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Abstract

In this article, we consider two models of directed polymers in random environment: a discrete model in a general random
environment and a continuous model. We consider these models in dimension greater than or equal to 3 and we suppose that the
normalized partition function is bounded in L2 (the “high” temperature case). Under these assumptions, Sinai proved in [Y. Sinai,
A remark concerning random walks with random potentials, Fund. Math. 147 (1995) 173–180] a local limit theorem for the
discrete model, using a perturbation expansion. In this article, we give a new method for proving Sinai’s local limit theorem. This
new method can be transposed to the continuous setting in which we prove a similar local limit theorem.
© 2005 Elsevier SAS. All rights reserved.

Résumé

Dans cet article, on considère deux modèles de polymères dirigés en environnement aléatoire : un modèle discret en environ-
nement aléatoire général et un modèle continu. On considère ces modèles en dimension supérieur ou égale à 3 et on suppose que
la fonction de partition renormalisée est bornée dans L2 (cela correspond au cas de « haute » température). Sous ces hypothèses,
Sinai a montré dans [Y. Sinai, A remark concerning random walks with random potentials, Fund. Math., 147 (1995) 173–180]
un théorème limite locale pour le modèle discret en utilisant un développement en perturbation. Dans cet article, on donne une
nouvelle méthode pour démontrer le théorème limite locale ci-dessus. Cette nouvelle méthode peut être transposée au cas continu
dans lequel on montre un théorème limite locale similaire.
© 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Directed polymers in random environment is a model of statistical mechanics in which stochastic processes interact
with a random environment, depending on both time and space: one studies the path of the stochastic process under
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a random Gibbs measure depending on the temperature (as the temperature increases, the influence of the random
environment decreases).

In this article, we will consider two polymer models: a random walk model of directed polymers and its continuous
analogue, a Brownian model of directed polymers. The discrete model first appeared in the physics literature [6]
to modelize the phase boundary of Ising model subject to random impurities and its first mathematical study was
undertaken by Imbrie, Spencer in 1988 [7] and Bolthausen in 1989 [1]. The continuous model we study here was first
introduced and studied by Comets and Yoshida in 2004 [3]. These models are related to many models of statistical
physics. We refer to the survey paper [8] by Krug and Spohn for an account on these models and their relations.

In the sequel, we will suppose that the dimension of the underlying stochastic process is greater than or equal to 3
and that the normalized partition function is bounded in L2 (see Sections 1.1–1.2 for the definition of the normalized
partition function). Under these assumptions, the polymer is diffusive in the sense that a central limit theorem holds:
by scaling by the square root of the length, the discrete and continuous polymer models converge in law to a Gaussian
measure (see [7,1,11,5]). One can sometimes go a step further than convergence in law by giving an equivalent of
the density: this is called a local limit theorem. In [10], Sinai obtained a local limit theorem by using a perturbation
expansion. Unfortunately, it is not clear how to adapt the strategy to the continuous setting. The object of this work is
to give a new method for proving Sinai’s theorem; this method is sufficiently general to be easily adapted to prove a
similar local limit theorem in the continuous setting. Our approach is simple and relies only on L2 computations and
on properties of the simple random walk bridges (Brownian bridges in the continuous case).

Finally, we recall that some results have been achieved in the case of dimension less than or equal to 2 or when the
temperature is low. In these cases, the polymer is non-diffusive (see Remark 2.6 below) and many conjectures remain
open. For an account on these cases, we refer to [2] in a Gaussian environment and to [4] in a general environment.

The article is organized as follows: each chapter is divided into two subchapters, one of them being devoted to the
discrete model and the other one being devoted to the continuous model. First, we introduce the two models. In the
second chapter, we will remind the known results at high temperature when the dimension of the underlying process is
greater than or equal to 3; we will also formulate an analogue to Sinai’s local limit theorem for the Brownian directed
polymer. In the third chapter, we will prove the local limit theorem for both models.

1.1. The random walk model of directed polymers

• Let ((ωn)n∈N, (P x)x∈Zd ) denote the simple random walk on the d-dimensional integer lattice Z
d , defined on a

measurable space (Ω,F); more precisely, for x in Z
d , under the measure P x , (ωn − ωn−1)n�1 are independent

and

P x(ω0 = x) = 1, P x(ωn − ωn−1 = ±δj ) = 1

2d
, j = 1, . . . , d,

where (δj )1�j�d is the j th vector of the canonical basis of Z
d . In the sequel, P will denote P 0 and P x

n will
denote the simple random walk measure on paths of length n starting from x. For x in Z

d , let q(n)(x) be the
probability for the random walk starting from 0 to be in x at time n:

q(n)(x)
def.= P(ωn = x).

• The random environment on each lattice site is a sequence η = (η(n, x))(n,x)∈N×Zd of real valued, non-constant
and i.i.d. random variables defined on a probability space (H,G,Q) such that

∀β ∈ R λ(β)
def.= lnQ

(
eβη(n,x)

)
< ∞.

