1) � lim

t→∞
1

t
f

(
t

(1 − ε)α

)
= −K#

(1 − ε)α
. �

Proof of Proposition 2.5. Let us choose ε > 0. The previous lemma and the scaling property of S
# give

K# = − lim
y→∞

1
α

log P
(

S
#
1 <

1
)

.

y y
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Hence, we can choose y0 > 0 such that log P(S#
1 � 1/y0) � −(K# − ε)yα

0 . Combining results of Propositions 2.2 and
2.3 for the functional F (3), we get

lim
k→∞ log P

(
1

a(k)
V

#
k � 1

y0

)
= log P

(
S

#
1 � 1

y0

)
� −(

K# − ε
)
yα

0 .

Therefore, for all k large enough,

log P
(

1

a(k)
V

#
k � 1

y0

)
� −(

K# − 2ε
)
yα

0 . (2.3)

Let us choose k = [a−1(xy0)] + 1, thus (2.3) holds whenever x is large enough. Notice that

{
V

#
v � x

}⊂
[v/k]−1⋂

n=0

{
(θnkV)#

k � x
}
,

hence, using the independence and stationarity of the increments of the random walk at integer times, we obtain

P
(
V

#
v � x

)
�
(
P
(
V

#
k � x

))[v/k]
. (2.4)

Since a(·) is non-decreasing, our choice of k implies x/a(k) � 1/y0, therefore

P
(
V

#
k � x

)
� P

(
V

#
k

a(k)
� 1

y0

)
.

Combining this inequality with (2.3) and (2.4) yields

log P
(
V

#
v � x

)
� −

[
v

k

]
yα

0

(
K# − 2ε

)
.

It is easy to check from the regular variation of a−1(·) with index α that [v/k]yα
0 ∼ v/a−1(x) when x and v/a−1(x)

both go to infinity, hence

lim sup
a−1(x)

v
log P

(
V

#
v � x

)
� −K#.

The proof of the lower bound is quite similar yet slightly more technical. Using Lemma 2.8 and the scaling property,
we can find y0 > 0 such that

log P
(

S
#
1 � 1 − ε

y0
,S1 � −2ε

y0
,S1 − S1 � ε

y0

)
� − K#yα

0

(1 − 2ε)α
. (2.5)

Let us set

E4(k) =
{

V
#
k

a(k)
� 1 − ε

y0
,

Vk

a(k)
� −2ε

y0
,

Vk − Vk

a(k)
� ε

y0

}
.

Using Propositions 2.2 and 2.3, we check that

lim
k→∞ P

(
E4(k)

)= P
(

S
#
1 � 1 − ε

y0
,S1 � −2ε

y0
,S1 − S1 � ε

y0

)
.

Hence for all k large enough, it follows from (2.5) that

log P
(
E4(k)

)
�

−K#yα
0

(1 − 3ε)α
. (2.6)

We now choose k = [a−1(xy0)]. Notice that 1/y0 � x/a(k) � 2/y0 for all x large enough, thus

E4(k) ⊂ {
V

#
k � (1 − ε)x,Vk � −εx,Vk − Vk � εx

}
.

One may check by induction that
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{
V

#
v � x

}⊃
[v/k]⋂
n=0

{
(θnkV)#

k � (1 − ε)x, (θnkV)
k
� −εx, (θnkV)k − (θnkV)

k
� εx

}
,

hence, using independence and stationarity of the increments of V at integer times, we get

P
(
V

#
v � x

)
� P

(
V

#
k � (1 − ε)x,Vk � −εx,Vk − Vk � εx

)[v/k]+1

� P
(
E4(k)

)[v/k]+1
.

Combining this inequality with (2.6), this shows that for all x large enough,

log P
(
V

#
v � x

)
� −K#

(1 − 3ε)α

([
v

k

]
+ 1

)
yα

0 .

Notice that ([v/k] + 1)yα
0 ∼ v/a−1(x) as x and v/a−1(x) go to infinity simultaneously, which completes the

proof. �
Proof of Proposition 2.6. The upper bound is trivial. Let 0 < b < 1, define v1 = [a−1(x)] and set c = (b − 1)x,{

V
#
v � x,
Vv � bx

}⊃ {
V

#
v � x,
Vv � bx,σV(c) � v1

}
⊃ {

V
#
σV(c) � bx,σV(c) � v1

}∩ {
(θσV(c)V)#

v � x
}
,

thus

P
(
V

#
v � x,
Vv � bx

)
� P

(
V

#
σV(c) � bx,σV(c) � v1

)
P
(
V

#
v � x

)
� P

(
V

#
v1

� bx,Vv1
� c

)
P
(
V

#
v � x

)
.

Just like in the previous proof, we see that P(V#
v1

� bx,Vv1
� c) converges when x goes to infinity toward

P(S#
1 � b,S1 � b − 1) and this quantity is strictly positive since |S| is not a subordinator. �

Proof of Proposition 2.7. Notice that{
V

#
v1+v2

� x
}⊃ {

V
#[v1]+[v2]+2 � x

}
⊃ {V1 � 0,V2 − V1 � 0} ∩

{
(θ2V)#[v1] � x, (θ2V)[v1] − (θ2V) [v1] � x

2

}
∩
{
(θ2+[v1]V)#[v2] � x, (θ2+[v1]V)[v2] � x

2

}
.

Using the independence and stationarity of the increments of V at integer time and setting C5 = P(V1 � 0) > 0, we
see that P(V#

v1+v2
� x) is larger than

C5
2P
(

V
#[v1] � x,V[v1] − V [v1] � x

2

)
P
(

V
#[v2] � x,
V[v2] � x

2

)
.

Time reversal of the random walk V shows that

P
(

V
#[v1] � x,V[v1] − V [v1] � x

2

)
= P

(
V

#[v1] � x,
V[v1] � x

2

)
,

hence, using Proposition 2.6,

P
(
V

#
v1+v2

� x
)
� (C3, 1

2
C5)

2P
(
V

#[v1] � x
)
P
(
V

#[v2] � x
)

� (C3, 1
2
C5)

2P
(
V

#
v1

� x
)
P
(
V

#
v2

� x
)
. �
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2.3. The case where S is a completely asymmetric stable process

One may wish to calculate the value of the constant K# that appears in the last section. Unfortunately, we do not
know its value in general. However, the completely asymmetric case is a particularly nice setting where calculations
may be carried out to their full extend. We now assume throughout this section that the stable process (Sx, x � 0)

either has no positive jumps hence the exponential moments of S are finite and (1.2) holds (recall that we assume
γ ′ = 1) or S has no negative jumps and E(exp(−λSt )) = exp(tλα) for all t, λ � 0. For a, b > 0, define the stopping
times:

τb = inf(t � 0,St � b) = σS(b),

τ #
b = inf

(
t � 0,S

#
t � b

)= σS#(b),

τ ∗
a,b = inf

(
t � 0,St not in (−a, b)

)
.

Recall that Eα stands for the Mittag–Leffler function with parameter α.

Proposition 2.9. When S has no positive jumps, we have

E
(
e−qτ #

1
)= 1

Eα(q)
,

and when S has no negative jumps, we have

E
(
e−qτ #

1
)= Eα(q) − αq(E′

α(q))2

αqE′′
α(q) + (α − 1)E′

α(q)
.

This proposition is a particular case of Proposition 2 of [17], p. 191. Still, we give here a simpler proof when S is
stable using the solution of the two sided exit problem given by Bertoin [2].

Proof. We suppose that S has no negative jumps. Let η(q) be an exponential random time of parameter q independent
of S. Let also a, b be strictly positive real numbers such that a + b = 1. We may without loss of generality assume any
path of S attains its bounds on any compact interval and is continuous at all local extrema (because this happens with
probability 1 according to Lemma 2.1). Thus, on the one hand, the event {τ #

1 > η(q)} contains{
τ ∗
a,b > η(q)

}∪ ({
τ ∗
a,b � η(q),Sτ∗

a,b
� −a

}∩ {
(θτ∗

a,b
S)#

η(q)−τ∗
a,b

< 1
})

.

Using the strong Markov property of S, the lack of memory, and the independence of the exponential time, it follows
that P(τ #

1 > η(q)) is larger than

P
(
τ ∗
a,b > η(q)

)+ P
(
τ ∗
a,b � η(q),Sτ∗

a,b
� −a

)
P
(
τ #

1 > η(q)
)
,

therefore

P
(
τ #

1 > η(q)
)
�

P(τ ∗
a,b > η(q))

1 − P(τ ∗
a,b � η(q),Sτ∗

a,b
� −a)

. (2.7)

On the other hand, one may check that the event {τ #
1 > η(q)} is a subset of{

τ ∗
a,b > η(q)

}∪ ({
τ ∗
a,b � η(q),Sτ∗

a,b
� −a

}∩ {
(θτ∗

a,b
S)#

η(q)−τ∗
a,b

< b
})

,

and similarly we deduce

P
(
τ #
b > η(q)

)
�

P(τ ∗
a,b > η(q))

1 − P(τ ∗
a,b � η(q),Sτ∗

a,b
� −a)

. (2.8)

Obviously τ #
b converges to τ #

1 almost surely as b converges to 1. Combining this observation with (2.7) and (2.8), we
find

P
(
τ #

1 > η(q)
)= lim

b↗1

P(τ ∗
1−b,b > η(q))

1 − P(τ ∗ � η(q),Sτ∗ � b − 1)
. (2.9)
1−b,b 1−b,b
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The probabilities of the r.h.s. of this equation have been calculated by Bertoin [2]:

P
(
τ ∗

1−b,b > η(q)
)= 1 − Eα

(
bα
)+ bα−1E′

α(qbα)

E′
α(q)

(
Eα(q) − 1

)
, (2.10)

P
(
τ ∗

1−b,b � η(q),Sτ∗
1−b,b

� b − 1
)= bα−1E′

α(qbα)

E′
α(q)

. (2.11)

Taylor expansions of Eα and E′
α near point q enables us to calculate the limit in (2.9) in term of Eα and its first and

second derivatives. After a few lines of elementary calculus, we get

P
(
τ #

1 > η(q)
)= 1 − Eα(q) + αq(E′

α(q))2

αqE′′
α(q) + (α − 1)E′

α(q)
.

We complete the proof using the well-known relation E(exp(−qτ #
1 )) = 1−P(τ #

1 > η(q)). The proof in the case where
S has no positive jumps is similar (and the calculation of the limit is even easier). We omit it. �
Corollary 2.10. Recall that −ρ1(α) is the first negative root of Eα and −ρ2(α) is the first negative root of αxE′′

α(x)+
(α − 1)E′

α(x). The constant of Proposition 2.5 is given by

K# =
{
ρ1(α) when S has no positive jumps,
ρ2(α) when S has no negative jumps.

