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Abstract

Finitarily Markovian processes are those processes {Xn}∞n=−∞ for which there is a finite K (K = K({Xn}0
n=−∞)) such that the

conditional distribution of X1 given the entire past is equal to the conditional distribution of X1 given only {Xn}0
n=1−K

. The least
such value of K is called the memory length. We give a rather complete analysis of the problems of universally estimating the least
such value of K , both in the backward sense that we have just described and in the forward sense, where one observes successive
values of {Xn} for n � 0 and asks for the least value K such that the conditional distribution of Xn+1 given {Xi}ni=n−K+1 is the
same as the conditional distribution of Xn+1 given {Xi}ni=−∞. We allow for finite or countably infinite alphabet size.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Les processus Markoviens finitaires sont des processus {Xn}∞n=−∞ pour lesquels il existe un entier K fini (K = K({Xn}0
n=−∞))

telle que la distribution conditionnelle de X1 étant donné tout le passé soit égale à la distribution conditionnelle de X1 étant donné
seulement {Xn}0

n=1−K
. La plus petite valeur d’un tel K est appelée la longueur de la mémoire. Nous donnons une analyse complète

du problème de l’estimation de la plus petite de ces valeurs de K , aussi bien en remontant dans le passé qu’en allant vers le futur,
c’est à dire quand on observe les valeurs successives de {Xn} pour n � 0 et qu’on recherche la plus petite valeur de K telle que
la distribution conditionnelle de Xn+1 étant donné {Xi}ni=n−K+1 soit la même que la distribution conditionnelle de Xn+1 étant
donné {Xi}ni=−∞. La taille des alphabets peut être choisie finie ou infinie.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

An important class of stationary ergodic processes that greatly extends the finite order Markov chains is the fini-
tarily Markovian class. Informally, these are those processes {Xn}∞n=−∞ for which there is a finite K (that depends
on the past {Xn}, n � 0) such that the conditional distribution of X1 given the entire past is equal to the conditional
distribution of X1 given only {Xn},−K < n � 0. When the process is a Markov chain of order L then one can simply
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take K = L independent of the values that the process takes. However, even for such Markov chains, quite often a
smaller value may exist for certain realizations of the process. Our main goal here is to give a rather complete analysis
of the problems of universally estimating the least such value of K , both in the backward sense that we have just de-
scribed and in the forward sense, where one observes successive values of {Xn}, n � 0. For the case of finite alphabet
finite order Markov chains similar questions have been studied by Bühlmann and Wyner in [2]. However, the fact that
we want to treat countable alphabets complicates matters significantly. The point is that while finite alphabet Markov
chains have exponential rates of convergence of empirical distributions, for countable alphabet Markov chains no
universal rates are available at all.

We encountered this problem in [16] where we gave a universal estimator for the order of a Markov chain on a
countable state space, and some of the techniques that we use here have their origin in that paper. Before describing
our results in more detail let us define more precisely the class of processes that we are considering.

First let us fix the notation. Let {Xn}∞n=−∞ be a stationary and ergodic time series taking values from a discrete
(finite or countably infinite) alphabet X . (Note that all stationary time series {Xn}∞n=0 can be thought to be a two sided
time series, that is, {Xn}∞n=−∞.) For notational convenience, let Xn

m = (Xm, . . . ,Xn), where m � n. Note that if m > n

then Xn
m is the empty string.

For convenience let p(x0−k) and p(y|x0−k) denote the distribution P(X0−k = x0−k) and the conditional distribution
P(X1 = y|X0−k = x0−k), respectively.

Definition 1. For a stationary time series {Xn} the (random) length K(X0−∞) of the memory of the sample path X0−∞
is the smallest possible 0 � K < ∞ such that for all i � 1, all y ∈ X , all z−K

−K−i+1 ∈X i

p
(
y|X0

−K+1

) = p
(
y|z−K

−K−i+1,X
0
−K+1

)
provided p(z−K

−K−i+1,X
0
−K+1, y) > 0, and K(X0−∞) = ∞ if there is no such K .

Definition 2. The stationary time series {Xn} is said to be finitarily Markovian if K(X0−∞) is finite (though not
necessarily bounded) almost surely.

This class includes of course all finite order Markov chains but also many other processes such as the finitarily
determined processes of Kalikow, Katznelson and Weiss [10], which serve to represent all isomorphism classes of
zero entropy processes. For some concrete examples that are not Markovian consider the following example:

Example 1. Let {Mn} be any stationary and ergodic first order Markov chain with finite or countably infinite state
space S. Let s ∈ S be an arbitrary state with P(M1 = s) > 0. Now let Xn = I{Mn=s}. By Shields [24] Chapter I.2.c.1,
the binary time series {Xn} is stationary and ergodic. It is also finitarily Markovian. Indeed, the conditional probability
P(X1 = 1|X0−∞) does not depend on values beyond the first (going backwards) occurrence of one in X0−∞ which
identifies the first (going backwards) occurrence of state s in the Markov chain {Mn}. The resulting time series {Xn}
is not a Markov chain of any order in general. Indeed, consider the Markov chain {Mn} with state space S = {0,1,2}
and transition probabilities P(M2 = 1|M1 = 0) = P(M2 = 2|M1 = 1) = 1, P(M2 = 0|M1 = 2) = P(M2 = 1|M1 =
2) = 0.5. This yields a stationary and ergodic Markov chain {Mn}, cf. Example I.2.8 in Shields [24]. Clearly, the
resulting time series Xn = I{Mn=0} will not be Markov of any order. The conditional probability P(X1 = 0|X0−∞)

depends on whether until the first (going backwards) occurrence of one you see even or odd number of zeros. These
examples include all stationary and ergodic binary renewal processes with finite expected inter-arrival times, a basic
class for many applications. (A stationary and ergodic binary renewal process is defined as a stationary and ergodic
binary process such that the times between occurrences of ones are independent and identically distributed with finite
expectation, cf. Chapter I.2.c.1 in Shields [24].)

We note that Morvai and Weiss [18] proved that there is no classification rule for discriminating the class of
finitarily Markovian processes from other ergodic processes.

For the finitarily Markovian processes an important notion is that of a memory word which is defined as follows.
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Definition 3. We say that w0
−k+1 is a memory word if p(w0

−k+1) > 0 and for all i � 1, all y ∈ X , all z−k
−k−i+1 ∈ X i

p
(
y|w0

−k+1

) = p
(
y|z−k

−k−i+1,w
0
−k+1

)
provided p(z−k

−k−i+1,w
0
−k+1, y) > 0.

Define the set Wk of those memory words w0
−k+1 with length k, that is,

Wk = {
w0

−k+1 ∈X k: w0
−k+1 is a memory word

}
.

Our first result is a solution of the backward estimation problem, namely determining the value of K(X0−∞) from
observations of increasing length of the data segments X0−n. We will give in the next section a universal consistent
estimator which will converge almost surely to the memory length K(X0−∞) for any ergodic finitarily Markovian
process on a countable state space. The proofs that we give are pretty explicit and given some information on the
average length of a memory word and the extent to which the stationary distribution diffuses over the state space one
could extract rates for the convergence of the estimators from our estimates. We concentrate however, on the more
universal aspects of the problem.