• For any n > 0, we define the (Q-random) polymer measure μx
n on paths of length n starting from x by:

μx
n(dω) = 1

Zx
n

exp
(
βHn(ω) − nλ(β)

)
P x

n (dω)

where β ∈ R is the inverse temperature,

Hn(ω)
def.=

n∑
η(j,ωj )
j=1
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and

Zx
n = P x

(
exp

(
βHn(ω) − nλ(β)

))
is the normalized partition function (Q(Zx

n) = 1).

Let (Gn)n�0 be the filtration defined by

Gn = σ
{
η(j, x); j � n, x ∈ Z

d
}
.

For any fixed path ω, ((
∑n

j=1 βη(j,ωj )) − nλ(β))n�1 is a random walk with independent increments thus it is not
hard to see that (Zx

n,Gn)n�0 is a positive martingale. Therefore, it converges Q-a.s. to a limit Zx∞. Since the event
(Zx∞ = 0) is measurable with respect to the tail σ -field⋂

n�1

σ
{
η(j, x); j � n, x ∈ Z

d
}
,

by Kolmogorov’s 0–1 law, there are only two possible situations

Q(Zx∞ = 0) = 1 or Q
(
Zx∞ = 0

) = 0.

In the former case, we say that strong disorder holds and in the latter case we say that weak disorder holds.

1.2. The Brownian model of directed polymers

• Let ((ωt )t∈R+ , (P x)x∈Rd ) denote a d-dimensional standard Brownian motion, defined on a measurable space
(Ω,F). In the sequel, P will denote P 0 and P x

t the Brownian measure on paths of length t starting from x. For
t > 0 and x, y in R

d , let p(t, x, y) be the transition density of the Brownian motion:

p(t, x, y)
def.= 1

(2πt)d/2
e−|y−x|2/(2t).

• The random environment η is a Poisson point process on R+ × R
d with unit intensity, defined on a probability

space (M,G,Q). We recall that η is an integer valued random measure characterized by the following property:
If A1, . . . ,An ∈ B(R+ × R

d) are disjoint and bounded Borel sets, then

Q

(
n⋂

j=1

(
η(Aj ) = kj

)) =
n∏

j=1

e−|Aj | |Aj |kj

kj !

where k1, . . . , kn ∈ N and |.| denotes the Lebesgue measure in R
d+1. We define Vt to be the unit volume “tube”

around the graph {(s,ωs)}0<s�t of the Brownian path:

Vt = Vt (ω) = {
(s, x); s ∈]0, t], x ∈ U(ωs)

}
where U(x) is the closed ball in R

d with unit volume and centered at x ∈ R
d .

• For any t > 0, we define the (Q-random) polymer measure μx
t on paths of length t starting from x by:

μx
t (dω) = exp(βη(Vt ) − λ(β)t)

Zx
t

P x
t (dω),

where β ∈ R is the inverse temperature and

Zx
t = P x

(
exp

(
βη(Vt ) − λ(β)t

))
is the normalized partition function (Q(Zx

t ) = 1). In this setting, the random environment is a Poisson point
process so we get the explicit value:

λ(β) = eβ − 1 ∈]−1,∞[.
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It is natural to introduce the filtration (Gt )t>0 defined by :

Gt = σ
{
η(A); A ∈ B

(]0, t] × R
d
)}

.

As in the discrete setting, it is not hard to show that (Zx
t ,Gt )t>0 is a positive martingale which converges Q-a.s. to

a non-negative random variable Zx∞ that has the following property:

Q
(
Zx∞ = 0

) = 1 or Q
(
Zx∞ = 0

) = 0.

In the former case, we say that strong disorder holds and in the latter case we say that weak disorder holds.

2. Study of the directed polymers when the normalized partition function is bounded in L2(Q)

From now on, in the rest of this paper, we will only consider the case d � 3 and we will suppose that the nor-
malized partition function is bounded in L2(Q). In that case, the latter converges Q-a.s. and in L2(Q) to the random
variable Zx∞. The L2-convergence implies that Q(Zx∞) = 1 and therefore weak disorder holds. Under these assump-
tions, the behavior of the typical path under the polymer measure is diffusive (see [4] for the discrete case and [5] for
the continuous case).

2.1. The random walk model

In order to get a nice probabilistic interpretation, we work on the product space (Ω2,F⊗2, (P x ⊗ P y)x,y∈Zd ) and
thus consider another simple random walk (ω̃n)n∈N independent of the first one (ωn)n∈N under the same environment.

Let λ2(β)
def.= λ(2β) − 2λ(β) and Nk,n = Nk,n(ω, ω̃) be the number of ordered intersections of ω and ω̃ between k

and n:

Nk,n
def.=

n∑
j=k

1ωj =ω̃j
.

With these notations, the following proposition is straightforward (e.g., [4]):

Proposition 2.1. We have the following identity:

Q
((

Zx
n

)2) = P x ⊗ P x
(
eλ2(β)N1,n

) = P ⊗ P
(
eλ2(β)N1,n

)
.

