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Abstract

We study a stochastic Complex Ginzburg–Landau (CGL) equation driven by a smooth noise in space and we establish exponen-
tial convergence of the Markov transition semi-group toward a unique invariant probability measure. Since Doob Theorem does
not seem not to be useful in our situation, a coupling method is used. In order to make this method easier to understand, we first
focus on two simple examples which contain most of the arguments and the essential difficulties.
© 2005 Elsevier SAS. All rights reserved.

Résumé

Nous considérons l’équation de Ginzburg–Landau complexe bruitée par un bruit blanc en temps et régulier par rapport aux
variables spatiales et nous établissons le caractère exponentiellement mélangeant du semi-groupe de Markov vers une unique
mesure de probabilité invariante. Comme le Théorème de Doob semble ne pas pouvoir être appliqué, nous utilisons une méthode
de couplage. Pour une meilleur compréhension, nous focaliserons d’abord notre attention sur deux exemples qui bien que très
simples contiennent l’essentiel des difficultés.
© 2005 Elsevier SAS. All rights reserved.
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0. Introduction

Originally introduced to describe a phase transition in superconductivity [8], the Complex Ginzburg–Landau (CGL)
equation also models the propagation of dispersive non-linear waves in various areas of physics such as hydrodynamics
[19,20], optics, plasma physics, chemical reaction [10] . . . .

When working in non-homogenous or random media, a noise is often introduced and the stochastic CGL equation
may be more representative than the deterministic one.

The CGL equation arises in the same areas of physics as the non-linear Schrödinger (NLS) equation. In fact, the
CGL equation is obtained by adding two viscous terms to the NLS equation. The inviscid limits of the deterministic
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and stochastic CGL equation to the NLS equation are established in [2] and [16], respectively. The stochastic NLS
equation is studied in [5] and [6].

Ergodicity of the stochastic CGL equation is established in [1] when the noise is invertible and in [9] for the
one-dimensional cubic case when the noise is diagonal, does not depend on the solution and is smooth in space.

Our aim in this article is to study ergodicity for stochastic CGL equation under very general assumptions.
Let us recall that the stochastic CGL equation has the form⎧⎪⎨⎪⎩

du

dt
− (ε + i)�u + (η + λi)|u|2σ u = b(u)

dW

dt
,

u(t, x) = 0, for x ∈ δD, t > 0,

u(0, x) = u0(x), for x ∈ D.

The unknown u is a complex valued process depending on x ∈ D, D ⊂ R
d a bounded domain, and t � 0.

We want to consider noises which may be degenerate and our work is in the spirit of [3,7,9,12–15,17] and [22].
Many ideas of this article are taken from these works. However, we develop several generalisations.

The main idea is to compensate the degeneracy of the noise on some subspaces by dissipativity arguments, the
so-called Foias–Prodi estimates. A coupling method is developed in a sufficiently general framework to be applied
and prove exponential convergence to equilibrium.

To describe the ideas, it is convenient to introduce (ek)k∈N∗ the eigenbasis of the operator −� with Dirichlet
boundary conditions (if periodic boundary conditions were considered, it would be the Fourier basis) and PN the
eigenprojector on the first N modes.

The main assumption of the papers cited above as well as in this work is that the noise is non-degenerate on the
space spanned by (ek)1�k�N for N sufficiently large. In [9,15] and [22], the noise is also additive, i.e. b(u) does
not depend on u. The method developed in [17] allows to treat more general noises and, in [17], b is allowed to
depend on PNu. However, in this latter work, the author restricts his attention to the case when the high modes are not
perturbed by noise. It is claimed that the method can be generalised to treat a noise which hits all components. Such
a generalisation is contained in [18] in the purely additive case.

Here we develop also such a generalisation and treat a noise which may hit all modes but depends only on PNu.
We have chosen to use ideas both from [17] and from [15,22]. We hope that this makes our proof easier to understand.
Moreover, we get rid of the assumption that b is diagonal in the basis (ek)k∈N∗ .

Also, if we work in the space L2(D), it is not difficult to get a Lyapounov structure and Foias–Prodi estimates.
Thus, with an additive noise or with a noise as in [17], our results would be a rather easy applications of these methods.

However, this works only for small values of σ , namely σ < 2
d

. It is well known that the CGL equations are also
well-posed for σ ∈ [ 2

d
, 2

d−2 ) (σ ∈ [ 2
d
,∞) for d ∈ {1,2}) provided we work with H 1(D)-valued solutions and the

nonlinearity is defocussing (λ = 1). We also develop the coupling method in that context and show that it is possible
to find a convenient Lyapounov structure and derive Foias–Prodi estimates. Thus we prove exponential convergence to
equilibrium for the noises described above in all the cases when it is known that there exists a unique global solution
and an invariant measure.

Moreover, using the smoothing effect of CGL and an interpolation argument, we are able to prove exponential
convergence in the Wasserstein norm in Hs(D) for any s < 2. This give convergence to equilibrium for less regular
functional.

In order to make the understanding of the method easier, we start with two simple examples which motivate and
introduce all arguments in a simpler context. The first example is particularly simple. It introduces the idea of coupling
and the use of Girsanov transform to construct a coupling. The second example is similar to the one considered in [17].
However, it contains further difficulties and more details are given. We have tried to isolate every key argument. This
is also the opportunity to state a very general result giving conditions implying exponential mixing (Theorem 1.8). It
is a strong generalisation of Theorem 3.1 of [15].

Then, in Section 2 we deal with CGL equations. We state and prove the general ergodicity result described above

1. Preliminary results

The proof of our result is obtained by the combination of two main ideas: the coupling and the Foias–Prodi estimate.
The first subsection is a simple example devoted to understand the use of the notion of coupling. The second subsection
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is a two-dimensional example devoted to understand how we use the two main ideas. The third subsection is the
statement of an abstract result which is both fundamental and technical. The other subsections are devoted to the
proof of this abstract result. The understanding of the proof of the abstract result is not necessary to the understanding
of the rest of the article. On the contrary the three first subsections contain the main ideas of this article.

1.1. A simple example

In this subsection we introduce the notion of coupling and we motivate it on a simple example.
Let Π the one-dimensional torus. We consider the following example. We denote by X(·, x0) the unique solution

in Π of
dX

dt
+ f (X) = dW

dt
, X(0, x0) = x0, (1.1)

where f :Π → R is a Lipschitz function and W is a one-dimensional Brownian motion. It is easy to prove that X is
a Markovian process. We denote by (Pt )t its Markovian transition semigroup.

We recall the definition of ‖μ‖var, the total variation of a finite real measure μ:

‖μ‖var = sup
{∣∣μ(Γ )

∣∣ | Γ ∈ B(Π)
}
,

where we denote by B(Π) the set of the Borelian subsets of Π . It is well known that ‖ · ‖var is the dual norm of | · |∞.
We prove that there exists a unique invariant measure ν and that for any probability measure μ

‖P∗
t μ − ν‖var � c e−βt .

Using a completeness argument and the Markovian property of X, we obtain that it is sufficient to prove that for any
ψ :Π → R Borelian bounded and for any (t, x1, x2) ∈ R

+ × Π2, we have∣∣Eψ
(
X(t, x1)

)− Eψ
(
X(t, x2)

)∣∣� c|ψ |∞ e−βt .

Clearly it is sufficient to find (X1(t),X2(t)) such that for any (i, t) ∈ {1,2} × R
+, we have D(Xi(t)) = D(X(t, xi)),

where D means distribution, and∣∣Eψ
(
X1(t)

)− Eψ
(
X2(t)

)∣∣� c|ψ |∞ e−βt . (1.2)

Now we introduce the notion of coupling. Let (μ1,μ2) be two distributions on a same space (E,E). Let (Ω,F ,P)

be a probability space and let (Z1,Z2) be two random variables (Ω,F) → (E,E). We say that (Z1,Z2) is a coupling
of (μ1,μ2) if μi = D(Zi) for i = 1,2.

Remark 1.1. Although the marginal laws of (Z1,Z2) are imposed, we have a lot of freedom when choosing the law of
the couple (Z1,Z2). For instance, let us consider (W1,W2) a two-dimensional Brownian motion. Let μ be the Wiener
measure on R, which means that μ = D(W1) = D(W2). Then (W1,W2), (W ′

1,W
′
2) = (W1,W1) and (W ′′

1 ,W ′′
2 ) =

(W1,−W1) are three couplings of (μ,μ). These three couplings have very different laws. In the one hand, W1 and
W2 are independent and W1 	= ±W2 a.s. and in the other hand W ′

1 = W ′
2 and W ′′

1 = −W ′′
2 .

In order to establish (1.2), we remark that it is sufficient to build (X1,X2) a coupling of (D (X(·, x1)) ,D (X(·, x2)))

on R
+ such that for any t � 0

P
(
X1(t) 	= X2(t)

)
� c e−βt . (1.3)

By induction, it suffices to construct a coupling on a fixed interval [0, T ]. Indeed, we first set

Xi(0) = xi, i = 1,2.

Then we build a probability space (Ω ′,F ′,P
′) and a measurable function (ω′, t, x1, x2) → Zi(t, x1, x2) such that for

any (x1, x2), (Zi(·, x1, x2))i=1,2 is a coupling of (X(·, xi))i=1,2 on [0, T ].
The induction argument is then as follows. Assuming that we have built (X1,X2) on [0, nT ], we take (Z1,Z2) as

above independent of (X1,X2) on [0, nT ] and set

Xi(nT + t) = Zi

(
t,X1(nT ),X2(nT )

)
, for t ∈ (0, T ].
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The Markov property of X implies that (X1,X2) is a coupling of (D(X(·, x1)),D(X(·, x2))) on [0, (n + 1)T ].
The coupling (Z1,Z2) on [0, T ] constructed below satisfies the following properties

P
(
Z1(T , x1, x2) = Z2(T , x1, x2)

)
� p0 > 0, if x1 	= x2, (1.4)

P
(
Z1(·, x1, x2) = Z2(·, x1, x2)

)= 1, if x1 = x2. (1.5)

Invoking (1.5), we obtain that

P
(
X1(nT ) 	= X2(nT ) | X1

(
(n − 1)T

)= X2
(
(n − 1)T

))= 0.