As is usual in these kinds of questions, the problem of forward estimation, namely trying to determine K(Xn−∞)

from successive observations of Xn
0 is more difficult. The stationarity means that results in probability can be carried

over automatically. However, almost sure results present serious problems. For example, while Ornstein in [21] (cf.
Morvai et al. [12] also) showed that there is a universal consistent estimator for the conditional probability of X1 given
X0−∞ based on successive observations of the past, Bailey [1] showed that one simply cannot estimate the forward
conditional probabilities in a similar universal way. One can obtain results modulo a zero density set of moments,
but if one wants to be sure that when one is giving an estimate that eventually the estimate converges one is forced
to resort to estimating along a sequence of stopping times (cf. Morvai [11], Morvai and Weiss [13,14,19]). For some
more results in this circle of ideas of what can be learned about processes by forward observations see Ornstein and
Weiss [22], Dembo and Peres [6], Nobel [20], and Csiszár [3].

Recently in Csiszár and Talata [5] the authors define a finite context to be a memory word w of minimal length, that
is, no proper suffix of w is a memory word. An infinite context for a process is an infinite string with all finite suffix
having positive probability but none of them being a memory word. They treat there the problem of estimating the
entire context tree in case the size of the alphabet is finite. For a bounded depth context tree, the process is Markovian,
while for an unbounded depth context tree the universal pointwise consistency result there is obtained only for the
truncated trees which are again finite in size. This is in contrast to our results which deal with infinite alphabet size and
consistency in estimating memory words of arbitrary length. This is what forces us to consider estimating at specially
chosen times.

In the succeeding two Sections 3 and 4 we will present two such schemes which depend upon a positive parame-
ter ε, and we guarantee that sequence of times along which the estimates are being given have density at least 1 − ε.
The purpose of the next two sections is to show that this result is sharp in that the ε cannot be removed even in more
restricted classes of processes. In Section 5 we show that you cannot achieve density one in forward estimation of the
memory in the class of Markov chains on countable alphabets, while in Section 6 we prove a similar negative result
for binary valued finitarily Markovian processes.

The last part of the paper is devoted to seeing how this memory length estimation can be applied to estimating
conditional probabilities. In Section 7 we do this for finitarily Markovian processes along a sequence of stopping times
which achieve density 1 − ε. We do not know if the ε can be dropped in this case for the estimation of conditional
probabilities.

We can dispense with ε in the Markovian case. In Section 8 we use an earlier result of ours on a universal estimator
for the order of a finite order Markov chain on a countable alphabet in order to estimate the conditional probabilities
along a sequence of stopping times of density one.

2. Backward estimation of the memory length for finitarily Markovian processes

In order to estimate K(X0−∞) we need to define some explicit statistics. The first is a measurement of the failure
of w0 to be a memory word.
−k+1
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For w0
−k+1 of positive probability define

Δk

(
w0

−k+1

) = sup
1�i

sup
{z−k

−k−i+1∈X i ,x∈X : p(z−k
−k−i+1,w

0−k+1,x)>0}

∣∣p(
x|w0

−k+1

) − p
(
x|z−k

−k−i+1,w
0
−k+1

)∣∣.
Clearly this will vanish precisely when w0

−k+1 is a memory word. We need to define an empirical version of this
based on the observation of a finite data segment X0−n. To this end first define the empirical version of the conditional
probability as

p̂n

(
x|w0

−k+1

) = #{−n + k − 1 � t � −1: Xt+1
t−k+1 = (w0

−k+1, x)}
#{−n + k − 1 � t � −1: Xt

t−k+1 = w0
−k+1}

.

These empirical distributions, as well as the sets we are about to introduce are functions of X0−n, but we suppress the
dependence to keep the notation manageable.

For a fixed 0 < γ < 1 let Ln
k denote the set of strings with length k +1 which appear more than n1−γ times in X0−n.

That is,

Ln
k = {

x0−k ∈X k+1: #
{−n + k � t � 0: Xt

t−k = x0−k

}
> n1−γ

}
.

Finally, define the empirical version of Δk as follows:

Δ̂n
k

(
w0

−k+1

) = max
1�i�n

max
(z−k

−k−i+1,w
0−k+1,x)∈Ln

k+i

∣∣p̂n

(
x|w0

−k+1

) − p̂n

(
x|z−k

−k−i+1,w
0
−k+1

)∣∣.
Let us agree by convention that if the smallest of the sets over which we are maximizing is empty then Δ̂n

k = 0.
Observe, that by ergodicity, the ergodic theorem implies that almost surely the empirical distributions p̂ converge to
the true distributions p and so for any w0

−k+1 ∈X k ,

lim inf
n→∞ Δ̂n

k

(
w0

−k+1

)
� Δk

(
w0

−k+1

)
almost surely.

With this in hand we can give a test for w0
−k+1 to be a memory word. Let 0 < β <

1−γ
2 be arbitrary. Let

NTESTn(w
0
−k+1) = YES if Δ̂n

k (w
0
−k+1) � n−β and NO otherwise. Note that NTESTn depends on X0−n.

Theorem 1. Eventually almost surely, NTESTn(w
0
−k+1) = YES if and only if w0

−k+1 is a memory word.

We define an estimate χn for K(X0−∞) from samples X0−n as follows. Set χ0 = 0, and for n � 1 let χn be the
smallest 0 � k < n such that NTESTn(X

0
−k+1) = YES if there is such and n otherwise.

Theorem 2. χn = K(X0−∞) eventually almost surely.

In order to prove these theorems we need some lemmas. The first is a variant of the simple fact that the states ui

that follow the successive occurrences of a fixed memory word w are independent and identically distributed random
variables. We cannot use such a naive version because we are dealing with a countable alphabet, and thus even the
collection of memory words of a fixed length is infinite. In order to cut down to a manageable set we would like to
consider only those words that appear in the sample X0−n, but now the independence becomes a little subtler. This is
the reason for the rather forbidding looking formulas in the proof of the next lemma. What we do is fix a location
(l − k, l] in the index set and then fix a memory word w0

−k+1 that occurs there together with a particular state x that
follows it. The random times l + λ+· and l − λ−· are the other occurrences of this memory word in the process. Here
is the formal definition. Set λ+

l,k,0 = 0, λ−
l,k,0 = 0 and define

λ+
l,k,i = λ+

l,k,i−1 + min
{
t > 0: X

l+λ+
l,k,i−1+t

l+λ+
l,k,i−1−k+1+t

= X
l+λ+

l,k,i−1

l+λ+
l,k,i−1−k+1

}
(1)

and

λ−
l,k,i = λ−

l,k,i−1 + min
{
t > 0: X

l−λ−
l,k,i−1−t

l−λ−
l,k,i−1−k+1−t

= X
l−λ−

l,k,i−1

l−λ−
l,k,i−1−k+1

}
. (2)
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Lemma 1. Assume w0
−k+1 is a memory word and x is a letter. Then for any i, j � 1,

Xl−λ−
l,k,i+1, . . . ,Xl−λ−

l,k,1+1,Xl+λ+
l,k,1+1, . . . ,Xl+λ+

l,k,j +1

are conditionally independent and identically distributed random variables given Xl
l−k+1 = w0

−k+1,Xl+1 = x, where

the identical distribution is p(·|w0
−k+1).