In particular,

sup
n�0

Q
((

Zx
n

)2) = P ⊗ P
(
eλ2(β)N1,∞)

.

We have the following equivalence

P ⊗ P
(
eλ2(β)N1,∞)

< ∞ ⇐⇒ λ2(β) < ln

(
1

πd

)
where πd

def.= P(∃n � 1,ωn = 0) < 1. Thus, we have the following equivalence:

sup
n�0

Q
((

Zx
n

)2)
< ∞ ⇐⇒ λ2(β) < ln

(
1

πd

)
.

A series of articles [7,1,11] lead to the following central limit theorem:

Theorem 2.2 ((Central limit theorem)). Suppose that the normalized partition function is bounded in L2:

λ2(β) < ln

(
1

πd

)
.

Then, for all f ∈ C(Rd) with at most polynomial growth at infinity,

μx
n

(
f

(
ωn√

n

))
−→
n→∞

1

(2π)d/2

∫
Rd

f

(
x√
d

)
e−|x|2/2dx, Q-a.s.
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A step further is to try and prove a local limit theorem: one wants to obtain an expansion of the density
P x(eβHn(ω)−nλ(β)1ωn=y). As mentioned in the introduction, this has been done in [10] by Sinai. In this paper, we
will give a different proof of the local limit theorem which can be adapted to prove a continuous analogue in the
Brownian setting.

Let us introduce a few notations that we will use in the rest of this paper. We define for k � n

ek,n
def.= exp

((
n∑

j=k

βη(j,ωj )

)
− (n − k + 1)λ(β)

)
and the time reversed analogue

←
e k,n

def.= exp

((
n−k∑
j=0

βη(n − j,ωj )

)
− (n − k + 1)λ(β)

)
.

We can now recall Sinai’s local limit theorem in a suitable form:

Theorem 2.3 ([10]). Let d � 3, A > 0 and β be such that λ2(β) < ln(1/πd). Then, if (ln)n�0 is a sequence of integers
that tend to infinity such that ln = o(na) with a < 1

2 ,

P x(e1,n | ωn = y) = P x(e1,ln )P
y
(←
e n−ln,n

) + δ
x,y
n (2.1)

with

sup
|y−x|�A

√
n

Q
(∣∣δx,y

n

∣∣2)−→
n→∞0.

This leads to the following formulation that can be found in Sinai’s article:

P x(e1,n | ωn = y) = Zx∞P y
(←
e 1,n

) + δ̄
x,y
n (2.2)

with

sup
|y−x|�A

√
n

Q
(∣∣δ̄x,y

n

∣∣)−→
n→∞0.

Remark 2.4. Intuitively, the local limit theorem asserts that, conditionally to the event (ωn = y), the polymer only
“feels” the environment at times k small where it stays near x and at times k close to n where it stays near y. In
between, the polymer behaves like a conditioned simple random walk.

Remark 2.5. Theorem 2.3 leads to a weak form of Theorem 2.2: for all f ∈ C(Rd) with compact support,

μx
n

(
f

(
ωn√

n

))
Q-Probab.−→

n→∞
1

(2π)d/2

∫
Rd

f

(
x√
d

)
e−|x|2/2 dx.

This derivation can be found in [10].

Remark 2.6. At a heuristic level, we argue that the local limit theorem is a natural definition for the polymer to be
diffusive (more natural than the central limit theorem itself). Roughly, the local limit theorem implies

In
def.=

∑
x∈Zd

μn(ωn = x)2 ≈
∑
x∈Zd

(
P x

(←
e 1,n

))2
q(n)(x)2 ≈ Q

(
Z2

n

) ×
∑
x∈Zd

q(n)(x)2 ≈ C

nd/2
.

With other respects, recall (e.g. [4]) that for d = 1,2 and β = 0 or d � 3 and β large,

∃δ > 0, lim
n→∞ In � δ Q-a.s.

(at least if η is unbounded in the second case). Therefore, it is natural to call these two cases “non-diffusive” as
mentioned in the introduction.
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2.2. The Brownian model

This section is the continuous analogue of the previous one. We work on the product space (Ω2,F⊗2, (P x ⊗
P y)x,y∈Rd ) and thus consider another d-dimensional Brownian motion (ω̃t )t∈R+ independent of the first one (ωt )t∈R+
under the same environment.

Let λ2(β)
def.= λ(2β) − 2λ(β) where we recall that λ(β) = eβ − 1. Let Ns,t = Ns,t (ω, ω̃) be the volume of the

overlap in time [s, t] of unit “tubes” around ω and ω̃:

Ns,t
def.=

t∫
s

∣∣U(ωu) ∩ U(ω̃u)
∣∣du.

With these notations, we can find the following proposition in [3]:

Proposition 2.7. We have the following identity:

Q
((

Zx
t

)2) = P x ⊗ P x
(
eλ2(β)N0,t

) = P ⊗ P
(
eλ2(β)N0,t

)
.