Proof. Recall that K# = − limt→∞ P(S#
t � 1)/t . Using the same argument as in Corollary 1 of [2], we see that

K# = ρ1(α) when S has no positive jumps. Similarly, when S has no negative jumps −K# is equal to the first negative
pole of

g(x) = αx(E′
α(x))2

αxE′′
α(x) + (α − 1)E′

α(x)
= Eα(x) − E

(
e−xτ #

1
)
.

Let −x0 be the first negative root of E′
α . Since E′

α(0) > 0, this implies that Eα is strictly increasing on [−x0,0].
Notice also that x �→ −E(exp(−xτ #

1 )) is increasing on (−K#,0], thus g(x) is strictly increasing on (−(K# ∧ x0),0].
Since g(−x0) = g(0) = 0 (this holds even when −x0 is a zero of multiple order) we deduce from the monotonicity of
g that K# < x0 and this shows that the first negative pole of g is indeed −ρ2(α). �

We conclude this subsection by calculating the Laplace transform of τ #
1 ∧ τb . This will be useful for the determi-

nation of the limiting law in the proof of Theorem 4.

Corollary 2.11. For 0 < b � 1, when S has no positive jumps

E
(
e−qτ #

1 ∧τb
)= Eα(q(1 − b)α)

Eα(q)
,

and when S has no negative jumps

E
(
e−qτ #

1 ∧τb
)= Eα

(
qbα

)− bα−1 αqE′
α(qbα)E′

α(q)

αqE′′
α(q) + (α − 1)E′

α(q)
.

Proof. Let η(q) still denote an exponential time with parameter q independent of S. Suppose that S has no negative
jumps, using the Markov property and the lack of memory of the exponential law, we get

P
(
τ #

1 ∧ τb > η(q)
)= P

(
τ ∗

1−b,b � η(q),Sτ∗
1−b,b

� b − 1
)
P
(
τ #

1 > η(q)
)+ P

(
τ ∗

1−b,b > η(q)
)
.

The r.h.s. of the last equality may be calculated explicitly using again (2.10), (2.11), and Proposition 2.9. Hence, after
simplification,

P
(
τ #

1 ∧ τb > η(q)
)= 1 − Eα

(
qbα

)+ bα−1 αqE′
α(qbα)E′

α(q)

αqE′′
α(q) + (α − 1)E′

α(q)
.

The no positive jumps case may be treated the same way. �
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2.4. The exit problem for the random walk V

Let us define for x, y > 0 the following events:

Λ(x,y) = {
(Vs)s�0 hits (y,∞) before it hits (−∞,−x)

}
,

Λ′(x, y) = {
(Vs)s�0 hits [y,∞) before it hits (−∞,−x]},

Λ̃′(x, y) = {
(V−s)s�0 hits (−∞,−y] before it hits [x,∞)

}
.

We are interested in the behavior of the probabilities of these events for large x, y. In the case of a fixed x, when
y goes to infinity, this study was done by Bertoin and Doney [3]. Here, we need to study this quantities when both
x and y go to infinity with the ratio y/x also going to infinity. We already defined the sequence (Tn)n�0 of strictly
descending ladder times, we now consider the associated ladder heights:

Hn = −VTn
for n � 0.

We will also need the sequence (Mn)n�1:

Mn = max(Vk + Hn−1,Tn−1 � k < Tn).

Note that the sequence (Tn+1 − Tn,Hn+1 − Hn,Mn)n�1 is independent and identically distributed. We know that T1
is in the domain of attraction of a positive stable law of index q with norming constants (bn). Now, Corollary 3 of [8]
states that P(M1 > x) is regularly varying with index −αq . More precisely, it gives

P(M1 > x) ∼
x→∞

C6

b−1(a−1(x))
. (2.12)

In particular, this shows that M1 is in the domain of attraction of a positive stable law when αq < 1 and that M1 is
relatively stable when αq = 1 (relatively stable means that 1

a(b(n))

∑
k�n Mk converges in probability to some strictly

positive constant).
For H1, using Theorem 9 of [18], we see that H1 is in the domain of attraction of a positive stable law with index

αq when αq < 1 and that H1 is relatively stable in the case αq = 1. Furthermore, the lemma of [8], p. 358 shows that
we can choose a(b(n)) as norming constant for H1 in any of those two cases, thus

Hn

a(b(n))
converges to

{
some constant C7, in probability when αq = 1,
a positive stable law of index αq otherwise.

When αq < 1, this shows that (2.12) holds with H1 in place of M1 (for a different value of C6). Unfortunately, in
the case αq = 1, the relative stability of H1 does not imply the regular variation of P(H1 > x) (look at the counter
example in [18], p. 576). However, we can still prove a smooth behavior for the associated renewal function

R(x) =
∞∑

n=0

P(Hn � x).

Lemma 2.12. There exists a constant C8 > 0 such that

R(x) ∼
x→∞ C8b

−1(a−1(x)
)
.

Proof. When αq < 1 we mentioned that P(H1 > x) ∼ C9/b
−1(a−1(x)) where C9 is some strictly positive constant.

In this case, the asymptotic behavior of R follows from the Tauberian Theorem as in the lemma on p. 446 of [10]. We
now consider the case αq = 1. Let L(λ) = E(e−λH1) stand for the Laplace transform of H1. We know that

Hn

a(b(n))

Prob.−→
n→∞ C7.

Therefore, for any λ � 0 and when n ranges trough the set of integers, we have(
L

(
λ

))n

−→
n→∞ e−C7λ. (2.13)
a(b(n))
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Since L is continuous at 0 with L(0) = 1, setting λ = 1 and taking the logarithm in (2.13) give

n

(
1 − L

(
1

a(b(n))

))
−→
n→∞ C7. (2.14)

Using the monotonicity of L and a(b(·)), it is easy to check that (2.14) still holds when n now ranges trough the set
of real numbers, thus

1 − L

(
1

x

)
∼

x→∞
C7

b−1(a−1(x))
. (2.15)

Let us now define R̂(y) = ∫∞
0 e−yxR(dx). The well-known relation R̂(y) = 1/(1 − L(y)) combined with (2.15)

shows that R̂ is regularly varying near 0, hence we can use Karamata’s Tauberian/Abelian Theorem to conclude the
proof. �
Proposition 2.13. There exists C10 such that when x → ∞ and y/x → ∞,

P
(
Λ(x,y)

)∼ C10
b−1(a−1(x))

b−1(a−1(x + y))
.

This result also holds for P(Λ′(x, y)) and P(Λ̃′(x, y)).

Proof. The two processes (Vs)s�0 and (−V−s)s�0 have the same law, hence P(Λ′(x, y)) = P(Λ̃′(x, y)). We also
have the trivial inclusion Λ(x − 1, y) ⊂ Λ′(x, y) ⊂ Λ(x,y − 1), so we only need to prove the proposition for Λ(x,y).
The first part of the proof is borrowed from Bertoin and Doney [3], p. 2157. The probability P(Λ(x, y)) is equal to

P(M1 > y) +
∞∑

k=1

P(M1 � y + H0, . . . ,Mk � y + Hk−1,Hk � x,Mk+1 > y + Hk), (2.16)

thus

P
(
Λ(x,y)

)
� P(M1 > y) +

∞∑
k=1

P(Hk � x,Mk+1 > y + Hk)

� P(M1 > y) +
∞∑

k=1

P(Hk � x,Mk+1 > y)

� P(M1 > y)R(x).

Using (2.12), Lemma 2.12, and the equivalence P(M1 > y) ∼ P(M1 > x + y) when x and y/x go to infinity, we
obtain the upper bound with C10 = C6C8. We now prove the result pertaining to the lower bound. Let k0 ∈ N

∗. From
(2.16), we see that P(Λ(x, y)) is bigger than

P(M1 > y) +
∞∑

k=1

P(M1 � y, . . . ,Mk � y,Hk � x,Mk+1 > x + y)

� P(M1 > x + y)

(
1 +

k0∑
k=1

P(M1 � y, . . . ,Mk � y,Hk � x)

)
,

hence

P
(
Λ(x,y)

)
� P(M1 > x + y)

(
R(x) − Rk0(x) − Wk0(y)

)
, (2.17)

with

Rk0(x) =
∞∑

k=k0+1

P(Hk � x),

Wk0(y) =
k0∑

P(M1 > y or . . . or Mk > y).
k=1
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On the one hand, using (2.12) and Lemma 2.12, for y large enough,

Wk0(y) �
K∑

k=1

k0P(M1 > y) � k2
0P(M1 > y) �

C11k
2
0

R(y)
.

On the other hand,

Rk0(x) =
∞∑

k=0

P
(
Hk0+1 + (Hk+k0+1 − Hk0+1 � x)

)
�

∞∑
k=0

P(Hk+k0+1 − Hk0+1 � x)P(Hk0+1 � x)

� R(x)P(Hk0 � x).

Combining these two bounds with (2.17) yields, for all x, y large enough,

P
(
Λ(x,y)

)
� P(M1 > x + y)R(x)

(
1 − P(Hk0 � x) − C11k

2
0

(R(y))2

)
.

It only remains to show that for a good choice of k0 = k0(x, y), we have

P(Hk0 � x) + C11k
2
0

(R(y))2
−→

x,y/x→∞ 0.

Let k0 = [b−1(a−1(x log(y/x)))]. Note that k0 is such that k0 → ∞, when x and y/x go to infinity simultaneously,
and we know that

Hk0

a(b(k0))

law−→
k0→∞J∞,

where J∞ is either a positive stable law (αq < 1) or a strictly positive constant (αq = 1). In either cases
P(J∞ = 0) = 0. Since x/a(b(k0)) → 0 when x and y/x go to infinity simultaneously, we deduce that

P(Hk0 � x) = P
(

Hk0

a(b(k0))
� x

a(b(k0))

)
−→

x,y/x→∞ 0.

Finally, using Lemmas 2.4 and 2.12, we also check that

C11k
2
0

(R(y))2
∼

x,y/x→∞
C11

C8
2

(
R(x log y

x
)

R(y)

)2

−→
x,y/x→∞ 0. �

2.5. Other estimates

We conclude the section about the fluctuations of V by collecting several results on the functionals 
V and V. We
start with a reflection principle for V.

Lemma 2.14. There exists C12 such that for all v, x > 0,

P
(
Vv � x

)
� C12P(Vv � x),

similarly

P(Vv � −x) � C12P(Vv � −x).

Proof. We only need to prove the first inequality (the second inequality can be obtained in the same way, with a
possibly enlarged value for C12).
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P
(
Vv � x

)= P
(
σV(x) � [v])

� P
(
σV(x) � [v],V[v] < x

)+ P(Vv � x)

�
[v]∑
k=1

P
(
σV(x) = k,V[v] < x

)+ P(Vv � x).

From the Markov property, we check that P(σV(x) = k,V[v] < x) is equal to

P
(
σV(x) = k

) ∫
y � x

P(V[v]−k < x − y)P
(
VσV(x) = dy|σV(x) = k

)
� P

(
σV(x) = k

)
P(V[v]−k < 0).