Proof. Fix the values z−i , . . . , z−1, u1, . . . , uj and x in the alphabet and calculate

P
(
Xl−λ−

l,k,i+1 = z−i , . . . ,Xl−λ−
l,k,1+1 = z−1,

Xl+λ+
l,k,1+1 = u1, . . . ,Xl+λ+

l,k,j +1 = uj |Xl
l−k+1 = w0

−k+1,Xl+1 = x
)

= P
(
Xl−λ−

l,k,i+1 = z−i , . . . ,Xl−λ−
l,k,1+1 = z−1,Xl+λ+

l,k,1+1 = u1, . . . ,Xl+λ+
l,k,j +1 = uj ,

Xl
l−k+1 = w0

−k+1Xl+1 = x
)
/P

(
Xl

l−k+1 = w0
−k+1,Xl+1 = x

)
.

In order to be able to use the fact that w0
−k+1 is a memory word we will shift back to the first occurrence at l − λ−

l,k,i

and use the stationarity.

P
(
Xl−λ−

l,k,i+1 = z−i , . . . ,Xl−λ−
l,k,1+1 = z−1,Xl+λ+

l,k,1+1 = u1. . . . ,Xl+λ+
l,k,j +1 = uj ,

Xl
l−k+1 = w0

−k+1,Xl+1 = x,λ−
l,k,i = t

)
= P

(
Xl−t+λ+

l−t,k,i−i+1 = z−i , . . . ,Xl−t+λ+
l−t,k,i−1+1 = z−1,Xl−t+λ+

l−t,k,i+1+1 = u1, . . . ,Xl−t+λ+
l−t,k,i+j +1 = uj ,

X
l−t+λ+

l−t,k,i

l−t+λ+
l−t,k,i−k+1

= w0
−k+1,Xl−t+λ+

l−t,k,i+1 = x,λ+
l−t,k,i = t

)
= P

(
T −t

{
Xl−t+λ+

l−t,k,i−i+1 = z−i , . . . ,Xl−t+λ+
l−t,k,i−1+1 = z−1,

Xl−t+λ+
l−t,k,i+1+1 = u1, . . . ,Xl−t+λ+

l−t,k,i+j +1 = uj ,X
l−t+λ+

l−t,k,i

l−t+λ+
l−t,k,i−k+1

= w0
−k+1,

Xl−t+λ+
l−t,k,i+1 = x,λ+

l−t,k,i = t
})

= P
(
Xl+λ+

l,k,0+1 = z−i , . . . ,Xl+λ+
l,k,i−1+1 = z−1,Xl+λ+

l,k,i+1+1 = u1, . . . ,Xl+λ+
l,k,i+j +1 = uj ,

X
l+λ+

l,k,i

l+λ+
l,k,i−k+1

= w0
−k+1,Xl+λ+

l,k,i+1 = x,λ+
l,k,i = t

)
.

Summing over t ,

P
(
Xl−λ−

l,k,i+1 = z−i , . . . ,Xl−λ−
l,k,1+1 = z−1,Xl+λ+

l,k,1+1 = u1, . . . ,Xl+λ+
l,k,j +1 = uj ,X

l
l−k+1 = w0

−k+1Xl+1 = x)

= P
(
Xl+λ+

l,k,0+1 = z−i , . . .Xl+λ+
l,k,i−1+1 = z−1,Xl+λ+

l,k,i+1+1 = u1, . . . ,Xl+λ+
l,k,i+j +1 = uj ,

X
l+λ+

l,k,i

l+λ+
l,k,i−k+1

= w0
−k+1,Xl+λ+

l,k,i+1 = x
)
. (3)

Now telescoping the right-hand side we get

P
(
Xl−λ−

l,k,i+1 = z−i , . . . ,Xl−λ−
l,k,1+1 = z−1,Xl+λ+

l,k,1+1 = u1, . . . ,Xl+λ+
l,k,j +1 = uj |Xl

l−k+1 = w0
−k+1,Xl+1 = x

)
= P

(
X0

−k+1 = w0
−k+1

) i∏
h=1

P
(
X1 = z−h|X0

−k+1 = w0
−k+1

)
P

(
X1 = x|X0

−k+1 = w0
−k+1

)

×
∏j

h=1 P(X1 = uh|X0
−k+1 = w0

−k+1)

P (X0
−k+1 = w0

−k+1)P (X1 = x|X0
−k+1 = w0

−k+1)

=
i∏

P
(
X1 = z−h|X0

−k+1 = w0
−k+1

) j∏
P

(
X1 = uh|X0

−k+1 = w0
−k+1

)
.

h=1 h=1
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We have to prove that

P
(
X1 = z−h|X0

−k+1 = w0
−k+1

) = P
(
Xl−λ−

l,k,h+1 = z−h|Xl
l−k+1 = w0

−k+1,Xl+1 = x
)
.

Indeed, by (3) and stationarity,

P
(
Xl−λ−

l,k,h+1 = z−h|Xl
l−k+1 = w0

−k+1,Xl+1 = x
)

=
P(Xl−λ−

l,k,h+1 = z−h,X
l−λ−

l,k,h

l−λ−
l,k,h−k+1

= w0
−k+1,Xl+1 = x)

P (Xl
l−k+1 = w0

−k+1,Xl+1 = x)

= P
(
X0

−k+1 = w0
−k+1

)
P

(
X1 = z−h|X0

−k+1 = w0
−k+1

) P(Xl+1 = x|Xl
l−k+1 = w0

−k+1,Xl−λ−
l,k,h+1 = z−h)

P (X0
−k+1 = w0

−k+1)P (Xl+1 = x|Xl
l−k+1 = w0

−k+1)

= P
(
X1 = z−h|X0

−k+1 = w0
−k+1

)
.

The proof of Lemma 1 is complete. �
Lemma 2.

P
(
For some 0 � k < n, −n + k − 1 � l � −1: Xl+1

l−k+1 ∈ Ln
k+1, K

(
Xl−∞

)
� k,∣∣p̂n

(
Xl+1|Xl

l−k+1

) − p
(
Xl+1|Xl

l−k+1

)∣∣ > n−β
)

� n2
∞∑

h=�n1−γ �
h2 e−2n−2βh.

Proof. For a given 0 � k < n, −n + k − 1 � l � −1 assume that Xl+1
l−k+1 = w0

−k+1x and w0
−k+1 is a memory word.