In particular,

sup
t�0

Q
((

Zx
t

)2) = P ⊗ P
(
eλ2(β)N0,∞)

.

There exists λ(d) > 0 such that:

λ′ ∈ ]
0, λ(d)

[ ⇐⇒ P ⊗ P
(
eλ′N0,∞)

< ∞.

In [5], Comets and Yoshida prove the following central limit theorem:

Theorem 2.8 ((Central limit theorem)). Suppose that β is such that:

λ2(β) < λ(d).

Then, for all f ∈ C(Rd) with at most polynomial growth at infinity,

μx
t

(
f

(
ωt√

t

))
−→
t→∞

1

(2π)d/2

∫
Rd

f (x) e−|x|2/2 dx, Q-a.s.

As in the discrete setting, we define for s � t

es,t
def.= eβη(Vs,t )−λ(β)(t−s)

where Vs,t is the unit “tube” around the graph {(u,ωu)s<u�t }:
Vs,t = {

(u, x); u ∈]s, t], x ∈ U(ωu)
}
.

We also define the time reversed analogue:

←
e s,t

def.= eβη(
←
V s,t )−λ(β)(t−s)

where
←
V s,t=

{
(t − u,x); u ∈]0, t − s], x ∈ U(ωu)

}
.

We can now formulate a new result: the local limit theorem for Brownian polymers.

Theorem 2.9. Let d � 3, A > 0 and β be such that λ2(β) < λ(d). Then, if (lt )t�0 is a positive function that tends to
infinity such that lt = o(ta) with a < 1

2 ,

P x(e0,t | ωt = y) = P x(e0,lt )P
y
(←
e t−lt ,t

) + δ
x,y
t
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with

sup
|y−x|�A

√
t

Q
(|δx,y

t |2) →
t→∞0.

This leads to the following formulation in L1:

P x(e0,t | ωt = y) = Zx∞P y
(←
e 0,t

) + δ̄
x,y
t

with

sup
|y−x|�A

√
t

Q
(|δ̄x,y

t |) →
t→∞0.

Remark 2.10. Remarks 2.4 and 2.5 apply here too.

3. Proofs

Our proof of Theorem 2.3 is based on the way bridge measures of the simple random walk relate to the measure
of the simple random walk. This proof can be translated in the continuous setting because Brownian bridge measures
relate to the Wiener measure in a similar way. The two main relations we use are the absolute continuity result (3.4)
(relation (3.10) in the Brownian setting) and the inequality (3.6) (relation (3.13) in the Brownian setting) which can
be proved by using potential theory.

3.1. Proof of Theorem 2.3

First we state and prove a few results that we will use in the proof of Theorem 2.3. We remind the classical local
limit theorem for the simple random walk (cf. [9]):

Theorem 3.1 ((Local limit theorem)). For n ∈ N and x ∈ Z
d , we say that n and x have the same parity and write

n ↔ x if n + ∑d
k=1 xk is even and we define q̄(n)(x) to be the Gaussian approximation of q(n)(x):

q̄(n)(x)
def.= 2

(
d

2πn

)d/2

e−d|x|2/(2n).

With these notations, we have:

sup
x:n↔x

∣∣q(n)(x) − q̄(n)(x)
∣∣ = O

(
1

nd/2+1

)
. (3.1)

In particular,

sup
x:n↔x

q(n)(x) = O

(
1

nd/2

)
(3.2)

and if one fixes A > 0, there exists c > 0 such that

inf
x:n↔x

|x|�A
√

n

q(n)(x) � c
1

nd/2
. (3.3)

We will need the following obvious corollary of Theorem 3.1 which can be understood as an absolute continuity
result:

Corollary 3.2. Let t ∈]0,1[ and A > 0. There exists a constant C(A,d) > 0 such that:

∀f � 0 ∀n sup
|y−x|�A

√
n

P x ⊗ P x
(
f

(
(ωk, ω̃k)k��nt� | ωn = y, ω̃n = y

))
� C(A,d)

(1 − t)d
P x ⊗ P x

(
f

(
(ωk, ω̃k)k��nt�

))
. (3.4)



528 V. Vargas / Ann. I. H. Poincaré – PR 42 (2006) 521–534
Proof. By developing the left-hand side of the inequality:

P x ⊗ P x
(
f

(
(ωk, ω̃k)k��nt�

) | ωn = y, ω̃n = y
)

=
∑

z1,...,z�nt�∈Z
d

z̃1,...,z̃�nt�∈Z
d

q(1)(z1 − x) · · ·q(1)(z�nt� − z�nt�−1)q
(1)(z̃1 − x) · · ·q(1)(z̃�nt� − z̃�nt�−1)

×f (z1, . . . , z�nt�, z̃1, . . . , z̃�nt�)
q(n−�nt�)(y − z�nt�)

q(n)(y − x)

q(n−�nt�)(y − z̃�nt�)
q(n)(y − x)

.