Our assumption on V implies that limn→∞ P(Vn < 0) = P(S < 0) = q < 1. Thus, there exists C13 > 0 such that
supn P(Vn < 0) = C13 < 1. Therefore

P
(
Vv � x

)
� C13

[v]∑
k=1

P
(
σV(x) = k

)+ P(Vv � x)

� C13P
(
σV(x) � v

)+ P(Vv � x)

� 1

1 − C13
P(Vv � x). �

We now estimate the large deviations of P(Vv > x). Using the characterization of the domains of attraction to a
stable law (see Chapter IX, Section 8 of [10]), Assumption 1 implies

a−1(x)P(V1 > x) −→
x→∞

{
C14 > 0 if S has positive jumps,
0 otherwise.

(2.18)

Similarly,

a−1(x)P(V1 < −x) −→
x→∞

{
C15 > 0 if S has negative jumps,
0 otherwise.

(2.19)

Proposition 2.15. There exists C16 > 0 such that for all v � 1 and all x � 1,

P(Vv > x) � C16
v

a−1(x)
. (2.20)

Moreover, if S has positive jumps,

P(Vv > x) ∼
v→∞

a−1(x)/v→∞
vP(V1 > x) ∼

v→∞
a−1(x)/v→∞

C14
v

a−1(x)
. (2.21)

There is of course a similar result for P(Vv < −x).

Proof. Result (2.21) is already known and is stated in [5], yet we could not find a proof of this result in English.
A weaker result is proved by Heyde [11] but a slight modification of his argument will enable us to prove the propo-
sition. Let us choose 1/2 < δ < 1 and set z = (x/a(v))δa(v). Define for k � 1,

ζk,z =
{

Vk − Vk−1 if |Vk − Vk−1| � z,
0 otherwise.

Let ε > 0 and define

E5 = {
Vk − Vk−1 > (1 − ε)x for at least one k in

{
1, . . . , [v]}},

E6 = {
Vk − Vk−1 > z for at least two k’s in

{
1, . . . , [v]}},

E7 = {
ζ1,z + · · · + ζ[v],z > εx

}
.
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We see that {Vv > x} ⊂ E5 ∩ E6 ∩ E7, hence

P(Vv > x) � P(E5) + P(E6) + P(E7). (2.22)

We deal with each term on the r.h.s. of (2.22) separately. Let us choose C > C14 if S has positive jumps and set C = 1
otherwise. We now assume that v and a−1(x)/v are very large. According to (2.18) and using the regular variation of
a−1(·), we get

P(E5) � vP
(
V1 > (1 − ε)x

)
� C

(1 − ε)α

v

a−1(x)
. (2.23)

We now deal with P(E6). Let η > 0. Lemma 2.4 gives for all v and a−1(x)/v large enough,

va−1(x)

(a−1(z))2
= a−1(a(v) x

a(v)
)

a−1(a(v))

(
a−1(a(v))

a−1(a(v)( x
a(v)

)δ)

)2

�
(

x

a(v)

)α+η(
a(v)

x

)2δ(α−η)

.

Since δ > 1/2, we can assume η small enough such that 2δ(α − η) − (α + η) > η. Thus, we have

va−1(x)

(a−1(z))2
�
(

a(v)

x

)η

, (2.24)

therefore, using (2.18) and (2.24), we get

P(E6) � v2P(V1 > z)2 � C
v2

(a−1(z))2
� C

v

a−1(x)

(
a(v)

x

)η

. (2.25)

Turning our attention to P(E7), we deduce from Tchebychev’s inequality that

P(E7) � 1

ε2x2
E
(
(ζ1,z + · · · + ζ[v],z)2)� v

ε2x2
E
(
ζ 2

1,z

)+ v2

ε2x2
E(ζ1,z)

2. (2.26)

Let f (z) = E((ζ1,z)
2) = ∫ z

−z
y2P(V1 ∈ dy). This function is non-decreasing and non-zero for z large enough. It is also

known from the characterization of the domains of attraction (cf. (8.14) of [10], p. 304) that the norming constants (an)

are such that nf (an)/a
2
n → C17 > 0, hence f (z) ∼ C17z

2/a−1(z) as z goes to infinity (f is regularly varying with
index 2 − α). Therefore, for v and a−1(x)/v large enough, we have

v

ε2x2
E
(
(ζ1,z)

2)= vf (z)

εx2
� C18,ε

v

a−1(x)

f (z)

f (x)
� C18,ε

v

a−1(x)
. (2.27)

We can sharpen this estimate when α < 2. Indeed, in this case, f is regularly varying with index 2 − α > 0. Thus,
using Lemma 2.4 and setting η′ = (1 − δ)(2 − α)/2,

f (z)

f (x)
�
(

z

x

)(2−α)/2

=
(

a(v)(x/a(v))δ

x

)(2−α)/2

=
(

a(v)

x

)η′

.

When α < 2, we therefore obtain

v

ε2x2
E(ζ1,z) � C18,ε

v

a−1(x)

(
a(v)

x

)η′

. (2.28)

Let g(z) = E(ζ1,z) = ∫ z

−z
yP(V1 ∈ dy). Since V1 is in the domain of attraction of a stable law, it is known that the

centering constants c(n) such that Vn/a(n)−c(n) converge to a stable law may be chosen to be c(n) = ng(a(n))/a(n)

(see [10], p. 305), but the main assumption of this paper states that the sequence c(n) may also be chosen to be
identically 0. This implies in particular that the sequence ng(a(n))/a(n) is bounded. So we deduce that there exists
C19 > 0 such that∣∣g(z)

∣∣� C19
z

−1
for all z � 1.
a (z)
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Using this inequality, we get for v and a−1(x)/v large enough,

v2

ε2x2
E(ζ1,z)

2 � C20,ε

v2z2

x2(a−1(z))2

= C20,ε

v

a−1(x)

va−1(x)

(a−1(z))2

(
z

x

)2

� C20,ε

v

a−1(x)

va−1(x)

(a−1(z))2

� C20,ε

v

a−1(x)

(
a(v)

x

)η

, (2.29)

where we used (2.24) for the last inequality. Putting the pieces together, (2.22)-(2.23)-(2.25)-(2.26)-(2.27) and (2.29)
yield (2.20). Moreover, when S has positive jumps, we have α < 2, hence we can use (2.28) instead of (2.27) and we
deduce that

lim sup
v→∞

a−1(x)/v→∞

a−1(x)P(Vv > x)

v
� C14.

It remains to prove that the lower bound holds. Assume that S has positive jumps and notice that the event {Vv > x}
contains

[v]−1⋂
k=0

{
V

∗
k � εx,Vk+1 − Vk > (1 + 2ε)x, (θk+1V)∗[v]−k−1 � εx

}
.

Moreover, the events of the last formula are disjoints. The independence and the stationarity of the increments of the
random walk V yield

P(Vv > x) �
[v]−1∑
k=0

P
(
V

∗
k � εx

)
P
(
V1 > (1 + 2ε)x

)
P
(
V

∗[v]−k−1 � εx
)

� [v]P(V∗
v � εx

)2P
(
V1 > (1 + 2ε)x

)
.

From (2.18) and the regular variation of a−1(·) we see that

[v]P(V1 > (1 + 2ε)x
)∼ C14v

(1 + 2ε)αa−1(x)

as v and a−1(x)/v both go to infinity. We also know from the results of Section 2.1 that V
∗
v/a(v) converges in law

towards S
∗
1, therefore

lim
v→∞

a−1(x)/v→∞
P
(
V

∗
v � εx

)= lim
v→∞

a−1(x)/v→∞
P
(

V
∗
v

a(v)
� ε

x

a(v)

)
= 1.

We conclude that

lim inf
v→∞

a−1(x)/v→∞

a−1(x)P(Vv > x)

v
� C14

(1 + 2ε)α
. �

Corollary 2.16. By possibly extending the value of C16, Eq. (2.20) also holds with 
Vv , −Vv , V
#
v and V

∗
v in place

of Vv .

Proof. The results for 
Vv and −Vv are straightforward using Lemma 2.14. As for V
∗ and V

#, simply notice that
{V#

v � 2x} ⊂ {V∗
v � x} ⊂ {
Vv � x} ∪ {−Vv � x}. �
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Corollary 2.17. For any 0 < δ < α, we have

lim
v→∞ E

(( 
Vv

a(v)

)δ)
= E

((
S1
)δ)

and lim
v→∞ E

(∣∣∣∣ Vv

a(v)

∣∣∣∣δ)= E
(
(−S1)

δ
)
.

Proof. It follows from the last corollary and the regular variation of a−1(·) with index α that for any 0 < δ < α,

sup
v�1

E
(( 
Vv

a(v)

)δ)
< ∞.

The family ((
Vv/a(v))δ, v � 1) is therefore uniformly integrable for all 0 < δ < α. We also know that 
Vv/a(v)

converges in law toward 
S1 as v goes to infinity. These two facts combined yield the first assertion. The proof of the
second part of the corollary is similar. �
Proposition 2.18. For all 0 < δ < q (recall that q is the negativity parameter of S) there exists C21,δ such that, for all
v, x � 1,

P(−Vv � x) � C21,δ

(
a−1(x)

v

)δ

.

We have a similar result for P(
Vv � x) when changing the condition δ < q by δ < p.

Proof. We only prove the result for Vv . By possibly extending the value of C21,δ , it suffices to prove the inequality
for x and v/a−1(x) large enough. Let us choose δ′ such that δ < δ′ < q < 1 and notice that for any y > 0,

{−Vv � x} ⊂ Λ(x,y) ∪ ({−Vv � x} ∩ Λ(x,y)c
)

⊂ Λ(x,y) ∪ {
V

#
v � x + y

}
,

thus

P(−Vv � x) � P
(
Λ(x,y)

)+ P
(
V

#
v � x + y

)
. (2.30)

On the one hand, for x and y/x large enough, using Proposition 2.13 and Lemma 2.4, we get

P
(
Λ(x,y)

)
� C22

b−1(a−1(x))

b−1(a−1(x + y))

� C23,δ′
(

a−1(x)

a−1(x + y)

)δ′

. (2.31)

On the other hand, for x + y and v/a−1(x + y) large enough, using Proposition 2.5, we obtain

P
(
V

#
v � x + y

)
� exp

(
−K#

2

v

a−1(x + y)

)
. (2.32)

Let us choose y = a( K#v

2 log(v/a−1(x))
) − x. It is easy to check that (2.31) and (2.32) hold whenever x and v/a−1(x) are

large enough, thus, (2.30) yields

P(−Vv � x) � C23,δ′
(

2

K#

)δ′(
a−1(x)

v

(
log

v

a−1(x)

))δ′

+ a−1(x)

v

� C24,δ′
(

a−1(x)

v

)δ

. �
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3. Behavior of X

In this section, we now study the diffusion X in the random potential V. We will see that the behavior of this
process depends strongly on the environment. In order to do so, we will adapt the ideas of Hu and Shi [12] to our
setting, in particular, we will show that Lemmas 4.1 and 4.2 of [12] still hold with a slight modification.