Thus it follows

P
(
X1(nT ) 	= X2(nT )

)
� P
(
X1
(
(n − 1)T

) 	= X2
(
(n − 1)T

))
× P
(
X1(nT ) 	= X2(nT ) | X1

(
(n − 1)T

) 	= X2
(
(n − 1)T

))
.

We easily get from (1.4) and (1.5)

P
(
X1(t) 	= X2(t), for some t � nT

)
� (1 − p0)

n,

which implies (1.3) and allows us to conclude.
Before building (Z1,Z2) such that (1.4) and (1.5) hold, we need to define some notions. Let μ, μ1 and μ2 be three

probability measures on a space (E,E) such that μ1 and μ2 are absolutely continuous with respect to μ. We set

d|μ1 − μ2| =
∣∣∣∣dμ1

dμ
− dμ2

dμ

∣∣∣∣dμ,

d(μ1 ∧ μ2) =
(

dμ1

dμ
∧ dμ2

dμ

)
dμ,

d(μ1 − μ2)
+ =
(

dμ1

dμ
− dμ2

dμ

)+
dμ.

These definitions do not depend on the choice of μ. Moreover we have

‖μ1 − μ2‖var = 1

2
|μ1 − μ2|(E) = (μ1 − μ2)

+(E) = 1

2

∫
E

∣∣∣∣dμ1

dμ
− dμ2

dμ

∣∣∣∣dμ. (1.6)

The following lemma is the key of our proof.

Lemma 1.2. Let (μ1,μ2) be two probability measures on (E,E). Then

‖μ1 − μ2‖var = min P(Z1 	= Z2).

The minimum is taken over the coupling (Z1,Z2) of (μ1,μ2). Such a coupling exists and is called a maximal coupling
and has the following property:

P(Z1 = Z2,Z1 ∈ Γ ) = (μ1 ∧ μ2)(Γ ) for any Γ ∈ E .

The proof of Lemma 1.2 is given in the appendix. We consider W ′ a Wiener process. If x1 = x2 = x, we choose
the trivial coupling (Zi(·, x, x))i=1,2 on [0, T ]. In other words, we set Z1(·, x, x) = Z2(·, x, x) = X′(·, x) on [0, T ]
where X′(·, x) is the solution of (1.1) associated with W ′. Thus (1.5) is clear.

For x1 	= x2, the idea is borrowed from [15]. We consider (Z̃1(·, x1, x2), Z2(·, x1, x2)) the maximal coupling of
(D(X(·, x1) + T −·

T
(x2 − x1)),D(X(·, x2))) on [0, T ] and we set Z1(t, x1, x2) = Z̃1(t, x1, x2) − T −t

T
(x2 − x1). Then

it is easy to see that (Zi(·, x1, x2))i=1,2 is a coupling of (D(X(·, xi))i=1,2 on [0, T ] and we have

P
(
Z1(T , x1, x2) = Z2(T , x1, x2)

)
� P
(
Z̃1(·, x1, x2) = Z2(·, x1, x2)

)
. (1.7)

We need the following result which is Lemma D.1 of [17]
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Lemma 1.3. Let μ1 and μ2 be two probability measures on a space (E,E). Let A be an event of E. Assume that
μA

1 = μ1(A ∩ ·) is equivalent to μA
2 = μ2(A ∩ ·). Then for any p > 1 and C > 1∫

A

(
dμA

1

dμA
2

)p+1

dμ2 � C < ∞ implies (μ1 ∧ μ2)(A) �
(

1 − 1

p

)(
μ1(A)p

pC

)1/(p−1)

.

Using (1.7) and Lemmas 1.2 and 1.3 with E = C([0, T ];Π), we obtain that

P
(
Z1(T , x1, x2) = Z2(T , x1, x2)

)
�
(

1 − 1

p

)(
p

∫
E

(
dμ̃1

dμ2

)p+1

dμ2

)−1/(p−1)

, (1.8)

where (μ̃1,μ2) = (D(X(·, x1) + T −·
T

(x2 − x1)),D(X(·, x2))) on [0, T ].
We use a Girsanov formula to estimate

∫
E
(

dμ̃1
dμ2

)p+1 dμ2. Setting X̃(t) = X(t, x1) + T −t
T

(x2 − x1), we obtain that

μ̃1 is the distribution of X̃ under the probability P and that X̃ is the unique solution of

dX̃

dt
− 1

T
(x2 − x1) + f

(
X̃(t) + T − t

T
(x2 − x1)

)
= dW

dt
, X̃(0) = x2.

We set W ′(t) = W(t) + ∫ t

0 Rd(s)dt , where

d(t) = 1

T
(x2 − x1) + f

(
X̃(t)

)− f

(
X̃(t) + T − t

T
(x2 − x1)

)
. (1.9)

Then X̃ is a solution of

dX̃

dt
+ f
(
X̃
)= dW ′

dt
, X̃(0) = x2. (1.10)

We are working on the torus and f is continuous, therefore d is uniformly bounded:∣∣d(t)
∣∣� 1

T
+ 2|f |∞.

Hence, the Novikov condition is satisfied and the Girsanov formula can be applied. Then we set

dP
′ = exp

( t∫
0

d(s)dW(s) − 1

2

t∫
0

∣∣d(s)
∣∣2 dt

)
dP.

We deduce from the Girsanov formula that P′ is a probability measure under which W ′ is a Brownian motion and X̃

is a solution of (1.10), then the law of X̃ under P
′ is μ2. Moreover∫

E

(
dμ̃1

dμ2

)p+1

dμ2 � exp

(
cp

(
1

T
+ |f |2∞T

))
, (1.11)

which allows us to conclude this example. Indeed, by applying (1.7), (1.8) and (1.11) we get (1.4).

1.2. A representative two-dimensional example

The example we consider now is a two-dimensional system which mimics the decomposition of a stochastic partial
differential equation according to low and high modes of the solution. This example allows the introduction of the
main ideas in a simplified context, the system has the form{dX + 2X dt + f (X,Y )dt = σl(X)dβ,

dY + 2Y dt + g(X,Y )dt = σh(X)dη, (1.12)

X(0) = x0, Y (0) = y0.
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We set u = (X,Y ) and W = (β, η). We use the following assumptions⎧⎨⎩
(i) f, g, σl and σh are bounded and Lipschitz.
(ii) There exists K0 > 0 such that,

f (x, y)x + g(x, y)y � −(|x|2 + |y|2 + K0
)
, (x, y) ∈ R2.

(1.13)

Condition (i) ensures existence and uniqueness of a solution to (1.12) once the initial data u0 = (x0, y0) is given. It is
also classical that weak existence and uniqueness holds. We denote by X(·, u0), Y(·, u0), u(·, u0) the solution where
u0 = (x0, y0) and u = (X,Y ). Moreover, it is easy to see that, by (ii), there exists an invariant measure ν.

Contrary to Section 1.1, we want to allow degenerate noises. More precisely, we want to treat the case when the
noise on the second equation may vanish. This possible degeneracy is compensated by a dissipativity assumption. We
use the following assumptions.{

(i) There exists σ0 > 0 such that, σl(x) � σ0, x ∈ R.

(ii)
∣∣g(x, y1) − g(x, y2)

∣∣� |y1 − y2|, (x, y1, y2) ∈ R
2.

(1.14)

By the dissipativity method (see [4], Section 11.5), (ii) implies exponential convergence to equilibrium for the second
equation if X is fixed. Whilst the coupling argument explained in Section 1.1 can be used to treat the first equation
when Y is fixed. Note however that we need a more sophisticated coupling here. Indeed, the simple coupling explained
above seems to be useful only for additive noise.

Here, we explain how these two arguments may be coupled to treat system (1.12). The essential tool which allows
to treat system (1.12) is the so-called Foias–Prodi estimate which reflects the dissipativity property of the second
equation. It is a simple consequence of (1.14)(ii).

Proposition 1.4. Let (ui,Wi)i=1,2 be two weak solutions of (1.12) such that

X1(s) = X2(s), η1(s) = η2(s), s ∈ [0, t],
then ∣∣u1(t) − u2(t)

∣∣� ∣∣u1(0) − u2(0)
∣∣ e−t .

Since the noise on the second equation might be degenerate, there is no hope to use Girsanov formula on the full
system. We can use it to modify the drift of the first equation only and it is not possible to derive a strong estimate
as (1.3).

Recall that in Section 1.1, we have built the coupling (X1,X2) of (D(X(·, x1
0)),D(X(·, x2

0 ))) by induction on
[0, kT ] by using a coupling (Zi(·, x1

0 , x2
0))i=1,2 of (D(X(·, xi

0)))i=1,2 on [0, T ] which satisfies (1.5). Then if (X1,X2)

were coupled at time kT , (X1,X2) would be coupled on [kT ,∞) with probability one. Thus to conclude, it was
sufficient to establish (1.4).

In this section, since we couple (X1,X2), but not (Y1, Y2), then there is no hope that a couple (X1,X2) coupled at
time kT remains coupled at time (k + 1)T with probability one.

However, coupling the X’s and using Foias–Prodi estimates, we obtain a coupling (u1, u2) of (D(u(·, u1
0)),

D(u(·, u2
0))) on R+ such that

P
(∣∣u1(t) − u2(t)

∣∣> c e−βt
)
� c e−βt

(
1 + ∣∣u1

0

∣∣2 + ∣∣u2
0

∣∣2). (1.15)

This estimate does not imply the decay of the total variation of P∗
t δu1

0
− P∗

t δu2
0
, but the decay of this quantity in the

Wasserstein distance | · |∗Lipb
which is the dual norm of the Lipschitz and bounded functions. Indeed, for ψ Lipschitz

and bounded, we clearly have∣∣Eψ
(
u
(
t, u1

0

))− Eψ
(
u
(
t, u2

0

))∣∣= ∣∣Eψ
(
u1(t)

)− Eψ
(
u2(t)

)∣∣,
� 2|ψ |∞P

(∣∣u1(t) − u2(t)
∣∣> c e−βt

)+ |ψ |Lipc e−βt ,

and then by (1.15)∣∣Eψ
(
u
(
t, u1))− Eψ

(
u
(
t, u1))∣∣� c|ψ |Lip e−βt

(
1 + ∣∣u1

∣∣2 + ∣∣u2
∣∣2). (1.16)
0 0 b 0 0
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The idea of the proof is the following. We couple (D(X(·, ui
0), η))i=1,2. Then using the Foias–Prodi estimate, we

control Y1 − Y2 which is equivalent to control u1 − u2. By controlling u1 − u2, we control the probability to remain
coupled.