Since w0
−k+1 is a memory word, by Lemma 1 and by Hoeffding’s inequality (cf. Hoeffding [9] or Theorem 8.1 of

Devroye et al. [7]) for sums of bounded independent random variables implies

P

(∣∣∣∣
∑i

h=1 1{X
l−λ

−
l,k,h

+1
=x} + ∑j

h=1 1{X
l+λ

+
l,k,h

+1
=x}

i + j
− p

(
x|w0

l−k+1

)∣∣∣∣
� n−β |Xl+1

l−k+1 = w0
−k+1x

)
� 2 e−2n−2β (i+j).

Multiplying both sides by P(Xl+1
l−k+1 = w0

−k+1x) and summing over all possible memory words w0
−k+1 and x we get

that

P

(
K

(
Xl−∞

)
� k,Xl+1

l−k+1 ∈ Ln
k+1,

∣∣∣∣
∑i

h=1 1{X
l−λ

−
l,k,h

+1
=Xl+1} + ∑j

h=1 1{X
l+λ

+
l,k,h

+1
=Xl+1}

i + j
− p

(
Xl+1|Xl

l−k+1

)∣∣∣∣ > n−β

)
� 2 e−2n−2β(i+j).

Summing over all pairs (k, l) such that 0 � k < n and all −n+ k − 1 � l � −1 and over all pairs (i, j) such that i � 0,
j � 0, i + j � �n1−γ � we complete the proof of Lemma 2. �
Lemma 3.

P
(

max
w0−k+1∈Wk

Δ̂n
k

(
w0

−k+1

)
> n−β

)
� n3

∞∑
h=�n1−γ �

h4 e
−n−2βh

2 .
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Proof.

P
(

max
w0−k+1∈Wk

Δ̂n
k

(
w0

−k+1

)
> n−β

)

�
n∑

i=1

P
(

max
w0

−k+1∈Wk

max
(z−k

−k−i+1,w
0−k+1,x)∈Ln

k+i

∣∣p̂n

(
x|w0

−k+1

) − p̂n

(
x|z−k

−k−i+1,w
0
−k+1

)∣∣ > n−β
)

�
n∑

i=1

P
(

max
w0−k+1∈Wk

max
(z−k

−k−i+1,w
0−k+1,x)∈Ln

k+i

∣∣p̂n

(
x|w0

−k+1

) − p
(
x|w0

−k+1

)∣∣ > n−β/2
)

+
n∑

i=1

P
(

max
w0−k+1∈Wk

max
(z−k

−k−i+1,w
0
−k+1,x)∈Ln

k+i

∣∣p(
x|z−k

−k−i+1,w
0
−k+1

) − p̂n

(
x|z−k

−k−i+1,w
0
−k+1

)∣∣ > n−β/2
)
.

By Lemma 2, both terms inside the sum can be upperbounded by an exponential, and summing over i we get the
statement and so the proof of Lemma 3 is complete. �
Proof of Theorem 1. If w0

−k+1 is not a memory word, then there are z−k
−k−i+1 and x such that p(x|w0

−k+1) �=
p(x|z−k

−k−i+1w
0
−k+1) and p(z−k

−k−i+1w
0
−k+1x) > 0. By ergodicity, NTESTn(w

0
−k+1) = NO eventually almost surely.

Assume w0
−k+1 is a memory word. We will estimate the probability of the undesirable event as follows: by

Lemma 3,

P
(
Δ̂n

k

(
w0

−k+1

)
> n−β

)
� n3

∞∑
h=�n1−γ �

h4 e
−n−2βh

2 .

The right-hand side is summable provided 2β + γ < 1 and the Borel–Cantelli lemma yields that

P
(
Δ̂n

k

(
w0

−k+1

)
� n−β eventually

) = 1

and so NTESTn(w
0
−k+1) = YES eventually almost surely. The proof of Theorem 1 is complete. �

Proof of Theorem 2. Since X0
−K(X0−∞)+1

is a memory word and none of its suffixes has this property, χn = K(X0−∞)

eventually almost surely, by Theorem 1. The proof of Theorem 2 is complete. �
3. Forward estimation of the memory length for finitarily Markovian processes

Define PTESTn(w
0
−k+1)(X

n
0 ) = NTESTn(w

0
−k+1)(T

nXn
0 ) where T is the left shift operator.

Theorem 3. Eventually almost surely, PTESTn(w
0
−k+1) = YES if and only if w0

−k+1 is a memory word.

Define a list of words {w(0),w(1),w(2), . . . ,w(n), . . .} such that all words of all lengths are listed and a word
cannot precede its suffix. Note that w(0) is the empty word.

Now define sets of indices Ai
n as follows. Let A0

n = {0,1, . . . , n} and for i > 0 define

Ai
n = {∣∣w(i)

∣∣ − 1 � j � n: X
j

j−|w(i)|+1 = w(i)
}
. (4)

Let ε > 0 be fixed. Define θn(ε) < n to be the minimal j such that

|⋃i�j : PTESTn(w(i))=YES Ai
n|

n + 1
� 1 − ε

2
(5)

and n if no such j exists. We estimate for the length of the memory of Xn−∞ looking backwards if n ∈⋃
i�θn(ε),PTESTn(w(i))=YES Ai

n. The set of n’s for which this holds will be the set for which we estimate the mem-
ory and we denote this set by N . Note that the event n ∈ N depends only on Xn

0 , and thus N can be thought of as a
sequence of stopping times.
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We define for n ∈N ,

κn = min
{
i � 0: Xn

n−|w(i)|+1 = w(i),PTESTn

(
w(i)

) = YES
}
.

For n ∈ N define

ρn

(
Xn

0

) = ∣∣w(κn)
∣∣.

Note that ρn, θn, κn and N depend on ε, however, we will not denote this dependence on ε explicitly.

Theorem 4. Let ε > 0 be fixed. Then for n ∈ N ,

ρn = K
(
Xn−∞

)
eventually almost surely, (6)

and

lim inf
n→∞

|N ∩ {0,1, . . . , n − 1}|
n

� 1 − ε. (7)

For n ∈ N , Xn
n−ρn+1 appears at least n1−γ times eventually almost surely.

Proof of Theorem 3. Since the proof of Theorem 1 was based on a Borel–Cantelli lemma, the time shift in defining
PTESTn makes no difference and we literally copy the proof of Theorem 1. The proof of Theorem 3 is complete. �
Proof of Theorem 4. There is a N large enough such that

P
(
K

(
X0−∞

)
< N

)
� 1 − ε/4.

The sequence θn is bounded along individual sequences of the process with probability one. (This may be seen by first
choosing a sufficiently large finite set {w(0), . . . ,w(M)} of memory words so that the probability of seeing at least
one of them in position zero is greater then 1 − ε/4 and then applying Theorem 3 and the ergodic theorem we see that
almost surely for all sufficiently large n, θn � M . This implies of course that θn is bounded pointwise as claimed.)
Thus by Theorem 3,

ρn = K
(
Xn−∞

)
provided Xn

n−K(Xn−∞)+1 ∈WK(Xn−∞) ∩ {
w(0), . . . ,w(θn)

}
eventually almost surely.We have proved the consistency. Let J denote the smallest j such that

j∑
k=0

P
(
X0

−k+1 ∈Wk ∩ {
w(0), . . . ,w(j)

})
� 1 − ε

2
.