Recall the well known representation of X (cf. [6,12,13]) which states that we can construct X from a Brownian
motion through a (random) change of scale and a (random) change of time, hence we will assume that X has the form:

Xt = A
−1(BT−1(t)), (3.1)

where B is a standard Brownian motion independent of V and where A
−1 and T

−1 are the respective inverses of

A(x) =
x∫

0

eVy dy for x ∈ R,

T(t) =
t∫

0

e−2V
A−1(Bs ) ds for t � 0.

Note that our assumption on V implies with probability 1 that A is an increasing homeomorphism on R and that T

is an increasing homeomorphism on R+, thus A
−1 and T

−1 are well defined. Let v > 0 and recall the definition of σ

given in Section 2.1. Using (3.1), we have

σX(v) = T
(
σB

(
A(v)

))
.

Let (L(t, x), t � 0, x ∈ R) stand for the bi-continuous version of the local time process of B . The last equality may be
rewritten:

σX(v) =
σB(A(v))∫

0

e−2V
A−1(Bs ) ds

=
A(v)∫

−∞
e−2V

A−1(x)L
(
σB

(
A(v)

)
, x
)

dx

=
v∫

−∞
e−Vy L

(
σB

(
A(v)

)
,A(y)

)
dy,

where we have used the change of variable x = A(y). Let us now define I1 and I2,

I1(v) =
v∫

0

e−Vy L
(
σB

(
A(v)

)
,A(y)

)
dy, (3.2)

I2(v) =
∞∫

0

e−V−y L
(
σB

(
A(v)

)
,A(−y)

)
dy. (3.3)

Using the definition of σX , we get{
Xt � v
}= {

I1(v) + I2(v) � t
}
. (3.4)

The next two propositions show the connection between V and X. These estimates will enable us to reduce the study
of the limiting behavior of X to the study of some functionals of the potential V. The streamline of the proofs is the
same as that of Lemmas 4.1 and 4.2 of [12] and one should refer to the proof of these two lemmas for further details.
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Proposition 3.1. There exists C25 such that for all v large enough

V
#
v− 1

2
− (logv)4 � log I1(v) � V

#
v + (logv)4 on E8(v),

where E8(v) is a measurable set such that

P
(
E8(v)c

)
� C25 e−(logv)2

.

Proposition 3.2. There exists C26 such that for all v large enough

log I2(v) � ŨV

(
Vv + (logv)4) on E9(v),

log I2(v) � ŨV

(
V
v− 1

2
− (logv)4) on E9(v) ∩ {
V

v− 1
2

> (logv)4
}
,

where Ũ was defined in Section 2.1 and where E9(v) is a measurable set such that

P
(
E9(v)c

)
� C26 e−(logv)2

.

Proof of Proposition 3.1. For v > 0, let R2 be defined as:

R2(t) = L(σB(A(v)),A(v) − tA(v))

A(v)
for 0 � t � 1.

Let R be the positive root of R2. Just as in [12], p. 1498, we see that, using Ray-Knight Theorem and the scaling
property of the Brownian motion, for any fixed v the process (R(t),0 � t � 1) has the law of a two dimensional
Bessel process starting from 0. Moreover, R is independent of V. We can now rewrite (3.2) as

I1(v) = A(v)

v∫
0

e−VsR2
(

A(v) − A(s)

A(v)

)
ds.

Let us define

E10 =
{

sup
0<t�1

R(t)√
t log(8/t)

�
√

v

}
.

Using Lemma 6.1 p. 1497 of [12], we get P(Ec
10) � C27 e−v/2. On E10, we have

I1(v) � v

v∫
0

e−Vs
(
A(v) − A(s)

)
log

(
8A(v)

A(v) − A(s)

)
ds,

and for all s � v

e−Vs
(
A(v) − A(s)

)=
v∫

s

eVy−Vs dy � v eV
#
v .

This implies

I1(v) � v2eV
#
v

v∫
0

log

(
8A(v)

A(v) − A(s)

)
ds. (3.5)

We also have

A(v) =
v∫

0

eVs ds � v e

Vv and A(v) − A(s) =

v∫
s

eVy dy � (v − s) eVv ,

thus
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v∫
0

log

(
8A(v)

A(v) − A(s)

)
ds � v

(
Vv − Vv

)+
v∫

0

log

(
8v

v − s

)
ds

� v
(
Vv − Vv + 1 + log(8)

)
.

Combining this with (3.5) yields log(I1(v)) � V
#
v + log(
Vv − Vv) + 4 log(v) for all v large enough. We now define

E11 = {log(
Vv − Vv) � log3(v)}. On E10 ∩ E11, for all v large enough, we get the upper bound,

log
(
I1(v)

)
� V

#
v + log4(v).

Notice that {
Vv − Vv > a} ⊂ {V∗
v > a/2}. Thus, using Corollary 2.16 and the regular variation of a−1(·), it is easily

checked that P(Ec
11) � exp(− log2(v)) for any v large enough. We now prove the existence of the lower bound. For

the sake of clarity, we will use the notation l = log(v) and δ = exp(−l2). For v > 1/2, there exist two integers
0 � k− � k+ � v − 1

2 such that V
#
v− 1

2
= Vk+ − Vk− . Let us define the sets:

E12 =
{

inf
k−�s�k−+ 1

2

R
(

A(v) − A(s)

A(v)

)
> δ

√
A(v) − A(k−)

A(v)

}
,

E13 = {
V

#
v− 1

2
� 3l2}.

Using again Lemma 6.1 p. 1497 of [12] combined with the independence of R and V, we get

P
(
(E12 ∩ E13)

c
)
� P

(
Ec

13

)+ 2δ + 2E
(
e− δ2

2 J (v)1E13

)
, (3.6)

where J is given by

J (v) = A(v) − A(k−)

A(k− + 1
2 ) − A(k−)

.

On the one hand, we have

A(v) − A(k−) =
v∫

k−
eVs ds �

k++ 1
2∫

k+
eVs ds = 1

2
eVk+ .

On the other hand, since k− is an integer and V is flat on [k−, k− + 1), we also have

A

(
k− + 1

2

)
− A

(
k−)=

k−+ 1
2∫

k−
eVs ds = 1

2
eVk− .

This implies J (v) � exp(V#
v−1/2). Using this inequality combined with (3.6), we get

P
(
(E12 ∩ E13)

c
)
� P

(
Ec

13

)+ 2δ + 2 exp
(−δ2 exp

(
3l2)/2

)
.

Hence, we have P((E12 ∩ E13)
c) � P(Ec

13) + 3 exp(−l2) for all v large enough. Using Proposition 2.5, it is easily seen

that P(Ec
13) � e−l2 for all large enough v’s. Let us finally set E8 = E10 ∩ E11 ∩ E12 ∩ E13. We have proved that there

exists C25 > 0 such that P(Ec
8 ) � C25 exp(−l2). Notice that

I1(v) = A(v)

v∫
0

e−VsR2
(

A(v) − A(s)

A(v)

)
ds

� A(v) e−Vk−

k−+ 1
4∫

−
R2

(
A(v) − A(s)

A(v)

)
ds,
k
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therefore, on E8,

I1(v) � δ2 e−Vk−

k−+ 1
4∫

k−

(
A(v) − A(s)

)
ds,

but for all s such that k− � s � k− + 1
4 we also have

A(v) − A(s) � A(v) − A

(
k− + 1

4

)
=

v∫
k−+ 1

4

eVy dy �
k++ 1

2∫
k++ 1

4

eVy dy = 1

4
eVk+ ,

hence

k−+ 1
4∫

k−

(
A(v) − A(s)

)
ds � 1

16
eVk+ .

We finally get

I1(v) � δ2

16
e
V

#
v− 1

2 on E8.

We conclude the proof of the proposition by taking the logarithm. �
Proof of Proposition 3.2. For v > 0, we define the process Z by

Z(t) = L(σB(A(v)),−tA(v))

A(v)
for t � 0.

Using Ray-Knight Theorem and the scaling property of the Brownian motion, we see that for any fixed v the process
Z has the law of a squared Bessel process of dimension 0 such that Z(0) has an exponential distribution with mean 2.
Moreover, Z is independent of V. We can now rewrite (3.3):

I2(v) = A(v)

∞∫
0

e−V−sZ
(−A(−s)

A(v)

)
ds.

We know that 0 is an absorbing state for Z . Let ζ = inf(s � 0,Zs = 0) be the absorption time of Z and let us also
define

ζ(v) = inf

(
s � 0,Z

(−A(−s)

A(v)

)
= 0

)
.

We can now write

I2(v) = A(v)

ζ(v)∫
0

e−V−sZ
(−A(−s)

A(v)

)
ds.

We keep the notation l = log(v), note that A(v) = ∫ v

0 eVs ds � exp(
Vv + l), therefore

I2(v) � e

Vv+lζ(v) sup

0�s�ζ(v)

(
e−V−s

)
sup
s�0

Z(s)

� ζ(v) sup
s�0

Z(s) el+
V(v)−V(−ζ(v)).

Let us define E14 = {sups�0 Z(s) � exp(l2)}. Using Lemma 7.1, p. 1501 of [12], we get P(Ec
14) � 4 exp(−l2). Thus,

on E14, we have

I2(v) � ζ(v)e2l2+
V(v)−V(−ζ(v)). (3.7)
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Let E15 = {ζ(v) � σ̃V(
Vv + l4) + 1
2 } and notice that for all a � 0,{

ζ(v) > a
}=

{−A(−a)

A(v)
< ζ

}
.

Therefore

P
(
Ec

15

)= P
(−A(−σ̃V(
Vv + l4) − 1

2 )

A(v)
< ζ

)
,

but

−A

(
−σ̃V

(
Vv + l4)− 1

2

)
�

−σ̃V(
Vv+l4)∫
−σ̃V(
Vv+l4)− 1

2

eVs ds � 1

2
e

Vv+l4 ,

and we have already seen that Av � exp(
Vv + l). Combining this two inequalities yields for all v large enough,

−A(−σ̃V(
Vv + l4) − 1
2 )

A(v)
� el3,

hence

P
(
Ec

15

)
� P

(
ζ > el3

)
� e−l3,

where we have used Lemma 7.1 on p. 1501 of [12] for the last inequality. On E14 ∩E15, for v large enough, we deduce
from (3.7) that

I2(v) � ζ(v) e2l2+
V(v)−V (−σ̃V(
Vv+l4)+ 1
2 ).

But 
V(v) − V (−σ̃V(
Vv + l4) + 1
2 ) = ŨV(
Vv + l4) − l4 (recall that V is flat on (−n − 1,−n], n ∈ N ). Therefore, on

E14 ∩ E15,

I2(v) � ζ(v) e−l3+ŨV(
Vv+l4).