Remark 1.5. In the general case f , g are not globally Lipschitz and bounded and a cut-off has to be used. This further
difficulty will be treated in the context of the CGL equation below.

It is convenient to introduce the following functions:

l0(k) = min
{
l ∈ {0, . . . , k}|Pl,k

}
,

where minφ = ∞ and

(Pl,k)

{
X1(t) = X2(t), η1(t) = η2(t), ∀t ∈ [lT , kT ],∣∣ui(lT )

∣∣� d∗, i = 1,2.

The first requirement in (Pl,k) states that the two solutions of the first equation are coupled on [lT , kT ]. Notice that
Proposition 1.4 gives

l0(k) = l implies
∣∣u1(t) − u2(t)

∣∣� 2d∗ e−(t−lT ), for any t ∈ [lT , kT ]. (1.17)

From now on we say that (X1,X2) are coupled at kT if l0(k) � k, in other words if l0(k) 	= ∞.
We set

d0 = 4
(
d∗)2.

We prove the two following properties.
For any d0 > 0⎧⎨⎩

∃p0(d0) > 0, (pi)i�1, T0(d0) > 0 such that for any l � k,

P
(
l0(k + 1) = l | l0(k) = l

)
� pk−l , for any T � T0(d0),

1 − pi � e−iT , i � 1,

(1.18)

and, for any (R0, d0) sufficiently large,{∃T ∗(R0) > 0 and p−1 > 0 such that for any T � T ∗(R0)

P
(
l0(k + 1) = k + 1 | l0(k) = ∞, Hk � R0

)
� p−1,

(1.19)

where

Hk = ∣∣u1(kT )
∣∣2 + ∣∣u2(kT )

∣∣2.
(1.18) states that the probability that two solutions decouples at kT is very small, (1.19) states that, inside a ball, the
probability that two solutions get coupled at (k + 1)T is uniformly bounded below.

In the particular case where σl(x) does not depend on x and where K0 = 0, one can apply a similar proof as in
Section 1.1 to establish a result closely related to (1.18), (1.19). This technic has been developed in [15]. But it does
not seem to work in the general case.

Consequently, we use some tools developed in [17] to establish (1.18), (1.19). Note that in (1.19), we use only
starting points in a ball of radius R0. This is due to the fact that to prove (1.19), we need to estimate some terms
which cannot be controlled on R

2 but only inside a ball. This further difficulty is due to the fact that contrary to the
simple example of Section 1.1, we work on an unbounded phase space and is overcomed thanks to another ingredient
which is the so-called Lyapounov structure. It allows the control of the probability to enter the ball of radius R0. In
our example, it is an easy consequence of (1.13)(ii). More precisely, we use the property that for any solution u(·, u0)⎧⎨⎩E

∣∣u(t, u0)
∣∣2 � e−2t |u0|2 + K1

2
,

E
(∣∣u(τ ′, u0)

∣∣41τ ′<∞
)
� K ′(|u0|4 + 1

)
,

(1.20)

for any stopping times τ ′.
The following proposition is a consequence of Theorem 1.8 given in a more general setting below.
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Proposition 1.6. If there exists a coupling of D(u(·, ui
0),W) such that (1.18), (1.19) are satisfied, then (1.15) is true.

Thus there exists a unique invariant measure ν of (Pt )t . Moreover there exist C and α such that

‖Ptμ − ν‖∗
Lipb(R

2)
� C e−αt

(
1 +
∫
R2

|u|dμ(u)

)
.

To obtain (1.18) and (1.19), we introduce three more ingredients. First in order to build a coupling ((u1,W1),

(u2,W2)) such that ((X1, η1), (X2, η2)) is a maximal coupling, we use the following results contained in [17], al-
though not explicitly stated. Its proof is postponed to the appendix.

Proposition 1.7. Let E and F be two polish spaces, f0 :E → F be a measurable map and (μ1,μ2) be two probability
measures on E. We set

νi = f ∗
0 μi, i = 1,2.

Then there exist a coupling (V1,V2) of (μ1,μ2) such that (f0(V1), f0(V2)) is a maximal coupling of (ν1, ν2).

We also remark that given (X,η) on [0, T ], there exists a unique solution Y(·, u0) of

dY + 2Y dt + g(X,Y )dt = σh(X)dη, Y (0, u0) = y0.

We set

Y(·, u0) = Φ(X,η,u0)(·).
It is easy to see that Y is adapted to the filtration associated to η and X.

Proposition 1.4 implies that for any given (X,η)∣∣Φ(X,η,u1
0

)
(t) − Φ

(
X,η,u2

0

)
(t)
∣∣� e−t

∣∣u1
0 − u2

0

∣∣. (1.21)

Then we rewrite the equation for X as follows{
dX + 2X dt + f

(
X,Φ(X,η,u0)

)
dt = σl(X)dβ,

X(0) = x0.
(1.22)

The Girsanov formula can then be used on (1.22) as in Section 1.1.
We finally remark that by induction, it suffices to construct a probability space (Ω0,F0,P0) and two measur-

able couples of functions (ω0, u
1
0, u

2
0) → (Vi(·, u1

0, u
2
0))i=1,2 and (V ′

i (·, u1
0, u

2
0))i=1,2 and such that, for any (u1

0, u
2
0),

(Vi(·, u1
0, u

2
0))i=1,2 and (V ′

i (·, u1
0, u

2
0))i=1,2 are two couplings of (D(u(·, ui

0),W))i=1,2 on [0, T ]. Indeed, we first set

ui(0) = ui
0, Wi(0) = 0, i = 1,2.

Assuming that we have built (ui,Wi)i=1,2 on [0, kT ], then we take (Vi)i and (V ′
i )i as above independent of

(ui,Wi)i=1,2 on [0, kT ] and set(
ui(kT + t),Wi(kT + t)

)= {Vi

(
t, u1(kT ),u2(kT )

)
if l0(k) � k,

V ′
i

(
t, u1(kT ),u2(kT )

)
if l0(k) = ∞,

(1.23)

for any t ∈ [0, T ].

Proof of (1.18). To build (Vi(·, u1
0, u

2
0))i=1,2, we apply Proposition 1.7 to E = C((0, T );R

2)2, F = C((0, T );R)2,

f0(u,W) = (X,η), where u =
(

X

Y

)
, W =

(
β

η

)
,

and to

μi = D
(
u
(·, ui

0

)
,W
)
, on [0, T ].

Remark that if we set νi = f ∗
0 μi , we obtain

νi = D
(
X
(·, ui

)
, η
)
, on [0, T ].
0
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We write

(Zi, ξi) = f0(Vi), i = 1,2.

Then (Vi(·, u1
0, u

2
0))i=1,2 is a coupling of (μ1,μ2) such that ((Zi, ξi)(·, u1

0, u
2
0))i=1,2 is a maximal coupling of

(ν1, ν2).
We first use a Girsanov formula to estimate Ip , where

Ip =
∫
F

(
dν2

dν1

)p+1

dν2.

Then, using Lemma 1.2, we establish (1.18). �
We consider a couple (ui,Wi)i=1,2 consisting of two solutions of (1.12) on [0, kT ]. From now on, we are only

concerned with a trajectory of (ui,Wi)i=1,2 such that l0(k) = l � k. We set

x = X1(kT ) = X2(kT ), yi = Yi(kT ), i = 1,2.

Let (β, ξ) be a two-dimensional Brownian motion defined on a probability space (Ω,F ,P). We denote by Z the
unique solution of{

dZ + 2Z dt + f
(
Z,Φ

(
Z(·), ξ(·), (x, y1)

))
dt = σl(Z)dβ,

Z(0) = x.
(1.24)

Taking into account (1.24), we obtain that ν1 is the distribution of (Z, ξ) under the probability P.
We set β̃(t) = β(t) + ∫ t

0 d(s)dt where

d(t) = 1

σl(Z(t))

(
f
(
Z(t),Φ

(
Z,ξ, (x, y2)

)
(t)
)− f

(
Z(t),Φ

(
Z,ξ, (x, y1)

)
(t)
))

. (1.25)

Then Z is a solution of{
dZ + 2Z dt + f

(
Z,Φ

(
Z(·), ξ(·), (x, y2)

))
dt = σl(Z)dβ̃,

Z(0) = x.
(1.26)

Since f is bounded and σl is bounded below, then d is uniformly bounded. Hence, the Novikov condition is satisfied
and the Girsanov formula can be applied. Then we set

dP̃ = exp

( T∫
0

d(s)dW(s) − 1

2

T∫
0

∣∣d(s)
∣∣2 dt

)
dP.

We deduce from the Girsanov formula that P̃ is a probability under which (β̃, ξ) is a Brownian motion and since Z is
a solution of (1.26), then the law of (Z, ξ) under P̃ is ν2. Moreover

Ip � E exp

(
cp

T∫
0

∣∣d(s)
∣∣2 dt

)
. (1.27)

Since f is Lipschitz, then we infer from (1.25) and (1.14)i) that∣∣d(t)
∣∣� σ−1

0 |f |Lip
∣∣Φ(Z(·), ξ(·), (x, y1)

)
(t) − Φ

(
Z(·), ξ(·), (x, y2)

)
(t)
∣∣.

Now we use the Foias–Prodi estimate. Applying (1.17) and (1.21), it follows from l0(k) = l that∣∣d(t)
∣∣2 � d0σ

−2
0 |f |2Lip exp

(−2(k − l)T
)
.