By the local limit Theorem 3.1,

q(n−�nt�)(y − z�nt�)
q(n)(y − x)

�
(3.2),(3.3)

C′
(

n

n − �nt�
)d/2

� C′

(1 − t)d/2
.

Similarly,

q(n−�nt�)(y − z̃�nt�)
q(n)(y − x)

� C′

(1 − t)d/2
. �

In order to prove Theorem 2.3, we will also need to use a result that comes from discrete potential theory. For a
complete overview of potential theory for discrete Markov chains, we refer to [13].

Lemma 3.3. For d � 3 and v : Zd × Z
d → R+ a bounded and non-negative function, define

Φ(x,y) = P x ⊗ P y
(
e
∑∞

k=1 v(ωk, ω̃k)
)
.

Suppose that

sup
x,y∈Zd

Φ(x, y) < ∞.

Then there exists a constant C ∈]0,∞[ such that

sup
x,y∈Zd

P x ⊗ P y
(
e
∑n

k=1 v(ωk, ω̃k)
∣∣f (ωn, ω̃n)

∣∣) � C

nd

∑
x,y∈Zd

∣∣f (x, y)
∣∣ (3.5)

for all f in L1(Z2d) and n � 1.

Proof. We will show inequality (3.5) for n even, the case n odd being similar. Let (ωn)n�0 denote the simple random
walk on Z

d . By Theorem 4.18 in [13], (ω2n)n�0 satisfies the d-isoperimetric inequality (ISd therein) on its underly-
ing graph. By Remark 4.11 in [13], (ω2n, ω̃2n)n�0 satisfies the 2d-isoperimetric inequality on its underlying graph.
Consider the Markov chain in Z

d × Z
d with kernel:

K
(
(x, y), (x′, y′)

) =
∑

(z,z̃)∈Z2d

1

Φ(x,y)
ev(z,z̃) ev(x′,y′)p

(
(x, y), (z, z̃)

)
p
(
(z, z̃), (x′, y′)

)
where p is the transition kernel of (ωn, ω̃n)n�0. The transition kernel K is reversible with invariant measure m(x,y) =
(Φ(x, y))2 ev(x,y). By assumption, we have

0 < inf
x,y∈Zd

m(x, y) � sup
x,y∈Zd

m(x, y) < ∞.

By assumption, there exists c,C > 0 such that for all (x, y), (x′, y′) in Z
d

cp(2)
(
(x, y), (x′, y′)

)
� K

(
(x, y), (x′, y′)

)
� Cp(2)

(
(x, y), (x′, y′)

)
where p(2) is the transition kernel of (ω2n, ω̃2n)n�0. Therefore K satisfies the 2d-isoperimetric inequality on its
underlying graph. By Corollary 14.5 in [13],

sup
x,y∈Zd

1

Φ(x,y)
P x ⊗ P y

(
e
∑2n

k=1 v(ωk, ω̃k)
∣∣f (ω2n, ω̃2n)

∣∣Φ(ω2n, ω̃2n)
)
� C

1

nd

∑
d

∣∣f (x, y)
∣∣
x,y∈Z
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for all f in L1(Z2d) and n � 1. The inequality (3.5) follows by using the boundedness of v and the assumption
on Φ . �

We can now state the following useful corollary of Lemma 3.3:

Corollary 3.4. Let A > 0 and x ∈ Z
d . Under the assumptions of Lemma 3.3, there exists C ∈]0,∞[ such that:

∀n sup
|y−x|�A

√
n

P x ⊗ P x
(
e
∑n

k=1 v(ωk, ω̃k) | ωn = y, ω̃n = y
)
� C. (3.6)

Proof. Let y ∈ Z
d be such that |y − x| � A

√
n. By applying inequality (3.5) with f = 1{y,y}, we get:

P x ⊗ P x
(
e
∑n

k=1 v(ωk, ω̃k) | ωn = y, ω̃n = y
)
� C

ndP x ⊗ P x(ωn = y, ω̃n = y)
�

(3.3)
C′. �

We can now prove Theorem 2.3.

Proof of Theorem 2.3. Let ln be a sequence tending to infinity and such that ∀n ln � n/2. First, we compare in L2

the quantity P x(e1,n | ωn = y) with P x(e1,lnen−ln,n | ωn = y). Therefore we compute:

Q
(
P x(e1,n − e1,lnen−ln,n | ωn = y)

)2 = P x ⊗ P x
(
eλ2(β)N1,n − eλ2(β)N1,ln eλ2(β)Nn−ln,n | ωn = y, ω̃n = y

)
� P x ⊗ P x

(
eλ2(β)N1,ln eλ2(β)Nn−ln,nΔn | ωn = y, ω̃n = y

)
with

Δn = eλ2(β)Nln,n−ln − 1.

Let δ > 0 be such that (1 + δ)λ2(β) < ln(1/πd). We remind that this implies:

sup
x,y∈Zd

P x ⊗ P y
(
e(1+δ)λ2(β)

∑∞
k=1 1ωk=ω̃k

) = P x ⊗ P x
(
e(1+δ)λ2(β)

∑∞
k=1 1ωk=ω̃k

)
= P ⊗ P

(
e(1+δ)λ2(β)N1,∞)

< ∞.