Let E16 = {σ̃V(
Vv + l4) + 1
2 � exp(l3)}. On E17 = E14 ∩ E15 ∩ E16, we have ζ(v) � exp(l3). Hence, on E17 and for all

v large enough,

log
(
I2(v)

)
� ŨV

(
Vv + log4 v
)
.

This gives the upper bound on E17. Let us check that

P
(
Ec

16

)
� C28 exp

(−l2). (3.8)

We have P(Ec
16) � P(σ̃V(
Vv + l4) > exp(l3)/2), thus

P
(
Ec

16

)
� P

(

V
(

−1

2
el3

)
� 2
V(v)

)
+ P

(

V
(

−1

2
el3

)
� 2l4

)
.

We also have

P
(


V
(

−1

2
el3

)
� 2
V(v)

)
� P

(

V
(

−1

2
el3

)
� el5/2

)
+ P

(

V(v) >

1

2
el5/2

)
.

Using Corollary 2.16 and the regular variation of a−1(·), for all v large enough,

P
(


V(v) >
1

2
el5/2

)
� e−l2 .

Recall that (V(x), x � 0) and (−V(−x), x � 0) have the same law, thus Proposition 2.18 yields

P
(


V
(

−1
el3

)
� 2l4

)
� P

(

V
(

−1
el3

)
� el5/2

)
� e−l2 .
2 2
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These inequalities give P(Ec
16) � 3 e−l2 , hence P(Ec

17) � 8 e−l2 . We now prove the lower bound. Notice that

A(v) �
σV(
V(v− 1

2 ))+ 1
2∫

σV(
V(v− 1
2 ))

eVs ds = 1

2
e

V(v− 1

2 ), (3.9)

and for all x � σ̃V(
V
v− 1

2
− l4) � σ̃V(
Vv),

−A(−x) =
0∫

−x

eV(s) ds � e

V(v− 1

2 )−l4 σ̃V

(
Vv

)
. (3.10)

Thus, for all x � σ̃V(
V(v − 1
2 ) − l4) we have −A−x/Av � exp(−l4)σ̃V(
Vv). Let E18 = {σ̃V(
Vv) � exp(l3)}. As for

the estimate of P(Ec
16), it is easily checked that for all v large enough, P(Ec

18) � 3 exp(−l2). Moreover, on the set E18,

combining (3.9) and (3.10), we have −A(−x)/A(v) � e− 1
2 l4 for all 0 � x � σ̃V(
V(v − 1

2 ) − l4). Let us now define

E19 =
{

inf
0�s�e− 1

2 l4
Z(s) � e−l2

}
.

Using Lemma 7.1 on p. 1501 of [12], we see that P(Ec
19) � 2e−l2 . Recall that

I2(v) = A(v)

∞∫
0

e−V−sZ
(−A(−s)

A(v)

)
ds

� A(v)

σ̃V(
V(v− 1
2 )−l4)∫

0

e−V−sZ
(−A(−s)

A(v)

)
ds,

therefore, on E20 = E18 ∩ E19,

I2(v) � σ̃V

(

V
(

v − 1

2

)
− l4

)
A(v) e−V(−σ̃V(
V(v− 1

2 )−l4))−l2 .

Using (3.9) again, on E20,

I2(v) � 1

2
σ̃V

(

V
(

v − 1

2

)
− l4

)
e

V(v− 1

2 )−V(−σ̃V(
V(v− 1
2 )−l4))−l2

� 1

2
σ̃V

(

V
(

v − 1

2

)
− l4

)
eŨV(
V(v− 1

2 )−l4)+l4−l2 .

Notice that on {
V(v − 1/2) > l4}, we have σ̃V(
V(v − 1/2) − l4) � 1 (because V is identically 0 on (−1,0]). This
implies that on E20 ∩ {
V(v − 1/2) > l4},

I2(v) � eŨV(
V(v− 1
2 )−l4),

which yields the lower bound by taking the logarithm. Finally, let E9 = E20 ∩ E17, we have

P
(
Ec

9

)
� P

(
Ec

17

)+ P
(
Ec

20

)
� 13 e−(logv)2

for all large enough v’s and the upper bound holds on E9 as well as the lower bound on E9 ∩ {
V(v − 1/2) > l4}. �
4. Proof of the main theorems

4.1. Proof of Theorem 1

We first state two lemmas before we give the proof of the theorem.
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Lemma 4.1. For any c0 > 0, we have

lim sup
t→∞

log P(
Xt � c0a
−1(log t) log log log t)

log log log t
� −c0K

#,

where K# was defined in Proposition 2.5.

Proof. Let v = c0a
−1(log t) log log log t , using (3.4) and Proposition 3.1 we get for all t large enough,

P
( 
Xt � v

)
� P

(
I1(v) � t

)
� P

(
V

#
v− 1

2
� log t + (logv)4)+ C25 exp

(−(logv)2).
Using Proposition 2.5, for any ε > 0 and for all t large enough (depending on ε), we obtain

P
(
V

#
v− 1

2
� log t + (logv)4)� exp

(
−(

K# − ε
) v − 1/2

a−1(log t + (logv)4)

)
� exp

(−c0
(
K# − 2ε

)
log log log t

)
,

where we used the regular variation of a−1(·) to check that a−1(log t + (logv)4) ∼ a−1(log t). Therefore, for all t

large enough,

P
( 
Xt � v

)
� exp

(−c0
(
K# − 2ε

)
log log log t

)+ exp
(−(logv)2)

� 2 exp
(−c0

(
K# − 2ε

)
log log log t

)
. �

Lemma 4.2. For any c0 > 0 and for all t large enough (depending on c0) we have{
Xt � v
}⊃

{
V

#
v � log t −√

log t,
Vv � log t

5

}
∩
{
ŨV

(
log t

4

)
� log t

2

}
∩ E21(v),

where v = c0a
−1(log t) log log log t and where E21(v) is a measurable set such that

P
(
Ec

21(v)
)
� C29 e−(logv)2

.

Proof. Using (3.4) combined with Propositions 3.1 and 3.2, for t sufficiently large,{
Xt � v
}= {

I1(v) + I2(v) � t
}

⊃ {
eV

#
v+(logv)4 + eŨV

(
Vv+(logv)4) � t
}∩ E21(v)

with E21(v) = E8(v) ∩ E9(v), thus P(Ec
21(v)) � C29 e−(logv)2

. Notice also that{
V

#
v � log t −√

log t
}⊂

{
V

#
v + log4 v � log

t

2

}
.

Hence, {
Xt � v} contains{
V

#
v � log t −√

log t
}∩

{
ŨV

(
Vv + (logv)4)� log

(
t

2

)}
∩ E21(v). (4.1)

We also have {
Vv � log t
5 } ⊂ {
Vv + (logv)4 � log t

4 }, therefore{

Vv � log t

5
, ŨV

(
log t

4

)
� log t

2

}
⊂
{
ŨV

(
Vv + (logv)4)� log t

2

}
.

This inclusion combined with (4.1) completes the proof. �
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Proof of Theorem 1. As we already mentioned in the introduction, X and 
X have the same upper function so
we only need to prove the theorem for 
X. Let us choose K such that K < K# and ε > 0. Define the sequence
ti = exp(exp(εi)). We also use the notation f (x) = a−1(logx) log log logx. Using regular variation of a(·) we easily
check that f (ti)/f (ti+1) converges to exp(−αε). Thus, for all i large enough

P
(


Xti+1 � f (ti)

K

)
� P

(

Xti+1 � f (ti+1)

e2εK

)
.

Using Lemma 4.1, we get

lim sup
i→∞

1

log(ε(i + 1))
log

(
P
(


Xti+1 � f (ti)

K

))
� − K#

e2εK
.

Since K < K#, we can choose ε small enough such that K#/(K exp(2ε)) < 1 and we deduce from the last inequality
that the sum

∑
P(
Xti+1 � f (ti)/K) converges. Using Borel–Cantelli’s Lemma, with probability 1, for all i large

enough 
Xti+1 � f (ti)/K . For t ∈ [ti , ti+1], using monotonicity of f and 
X,


Xt � 
Xti+1 � f (ti)

K
� f (t)

K
.

This holds for all K < K#. Hence, we proved that

lim sup
t→∞


Xt

f (t)
� 1

K# a.s.

We now prove the lower bound. Choose K > K# and change the sequence (ti) for ti = exp(exp i). From Lemma 4.2,
for i large enough,{


Xti � f (ti)

K

}
⊃ E21(f (ti)/K) ∩ E22(i),

where E21 was defined in Lemma 4.2 and where E22(i) = E23(i) ∩ E24(i) ∩ E25(i) with

E23(i) = {
ŨV

(
ei/4

)
� ei/2

}
,

E24(i) = {
V

#
f (ti )/K

� ei − ei/2},
E25(i) = {
Vf (ti )/K � ei/5

}
.

Moreover,
∑

P(Ec
21(f (ti)/K)) < ∞. So it only remains to prove that the events E22(i) happen infinitely often almost

surely. It follows from the results of Section 2.1 that limi→∞ P(E23(i)) = P(ŨS(1/4) � 1/2) and it is clear that this
quantity is not 0. Since E24(i) ∩ E25(i) and E23(i) are independent events P(E22(i)) � C30P(E24(i) ∩ E25(i)) for all i

large enough. Thus, we deduce from Proposition 2.6 that for all large enough i’s, we have

C31P
(
E24(i)

)
� P

(
E22(i)

)
� P

(
E24(i)

)
. (4.2)

We now use Proposition 2.5 to check that

log
(
P
(
E24(i)

)) ∼
i→∞−K#

K

f (ti)

a−1(ei − ei/2)
∼

i→∞−K#

K
log i, (4.3)

where we used the regular variation of a(·) for the last equivalence. In particular, combining this with (4.2) and the
fact that K#/K < 1, we see that

∑
i P(E22(i)) = ∞. We now estimate P(E22(i) ∩ E22(j)) for i large enough and for

j > i.

E22(i) ∩ E22(j) ⊂ E24(i) ∩ E24(j)

⊂ E24(i) ∩ {
(θf (ti )/KV)#

f (tj )/K−f (ti )/K
� ej − ej/2}.

Hence, from the independence and the stationarity of the increments of V (at integer times), combined with Proposi-
tion 2.7, for all i large enough (i.e. all j large enough), we get
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P
(
E22(i) ∩ E22(j)

)
� P

(
E24(i)

)
P
(
V

#
f (tj )/K−f (ti )/K

� ej − ej/2)
� C32

P(E24(i))P(E24(j))

P(V#
f (ti )/K

� ej − ej/2)
.

Using Lemma 2.4, one may check after a few lines of calculus that for all i sufficiently large, exp(j) − exp(j/2) �
a−1(f (ti)/K) whenever j − i � log i, thus

P
(
V

#
f (ti )/K

� ej − ej/2)� P
(

V
#
f (ti )/K

a(f (ti)/K)
� 1

)
.