Then it follows that

Ip � exp
(
cpσ−2d0|f |2 e−2(k−l)T

)
. (1.28)
0 Lip
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Note that

‖ν1 − ν2‖var =
∫
F

∣∣∣∣dν2

dν1
− 1

∣∣∣∣dν2 �

√∫ (
dν2

dν1

)2

dν2 − 1.

We infer from (1.28) that, for T � T0(d0) = (σ−2
0 cpd0|f |2Lip)

−1,

‖ν1 − ν2‖var � e−(k−l)T .

Applying Lemma 1.2 to the maximal coupling (Z1,Z2)i=1,2 of (ν1, ν2) gives

P
(
(Z1, ξ1) 	= (Z2, ξ2)

)
� ‖ν1 − ν2‖var � e−(k−l)T . (1.29)

Using (1.23) and (1.29), we obtain that on l0(k) = l

P
(
(X1, η1) 	= (X2, η2) on

[
kT , (k + 1)T

] |FkT

)
� e−(k−l)T .

Noticing that{
l0(k + 1) = l

}= {l0(k) = l
}∩ {(X1, η1) = (X2, η2) on

[
kT , (k + 1)T

]}
and integrating over l0(k) = l gives for T � T0(d) and for k > l

P
(
l0(k + 1) 	= l | l0(k) = l

)
� e−(k−l)T . (1.30)

Now, it remains to consider the case k = l, we apply Lemmas 1.2 and 1.3 to (Zi, ξi)i=1,2 which gives

P
(
(Z1, ξ1) = (Z2, ξ2)

)= (ν1 ∧ ν2)(F ) �
(

1 − 1

p

)
(pIp)−1/(p−1).

Applying (1.27) and fixing p > 1, we obtain

P
(
(Z1, ξ1) = (Z2, ξ2)

)
� p0(d0) =

(
1 − 1

p

)
p−1/(p−1) exp

(−cpd0|f |2Lip

)
. (1.31)

To conclude, we notice that (1.30) and (1.31) imply (1.18).

Proof of (1.19). Assume that we have d0 > 0, p̃ > 0, T1 > 0, R1 > 4K1 and a coupling (Ṽi(·, u1
0, u

2
0))i=1,2 of

(μ1,μ2), where

μi = D
(
u
(·, ui

0

)
,W
)
, on [0, T1], i = 1,2,

and such that for any (u1
0, u

2
0) which satisfies |u1

0|2 + |u2
0|2 � R1

P

(
Z1
(
T1, u

1
0, u

2
0

)= Z2
(
T1, u

1
0, u

2
0

)
,

2∑
i=1

∣∣ui

(
T1, u

1
0, u

2
0

)∣∣2 � d0

)
� p̃, (1.32)

where

Ṽi

(·, u1
0, u

2
0

)= (ui

(·, u1
0, u

2
0

)
,Wi

(·, u1
0, u

2
0

))
, ui

(·, u1
0, u

2
0

)= (Zi

Gi

)
, i = 1,2.

By applying the Lyapounov structure (1.20), we obtain that for any θ � T2(R0,R1)

P

(∣∣u(θ,u0)
∣∣2 � R1

2

)
� 1

4
, for any u0 such that |u0|2 � R0

2
. (1.33)

In order to build (V ′
1,V

′
2) such that (1.19) happens, we set T ∗(R0) = T1 + T2(R0) and for any T � T ∗(R0), we set

θ = T − T1 and we remark that θ � T2(R0). Then we construct the trivial coupling (V ′′
1 ,V ′′

2 ) on [0, θ ]. Finally, we
consider (Ṽ1, Ṽ2) as above independent of (V ′′

1 ,V ′′
2 ) and we set

V ′
i

(
t, u1

0, u
2
0

)= {V ′′
i

(
t, u1

0, u
2
0

)
if t � θ,

Ṽ
(
t − θ,V ′′(θ,u1, u2

)
,V ′′(θ,u1, u2

))
if t � θ.
i 1 0 0 2 0 0
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Combining (1.32) and (1.33), we obtain (1.19) with p−1 = 1
2 p̃.

To build (Ṽi(·, u1
0, u

2
0))i=1,2, we apply Proposition 1.7 to E = C((0, T1);R

2)2, F = R,

f0(u,W) = X(T1), where u =
(

X

Y

)
, W =

(
β

η

)
,

and to (μ1,μ2). Remark that if we set νi = f ∗
0 μi , we obtain

νi = D
(
X
(
T1, u

i
0

))
.

Then (Ṽi(·, u1
0, u

2
0))i=1,2 is a coupling of (μ1,μ2) such that (Zi(T1, u

1
0, u

2
0))i=1,2 is a maximal coupling of (ν1, ν2).

Now we notice that if we have (ν̂1, ν̂2) two equivalent measures such that νi is equivalent to ν̂i for i = 1,2, then
by applying two Schwartz inequality, we obtain that

Ip �
(
J 1

2p+2

)1/2(
J 2

4p

)1/4(
Î4p+2

)1/4
, (1.34)

where A = [−d1, d1] and

Ip =
∫
A

(
dν1

dν2

)p+1

dν2, J 1
p =
∫
A

(
dν1

dν̂1

)p

dν̂1,

Îp =
∫
A

(
dν̂1

dν̂2

)p

dν̂2, J 2
p =
∫
A

(
dν̂2

dν2

)p

dν̂2.

Recall that Zi the unique solution of{
dZi + 2Zi dt + f

(
Zi,Φ

(
Zi(·), ξi(·), ui

0

))
dt = σl(Zi)dβi,

Zi(0) = xi
0.

(1.35)

We set β̃i (t) = βi(t) + ∫ t

0 di(s)dt where

di(t) = − 1

σl(Zi(t))
f
(
Zi(t),Φ

(
Zi(·), ξi(·), ui

0

)
(t)
)
. (1.36)

Then Zi is a solution of{
dZi + 2Zi dt = σl(Zi)dβ̃i ,

Zi(0) = xi
0.

(1.37)

Since f is bounded and σl is bounded below, then di is uniformly bounded. Hence, the Novikov condition is satisfied
and the Girsanov formula can be applied. Then we set

dP̃i = exp

( T∫
0

di(s)dW(s) − 1

2

T∫
0

∣∣di(s)
∣∣2 dt

)
dP.

We deduce from the Girsanov formula that P̃i is a probability under which (β̃i , ξi) is a Brownian motion. We denote
by ν̂i the law of Zi(T1) under P̃i . Moreover

J i
p � exp

(
cp

T∫
0

∣∣di(s)
∣∣2 dt

)
� exp

(
cpσ−2

0 |f |2∞
)
. (1.38)

It is classical that since σl is bounded below, then ν̂i has a density q(xi
0, z) with respect to Lebesgue measure dz, that

q is continuous with respect to the couple (xi
0, z), where xi

0 is the initial value and where z is the target value and that

q > 0. Then, we can bound q and q−1 uniformly on |xi
0| � R1 and z ∈ A = [−d1, d1], which allows us to bound Îp

and then Ip . Actually:

Ip � C′(p, d1, T1,R1) < ∞. (1.39)
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Now we apply Lemmas 1.3 and 1.2:

P
(
Z1(T1) = Z2(T1),

∣∣Z1(T1)
∣∣� d1

)
�
(

1 − 1

p

)
p−1/(p−1)I

−1/(p−1)
p ν1

([−d1, d1]
)p/(p−1)

. (1.40)

If we fix d1 > 4K1, then we obtain from the Lyapounov structure (1.20) that there exists T1 = T1(R1, d1) such that

ν1
([−d1, d1]

)
� 1

2
. (1.41)

Combining (1.39), (1.40) and (1.41) gives

P
(
Z1(T1) = Z2(T1),

∣∣Z1(T1)
∣∣� d1

)
� C(p,d1, T1,R1) > 0. (1.42)

Note that

P
(
Z1(T1) = Z2(T1),

∣∣ui(T1)
∣∣� d1 + d2, i = 1,2

)
� P
(
Z1(T1) = Z2(T1),

∣∣Z1(T1)
∣∣� d1

)− 2∑
i=1

P
(∣∣ui(T1)

∣∣� d2
)
. (1.43)

Using the Lyapounov structure (1.20), we obtain that

P
(∣∣ui(T1)

∣∣� d2
)
� R1 + K1

d2
2

. (1.44)

Combining (1.42), (1.43) and (1.44), we can choose d2 sufficiently high such that, by setting d∗ = d1 +d2, d0 = (2d∗)2

and p̂ = 1
2C(2, d1, T1,R1), (1.32) holds.

1.3. Abstract result

We now state and prove an abstract result which allows to reduce the proof of exponential convergence to equilib-
rium to the verification of some conditions, as was done in the previous section.

This result is closely related to the abstract result of [17]. Our proof has some similarity with the one in the reference
but, in fact, is closer to arguments used in [22]. Our abstract result could be used in articles [11,13–15] and [17] to
conclude.

In fact, in [17] a family (rk, sk) of subprobability are used, whereas in [11,15] a family of subsets Q(l, k) are
introduced. Here, we use a random integer valued process l0(k). The three points of view are equivalent, the corre-
spondence is given by

sk+1 = P
({

l0(k + 1) = 1} ∩ ·), rk+1 = P
({

l0(k + 1) = 1
}c ∩ ·),

and

Q(l, k) = {l0(k) = l
}
.

The result has already been applied in Section 1.2, the function used below is

H(u0) = |u0|2,
in this example. In fact, in most of the application and in particular for the CGL equation in the first case treated below,
H will be the square of the norm. We are concerned with v(·, (u0,W0)) = (u(·, u0),W(·,W0)), a couple of strongly
Markovian process defined on polish spaces (E,dE) and (F, dF ). We denote by (Pt )t∈I the Markovian transition
semigroup of u, where I = R

+ or T N = {kT , k ∈ N}.
We consider for any initial conditions (v1

0, v2
0) a coupling (v1, v2) of (D(v(·, v1

0)),D(v(·, v2
0))) and a random

integer valued process l0 : N → N ∪ {∞} which has the following properties⎧⎪⎨⎪⎩
l0(k + 1) = l implies l0(k) = l, for any l � k,

l0(k) ∈ {0,1,2, . . . , k} ∪ {∞},
l0(k) depends only of v1|[0,kT ] and v2|[0,kT ],

(1.45)
l0(k) = k implies Hk � d0,
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where

Hk = H
(
u1(kT )

)+H
(
u2(kT )

)
, H :E → R

+.