It is obvious from the definition above that
J−1∑
k=0

P
(
X0

−k+1 ∈Wk ∩ {
w(0), . . . ,w(J − 1)

})
< 1 − ε

2
.

Thus θn � J eventually almost surely. Thus

lim inf
n→∞

|N ∩ {0,1, . . . , n}|
n + 1

� lim inf
n→∞

|⋃J
i=0 Ai

n|
n + 1

� 1 − ε

2
almost surely.

We have proved that N has density at least 1 − ε/2. Since θn is bounded, for n ∈ N eventually, w(κn) appears at least
n1−γ times. The proof of Theorem 4 is complete. �
4. Another approach to estimating the memory length for finitarily Markovian processes

In the preceding section we made use of the fact that the proof that we gave for the backward memory estimator
was via a rough probability estimate and the Borel–Cantelli lemma. This enabled us to copy it directly for the forward
estimation. In this section we shall show that any successful backward memory estimator can be used to get the same
kind of result. We will denote by χn some fixed consistent backward estimator for the memory length such as the χn
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of Section 2. To this end, based on the successive forward samples we construct many infinite sample points of the
X0−∞ process.

To construct a sample of the X0−∞ process from the forward data segment Xn
0 , we use the procedure that we used in

Morvai and Weiss [15]. Begin with X0, then look for its first recurrence, i.e. the minimum t0 > 0 such that Xt0 = X0
and then extend X0 to the left by adding Xt0−1. Next look for the first recurrence of Xt0−1Xt0 , in a position t1 > t0,
i.e. Xt1−1Xt1 = Xt0−1Xt0 and then again extend to the left by adding Xt1−2 obtaining Xt1−2Xt1−1Xt1 as the first three
symbols of our sample for the backward process. We will denote this by X̃0

−2 = X
t1
t1−2. Continuing in this way, we can

develop from X∞
0 a point X̃0−∞ which we shall show has the same distribution as X0−∞. We need to do this starting at

each i � 0. Here are the formulas that accomplish this end.
For i = 0,1, . . . define auxiliary stopping times. Set ζ−1(i) = −i and ζ0(i) = 0. For n = 1,2, . . . , let

ζn(i) = ζn−1(i) + min
{
t > 0: X

i+ζn−1(i)+t

i+ζn−1(i)−(n−1)+t = X
i+ζn−1(i)

i+ζn−1(i)−(n−1)

}
. (8)

Among other things, using ζn(i) we can define very useful processes {X̃n(i)}0
n=−∞ as a function of X∞

0 as follows.
Define

X̃−n(i) = Xi+ζn(i)−n. (9)

It is clear that in this way we defined processes {X̃n(i)}0
n=−∞. We will see that the {X̃n(i)}0

n=−∞ has the same
distribution as the original process, and for now assume that this is so.

Let

ηn(i) = max
{
j � −1: i + ζj (i) � n

}
. (10)

Note that (X̃−ηn(i)(i), . . . , X̃0(i)) is measurable with respect to Xn
0 .

Define ρi
n = χηn(i)(X̃

0−∞(i)) if ηn(i) � 0 and ρi
n = 0 otherwise. Note that ρi

n is also measurable with respect to Xn
0 .

Define sets of indices Ai
n as follows.

Ai
n = {

ρi
n � j � n: X

j

j−ρi
n+1

= X̃0
−ρi

n+1(i)
}
. (11)

For any fixed i, eventually, X̃0
−ρi

n+1
(i) is a memory word, so the sets Ai

n are simply the places where this fixed word

occurs. Let ε > 0 be fixed. Define θn(ε) to be the minimal j such that

|⋃i�j Ai
n|

n
� 1 − ε

2
. (12)

We estimate for the order of Xn−∞ looking backwards if n ∈ ⋃
i�θn(ε) A

i
n. The set of n’s for which this holds will

be the set for which we estimate the memory and we denote this set by N . Note that the event n ∈ N depends only
on Xn

0 , and thus N can be thought of as a sequence of stopping times.
In case n ∈ ⋃

i�θn(ε) A
i
n we define

κn = min
{
i � 0: X̃0

−ρi
n+1(i) = Xn

n−ρi
n+1

}
.

Note that θn, κn and N depend on ε, however, we will not denote this dependence on ε explicitly.

Theorem 5. Let ε > 0 be fixed. Then for n ∈ N ,

ρκn
n = K

(
Xn−∞

)
eventually almost surely, (13)

and

lim inf
n→∞

|N ∩ {0,1, . . . , n − 1}|
n

� 1 − ε. (14)

For n ∈ N , Xn
n−ρ

κn
n

appears at least n1−γ times eventually almost surely.

Lemma 4. For all i the time series {X̃n(i)}0
n=−∞ and {Xn}0

n=−∞ have identical distribution.
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Proof. For all k � 1 and 1 � i � k define ζ̂ k
0 = 0 and

ζ̂ k
i = ζ̂ k

i−1 − min
{
t > 0: X

ζ̂k
i−1−t

ζ̂ k
i−1−(k−i)−t

= X
ζ̂k
i−1

ζ̂ k
i−1−(k−i)

}
.

Let T denote the left shift operator, that is, (T x∞−∞)i = xi+1. It is easy to see that if and only if ζk(i)(x
∞−∞) = l then

ζ̂ k
k (T (i+l)x∞−∞) = −l.

Now the statement follows from stationarity and the fact that for k � 0, x0−k ∈X k+1, l � 0,

T i+l
{
X

i+ζk(i)

i+ζk(i)−k = x0
−k, ζk(i) = l

} = {
X0

−k = x0
−k, ζ̂

k
k

(
X0−∞

) = −l
}
. (15)

The proof of Lemma 4 is complete. �
Lemma 5. If P(Xn

0 = wn
0 ) > 0 for the string wn

0 then almost surely,

X̃0−n(i) = wn
0 for some i. (16)

Proof. Let t denote the (n + 1)th occurrence of the string wn
0 in X∞

0 . It is easy to see that there must be a 0 � i � t

such that

X
i+ζk(i)

i+ζk(i)−k = Xt
t−k for k = 0,1, . . . , n

and so

X̃0−n(i) = wn
0 .

The proof of Lemma 5 is complete. �
Proof of Theorem 5. There is a N large enough such that

P
(
K

(
X0−∞

)
< N

)
� 1 − ε/4.

Then by Lemma 5 and ergodicity, θn is a bounded sequence (cf. the proof of Theorem 4). By Lemma 4 and Theorem 2

ρi
n = K

(
X̃0−∞(i)

)
for all i = 1, . . . , θn

eventually almost surely. We have proved (13). We have to prove (14). Let J denote the smallest j such that

j∑
i=0

p
(
X̃0

−K(X̃0−∞(i))
(i)

)
� 1 − ε

2
.

It is obvious from the definition above that
J−1∑
i=0

p
(
X̃0

−K(X̃0−∞(i))
(i)

)
< 1 − ε

2
.