Since the r.h.s. of the last inequality converges to P(S#
1 � 1) �= 0 as i goes to infinity, we deduce that for all i large

enough and all j − i � log i,

P
(
V

#
f (ti )/K

� ej − ej/2)� C33 > 0.

Finally, for all i large enough and for all j � i,

P
(
E22(i) ∩ E22(j)

)
�
{

P(E22(i)), if 0 � j − i < log i,

C34P(E22(i))P(E24(j)), if j − i � log i.
(4.4)

Combining (4.2), (4.3) and (4.4), we see that

lim inf
n→∞

∑
i,j�n

P
(
E22(i) ∩ E22(j)

)/(∑
i�n

P
(
E22(i)

))2

� C35.

The Borel–Cantelli Lemma of [16] yields P(E22(i) i.o.) > 1/C35. We now use a classical 0–1 argument (compare
with [12], p. 1511 for details) to conclude that P(E22(i) i.o.) = 1. Hence, with probability 1,

lim sup
t→∞


Xt

f (t)
� 1

K# .

Moreover, the value of K# when the process V is completely asymmetric was calculated in Corollary 2.10. �
4.2. Proof of Theorem 2

Lemma 4.3. Let ρ > 0, for all t large enough (depending on ρ) and all 1 � λ � (log log t)ρ , we have

P
(

Xt <
a−1(log t)

λ

)
� C36

b−1(a−1(log t)/λ)

b−1(a−1(log t))
.

Proof. We use the notation v = a−1(log t)/λ, the bounds on λ give

a−1(log t)

(log log t)ρ
� v � a−1(log t).

We assume that t is very large, hence v is also large. From (3.4) combined with Propositions 3.1 and 3.2, we deduce
that

P
( 
Xt < v

)
� P

(
I1(v) � t

2

)
+ P

(
I2(v) � t

2

)
� P

(
V

#
v � log

t

2
− (logv)4

)
+ P

(
ŨV

(
Vv + (logv)4)� log
t

2

)
+ C37 e−(logv)2

.

Remind that b−1(·) is regularly varying with index q < 1. Therefore, using Corollary 2.16 and Lemma 2.4,
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P
(

V
#
v � log

t

2
− (logv)4

)
� P

(
V

#
v � 1

2
log t

)
� C38

v

a−1(log t)

� C39
b−1(v)

b−1(a−1(log t))
.

It is also easy to check from the bounds on v and the regular variations of a−1(·) and b−1(·) that

e−(logv)2 � b−1(v)

b−1(a−1(log t))
.

We still have to prove a similar bound for P(ŨV(
Vv + (logv)4) � log(t/2)). Notice that for any y > x > 0, {ŨV(x) �
y} = Λ̃′(x, y − x). Hence, using Proposition 2.13 and the independence of (Vx)x�0 and (V−x)x�0, we get

P
(

ŨV

(
Vv + (logv)4)� log
t

2

)
� C40E

(
b−1(a−1(
Vv + (logv)4))

b−1(a−1(log t
2 ))

)
� C40

b−1(v)

b−1(a−1(log t
2 ))

E
(

b−1(a−1(
Vv + (logv)4))

b−1(a−1(a(v)))

)
. (4.5)

Let us pick ε > 0. We now use Lemma 2.4 for the regularly varying function b−1(a−1(·)) to check that (4.5) is smaller
than

C41,ε

b−1(v)

b−1(a−1(log t
2 ))

E
((
Vv + (logv)4

a(v)

)αq+ε

+ 1

)
.

Finally, since q < 1, we can choose ε small enough such that αq + ε < α, therefore Corollary 2.17 implies

E
((
Vv + (logv)4

a(v)

)αq+ε)
� E

(( 
Vv

a(v)
+ 1

)αq+ε)
� C42,ε.

We conclude the proof noticing that b−1(a−1(log t
2 )) ∼ b−1(a−1(log t)). �

Lemma 4.4. Let ρ > 0, for all t large enough (depending on ρ) and for all 1 � λ � (log log t)ρ , we have{

Xt <

a−1(log t)

λ

}
⊃ {

ŨV

(
a(v)

)
� log t

}∩ {
Vv/2 � 2a(v)
}∩ E9(v),

with v = a−1(log t)/λ, and where E9(v) was defined in Proposition 3.2 and satisfies

P
(
E9(v)c

)
� C26 e−(logv)2

.

Proof. Recall that relation (3.4) gives {
Xt < v} = {I1(v) + I2(v) > t} and notice that I1(v) > 0 for all v > 0, thus,
{
Xt < v} ⊃ {I2(v) � t}. We now use Proposition 3.2 to see that for all t large enough (i.e. v large enough), the event
{
Xt < v} contains{

ŨV

(
V
v− 1

2
− (logv)4)� log t

}∩ {
V
v− 1

2
> (logv)4}∩ E9(v)

⊃ {
ŨV

(
Vv/2 − a(v)
)
� log t

}∩ {
Vv/2 � 2a(v)
}∩ E9(v)

⊃ {
ŨV

(
a(v)

)
� log t

}∩ {
Vv/2 � 2a(v)
}∩ E9(v),

where we used the fact that x �→ ŨV(x) is a non-decreasing function and the trivial inequalities 
Vv/2 � Vv−1/2 and
(logv)4 � a(v) which hold for all large enough v’s. �
Proof of Theorem 2. For any positive non-decreasing function f , recall that

J (f ) =
∞∫

b−1(a−1(log t)/f (t))dt

−1 −1
b (a (log t))t log t
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(we do not specify the lower bound for the integral since we are only concerned with the convergence of J (f ) at
infinity).

Let us first prove the theorem when J (f ) < ∞. Since f is non-decreasing, it is clear that f (t) → ∞ as t → ∞.
Thus, f (t) � e2α for all t large enough. Let f0(t) = (log log t)2/q , we have J (f0) < ∞. It is known that we may
assume without loss of generality that

f (t) � f0(t) = (log log t)2/q for all large t (4.6)

(compare with the argument given in the beginning of the proof of Theorem 1 in [9]). Let us set ti = exp(exp i). Since
a−1(·) is regularly varying with index α, for all i large enough, we have

a−1(log ti+1) � e2αa−1(log ti ). (4.7)

Hence, Lemma 4.3 yields, i still being very large,

P
(


Xti <
a−1(log ti+1)

f (ti)

)
� P

(

Xti <

a−1(log ti )

e−2αf (ti)

)
� C36

b−1(e2αa−1(log ti )/f (ti))

b−1(a−1(log ti ))

� C43
b−1(a−1(log ti−1)/f (ti))

b−1(a−1(log ti ))

� C43

ti∫
ti−1

b−1(a−1(log t)/f (t))dt

b−1(a−1(log t))t log t
,

where we used again (4.7) and the regular variation of b−1 for the third inequality and the monotonicity of a−1, b−1

and f for the last inequality. Since J (f ) < ∞, we conclude that
∑

i P(
Xti < a−1(log ti+1)/f (ti)) < ∞ and Borel–
Cantelli’s Lemma implies that, almost surely,


Xti � a−1(log ti+1)

f (ti)
for all i large enough.

But for ti � t � ti+1, we have a−1(log ti+1)/f (ti) > a−1(log t)/f (t) and 
Xt � 
Xti , therefore, with probability 1,

lim inf
t→∞

f (t)

a−1(log t)

Xt � 1 a.s. (4.8)

Changing f for Cf for any C > 0 does not alter the convergence of J (f ). Thus, the lim inf in (4.8) is in fact infinite.
We now prove the second part of the theorem. Let f be a positive, non-decreasing function such that J (f ) = ∞.

Again, we may without loss of generality assume that (4.6) holds (compare with the argument given in the proof of
Theorem 3 in [9]). Moreover, notice that the theorem is straightforward for any bounded function f provided that we
prove the theorem for at least one function h going to infinity with J (h) = ∞ (we may choose for example h(t) =
(log log t)1/(2q)). Thus, we can also assume that f (t) → ∞ as t → ∞. We use the notation vi = a−1(log ti )/f (ti).
Our assumptions on f yield the following estimates:

a−1(log ti )

(log log ti )2/q
� vi � a−1(log ti ) for i large enough, (4.9)

and

lim
i→∞vi = ∞, lim

i→∞
vi

a−1(log ti )
= 0. (4.10)

From now on, we assume that i is very large. Using Lemma 4.4, we get{

Xti � a−1(log ti )

f (ti)

}
⊃ E9(vi) ∩ E26(i),

where E26(i) = E27(i) ∩ E28(i) with
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E27(i) = {
ŨV

(
a(vi)

)
� log(ti)

}
,

E28(i) = {
Vvi/2 � 2a(vi)
}
.

Since P(E9(vi)
c) � C26 exp(− log2 vi), it is easy to check from (4.9) that

∑
i P(E9(vi)

c) < ∞. So it only remains to
prove that P(E26(i) i.o.) = 1. Since vi → ∞ as i → ∞, results of Section 2.1 imply that

lim
i→∞ P

(
E28(i)

)= P
(
S1/2 � 2

)
> 0.

Therefore, the independence of E27(i) and E28(i) yields

C43P
(
E27(i)

)
� P

(
E26(i)

)
� P

(
E27(i)

)
. (4.11)

Recall that {ŨV(a(vi)) � log(ti)} = Λ̃′(a(vi), log(ti) − a(vi)). Keeping in mind (4.10), we can estimate P(E27(i))

using Proposition 2.13:

C44
b−1(vi)

b−1(a−1(log ti ))
� P

(
E27(i)

)
� C45

b−1(vi)

b−1(a−1(log ti ))
. (4.12)

Combining the inequalities (4.11) and (4.12), the assumption that J (f ) = ∞ implies∑
i

P
(
E26(i)

)= ∞.

We now estimate P(E26(i) ∩ E26(j)). Let g(i) = log(ti) − a(vi). It is easy to check from (4.10) that g is ultimately
increasing. Let us pick j > i. We can rewrite

E27(i) ∩ E27(j) = Λ̃′(a(vi), g(i)
)∩ Λ̃′(a(vi), g(j)

)
.

There are two cases (which are not disjoint):

(1) (V−n)n�0 hits (−∞,−g(j)] before hitting [a(vi),∞). Using Proposition 2.13, we can check that the probability
of this case is less than C46b

−1(vi)/b
−1(a−1(log tj )).

(2) (V−n)n�0 hits (−∞,−g(i)] before hitting [a(vi),∞) (i.e. E27(i) happens) and also the shifted random walk
(V−σ̃V(a(vi ))−n)n�0 hits (−∞,−g(j)] before hitting [a(vj ),+∞) (the probability of this event is clearly smaller
than P(E27(j))). Using the Markov property for the random walk (V−n)n�0 we conclude that the probability of
this case is smaller than P(E27(i))P(E27(j)).