We write vi = (ui,Wi). From now on we say that (v1, v2) are coupled at kT if l0(k) � k, in other words if l0(k) 	= ∞.
Now we see four conditions on the coupling. The first condition states that when (v1, v2) have been coupled for a

long time then the probability that (u1, u2) are close is high.{
There exist c0 and α0 > 0 such that
P
(
dE

(
u1(t), u2(t)

)
> c0 e−α0(t−lT ) and l0(k) = l

)
� c0 e−α0(t−lT ),

(1.46)

for any t ∈ [lT , kT ] ∩ I .
The following property states that the probability that two solutions decouples at kT is very small⎧⎨⎩

There exist (pk)k∈N, c1 > 0, α1 > 0 such that
P
(
l0(k + 1) = l|l0(k) = l

)
� pk−l , for any l � k,

1 − pk � c1 e−α1kT , pk > 0 for any k ∈ N.

(1.47)

Next condition states that, inside a ball, the probability that two solutions get coupled at (k+1)T is uniformly bounded
below.{

There exist p−1 > 0, R0 > 0 such that
P
(
l0(k + 1) = k + 1|l0(k) = ∞, Hk � R0

)
� p−1.

(1.48)

The last ingredient is the so-called Lyapounov structure. It allows the control of the probability to enter the ball of
radius R0. It states that there exists γ > 1, such that for any solution v0⎧⎪⎪⎨⎪⎪⎩

EH
(
v(t, v0)

)
� e−α3tH(v0) + K1

2
,

E
(
H
(
v(τ ′, v0)

)γ 1τ ′<∞
)
� K ′(H(v0) + 1

)γ
,

for any stopping times τ ′ taking value in {kT , k ∈ N} ∪ {∞}.
(1.49)

The process V = (v1, v2) is said to be l0-Markovian if the laws of V (kT +·) and of l0(k+·)−k on {l0(k) ∈ {k,∞}}
conditioned by FkT only depend on V (kT ) and are equal to the laws of V (·,V (kT )) and l0, respectively.

Notice that in the example of the previous section or in the CGL case below, the process (ui,Wi)i=1,2 is l0-
Markovian but not Markovian. However, in both cases, if we choose d0 = R0, we can modify the coupling such that
the couple is Markovian at discrete times T N = {kT , k ∈ N}. But it does not seem to be possible to modify the
coupling to become Markovian at any times.

Theorem 1.8. Assume that (1.45)–(1.48) and (1.49) hold with R0 > 4K1 and R0 � d0 and that V = (v1, v2) is l0-
Markovian. Then there exist α4 > 0 and c4 > 0 such that

P
(
dE

(
u1(t), u2(t)

)
> c3 e−α4t

)
� c3 e−α4t

(
1 +H

(
u1

0

)+H
(
u2

0

))
. (1.50)

Moreover there exists a unique stationary probability measure ν of (Pt )t∈I on E. It satisfies,∫
E

H(u)dν(u) � K1

2
, (1.51)

and there exists c4 > 0 such that for any μ ∈P(E)∣∣P∗
t μ − ν

∣∣∗
Lipb(E)

� c4 e−α4t

(
1 +
∫
E

H(u)dμ(u)

)
. (1.52)

Proposition 1.6 is an easy consequence of Theorem 1.8. Actually (1.45) is clear and (1.46) and (1.49) are conse-
quence of (1.17) and (1.20) if R0 � d0. Finally, since, for any (R0, d0, T ) sufficiently high, there exists a coupling
such that (1.18) and (1.19) hold, we can choose (R0, d0, T ) such that all our assumptions are true.
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Remark 1.9. Inequality (1.52) means that for any f ∈ Lipb(E) and any u0 ∈ E∣∣∣∣Ef
(
u(t, u0)

)− ∫
E

f (u)dν(u)

∣∣∣∣� c4|f |Lipb(E) e−α4t
(
1 +H(u0)

)
.

1.4. Proof of Theorem 1.8

Reformulation of the problem. We rewrite our problem in the form on a exponential estimate.
As in the example, it is sufficient to establish (1.50). Then (1.51) is a simple consequence of (1.49) and (1.52)

follows from (1.16). Assume that t > 8T . We denote by k the unique integer such that t ∈ (2(k − 1)T ,2kT ]. Notice
that

P
(
dE

(
u1(t), u2(t)

)
> c0 e−α0(t−(k−1)T )

)
� P
(
l0(2k) � k

)+ P
(
dE

(
u1(t), u2(t)

)
> c0 e−α0(t−(k−1)T ) and l0(2k) < k

)
.

Thus applying (1.46), using 2(t − (k − 1)T ) > t , it follows

P

(
dE

(
u1(t), u2(t)

)
> c0 exp

(
−α0

2
t

))
� P
(
l0(2k) � k

)+ c0 exp

(
−α0

2
t

)
. (1.53)

In order to estimate P (l0(2k) � k), we introduce the following notation

l0(∞) = lim sup l0.

Taking into account (1.45), we obtain that for l < ∞{
l0(∞) = l

}= {l0(k) = l, for any k � l
}
.

We deduce

P
(
l0(2k) � k

)
� P
(
l0(∞) � k

)
. (1.54)

Taking into account (1.53), (1.54) and using a Chebyshev inequality, it is sufficient to obtain that there exist c5 > 0
and δ > 0 such that

E
(
exp
(
δl0(∞)

))
� c5
(
1 +H

(
u1

0

)+H
(
u2

0

))
. (1.55)

Then (1.50) follows with

α4 = min

{
α0

2
,

δ

2T

}
.

Definition of a sequence of stopping times. Using the Lyapounov structure (1.49), we prove at the end this subsection
that there exist δ0 > 0 and c6 > 0 such that

E
(
exp(δ0τ)

)
� c6
(
1 +H

(
u1

0

)+H
(
u2

0

))
, (1.56)

where

τ = min
{
t ∈ T N | H(u1(t)

)+H
(
u2(t)

)
� R0

}
.

We set

σ̂ = min
{
k ∈ N

∗ | l0(k) > 1
}
, σ = σ̂ T .

Clearly σ̂ = 1 if the two solutions do not get coupled at time 0 or T . Otherwise, they get coupled at 0 or T and remain
coupled until σ .

Let us assume for the moment that if H0 � R0, then{
E
(
exp(δ1σ)1σ<∞

)
� c7,

P(σ = ∞) � p∞ > 0.
(1.57)

The proof is given after the proof of (1.56) at the end of this subsection.
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Now we build a sequence of stopping times

τ0 = τ,

σ̂k+1 = min
{
l ∈ N

∗ | lT > τk and l0(l)T > τk + T
}
, σk+1 = σ̂k+1 × T ,

τk+1 = σk+1 + τoθσk+1,

where (θt )t is the shift operator. The idea is the following. We wait the time τk to enter the ball of radius R0. Then, if
we do not start coupling at time τk , we try to couple at time τk + T . If we fail to start coupling at time τk or τk + T

we set σk = τk + T else we set σk the time the coupling fails (σk = ∞ if the coupling never fails). Then if σk < ∞,
we retry to enter the ball of radius R0. The fact that R0 � d0 implies that l0(τk) ∈ {τk,∞}.

The idea of the l0-Markovian property is the following. Since l0(τk) ∈ {τk,∞} and l0(σk) ∈ {σk,∞}, when these
stopping times are finite and since these stopping times are taking value in T N∪ {∞}, then the l0-Markovian property
implies the strong Markovian property when conditioning with respect to Fτk

or Fσk
. Moreover, we infer from the

l0-Markovian property of V that

σk+1 = τk + σoθτk
,

which implies

τk+1 = τk + ρoθτk
, where ρ = σ + τoθσ .

Exponential estimate on ρ. Before concluding, we establish that there exist K such that for any V0 such that H0 � R0
and for any δ2 � 1

γ ′ (δ0 ∧ δ1)

EV0

(
eδ2ρ1ρ<∞

)
� K. (1.58)

Notice that for any V0 such that H0 � R0,

EV0

(
eδ2ρ1ρ<∞

)= EV0

(
eδ2σ 1σ<∞E

(
eδ2τoθσ 1τoθσ <∞|Fσ

))
.

Applying the l0-Markovian property and (1.56), we obtain

E
(
eδ2τoθσ 1τoθσ <∞|Fσ

)
� c6
(
1 +H

(
u1(σ )

)+H
(
u2(σ )

))
,

which implies

EV0

(
eδ2ρ1ρ<∞

)
� c6EV0

(
eδ2σ 1σ<∞

(
1 +H

(
u1(σ )

)+H
(
u2(σ )

)))
.

An Hölder inequality gives

EV0

(
eδ2ρ1ρ<∞

)
� c6
(
EV0 eγ ′δ2σ 1σ<∞

)1/γ ′(
EV0

(
1 +H

(
u1(σ )

)+H
(
u2(σ )

))γ )1/γ
.

Applying the Lyapounov structure (1.49) and (1.57), we obtain (1.58).

Conclusion. We remark that

E
(
eδ2τk+1 1τk+1<∞

)= E
(
eδ2τk 1τk<∞E

(
eδ2ρoθτk 1ρoθτk

<∞|Fτk

))
.