Using inequality (3.6) with v(x, y) = (1 + δ)λ2(β)1x=y , there exists C > 0 such that:

sup
n,|y−x|�A

√
n

P x ⊗ P x
(
e(1+δ)λ2(β)N1,n | ωn = y, ω̃n = y

)
� C. (3.7)

Let ε,M be two positive numbers such that eλ2(β)ε − 1 < M . By writing

1 = 1Δn<eλ2(β)ε−1 + 1M<Δn + 1eλ2(β)ε−1�Δn�M,

we get

P x ⊗ P x
(
eλ2(β)(N1,ln+Nn−ln,n)Δn | ωn = y, ω̃n = y

)
� C

(
eλ2(β)ε − 1

) + C

Mδ
+ MP x ⊗ P x

(
1Δn�eλ2(β)ε−1eλ2(β)N1,n | ωn = y, ω̃n = y

)
.

Let q > 1 be such that 1
q

+ 1
1+δ

= 1. By Holder’s inequality and inequality (3.6), we get

P x ⊗ P x
(
1Δn�eλ2(β)ε−1eλ2(β)N1,n | ωn = y, ω̃n = y

)
�

(
P x ⊗ P x

(
Δn � eλ2(β)ε − 1 | ωn = y, ω̃n = y

))1/q
C1/(1+δ).

But, since Nln,n−ln is integer valued, we get uniformly on |y − x| � A
√

n:
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P x ⊗ P x
(
Δn � eλ2(β)ε − 1 | ωn = y, ω̃n = y

)
= P x ⊗ P x(Nln,n−ln � 1 | ωn = y, ω̃n = y)

� P x ⊗ P x(Nln,n/2 � 1 | ωn = y, ω̃n = y) + P x ⊗ P x(Nn/2,n−ln � 1 | ωn = y, ω̃n = y)

= P x ⊗ P x(Nln,n/2 � 1 | ωn = y, ω̃n = y) + P y ⊗ P y(Nln,n/2 � 1 | ωn = x, ω̃n = x) (symmetry)

�
(3.4)

C′P x ⊗ P x(Nln,n/2 � 1) + C′P y ⊗ P y(Nln,n/2 � 1)

= 2C′P ⊗ P(Nln,n/2 � 1)−→
n→∞0.

We have used in the limit above the fact that N0,∞ < ∞, P ⊗ P -a.s. and that ln −→
n→∞0. Therefore, we get

lim
n→∞ sup

|y−x|�A
√

n

P x ⊗ P x
(
eλ2(β)(N1,ln+Nn−ln,n)Δn | ωn = y, ω̃n = y

)
� C

(
eλ2(β)ε − 1

) + C

Mδ
.

We conclude that the above limit is equal to 0 by letting ε ↓ 0 and M ↑ ∞.
From now on, we suppose that ln = o(na) for some a < 1

2 and denote by P (z,k)(.) the random walk measure on
paths which start at position z at time k. By the Markov property of the simple random walk, we get:

P x(e1,lnen−ln,n | ωn = y) =
∑

|z1−x|�ln, |y−z2|�ln

P x(e1,ln1ωln=z1)
q(n−2ln)(z2 − z1)

q(n)(y − x)
P (z2,n−ln)(en−ln,n1ωn=y).

By symmetry of the simple random walk, we have:∑
|y−z2|�ln

P (z2,n−ln)(en−ln,n1ωn=y) =
∑

|y−z2|�ln

P y
(←
e n−ln,n 1ωln=z2

) = P y
(←
e n−ln,n

)
.

Therefore,

Q
((

P x(e1,lnen−ln,n | ωn = y) − P x(e1,ln )P
y
(←
e n−ln,n

))2)
=

∑
|z1−x|�ln, |y−z2|�ln
|z′

1−x|�ln, |y−z′
2|�ln

δ
z1,z2,x,y
n δ

z′
1,z

′
2,x,y

n

×P x ⊗ P x
(
eλ2(β)N1,ln 1ωln=z1 1ω̃ln=z′

1

)
P (z2,n−ln) ⊗ P (z′

2,n−ln)
(
eλ2(β)Nn−ln,n1ωn=y1ω̃n=y

)
where

δ
z,w,x,y
n = q(n−2ln)(w − z)

q(n)(y − x)
− 1.

The idea is that, by the classical local limit theorem, we get in the previous sum the following estimate:

q(n−2ln)(z2 − z1)

q(n)(y − x)
≈ q̄(n−2ln)(z2 − z1)

q̄(n)(y − x)
≈ 1.