Thus θn � J eventually almost surely. Thus

lim inf
n→∞

|N ∩ {0,1, . . . , n}|
n + 1

� lim inf
n→∞

|⋃J
i=0 Ai

n|
n + 1

� 1 − ε

2
almost surely.

The proof of Theorem 5 is complete. �
5. Memory estimation for Markov processes

In this section we shall examine how well can one estimate the local memory length for finite order Markov chains.
In the case of finite alphabets this can be done with stopping times that eventually cover all time epochs. (Indeed,
assume {Xn} is a Markov chain taking values from a finite set. Assume ORDESTn estimates the order in a pointwise
sense from data Xn

0 e.g. as in Csiszár and Shields [4] or in Morvai and Weiss [16]. Then let

ρn = min
{
0 � t � ORDESTn: PTESTn

(
Xn

) = YES
}

n−t+1
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if there is such t and 0 otherwise. Since ORDESTn eventually gives the right order and there are finitely many possible
strings with length not greater than the order thus ρn = K(Xn−∞) eventually almost surely by Theorem 3.)

However, as soon as one goes to a countable alphabet, even if the order is known to be two and we are just trying
to decide whether the Xn alone is a memory word or not, there is no sequence of stopping times which is guaranteed
to succeed eventually and whose density is one. This shows that the ε in the preceding sections cannot be eliminated.

Theorem 6. There are no strictly increasing sequence of stopping times {λn} and estimators {hn(X0, . . . ,Xλn)} taking
the values one and two, such that for all countable alphabet Markov chains of order two:

lim
n→∞

λn

n
= 1

and

lim
n→∞

∣∣hn(X0, . . . ,Xλn) − K
(
X

λn

0

)∣∣ = 0 with probability one.

To prove the theorem we will assume that such a pair of stopping times and estimators exist and construct a Markov
chain {Xn} of order two for which they fail. The Markov chain of order two that we construct will have for its state
space the nonnegative integers N, and it will be a perturbation of the 1-step Markov chain Zn defined by the following
formulae:

Ps,s+r = 2−r−1 for all r � 1,

Ps,s = 2−s−1

and

Ps,j = 2−j−2 for all 0 � j < s.

Notice that from any state s > 0 there is a fixed probability of 1
4 of going to 0. Also there is a strictly positive

probability of going from any state to any other. These properties ensure that there is a finite stationary measure. The
ultimate chain will preserve most of these conditional probabilities, with the difference depending on a sequence of
integers tk 
 k which will be defined later. The perturbed chain {Xn} will have the same transition probabilities as the
original chain {Zn} for Xn given (Xn−2,Xn−1) when the latter, (Xn−2,Xn−1), equals any pair (t, s) with the exception
of (tk, k) for k � 0. In that case we will modify the probability of the transitions to k and k + 1 by interchanging the
values of Pk,k and Pk,k+1. As soon as the first change is made 0 ceases to be a memory word and therefore the order
of the new chain is two. Eventually all singletons cease to be memory words.

The tk’s will be chosen inductively in a fashion depending on the purported sequence of stopping times and esti-
mators that we are trying to show cannot exist. At the kth stage we will have only made these changes up to k. Let
us denote the Markov process of order 2 that this defines by {Y (k)

n }. More explicitly the process {Y (k)
n } is defined as

follows. It has transition probabilities given by: for all j � k

P
(
Y

(k)
n+2 = j |Y (k)

n = tj , Y
(k)
n+1 = j

) = P(Zn+2 = j + 1|Zn+1 = j),

P
(
Y

(k)
n+2 = j + 1|Y (k)

n = tj , Y
(k)
n+1 = j

) = P(Zn+2 = j |Zn+1 = j),

and for all other values of (u, t, s) we have

P
(
Y

(k)
n+2 = u|Y (k)

n = t, Y
(k)
n+1 = s

) = P(Zn+2 = u|Zn+1 = s).

Thus for this process, all singletons j for j > k are still memory words of length one, but none of the j with 0 � j � k

are. The main technical lemma that we will need is that the distribution of finite blocks up to some preassigned length
N of the {Y (k)

n } and {Y (k+1)
n } processes are arbitrarily close if the tk+1 is chosen sufficiently large. This is independent

of the other properties of tk that are needed, and so we begin by establishing this fact.
Our proof will be via a coupling argument. We will calculate the finite distributions of these two processes by

calculating time averages of a pair of typical sequences generated by transition matrices starting from the pair 00. The
coupling is especially easy since for both processes, from any state there is a fixed probability of moving to 00 of at
least 1

8 and therefore no matter how the two sequences diverge if we continue their evolution independently there is at
every moment a fixed probability, namely 1 , of the processes returning simultaneously to 00.
64
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Lemma 6. With the definitions above for {Y (k)
n } and {Y (k+1)

n } if N and δ > 0 are arbitrary, for any choice of tk+1

that is sufficiently large we will have that the variational distance between the distributions of (Y
(k)
0 , . . . , Y

(k)
N ) and

(Y
(k+1)
0 , . . . , Y

(k+1)
N ) is at most δ.

Proof. Since the {Y (k)
n } is fixed at the start, given N and δ we can choose T sufficiently large so that the stationary

probability π(k)(t) < γ for any t > T , where γ = δ/(64 + 2N).
Suppose that we choose tk+1 > T . We begin the coupling by starting each of the processes at the pair 00. Denote by

uj and vj the random sequences constructed by applying the transition functions for the two processes {Y (k)
n }, {Y (k+1)

n }
respectively. Until uj = tk+1 for the first time the sequences can be taken to be identical, since they have the same
transition probabilities for pairs that do not include this state. We denote by σ1 this moment, and continue the coupling
now independently waiting for the first moment j > σ1 that the equality (uj , uj+1) = (vj , vj+1) = (0,0) holds. Call
this moment τ1. Notice that σ1 is a function of the u′

j s while τ1 is a function of both processes. Beginning with τ1
we can once again continue the evolution in an identical fashion until the first moment j > τ1 that uj = tk+1. Call
that stopping time σ2. Note that this stopping time also depends on both processes. As before, as soon as this happens
continue the processes independently until the first moment j > σ2 that the equality (uj , uj+1) = (vj , vj+1) = (0,0)

holds. It should now be clear how this is continued to build (with probability one) typical sequences for the two
processes. In order to compare the stationary distributions of words up to length N in the two processes we need to
know what is the relative frequency of the periods when we are coupling independently compared to the periods when
we are producing the same symbols.