Applying again the l0-Markov property of V

E
(
eδ2τk+1 1τk+1<∞

)= E
(
eδ2τk 1τk<∞EV (τk)

(
eδ2ρ1ρ<∞

))
. (1.59)

Iterating (1.59) by using (1.58) and (1.56), we obtain

E eδ2τn1τn<∞ � c6K
n
(
1 +H

(
u1

0

)+H
(
u2

0

))
. (1.60)

Using the second inequality of (1.57) and that τ < ∞, we obtain from the l0-Markov property that

P(k0 > n) � (1 − p∞)n, (1.61)

where

k0 = inf{k ∈ N | σk+1 = ∞}.
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Then we obtain that k0 < ∞ almost surely and that

l0(∞) ∈ {τk0, τk0 + 1}.
Therefore l0(∞) < ∞ almost surely and

E exp

(
δ2

p
l0(∞)

)
�

∞∑
n=1

E e(δ2/p)(τn+1)1k0=n,

which implies, by applying a Hölder inequality,

E exp

(
δ2

p
l0(∞)

)
� eδ2/p

∞∑
n=1

(
E eδ2τn1τn�∞

)1/p(
P(k0 = n)

)1/p′
.

Applying (1.60) and (1.61), we obtain

E exp

(
δ2

p
l0(∞)

)
� c6 eδ2/p

( ∞∑
n=1

(
K1/p(1 − p∞)1/p′)n)(1 +H

(
u1

0

)+H
(
u2

0

))1/p
.

Choosing p such that K1/p(1 − p∞)1/p′
< 1 and setting δ = δ2/p, we obtain (1.55) �

Proof of (1.56). Let N be an integer such that

e−α3NT � 1

8
.

We fix i ∈ {1,2} and set

Bk = {H(ui(jNT )
)
� 2K1, for any j � k

}
, Ck = {H(ui(kNT )

)
� 2K1

}
.

Combining the Markov property of ui and the Lyapounov structure (1.49), we obtain

E
(
H
(
ui

(
(k + 1)NT

))|FkNT

)
� 1

4
H
(
ui(kNT )

)+ K1

2
. (1.62)

Hence, applying a Chebyshev inequality, it follows that

P(Ck+1|FkNT ) � 1

8K1
H
(
ui(kNT )

)+ 1

4
. (1.63)

Integrating (1.62), (1.63) over Bk , we obtain that(
E(H(ui((k + 1)NT ))1Bk+1)

P(Bk+1)

)
� A

(
E(H(ui(kNT ))1Bk

)

P(Bk)

)
, (1.64)

where

A =
( 1

4
K1
2

1
8K1

1
4

)
.

Since the eigenvalues of A are 0 and 1
2 , we obtain that

P(Bk) � 2

K1

(
1

2

)k(
1 +H

(
ui

0

))
.

It follows from R0 � 4K1 that

P(τ > kT ) � c exp

(
− k

N
ln 2

)(
1 +H

(
ui

0

))
.

Hence, taking δ0 < α3/3, we have established (1.56). �
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Proof of (1.57). Now we establish (1.57). There are two cases. The first case is l0(0) = 0. Then, applying (1.47), we
obtain that

P(σ = ∞) �
∞∏

k=0

P
(
l0(k + 1) = 0|l0(k) = 0

)
�

∞∏
k=0

pk.

The second case is l0(0) = ∞. Then

P(σ = ∞) � P
(
l0(1) = 1

) ∞∏
k=1

P
(
l0(k + 1) = 1|l0(k) = 1

)
.

Since H0 � R0, then applying (1.47) and (1.48)

P(σ = ∞) �
∞∏

k=−1

pk.

Since pk > 0 and 1 − pk exponentially decreases, then the product converges and in the two cases

P(σ = ∞) � p∞ =
∞∏

k=−1

pk > 0. (1.65)

Notice that (1.47) implies

P(σ = n) � P
(
l0(n + 1) 	= n|l0(n) = 0

)+ P
(
l0(n + 1) 	= n|l0(n) = 1

)
� 2c1 e−α1(n−1)T ,

which gives the first inequality of (1.56) and allows to conclude �
2. Properties of the CGL equation

We are concerned with the stochastic Complex Ginzburg–Landau (CGL) equations with Dirichlet boundary con-
ditions:⎧⎪⎨⎪⎩

du

dt
− (ε + i)�u + (η + λi)|u|2σ u = b(u)

dW

dt
+ f,

u(t, x) = 0, for x ∈ δD,

u(0, x) = u0(x),

(2.1)

where ε > 0, η > 0, λ ∈ {−1,1} and where D is an open bounded set of R
d with sufficiently regular boundary or

D = [0,1]d . Also f is the deterministic part of the forcing term. For simplicity in the redaction, we consider the case
f = 0. The generalisation to a square integrable f is easy. We say that it is the defocussing or the focusing equation
when λ is equal to 1 or −1, respectively.

We set

A = −�, D(A) = H 1
0 (D) ∩ H 2(D).

Now we can write problem (2.1) in the form

du

dt
+ (ε + i)Au + (η + λi)|u|2σ u = b(u)

dW

dt
, (2.2)

u(0) = u0, (2.3)

where W is a cylindrical Wiener process of L2(D).
The aim of this section is to prove some properties which will be used in Section 3 to build a coupling such that

the assumptions of Theorem 1.8 are true.
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2.1. Notations and main result

We consider (en,μn)n∈N∗ the couples of eigenvalues and eigenvectors of A (Aen = μn) such that (en)n is an
Hilbertian basis of L2(D) and such that (μn)n is an increasing sequence. We denote by PN and QN the orthogonal
projection in L2(D) on the space Sp(ek)1�n and on its complementary, respectively.

The first condition is a condition on the smoothness of the noise and a condition ensuring existence and uniqueness
of solutions.

We will sometimes consider the L2(D) subcritical condition:

H1 We assume that 0 < σ < 2
d

∧ 3
2 . Moreover u0 ∈ L2(D) and b is bounded Lipschitz

b :L2(D) → L2
(
L2(D),H 2(D)

)
.

We also consider the H 1(D) subcritical condition when the equation is defocussing.

H1′ If d � 2 we assume that σ > 0. If d > 2, we assume that 0 < σ < 2
d−2 . Moreover λ = 1, u0 ∈ H 1(D) and b is

bounded Lipschitz

b :L2(D) → L2
(
L2(D),H 2(D)

)
.

We set, for s � 2,

Bs = sup
u

∣∣b(u)
∣∣2
L2(L

2(D),Hs(D))
.

The second assumption means that b only depends on its low modes.

H2 There exists N1 such that

b(u) = b(PN1u).

The third condition is a structure condition on b. It is a slight generalisation of the usual assumption that b(u) is
diagonal in the basis (en)n.

H3 There exists N � N1, such that for any u,

PNb(u)QN = 0, QNb(u)PN = 0.

Moreover PNb(u)PN is invertible on PNH and

sup
u

∣∣(PNb(u)PN

)−1∣∣< ∞.

In this section, we define by | · |, | · |p , ‖ · ‖ and ‖ · ‖s the norm of L2(D), Lp(D), H 1(D) and Hs(D).
The Lyapounov structures are defined by

HL2 = | · |2,
HH 1 = 1

2
‖ · ‖2 + 1

2σ + 2
| · |2σ+2

2σ+2.

The energies are defined by

EL2

u (t, T ) = ∣∣u(t)
∣∣2 + ε

t∫
T

∥∥u(s)
∥∥2 ds,

and
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EH 1

u (t, T ) = HH 1(
u(t)
)+ ε

2

t∫
T

∥∥u(s)
∥∥2

2 ds + η

2

t∫
T

∣∣u(s)
∣∣4σ+2
4σ+2 ds + (η + ε)

t∫
T

∫
D

∣∣u(s, x)
∣∣2σ ∣∣∇u(s, x)

∣∣2 dx ds.

When T = 0, we simply write Eu(t) = Eu(t,0).
The first case is the L2-subcritical focusing or defocussing CGL equation with initial condition in L2(D):

Case 1.

– H1, H2 and H3 hold,
– λ ∈ {−1,1}, H = L2(D),
– H = HL2 = | · |2

L2(D)
, Eu = EL2

u .

The second case is the H 1-subcritical defocussing CGL equation with initial condition in H 1(D).

Case 2.

– H1′, H2 and H3 hold,
– λ = 1, H = H 1(D),
– H = HH 1 = 1

2‖ · ‖2
H 1(D)

+ 1
2σ+2 | · |2σ+2

L2σ+2(D)
, Eu = EH 1

u .

When it is not precised, the results stated are true in both cases. It is well known that we have existence and
uniqueness of the solutions in both cases and that the solutions are strongly Markov process. We denote by (Pt )t∈R+
the Markov transition semi-group associated to the solutions of (2.2).

The aim of this article is to establish the following result

Theorem 2.1 ((Main theorem)). There exists N0(B2, η, ε, σ,D) such that if N � N0, then in cases 1 and 2, there
exists a unique stationary probability measure ν of (Pt )t∈R+ on L2(D). Moreover, ν satisfies∫

H

‖u‖2
H 2(D)

dν(u) < ∞, (2.4)

and for any s ∈ [0,2), there exists Cs > 0 and αs such that for any μ ∈P(H)∣∣P∗
t μ − ν

∣∣∗
Lipb(H

s(D))
� Cs e−αs t

(
1 +
∫
H

|u|2
L2(D)

dμ(u)

)
. (2.5)

Furthermore, if (u,W) is a weak solution of (2.2), (2.3), with u0 taking value in L2(D) then for any f ∈ Lipb(H
s(D))∣∣∣∣Ef

(
u(t)
)− ∫

H

f (u)dν(u)

∣∣∣∣� Cs |f |Lipb(H
s(D)) e−αs t

(
1 + E|u0|2L2(D)

)
. (2.6)

Remark 2.2. In case 1, (2.5) is equivalent to (2.6). But in case 2, the Markovian transition semi-group make sense
only if u0 is taking value in H = H 1(D) because strong existence and weak uniqueness may cause problem when
u0 ∈ L2(D). Hence (2.5) make sense only if μ ∈ P(H 1(D)) which means that u0 ∈ H 1(D).

Remark 2.3. Assume that Bs < ∞ for s sufficiently high. Let k be a positive integer such that

k � 2σ + 2, if σ /∈ N, and k ∈ N if σ ∈ N.