Let us make this statement rigorous and obtain inequality (3.8) below. We use the notations of Theorem 3.1 and
decompose δ

z,w,x,y
n into three terms:

δ
z,w,x,y
n = δ

z,w,x,y

1,n + δ
z,w,x,y

2,n + δ
z,w,x,y

3,n

where

δ
z,w,x,y

1,n = q(n−2ln)(w − z) − q̄(n−2ln)(w − z)

q(n)(y − x)
, δ

z,w,x,y

2,n = q̄(n−2ln)(w − z) − q̄(n)(y − x)

q(n)(y − x)
,

δ
z,w,x,y

3,n = q̄(n)(y − x) − q(n)(y − x)

(n)
.

q (y − x)
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An application of (3.1) and (3.3) gives for j = 1,3:

sup
|z−x|�ln, |y−w|�ln

|y−x|�A
√

n

∣∣δz,w,x,y
j,n

∣∣ = O

(
1

n

)
−→
n→∞0.

An application of (3.3) gives:∣∣δz,w,x,y

2,n

∣∣ =
∣∣∣∣ q̄(n−2ln)(w − z)

q(n)(y − x)

∣∣∣∣∣∣∣∣1 − q̄(n)(y − x)

q̄(n−2ln)(w − z)

∣∣∣∣ �
(3.3)

C

∣∣∣∣1 − q̄(n)(y − x)

q̄(n−2ln)(w − z)

∣∣∣∣
� C

∣∣∣∣1 −
(

n − 2ln

n

)d/2

e
d|w−z|2
2(n−2ln)

− d|y−x|2
2n

∣∣∣∣.
It is not hard to show that:

sup
|z−x|�ln, |y−w|�ln

|y−x|�A
√

n

∣∣∣∣1 −
(

n − 2ln

n

)d/2

e
d|w−z|2
2(n−2ln)

− d|y−x|2
2n

∣∣∣∣−→
n→∞0

so we have

sup
|z−x|�ln, |y−w|�ln

|y−x|�A
√

n

∣∣δz,w,x,y

2,n

∣∣−→
n→∞0.

Finally, we get:

sup
|y−x|�A

√
n

Q
((

P x(e1,lnen−ln,n | ωn = y) − P x(e1,ln )P
y
(←
e n−ln,n

))2)
� sup

|z−x|�ln, |y−w|�ln
|y−x|�A

√
n

∣∣δz,w,x,y
n

∣∣2(
P ⊗ P

(
eλ2(β)(1+N1,ln )

))2 −→
n→∞0. (3.8)

Therefore, we get the expansion (2.1). To get the expansion (2.2), observe that

P x(e1,ln )
L2(Q)−→
n→∞Zx∞

and, by symmetry,

sup
y∈Zd

Q
((

P y(
←
e n−ln,n) − P y

(←
e 1,n

))2) = P ⊗ P
(
eλ2(β)(1+N1,ln ) − eλ2(β)(1+N1,n−1)

)−→
n→∞0. �

3.2. Proof of Theorem 2.9

In order to prove Theorem 2.9, we adapt in detail the previous proof to the Brownian setting. In the discrete setting,
there are three key intermediate results: the local limit Theorem 3.1, Corollaries 3.2 and 3.4. In the continuous setting,
we do not need any local limit theorem since Brownian motion is already a Gaussian process. Therefore, we only
require a Brownian analogue to Corollaries 3.2 and 3.4. The following construction of the Brownian bridge can be
found in the appendix of [12]:

Proposition 3.5. For x, y ∈ R
d , t > 0, there exists a unique probability measure P

x,y
t on C([0,1],R

d) such that for
s ∈ [0, t[, A ∈ Fs :

P
x,y
t (A) = 1

p(t, x, y)
P x

(
1Ap(t − s,ωs, y)

)
(3.9)

y → P
x,y
t is a regular conditional probability of P x

t given ωt = y.

In the sequel, we will always work with the representation (3.9) of Brownian bridge. With this representation, we can
now easily prove the Brownian analogue of Corollary 3.2:
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Corollary 3.6. Let s ∈]0,1[ and A > 0. There exists a constant C(A,d) > 0 such that

∀f � 0 ∀t > 0 sup
|y−x|�A

√
t

P x
(
f

(
(ωu)u�st

) | ωt = y
)
� C(A,d)

(1 − s)d/2
P x

(
f

(
(ωu)u�st

))
. (3.10)

Proof. If |y − x| � A
√

t then

P x
(
f

(
(ωu)u�st

) | ωt = y
) = (2πt)d/2

(2πt(1 − s))d/2
e|y−x|2/(2t)P x

(
e−|y−ωst |2/(2t (1−s))f

(
(ωu)u�st

))
� eA2/2

(1 − s)d/2
P x

(
f

(
(ωu)u�st

))
. �

The Brownian analogue to Lemma 3.3 is a slight variation of Lemma 3.1.3 in [5].

Lemma 3.7. For d � 3 and v : Rd → R+ a bounded, non-negative and compactly supported measurable function,
define

Φ(x,y) = P x ⊗ P y
(
e
∫ ∞

0 v(ω̃s−ωs)ds
)
.

Suppose that

sup
x,y∈R2d

Φ(x, y) < ∞.