Combining (1) and (2) we deduce that P(E27(i) ∩ E27(j)) is smaller than

P
(
E27(i)

)
P
(
E27(j)

)+ C46
b−1(vi)

b−1(a−1(log tj ))
� P

(
E27(i)

)
P
(
E27(j)

)+ C46

C44
P
(
E27(i)

) b−1(a−1(log ti ))

b−1(a−1(log tj ))
,

where we used (4.12) for the second inequality. Finally, using Lemma 2.4 and (4.11), we conclude that for all i large
enough and all j > i,

P
(
E26(i) ∩ E26(j)

)
� P

(
E27(i) ∩ E27(j)

)
� C47

(
P
(
E26(i)

)
P
(
E26(j)

)+ P
(
E26(i)

)
e−C48(j−i)

)
,

hence

lim inf
n→∞

∑
i,j�n

P
(
E26(i) ∩ E26(j)

)/(∑
i�n

P
(
E26(i)

))2

� C47.

Just like in the proof of Theorem 1, we apply the Borel–Cantelli Lemma of [16] and a standard 0–1 argument to
conclude that P(E26(i) i.o.) = 1. Since this result still holds when changing f for Cf for any C > 0, we have proved
that, with probability 1,

lim inf
t→∞


Xt

f (t)
= 0. �
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4.3. Proof of Theorem 3

Just like the previous two theorems, the proof is based on the following two lemmas.

Lemma 4.5. Let ρ > 0, for all t large enough and all 1 � λ � (log log t)ρ we have

P
(

X∗
t <

a−1(log t)

λ

)
� C49

λ2
.

Proof. We use the notation v = a−1(log t)/λ. Let Y = −X, it is clear from a symmetry argument that Y is a diffusion
in the “reversed” random environment W = (V−x, x ∈ R). Let us notice that

P
(
X∗

t < v
)= P

( 
Xt < v, 
Yt < v
)

� P
( 
Xt < v,
Vv � 
V−v

)+ P
(
Yt < v , 
Wv � 
W−v

)
.

Let us also note that all the assumptions we made on V also hold for W. Hence, we only need to prove the upper
bound for the first member on the r.h.s. of the last inequality. According to (3.4){
Xt < v

}= {
I1(v) + I2(v) > t

}
,

thus,

P
(
Xt < v,
Vv � 
V−v

)
� P

(
1

4
log t � 
Vv � 
V−v

)
(4.13)

+ P
(

I1(v) � t

2
,
Vv � log t

4

)
(4.14)

+ P
(

I2(v) � t

2
,
Vv � 
V−v,
Vv � log t

4

)
. (4.15)

We deal with each term separately. First, using independence of (Vx)x�0 and (V−x)x�0 we see that (4.13) is smaller
than

P
(


Vv � 1

4
log t

)
P
(


V−v � 1

4
log t

)
� C49

λ2
,

where we used Corollary 2.16 for the last inequality. We now turn our attention to (4.14). Using Proposition 3.1, we
check that for t large enough, this probability is smaller than

P
(

V
#
v � log

t

2
− log4 v,
Vv � 1

4
log t

)
+ C25 e− log2 v.

For t large enough, using the Markov property,

P
(

V
#
v � log

t

2
− log4 v,
Vv � log t

4

)
� P

(
V

#
v � log t

2
,
Vv � log t

4

)
� P

(
σV

(
− log t

4

)
� v,

(
θ
σV(− log t

4 )
V
)#
v
� log t

2

)
� P

(
Vv � − log t

4

)
P
(

V
#
v � log t

2

)
� C50

λ2
,

where we used again Corollary 2.16 for the last line. It is also clear from our bounds on λ that e− log2 v � 1/λ2 for all
t large enough. This gives the desired bound for (4.14). It remains to prove the existence of a similar inequality for
(4.15). We first use Proposition 3.2 to see that, for all t large enough, (4.15) is smaller than

P
(

ŨV

(
Vv + log4 v
)
� log

t
,
Vv � 
V−v,
Vv � 1

log t

)
+ C26 e− log2 v.
2 4
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We can rewrite:{
ŨV

(
Vv + log4 v
)
� log

t

2
,
Vv � 
V−v,
Vv � 1

4
log t

}
=
{
σ̃V

(

Vv + log4 v − log

t

2

)
< σ̃V

(
Vv + log4 v
)
, σ̃V

(
Vv

)
� v,
Vv � 1

4
log t

}
⊂
{
σ̃V

(
− log t

2

)
< σ̃V

(
Vv + log4 v
)
, σ̃V

(
Vv

)
� v

}
⊂
{
σ̃V

(
− log t

2

)
< σ̃V

(
Vv

)
� v

}
∪
{
σ̃V

(
Vv

)
< σ̃V

(
− log t

2

)
< σ̃V

(
Vv + log4 v
)}

.

Notice that on the event {σ̃V(−(log t)/2) < σ̃V(
Vv) � v}, the process (V−x)x�0 hits (−∞,−(log t/2)] before time
v, and then hits [0,∞), again before time v. The Markov property with the stopping time σ̃V(−(log t)/2) and Corol-
lary 2.16 yield

P
(

σ̃V

(
− log t

2

)
< σ̃V

(
Vv

)
� v

)
� P

(
V−v � − log t

2

)
P
(


V−v � log t

2

)
� C51

λ2
.

It is also easy to check from the Markov property of (V−x)x�0 applied to the stopping time σ̃V(
Vv) that the probability
of the event {σ̃V(
Vv) < σ̃V(−(log t)/2) < σ̃V(
Vv + log4 v)} is smaller than the probability that the random walk
(V−x)x�0 hits (−∞,−(log t)/2] before it hits [log4 v,∞). Using the estimate for the exit problem (Proposition 2.13)
and the regular variation of b−1(a−1(·)), for t large enough, we obtain

P
(

σ̃V

(
Vv

)
< σ̃V

(
− log t

2

)
< σ̃V

(
Vv + log4 v
))

� C52
b−1(a−1((logv)4))

b−1(a−1(
log t

2 ))
� 1

λ2
,

so we conclude that (4.15) is smaller than C53/λ
2. �

Lemma 4.6. Let ρ > 0, for all t large enough and all 1 � λ � (log log t)ρ , we have{
X∗

t <
a−1(log t)

λ

}
⊃ {

V
v− 1

2
� 2 log t,V−v+ 1

2
� 2 log t

}∩ E29(v),

with the notation v = a−1(log t)/λ and where P(E29(v)c) is a measurable set such that

P
(
E29(v)c

)
� C54 e− log2 v.

Proof. Recall that X is given by the formula

Xt = A
−1(BT−1(t)),

where B is a Brownian motion independent of V. Let B̃ = −B and let L̃ denote the bi-continuous version of the local
time process of B̃ . Recall also that W stands for the reversed process (V−x, x ∈ R). In the beginning of Section 3, we
proved that

σX(v) = I1(v) + I2(v) for all v > 0. (4.16)

It is easily checked, using similar arguments, that

σX(−v) = Ĩ1(v) + Ĩ2(v) for all v > 0, (4.17)

with
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Ĩ1(v) =
v∫

0

e−Wy L̃
(
σB̃

(
Ã(v)

)
, Ã(y)

)
dy,

Ĩ2(v) =
∞∫

0

e−W−y L̃
(
σB̃

(
Ã(v)

)
, Ã(−y)

)
dy,

and where

Ã(x) =
x∫

0

eWy dy.

Thus, Ĩ1 and Ĩ2 are given by the same formulas as I1 and I2 by simply changing the process B for B̃ and changing
V for W. Notice that B̃ is again a Brownian motion independent of W and that W fulfills all the assumptions we
made on V. Therefore, Propositions 3.1 and 3.2 also hold for Ĩ1 and Ĩ2 with W instead of V (with different events and
different values of the constants). In particular, we deduce that for all v large enough

log Ĩ1(v) � V
#−v+1/2 − (logv)4 on E30(v), (4.18)

where E30(v) is a measurable set such that P(Ec
30(v)) � C55 exp(− log2 v). We also know from Proposition 3.1 that

log I1(v) � V
#
v−1/2 − (logv)4 on E8(v). (4.19)

Let E29(v) = E8(v) ∩ E30(v), then P(Ec
29(v)) � C54 exp(− log2 v). Combining (4.16)–(4.18) and (4.19), we get{

X∗
t < v

}= {
σX(v) > t

}∩ {
σX(−v) > t

}
⊃ {

I1(v) > t
}∩ {

Ĩ1(v) > t
}

⊃ {
V

#
v−1/2 > log t + log4 v

}∩ {
V

#−v+1/2 > log t + log4 v
}∩ E29(v)

⊃ {
V

#
v−1/2 � 2 log t

}∩ {
V

#−v+1/2 � 2 log t
}∩ E29(v)

⊃ {
Vv−1/2 � 2 log t

}∩ {
V−v+1/2 � 2 log t

}∩ E29(v). �
Proof of Theorem 3. This theorem is an easy consequence (using similar technics as in the proof of Theorem 2) of
the last two lemmas and of Proposition 2.15 (when the limiting process has jumps of both signs). We feel free to omit
it. �
4.4. Proof of Theorem 4

Proposition 4.7. We have

1

a(v)

(
logσX(v) − V

#
v ∨ ŨV

(
Vv

)) Prob.−→
v→∞ 0.

The proof of this proposition is very similar to that of Proposition 11.1 of [12] using the estimates for I1 and I2
obtained in Propositions 3.1 and 3.2, we therefore skip the details.

Proof of Theorem 4. Let λ > 0 and let v be a large number,

P
( 
Xv

a−1(logv)
� λ

)
= P

(
logσX

(
λa−1(logv)

)
� logv

)
= P

(
logσX(x)

c(x)
� 1

λ1/α

)
,

with the change of variable x = λa−1(logv) and where

c(x) = λ1/αa(x/λ) ∼ a(x). (4.20)

x→∞
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Results of Section 2.1 ensure that (V#
x ∨ ŨV(
Vx))/a(x) converges in law as x → ∞ towards S

#
1 ∨ ŨS(
S1) whose

cumulative function is continuous. Hence, it follows from Proposition 4.7 and from (4.20) that

lim
v→∞ P

( 
Xv

a−1(logv)
� λ

)
= P

(
S

#
1 ∨ ŨS

(
S1
)
� 1

λ1/α

)
.

We have proved the convergence in law of 
Xv/a
−1(logv) towards the non-degenerate random variable Ξ = (S#

1 ∨
ŨS(
S1))

−α . Let us calculate the Laplace transform of this law when S is completely asymmetric. Recall the notation
τ #
x and τx defined in Section 2.3. Let also r1 be the stopping time:

r1 = inf
(
x � 0, (S−t )t�0 hits

(−∞,−(1 − x)
)

before it hits (x,∞)
)
.