Applying Remark 2.15 below and adapting the proof of Theorem 2.1, we obtain that (2.4) can be replaced by∫
‖u‖2

Hk(D)
dν(u) < ∞, (2.7)
H
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and (2.5) is true for any s real number such that

s < [2σ + 2], if σ /∈ N, and s ∈ R if σ ∈ N,

where [·] denote the integer part.
The condition on k and s comes from the lack of derivability of the non-linear part of the CGL equation. Assume

that we replace |u|2σ u by g(|u|2)u where

– g is infinitely continuously differentiable,
– g(x) = xσ for x � x0,
– g is increasing and g(0) = 0.

Hence Theorem 2.1, (2.7) and (2.5) are true for any k and s.

2.2. Properties of the solutions

In this subsection, we state some properties proved in the next subsections. These are used in Section 3 to apply
Theorem 1.8 in order to establish Theorem 2.1.

First, we recall the following result.

Proposition 2.4. In the two previous cases, there exists a measurable map

Φ :C
(
(0, T );PNH

)× C
(
(0, T );QNH(d+1)/2(D)

)× H → C
(
(0, T );QNH

)
,

such that for any (u,W) solution of (2.2) and (2.3)

QNu = Φ(PNu,QNW,u0) on [0, T ].
Moreover Φ is a non-anticipative functions of (PNu,QNW).

Proposition 2.4 can be proved by applying a fix point argument and by taking into account that the limit of a
sequence of measurable maps is measurable.

We have the so-called Foias–Prodi estimates.

Proposition 2.5 ((Foias–Prodi estimate)). Let u1 and u2 be two solutions of the CGL system (2.2) associated with
Wiener process W1 and W2 respectively. If

PNu1(t) = PNu2(t), QNW1(t) = QNW2(t), for T0 � t � T , (2.8)

where N is a non-negative integer, then

∣∣r(t)∣∣
H

�
∣∣r(T0)

∣∣
H

exp

(
−εμN+1

2
(t − T0) + c1

2∑
i=1

Eui
(t, T0)

)
, (2.9)

where r = u1 − u2 and T0 � t � T and where c1 > 0 only depends on ε, η, σ , D.

We deduce immediately a very useful corollary.

Corollary 2.6. For any B , there exists N ′
0(B,η, ε,D,σ ) such that under the assumptions of Proposition 2.5, under

the assumption N � N ′
0 and under the assumption

Eui
(t, T0) � ρ + B(t − T0), i = 1,2,

we obtain that∣∣r(t)∣∣
H

�
∣∣r(T0)

∣∣
H

exp
(−2(t − T0) + c1ρ

)
,

where c1 is the constant of Proposition 2.5.
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Then, by proving analogous result to the previous corollary, we obtain the Drift estimate which, in Section 3, will
ensures the Novikov condition and will allow to apply the Girsanov formula.

Lemma 2.7 ((Drift estimate)). For any B , there exists N ′′
0 (B,η, ε,D,σ ) such that for any u1, u2 solutions of the CGL

system (2.2) associated with W1 and W2 and for any N > N ′′
0

τ∫
T0

∣∣PN

(∣∣u1(s)
∣∣− ∣∣u2(s)

∣∣)∣∣2 ds � KN

∣∣r(0)
∣∣2 ecρ−3T0, (2.10)

where T > T0 � 0 and ρ,C,α > 0, where KN,c only depend on B , C, α, ε, η, σ , D, N and where we have denoted
by τ the value

τ = T0 ∨ inf

(
t ∈ [0, T ]

∣∣∣∣Eu1(t) � ρ + Bt or Eu2(t) � ρ + C(1 + tα) or
PNu1(t) 	= PNu2(t) or QNW1(t) 	= QNW2(t)

)
.

Now we set

N0 = N ′
0 ∨ N ′′

0 .

In order to apply the previous lemmas and corollary, we establish the two following results.

Proposition 2.8 ((Exponential estimate for the growth of solution)). Assume that u is a solution of (2.2), (2.3) asso-
ciated with a Wiener process W . Then, for any 0 � T0 < T � ∞

P

(
sup

t∈[T0,T [
(
Eu(t) − Bt

)
�H(u0) + ρ

)
� e−γ0ρ−3T0 ,

where B only depends on B2, σ , η, ε.

Proposition 2.9. Assume that u is a solution of (2.2), (2.3) associated with a Wiener process W . For any u2
0, we define

ũ by

ũ = PNu + φ
(
PNu,QNW,u2

0

)
.

Then, there exists α � 1 such that for any N , there exists CN ,

P

(
sup

t∈[0,T [
(
Eũ(t) − CNtα

)
� CN

(
1 +H(u0) +H

(
u2

0

)α + ρ
))

� 2 e−γ0ρ,

for any 0 � T � ∞ and any u2
0.

Let u1 and u2 be two solutions of (2.2) that correspond to deterministic initial value u1
0 and u2

0, respectively.

Lemma 2.10 ((The Lyapounov structure)). There exists α > 0 and Ck > 0 such that for any k

EH
(
ui(t)

)k �H
(
ui

0

)k e−αkt + Ck

2
,

and for any stopping time τ

EH
(
ui(τ )

)k1τ<∞ �H
(
ui

0

)k + Ck.

Using Lemma 2.10 and Chebyshev’s inequality, we obtain

Lemma 2.11. If R0 � (H(u1
0) +H(u2

0)) ∨ C1, then

P
(
H
(
u1(t)

)+H
(
u2(t)

)
� 4C1

)
� 1

2
,

providing t � θ1(R0) = 1 ln R0 .

α C1
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Then, in the second case, we control H(u(t)) by |u0|2.

Proposition 2.12. It is assumed that u is a solution of (2.2), (2.3) associated with a Wiener process W . Then, for any
T > 0

EH
(
u(T )

)
� A + BT + C

T
|u0|2,

where A, B and C only depends on B2, σ , η, ε.

Now, we claim that in the two cases, we can control the norm of solutions in Sobolev spaces by the norm in L2.

Proposition 2.13. Let k be a positive integer less than 2. There exist γk > 1 only depending on k, σ and d and Ck > 0
and ck > 0 only depending on k, (Bs)s , σ , d , ε and η such that for any T > 0 and t > 0

E

(∥∥u(T + t)
∥∥2

k
+

T +t∫
T

∥∥u(s)
∥∥2

k+1 ds

)2/γk

� ck

1

T
|u0|2 + Ck(1 + T + t).

Hence, applying a Chebyshev inequality, we obtain

Corollary 2.14. Let k be a positive integer less than 2 and δ > 0. There exist γ > 0 only depending on k, σ and d and
Cδ > 0 only depending on δ, k, (Bs)s , σ , d , ε and η such that for any t > 0

P
(∥∥u(t)

∥∥
k
� eδt

)
� Cδ e− δ

γ
t(|u0|2 + 1

)
.

Remark 2.15. Assume that Bs < ∞ for s sufficiently high. The proof of Proposition 2.13 can be adapted to k a
positive integer such that

k � 2σ + 2, if σ /∈ N, and k ∈ N if σ ∈ N,

and then Corollary 2.14 is true for such a k.
The condition on k comes from the fact that | · |σ is not C∞ on 0. As in Remark 2.3, if we replace | · |σ by a nice

function which coincides with | · |σ on [x0,∞), we can establish those results for any k.

2.3. Foias–Prodi and Drift estimates

The proofs in the first case are closely related to the proofs in the second case, but are simpler. That is the reason
why we only give the proof in the second case.

Proof of Proposition 2.5 in the second case. We denote u1 − u2 by r .
Step 1. This step is devoted to the proof of

I = ((η + i)
(|u2|2σ u2 − |u1|2σ u1

)
,Ar
)
� ε

2
‖r‖2

2 + c‖r‖2
∑

i

|ui |4σ+2
4σ+2. (2.11)

We recall the following estimate∣∣|x|2σ x − |y|2σ y
∣∣� c|x − y|(|x|2σ + |y|2σ

)
. (2.12)

Applying Hölder inequality and then (2.12) gives

I � ‖r‖2
∣∣|u2|2σ u2 − |u1|2σ u1

∣∣
2 � ‖r‖2

∣∣∣∣∣
(

2∑
|ui |2σ

)
r

∣∣∣∣∣ .
i=1 2
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Let s ∈ (1,2) such that 4σ
2−s

= 4σ + 2. Applying once more Hölder inequality and then the Sobolev embedding
Hs(D) ⊂ L4σ+2(D) gives

I � ‖r‖2|r|4σ+2

2∑
i=1

|ui |2σ
4σ+2 � ‖r‖2‖r‖s

2∑
i=1

|ui |2σ
4σ+2,

which yields by the interpolatory inequality ‖ · ‖s � ‖ · ‖s−1
2 ‖ · ‖2−s and then an arithmetic-geometric inequality

I � ‖r‖s
2‖r‖2−s

∑
i

|ui |2σ
4σ+2 � ε

2
‖r‖2

2 + c‖r‖2
∑

i

|ui |4σ+2
4σ+2.

Step 2. We now establish (2.9).
Taking into account (2.8), we see that r satisfies the equation

dr

dt
+ (ε + i)Ar = (η + i)QN

(|u2|2σ u2 − |u1|2σ u1
)
. (2.13)

Taking the scalar product of (2.13) by −2Ar , we obtain:

d‖r‖2

dt
+ 2ε‖r‖2

2 = 2
(
(η + i)

(|u2|2σ u2 − |u1|2σ u1
)
,Ar
)
. (2.14)

Taking into account (2.11), (2.14) gives :

d‖r‖2

dt
+ ε‖r‖2

2 � c‖r‖2
∑

i

|ui |4σ+2
4σ+2. (2.15)

Since r ∈ QNH , then μN+1‖r‖2 � ‖r‖2
2 and it follows from (2.15) that

d‖r‖
dt

+ εμN+1‖r‖2 � c‖r‖2
∑

i

|ui |4σ+2
4σ+2. (2.16)

Applying Gromwall lemma to (2.16), we obtain (2.9). �
Proof of Lemma 2.7 in the second case. We first state the following lemma which strengthen Proposition 2.5.