Then there exists a constant C > 0 such that

sup
x,y∈R2d

P x ⊗ P y
(
e
∫ t

0 v(ω̃s−ωs)ds
)∣∣f (ωt , ω̃t )

∣∣ � C

td

∫
R2d

∣∣f (x, y)
∣∣dx dy (3.11)

for all f in L1(R2d) and t > 0.

Proof. By using the same arguments as the ones in the proof of Lemma 3.1.3 in [5], all we have to prove is

∀F ∈ C∞
c

(
R

2d
) ∫
R2d

(
1

2
∇x,yF · ∇x,yΦ − v(y − x)F (x, y)Φ(x, y)

)
dx dy = 0.

Since (ω̃s/2 − ωs/2)s�0 is a Brownian motion, we have that Φ(x,y) = Φ̃(y − x) where:

∀z ∈ R
d Φ̃(z) = P z

(
e
∫ ∞

0
1
2 v(ωs)ds

)
.

By Eq. (3.19) in the proof Lemma 3.1.3 in [5], we have:

∀g ∈ C∞
c

(
R

d
) ∫

Rd

(∇ỹg(ỹ) · ∇ỹ Φ̃ − v(ỹ)g(ỹ)Φ̃(ỹ)
)

dỹ = 0. (3.12)

By making the change of variable (x̃, ỹ) = (y + x, y − x), F(x, y) = f (x̃, ỹ) we get:

∇x,yF · ∇x,yΦ = −(∇x̃f − ∇ỹf )∇ỹ Φ̃ + (∇x̃f + ∇ỹf )∇ỹ Φ̃ = 2∇ỹf ∇ỹ Φ̃.

Therefore,

∀F ∈ C∞
c

(
R

2d
) ∫

R2d

(
1

2
∇x,yF.∇x,yΦ − v(y − x)F (x, y)Φ(x, y)

)
dx dy

= 1

2d

∫
R2d

(∇ỹf (x̃, ỹ)∇ỹ Φ̃(ỹ) − v(ỹ)f (x̃, ỹ)Φ̃(ỹ)
)

dx̃ dỹ

= 1

2d

∫
d

(∫
d

(∇ỹf (x̃, ỹ)∇ỹ Φ̃(ỹ) − v(ỹ)f (x̃, ỹ)Φ̃(ỹ)
)

dỹ

)
dx̃ =

(3.12)
0. �
R R
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We can now state the following analogue to Corollary 3.4:

Corollary 3.8. Let A > 0 and x, y ∈ R
d . Under the above assumptions, there exists C > 0 such that:

∀t sup
|y−x|�A

√
t

P x ⊗ P x
(
e
∫ t

0 v(ω̃s−ωs)ds | ωt = y, ω̃t = y
)
� C. (3.13)

Proof. Let r > 0 and y ∈ R
d such that |y − x| � A

√
t . By applying (3.11) with f = 1B((y,y),r), we get:

P x ⊗ P x
(
e
∫ t

0 v(ω̃s−ωs)ds1B((y,y),r)(ωt , ω̃t )
)
� C

td

∣∣B(
(y, y), r

)∣∣.
Therefore,

P x ⊗ P x
(
e
∫ t

0 v(ω̃s−ωs)ds1B((y,y),r)(ωt , ω̃t )
) | P x ⊗ P x

(
(ωt , ω̃t ) ∈ B

(
(y, y), r

))
� C

td

|B((y, y), r)|
P x ⊗ P x((ωt , ω̃t ) ∈ B((y, y), r))

. (3.14)

As r ↓ 0, a classical result on Brownian bridges asserts that the left-hand side of (3.14) tends to

P x ⊗ P x
(
e
∫ t

0 v(ω̃s−ωs)ds | ωt = y, ω̃t = y
)
.

As r ↓ 0, the right-hand side of (3.14) tends to

C
e|y−x|2/t (2πt)d

td
� (2π)dC eA2

. �
Proof of Theorem 2.9. The proof of Theorem 2.9 is quite similar but even simpler than the proof of Theorem 2.3 since
Brownian motion is already Gaussian. We will not repeat the details but we indicate the main steps for convenience.
Suppose that β is such that

λ2(β) < λ(d).

There exists δ > 0 such that (1 + δ)λ2(β) < λ(d). Using inequality (3.13) applied to v(y − x) = (1 + δ)λ2(β)|U(y −
x) ∩ U(0)|, we get the following analogue to (3.7): there exists C > 0 such that

sup
t, |y−x|�A

√
t

P x ⊗ P x
(
e(1+δ)λ2(β)N0,t | ωt = y, ω̃t = y

)
� C. (3.15)

Using inequality (3.15) and inequality (3.10), we get

P x(e0,t | ωt = y) ≈ P x(e0,lt et−lt ,t | ωt = y).

Using the Markov property and the symmetry of Brownian motion, we get

P x(e0,lt et−lt ,t | ωt = y) ≈ P x(e0,lt )P
y
(←
e t−lt ,t

)
. �
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