From the scaling property of S,

P
((

S
#
1 ∨ ŨS

(
S1
))−α � λ

)= P
(
S

#
λ ∨ ŨS

(
Sλ

)
� 1

)
= P

(
τ #

1 ∧ τr1 � λ
)
,

therefore Ξ and τ #
1 ∧ τr1 have the same law. Let us first assume that S has no positive jumps and recall that

(−S−t , t � 0) and (St , t � 0) have the same law. It follows from the well known solution of the exit problem for
a completely asymmetric Levy process via its scale function W (cf. [1], p. 194) that

P(r1 > x) = P
(
(S−t )t�0 hits (x,∞) before it hits

(−∞,−(1 − x)
))

= 1 − P
(
(St )t�0 hits (1 − x,∞) before it hits (−∞,−x)

)
= 1 − W(x)

W(1)
,

and it is known that in our case W(x) = xα−1/�(α). Hence, the density of r1 is

P(r1 ∈ dx) = α − 1

x2−α
dx for x ∈ (0,1).

Using Corollary 2.11 and the independence of (St )t�0 and (S−t )t�0, we have, for q � 0,

E
(
e−qτ #

1 ∧τr1
)=

1∫
0

E
(
e−qτ #

1 ∧τx
)α − 1

x2−α
dx

= α − 1

Eα(q)

1∫
0

Eα(q(1 − x)α)

x2−α
dx

= α − 1

Eα(q)

∞∑
n=0

qn

�(1 + αn)

1∫
0

(1 − x)αn

x2−α
dx,

but

1

�(1 + αn)

1∫
0

(1 − x)αn

x2−α
dx = �(α − 1)

�(α(n + 1))
,

hence

E
(
e−qτ #

1 ∧τr1
)= �(α)

Eα(q)

∞∑
n=0

qn

�(α(n + 1))

= �(α + 1)
E′

α(q)
.

Eα(q)
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We now assume that S has no negative jumps. Just like in the previous case, we can calculate the density of r1 from
the scale function and we find P(r1 ∈ dx) = (α − 1)/(1 − x)2−α for x ∈ (0,1). Thus, using Corollary 2.11 we get

E
(
e−qτ #

1 ∧τr1
)=

1∫
0

E
(
e−qτ #

1 ∧τx
)α − 1

x2−α
dx

= (α − 1)

1∫
0

Eα(qxα)

(1 − x)2−α
dx − E′

α(q)α(α − 1)q

αqE′′
α(q) + (α − 1)E′

α(q)

1∫
0

xα−1E′
α(qxα)

(1 − x)2−α
dx.

We already calculated the first integral:

1∫
0

Eα(qxα)

(1 − x)2−α
dx =

1∫
0

Eα(q(1 − y)α)

y2−α
dy = �(α + 1)

α − 1
E′

α(q).

As for the second integral,

1∫
0

xα−1E′
α(qxα)

(1 − x)2−α
dx =

∞∑
n=0

(n + 1)qn

�(α(n + 1) + 1)

1∫
0

xα(n+1)−1

(1 − x)2−α
dx,

and it is known that
1∫

0

xα(n+1)−1

(1 − x)2−α
dx = �(α(n + 1))�(α − 1)

�(α(n + 2) − 1)
,

hence

1∫
0

xα−1E′
α(qxα)

(1 − x)2−α
dx = �(α − 1)

α

∞∑
n=0

qn

�(α(n + 2) − 1)

= �(α − 1)

∞∑
n=0

(n + 2)(α(n + 2) − 1)qn

�(α(n + 2) + 1)

= �(α − 1)

(
α

∞∑
n=0

(n + 1)(n + 2)qn

�(α(n + 2) + 1)
+ (α − 1)

∞∑
n=0

(n + 2)qn

�(α(n + 2) + 1)

)

= �(α − 1)

q

(
qαE′′

α(q) + (α − 1)E′
α(q) − α − 1

�(α + 1)

)
.

Putting the pieces together, we conclude that

E
(
e−qτ #

1 ∧τr1
)= (α − 1)E′

α(q)

αqE′′
α(q) + (α − 1)E′

α(q)
. �

5. Comments

5.1. The case where V is a stable process

In the whole paper, we assumed V to be a random walk in the domain of attraction of a stable process S. Let
us now assume that V itself is a strictly stable process (such that |V| is not a subordinator) and let us explain why
Theorems 1–4 still hold in this case. It is clear that all the results dealing with the fluctuations of V remain unchanged
(in fact, they even take a nicer form since we can now choose a(x) = xα and b(x) = xq ). Notice also that we did not
use the fact that V was a random walk in the proofs of the theorems in Section 4. Indeed, the only time we really used
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the assumption that V was flat on the intervals (n,n + 1), n ∈ Z, was in the proofs of Propositions 3.1 and 3.2 (we
needed to make sure that V spends “enough” time around its local extremes). Looking closely at those two proofs, we
see that they will still hold if we can show that there exists a measurable event E31(v) such that:

(a) there exists C56 such that P(E31(v)c) � C56 exp(− log2 v).
(b) On E31(v), any path of V is such that for all x ∈ [−σ̃V(
Vv + log4 v), v], we have |Vy − Vx | � 1 either for all y in

[x, x + exp(− log3 v)] or for all y in the interval [x − exp(− log3 v), x].

Let us quickly explain how we can construct this event. Define the sequence of random variables (γn)n∈Z:⎧⎪⎨⎪⎩
γ0 = 0,

γn+1 = inf(t > γn, |Vt − Vγn | � 1
2 ) for n � 0,

γ−n−1 = inf(t < γ−n, |Vt − Vγ−n | � 1
2 ) for n � 0.

Let us set

E32(v) = {
γi+1 − γi > 2 e− log3 v for all −e

1
2 log3 v � i � e

1
2 log3 v

}
,

E33(v) = {
γ−[e 1

2 log3 v] > elog5/2 v, γ[e 1
2 log3 v] > elog5/2 v

}
,

E34(v) = {
σ̃V

(
Vv + log4 v
)
� elog5/2 v

}
,

E31(v) = E32(v) ∩ E33(v) ∩ E34(v).

It is clear that (b) holds for E31. We now assume that v is very large. We have

P
(
E32(v)c

)
� 2e

1
2 log3 vP

(
γ1 � 2e− log3 v

)
� C57 e− 1

2 log3 v,

where we used the relation P(γ1 � x) = P(V∗
x � 1

2 ) and Corollary 2.16 for the last inequality. Using Cramer’s large
deviation theorem, it is easy to check that P(E33(v)c) � e−v (in fact, we can obtain a much better bound). We also
have P(E34(v)c) � 3e− log2 v (compare with the proof of the inequality (3.8) for details). Thus, (a) holds.

5.2. Non-symmetric environments

In the whole paper, in order to avoid even more complicated notations, we assumed that the processes (Vx, x � 0)

and (−V−x, x � 0) have the same law. However it is easy to see that this assumption can be relaxed. Indeed, we may
swap Assumption 1 for the following assumption.

Assumption 2. (Vn)n�0 and (V−n)n�0 are independent random walks and there exists a positive sequence (an)n�0
such that

Vn

an

law−→
n→∞ S

1 and
−V−n

an

law−→
n→∞S

2,

where S
1 and S

2 are random variables whose laws are strictly stable with respective parameters (α,p1) and (α,p2)

and whose densities are everywhere positive on R.

It is crucial to assume that the norming sequence (an) may be chosen to be the same for both random walk (in
order to keep the results of functional convergence of Section 2.1) but the positivity parameters p1 and p2 need not
be the same. Theorems 1–4 must be adapted in consequences. For example, Theorem 1 now takes the form:

Theorem 5. Under the annealed probability P, almost surely,

lim sup
Xt

−1
= 1

#,1
,

t→∞ a (log t) log log log t K
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where K#,1 depends only on S
1 and is given by

K#,1 = − lim
t→∞

1

t
log P

(
sup

0�u�v�t

(
S

1
v − S

1
u

)
� 1

)
.

Furthermore, when S
1 is completely asymmetric, K#,1 is given by

K#,1 =
{

ρ1(α) when S
1 has no positive jumps,

ρ2(α) when S
1 has no negative jumps.

Let now (Tn) stand for the sequence of strictly ascending ladder indices of the random walk (V−x)x�0:{
T0 = 0,

Tn+1 = min(k > Tn,V−k > V−Tn
).

Hence, T1 is in the domain of attraction of a positive stable law with index p2 and we choose b(·) to be a continuous
positive increasing function such that (b(n))n�1 is a norming sequence for T1. Theorem 2 now takes the form:

Theorem 6. For any positive, non-decreasing function f define

K(f ) =
∞∫

b−1(a−1(log t)/f (t))dt

b−1(a−1(log t))t log t
.

We have, almost surely,

lim inf
t→∞

f (t)

a−1(log t)
sup
s�t

Xs =
{

0,

∞ ⇐⇒ K(f )

{= ∞,

< ∞.

In particular, with probability 1,

lim inf
t→∞

(log log t)β

a−1(log t)
sup
s�t

Xs =
{

0 if β < 1/p2,

∞ if β > 1/p2.
(5.1)

Theorems 3 and 4 must be adapted similarly. Notice that like in Theorem 4, we can again calculate the Laplace
transform of the limiting law when S

1 and S
2 have both completely asymmetric laws.

5.3. Random walk in random environment

Let us recall the connection between the diffusion in random potential and the model of Sinai’s random walk in
random environment. Let ω = (ωi)i∈Z be an i.i.d. family of random variables in (0,1) and define for each realization
of this family a Markov chain (Zn)n�0 by Z0 = 0 and

P
(
Zn+1 = Zn + e | Zn = x, (ωi)i∈Z

)=
{
ωx if e = 1,
1 − ωx if e = −1.

(Zn) is a random walk in the random environment ω. We now define the associated two-sided random walk (Vn)n∈Z

by V0 = 0 and Vn+1 − Vn = log((1 − ωn)/ωn) for all n ∈ Z. Let X still denote the random diffusion in the random
potential V. The following result from Schumacher [19] relates the two processes X and Z.

Proposition 5.1. Define the sequence (μn)n�0 by{
μ0 = 0,

μn+1 = inf(t > μn, |Xμn+1 − Xμn | = 1).

Under the annealed probability P, the sequence (μn+1 − μn)n�0 is i.i.d. and μ1 is distributed as the first hitting
time of 1 of a reflected standard Brownian motion. Moreover, for each realization of the environment ω, the processes
(Xμn)n�0 and (Zn)n�0 have the same law.
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Using this proposition, we can easily adapt Theorems 1–4 for the random walk in random environment Z in the
case where V1 = log((1−ω0)/ω0) satisfies Assumption 1 (see Section 10 of [12] for details). For example, Theorem 3
for Z takes the form:

Theorem 7. When S has jumps of both signs, we have, with probability 1, for any non-decreasing positive sequence
(cn)n�0,

lim inf
n→∞

cn

a−1(logn)
sup
k�n

|Zk| =
{

0,

∞ ⇐⇒
∑
n�2

1

(cn)2n logn

{= ∞,

< ∞.

In particular, almost surely,

lim inf
n→∞

(log logn)β

a−1(logn)
sup
k�n

|Zk| =
{

0 if β � 1/2,

∞ if β > 1/2.
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