The asymptotic frequency of the occurrence of tk+1 in the uj sequence is known to be at most γ and at the stopping
times σi uσi

= tk+1. The gaps τi − σi are independent for different i’s and have a length which has a geometric
distribution with fixed parameter 1

64 as we remarked earlier. Thus the average fraction of the time that the N -strings
in the u and v sequences do not match exactly is at most (64 + 2N)γ . It follows that the variational distance between
(Y

(k)
0 , . . . , Y

(k)
N ) and (Y

(k+1)
0 , . . . , Y

(k+1)
N ) is at most (64 + 2N)γ = δ and thus the lemma has been established. �

We can now give the

Proof of Theorem 6. Suppose that there does exist a sequence of stopping times and estimators as in the statement of
the theorem. We begin with the one step Markov chain Zn described above and observe that the state 0 has a positive
stationary probability. Since the λn’s have density one we can find an N0 so that with probability at least 1 − 1

10 in the

string Z
N0
0 there will be some λn < N0 with Zλn = 0 and

hn(Z0, . . . ,Zλn) = 1.

We can apply the lemma with N = N0 and δ = 1
10 to find a suitable t0 with which we can define a {Y (0)

n } process
in which now 0 is not a memory word, so that for those strings where Zλn = 0 and hn(Z0, . . . ,Zλn) = 1 a definite

mistake is being made. Such strings with length N0 still have probability at least 1 − 2
10 . Having defined {Y (0)

n } we
notice now that the state 1 is still a memory word of length one with positive stationary probability, and therefore we
can find an N1 sufficiently large so that with probability at least 1 − 1

102 in the string (Y
(0)
0 , . . . , Y

(0)
N1

) there will be

some λn < N1 with Y
(0)
λn

= 1 and

hn

(
Y

(0)
0 , . . . , Y

(0)
λn

) = 1.

As before we apply the lemma with N = N1 and δ = 10−2 to find a suitable t1 with which we can define the next
process {Y (1)

n }. For this process although 1 fails to be a memory word we still can estimate the probability that in a
(Y

(1)
0 , . . . , Y

(1)
N1

) string there will be some λn < N1 with Y
(1)
λn

= 1 and

hn

(
Y

(1)
0 , . . . , Y

(1)
λn

) = 1

as being at least 1 − 2 × 10−2. In addition, the previous estimate on strings of length N0 is degraded only by 10−2,
since the estimate on the variational distance descends to strings of shorter length. By now it should be clear how to
continue the inductive construction of the tk’s. The ultimate process that we obtain, which we may denote simply by
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{Xn} is of course a Markov chain of order two, and it has no memory words of length one at all. However, for every k,
the probability that there will be some λn < Nk with Xλn = k and

hn(X0, . . . ,Xλn) = 1

will be at least 1 − 2
9×10k . The Borel–Cantelli lemma implies that with probability one there will be infinitely many

mistakes being made by our estimator contrary to the assumption. This concludes the proof of Theorem 6. �
6. Limitations for binary finitarily Markovian processes

In the preceding section we showed that we cannot achieve density one in the forward memory length estimation
problem even in the class of Markov chains on a countable alphabet. In this section we shall show something similar
in the class of binary (i.e. 0,1) valued finitarily Markov processes. To prove this we will assume that there is given a
sequence of estimators and stopping times, (hn,λn) that do succeed to estimate successfully the memory length for
binary Markov chains of finite order and construct a finitarily Markovian binary process on which the scheme fails
infinitely often. This differs from the proof outline of the previous section. There a contradiction was reached showing
that the purported estimators do not exist. In the present case, as we remarked in the opening paragraph of Section 5
there does exist a sequence of estimators hn which eventually succeed in giving the memory length almost surely for
all binary Markov chains of finite order. Here is a precise statement:

Theorem 7. For any strictly increasing sequence of stopping times {λn} and sequence of estimators {hn(X0, . . . ,Xλn)},
such that for all stationary and ergodic binary Markov chains with arbitrary finite order, limn→∞ λn

n
= 1, and

lim
n→∞

∣∣hn(X0, . . . ,Xλn) − K
(
X

λn

0

)∣∣ = 0 almost surely

there is a stationary, ergodic finitarily Markovian binary time series such that on a set of positive measure of process
realizations

hn(X0, . . . ,Xλn) �= K
(
X

λn−∞
)

infinitely often.

Proof. First we define the same Markov-chain as in Ryabko [23] (cf. also Györfi, Morvai, Yakowitz [8], Morvai
and Weiss [17]) which serves as the technical tool for construction of our counterexample. Let the state space S be
the nonnegative integers and define the transition probabilities pi,j as follows: p0,1 = p1,2 = 1, and for all s > 1:
ps,0 = ps,s+1 = 1

2 .
This construction yields a stationary and ergodic Markov chain {Mi} with stationary distribution

P(M = 0) = P(M = 1) = 1

4
and

P(M = i) = 1

2i
for i � 2.

We shall construct a finitarily Markovian process Xn by defining a certain function f from the state space S to {0,1}
and setting Xn = f (Mn). We will ensure that it is finitarily Markovian by taking care that f (0) = f (1) = 0, f (2) = 1
and for all s > 2 if f (s) = 0 then f (s + 1) = 1. Thus, in the Xn process whenever one observes two successive zeroes
and a one, it is known that the underlying states in the Markov chain were 012. Note that if there is an integer K such
that f (i) = 1 for all i � K −1 then the process {Xn} is a binary Markov-chain with order not greater than K . (Indeed,
the probabilities P(Xn = 1|X0, . . . ,Xn−1) are determined by the last K bits (Xn−K, . . . ,Xn−1).)

We will define f in stages using the stopping times and estimators that the hypotheses of the theorem give us. At
stage j there will be an f (j) and we will define a binary-valued process, {X(j)

i } by the formula: X
(j)
i = f (j)(Mi)

where f (j) will be a {0,1} valued function of the state space S which is eventually one. As remarked, this ensures that
all these processes are actually finite order Markov chains. The desired f will be the limit of these f (j)’s and it will
take the value 0 infinitely often. Now for the definition.
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For all 0 � j � ∞, set f (j)(0) = 0, f (j)(1) = 0, and f (j)(2) = 1.
Define f (0)(k) = 1 for all k � 3, hence since f (0)(i) is eventually 1, the process {X(0)

i = f (0)(Mi)} is a stationary
ergodic binary Markov chain with order k0 � 3.

Recalling the stopping times and estimators define the event

A1(t1, s1) = {
For some n: hn

(
f (0)(M0), . . . , f

(0)(Mλn)
)
� k0,

f (0)(Mi) = 1 for λn − k0 + 1 � i � λn, t1 � λn � s1
}
.

Notice that this is a well defined event in the sample space of the Markov chain Mn. All of the events that we are
about to define are in that one fixed sample space, only the function f (i) will be changing. By the hypotheses of the
theorem there are sufficiently large s1 > t1 > 3 such that the probability

P
(
A1(t1, s1)|M0 = 0,M1 = 1,M2 = 2

)
> 1 − 2−1.

Let f (1)(i) = f (0)(i) for i = 0,1, . . . , s1 and let f (1)(s1 +1) = 0, f (1)(i) = 1 for i � s1 +2. It is clear that the memory
of a sequence with prefix 10

−k0−1 in the process X
(1)
n = f (1)(Mn) is greater then k0 but if the event A1 occurs then

the estimator will commit an error at least once in the interval [t1, s1]. The new process has an order k1 � s1 + 3. We
will continue in this manner inductively. Assuming that we have already defined kj , tj , sj ,Aj we will now go to stage
j + 1 and show how to update these parameters.

Let sj+1 > tj+1 > sj + 3 be chosen such that for the event

Aj+1(tj+1, sj+1) = {
For some n: hn

(
f (j)(M0), . . . , f

(j)(Mλn)
)
� kj ,

f (j)(Mi) = 1 for λn − kj + 1 � i � λn, tj+1 � λn � sj+1
}

we have:

P
(
Aj+1(tj+1, sj+1)|M0 = M1 = 0,M2 = 1

)
> 1 − 2−(j+1).

Set now f (j+1)(i) = f (j)(i) for i = 0,1, . . . , sj+1 and let f (j+1)(sj+1 + 1) = 0 and f (j+1)(i) = 1 for i � sj+1 + 2.

It is clear that the memory of a sequence with suffix a string of 1’s of length kj in the process X
(j+1)
n = f (j+1)(Mn)

is greater then kj and if the event Aj+1 happens then the estimator will commit error at least once in the interval
[tj+1, sj+1]. The new process has an order kj+1 � sj+1 + 3. By induction, we have defined all the functions f (j)

for 0 � j < ∞. To complete the definition of f simply put f = limf (j). By the construction this is certainly well
defined.

By the Borel–Cantelli lemma, conditioned on the positive probability event M0M1M2 = 012, the events Aj occur
infinitely often almost surely and this completes the proof of Theorem 7. �
Remark 1. In the final process Xn that we constructed P(K(X0−∞) = k) decays to zero exponentially fast and in
particular is summable. It follows that with probability one eventually K(Xn

0 ) � n so that the reason for our failure to
estimate the memory length correctly is not coming about because we do not even see the memory word.

It is also worth pointing out the sequence of moments on which the estimator is failing is of density zero. It follows
fairly easily from the ergodic theorem that if one is willing to tolerate such failures then a straightforward application
of any backward estimation scheme will converge outside a set of density zero. The effort that we expended in
Sections 3, 4 to achieve density 1 − ε for the stopping was because eventually we wanted to guarantee that there
would be no failures at all.

7. Forward estimation of the conditional probability for finitarily Markovian processes

Let the alphabet be finite or countably infinite. Now our goal is to estimate the conditional probability P(Xn+1 =
x|Xn

0 ) on stopping times in a pointwise sense.
Let N be a sequence of stopping times such that eventually almost surely Xn

n−K(Xn−∞)+1 appears at least n1−γ

times in Xn
0 .

Let ρn be any estimate of the length of the memory from samples Xn such that ρn − K(Xn−∞) → 0 on N .
0
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Define our estimate q̂n(x) of the conditional probability P(Xn+1 = x|Xn
0 ) on N as

q̂n(x) = #{ρn − 1 � i < n: Xi
i−ρn+1 = Xn

n−ρn+1,Xi+1 = x}
#{ρn − 1 � i < n: Xi

i−ρn+1 = Xn
n−ρn+1}

.

Theorem 8. On n ∈ N ,∣∣q̂n(x) − P
(
Xn+1 = x|Xn

0

)∣∣ → 0 almost surely.

Corollary 1. For the stopping times N and estimator ρn in Theorem 4, Theorem 8 holds and the density of N is at
least 1 − ε.

To prove the above theorem we define Markov estimators of the conditional probabilities. Use λ−
n,K(Xn−∞),i

defined

in (2). Define the Markov estimator using j samples as

q
j
n(x) = 1

j

j∑
i=1

1{X
n−λ

−
n,K(Xn−∞),i

+1
=x}. (17)

Lemma 7. Almost surely,

max
j��n1−γ �

∣∣qj
n(x) − P

(
Xn+1 = x|Xn−∞

)∣∣ → 0.

Proof. Since by Lemma 1, q
j
n(x) is an average of independent and identically distributed bounded random variables

so one may apply Hoeffding’s inequality (cf. Hoeffding [9] or Theorem 8.1 of Devroye et al. [7]):
∞∑

j=�n1−γ �
P

(∣∣qj
n(x) − P

(
Xn+1 = x|Xn−∞

)∣∣ > ε) �
∞∑

j=�n1−γ �
2 e−2ε2j .

The right-hand side is summable in n and the Borel–Cantelli lemma yields Lemma 7. The proof of Lemma 7 is
complete. �
Proof of Theorem 8. Since eventually, for n ∈ N , Xn

n−K(Xn−∞)+1 appears n1−γ times in Xn
0 so q̂n(x) = q

j
n(x) for

some j � �n1−γ �, and P(Xn+1 = x|Xn
0 ) = P(Xn+1 = x|Xn−∞), the result follows from Lemma 7. The proof of

Theorem 8 is complete. �
8. Forward estimation of the conditional probability for Markov processes

Let {Xn} be a stationary and ergodic finite or countably infinite alphabet Markov chain with order K . Let ORDESTn

be an estimator of the order from samples Xn
0 such that ORDESTn → K almost surely. Such an estimator can be found

e.g. in Morvai and Weiss [16]. Let n ∈ N if Xn
n−ORDESTn+1 appears at least n1−γ times in Xn

0 . N is a sequence of
stopping times. Let

q̂n(x) = #{ORDESTn − 1 � i < n: Xi
i−ORDESTn+1 = Xn

n−ORDESTn+1,Xi+1 = x}
#{ORDESTn − 1 � i < n: Xi

i−ORDESTn+1 = Xn
n−ORDESTn+1}

.

Theorem 9. Assume ORDESTn equals the order eventually almost surely. Then on n ∈N ,∣∣q̂n(x) − P
(
Xn+1 = x|Xn

n−K

)∣∣ → 0 almost surely

and

lim inf
n→∞

|N ∩ {0,1, . . . , n − 1}|
n

= 1.

If the Markov chain turns out to take values from a finite set, then N takes as values all but finitely many positive
integers.
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To prove the above theorem we define Markov estimators of the conditional probabilities. Use λ−
n,K,i defined in (2).

Define the Markov estimator using j samples as

q
j
n(x) = 1

j

j∑
i=1

1{X
n−λ

−
n,K,i

+1
=x}. (18)

Lemma 8. Almost surely,

max
j��n1−γ �

∣∣qj
n(x) − P

(
Xn+1 = x|Xn

n−K

)∣∣ → 0.

Proof. The proof goes along the lines of the proof of Lemma 7. The proof of Lemma 8 is complete. �
Proof of Theorem 9. Since ORDESTn = K eventually, and so for n ∈ N : Xn

n−K+1 appears at least n1−γ times thus

q̂n(x) = q
j
n(x) for some j � �n1−γ � and the result follows from Lemma 8. Since any word of length K with positive

probability appears eventually almost surely n1−γ times in Xn
0 thus N has density one. If the alphabet is finite, then

the number of words with length K is finite and by ergodicity, eventually almost surely all words with length K which
has positive probability appears at least n1−γ times. The proof of Theorem 9 is complete. �
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