Lemma 2.16. Let u1 and u2 be two solutions of the CGL system (2.2) associated with W1 and W2 respectively. If

PNu1(s) = PNu2(s), QNW1(s) = QNW2(s), for any s ∈ (T0, t), (2.17)

where N is a non-negative integer, then∣∣r(t)∣∣
L2 �

∣∣r(0)
∣∣
L2 exp

(
−εμN+1

2
t + c1Eu1(t)

)
, (2.18)

where r = u1 − u2 and where c1 > 0 only depends on ε, η, σ , D. Moreover, for any B , there exists N ′′
0 (B,η, ε,D,σ )

such that N � N ′′
0 and

Eu1(t) � ρ + Bt (2.19)

imply ∣∣r(t)∣∣
L2 �

∣∣r(0)
∣∣
L2 exp(−2t + c1ρ), (2.20)

where c1 is the constant of Proposition 2.5.

For the first case, this result is Proposition 1.1.6 of [21]. For the second case the proof is the same.

Sketch of the proof of Lemma 2.16. The proof of Lemma 2.16 is similar to the proof of Proposition 2.5. Indeed it is
sufficient to prove

I ′ = −((η + λi)
(|u2|2σ u2 − |u1|2σ u1

)
, r
)
� c
∣∣|u1|2σ |r|2∣∣ (2.21)
1
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to establish Lemma 2.16. We prove (2.21) as follows. Remarking that

|u2|2σ u2 − |u1|2σ u1 = |u2|2σ r + u1
(|u2|2σ − |u1|2σ

)
,

and ∣∣u1
(|u2|2σ − |u1|2σ

)∣∣� c′|u1|
(|u2|2σ−1 + |u1|2σ−1)|r|,

we obtain

I ′ � −η
∣∣|u2|2σ |r|2∣∣1 + c′∣∣|u1|2σ |r|2∣∣1 + c′∣∣u1|u2|2σ−1r2

∣∣
1.

Applying arithmetic-geometric inequality to the last term of the previous equality, we obtain for σ � 1
2

c′∣∣u1|u2|2σ−1r2
∣∣
1 � η

∣∣|u2|2σ |r|2∣∣1 + c′′∣∣|u1|2σ |r|2∣∣1.
We infer (2.21) for σ � 1

2 from the two previous inequalities.
To obtain (2.21) when σ < 1

2 , one remark that D is the union of {x||u1(x)| � |u2(x)|} and {x||u1(x)| < |u2(x)|}.
Treating the first set is trivial. The treatment done before works for the second set. �

Let us set

I =
τ∫

T0

∣∣PN

(∣∣u1(s)
∣∣2σ

u1(s) − ∣∣u2(s)
∣∣2σ

u2(s)
)∣∣2 ds.

Applying Lemma 2.16 with the same N ′′
0 , we obtain∣∣r(t)∣∣� ∣∣r(0)

∣∣ exp(−2t + c1ρ), for τ � t � 0. (2.22)

Noticing that, since we work in a finite dimensional space, all the norm are equivalent. Hence there exists KN such
that

I � KN

τ∫
T0

∣∣∣∣u1(s)
∣∣2σ

u1(s) − ∣∣u2(s)
∣∣2σ

u2(s)
∣∣2
1 ds. (2.23)

It follows from (2.12) and Hölder inequality that

∣∣∣∣u1(s)
∣∣− ∣∣u2(s)

∣∣∣∣2
1 � c

∣∣∣∣∣
( 2∑

i=1

∣∣ui(s)
∣∣2σ
)∣∣r(s)∣∣∣∣∣∣∣

2

1

� c

(
2∑

i=1

∣∣ui(s)
∣∣4σ

4σ

)∣∣r(s)∣∣2,
which yields, by applying an arithmetic-geometric inequality,

∣∣∣∣u1(s)
∣∣− ∣∣u2(s)

∣∣∣∣2
1 � c

(
1 +

2∑
i=1

∣∣ui(s)
∣∣4σ+2
4σ+2

)∣∣r(s)∣∣2. (2.24)

Combining (2.22), (2.23) and (2.24) and then an integration by parts, we obtain

I � KN

∣∣r(0)
∣∣2 τ∫

T0

exp(−4t + c1ρ)

(
1 +

2∑
i=1

∣∣ui(s)
∣∣4σ+2
4σ+2

)
ds

� KN

∣∣r(0)
∣∣2 τ∫

T0

exp(−4t + c1ρ)

(
1 +

2∑
i=1

t∫
T0

∣∣ui(s)
∣∣4σ+2
4σ+2 ds

)
dt

� KN

∣∣r(0)
∣∣2 τ∫

exp(−4t + c1ρ)
(
1 + 2ρ + Bt + C

(
1 + tα

))
dt
T0
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� KN

∣∣r(0)
∣∣2 τ∫

T0

exp(−3t + 2c1ρ)dt,

which allows us to conclude. �
2.4. An exponential estimate for the growth of solution

As in the previous subsection, we only give the proof of Propositions 2.8 in the second case.
We set

E′
u(t) = 1

2

∥∥u(t)
∥∥2 + 1

2σ + 2

∣∣u(t)
∣∣2σ+2
2σ+2 + ε

t∫
0

∥∥u(s)
∥∥2

2 ds + η

t∫
0

∥∥u(s)
∥∥4σ+2

4σ+2 ds

+ (η + ε)

t∫
0

∫
D

(
1 + χ(u∇ū)

)∣∣u(s, x)
∣∣2σ ∣∣∇u(s, x)

∣∣2 dx ds,

where χ(z) = 2σ �e(�e z
z

). Applying Ito’s formula to

H(u) = 1

2
‖u‖2 + 1

2σ + 2
|u|2σ+2

2σ+2,

we obtain

E′
u(t) = H(u0) + M1(t) + M2(t) + I1(t) + I2(t), (2.25)

where we have denoted

M1(t) =
t∫

0

(−�u(s), b
(
u(s)
)
, dW(s)

)
, M2(t) =

t∫
0

(∣∣u(s)
∣∣, b(u(s)

))
dW(s)

)
,

I1(t) = 1

2

t∫
0

∣∣b(u(s)
)∣∣2
L2(L2(D),H 1(D))

ds, I2(t) = 1

2

t∫
0

2∑
i=1

∣∣gi

(
u(s)
)∣∣2
L2(L2(D))

ds,

where

gi(u)(k) = fi(u)
(
b(u)h

)
, f1(u)(k) = |u|σ × k, f2(u)(k) = √

2σ |u|σ−1 �e(ū × k).

Hölder estimate and Sobolev embedding give

2∑
i=1

∣∣fi(u)
∣∣2
L(H 1(D,L2(D)))

� c|u|4σ
4σ+2,

which yields

2∑
i=1

∣∣gi(u)
∣∣2
L2(L2(D))

� c|u|4σ
4σ+2B1,

and thus by an arithmetic-geometric inequality

I2(t) � cB1t + η

4

t∫
0

|u|4σ+2
4σ+2 ds. (2.26)

Notice that

〈M1〉(t) =
t∫ ∣∣b(u(s)

)∗
Au(s)

∣∣2 ds,
0
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which gives

〈M1〉(t) � B0

t∫
0

∥∥u(s)
∥∥2

2 ds. (2.27)

Moreover

〈M2〉(t) =
t∫

0

∣∣b(u(s)
)∗∣∣u(s)

∣∣2σ
u(s)
∣∣2 ds.

Since ∣∣b(u(s)
)∗∣∣u(s)

∣∣2σ
u(s)
∣∣2 � B0

∣∣∣∣u(s)
∣∣2σ

u(s)
∣∣2 � cB0|u|4σ+2

4σ+2,

we obtain

〈M2〉(t) � cB0

t∫
0

|u|4σ+2
4σ+2 ds. (2.28)

Noticing that 〈M1 + M2〉 � 2(〈M1〉 + 〈M2〉), I1(t) � B1t and χ(z) � 0 for any z ∈ C, it follows from (2.25), (2.26),
(2.27) and (2.28) that

Eu(t) −H(u0) − Bt � M(t) − γ0

2
〈M〉(t), (2.29)

where M = M1 + M2, B ′ = c(B0 + B1) and γ0 = η ∨ ε/(8B0(1 + c)). Thus

P

(
sup
t∈R+

(
Eu(t) − Bt

)
� H(u0) + ρ′)� e−γ0ρ

′
E eγ0M(t)−γ 2

0 /2〈M〉(t) � e−γ0ρ
′
,

which allows to conclude by setting ρ′ = ρ + 3T0/γ0 and B ′ = B + 3/γ0.
We do not give the proof of Proposition 2.9 because it is easily deduced from the proof of Proposition 2.8. Actually,

Ito formulas associated to a solution u are also true if we replace u by ũ and b(PNu)dW by b(PN ũ)dW +PN(|u|2σ u−
|ũ|2σ ũ)dt . Hence to establish Proposition 2.9, it is sufficient to bound the additional term by using the equivalence of
the norms in finite dimensional spaces and by applying Proposition 2.9 to bound terms containing u.

2.5. The Lyapounov structure

Now, we prove Lemma 2.10 in the second case. Using the computation of the energy previously done, we obtain
that there exist C1 such that

dH
(
ui(t)

)+ ε

2

∥∥ui(t)
∥∥2

2 dt + η

4σ + 2

∣∣ui(t)
∣∣4σ+2
4σ+2 dt � dM + C1 dt.

Applying Ito formula to H(ui)
k and controlling d〈M〉 as above by ‖ui(t)‖2

2 dt and |ui(t)|4σ+2
4σ+2 dt , we obtain that there

exists α0 such that

dH
(
ui(t)

)k + α0kH(ui)
k−1(∥∥ui(t)

∥∥2
2 + ∣∣ui(t)

∣∣4σ+2
4σ+2

)
dt � kH

(
ui(t)

)k−1 dM + Ck dt. (2.30)

Taking into account that μ1‖ · ‖2 � ‖ · ‖2
2 and that there exist β > 0 such that β| · |2σ+2

2σ+2 � ‖ · ‖2
2 + | · |4σ+2

4σ+2, we obtain
that there exists α > 0 such that

dH
(
ui(t)

)k + αkH(ui)
k dt � kH

(
ui(t)

)k−1 dM + Ck dt. (2.31)

Now, applying (2.31), we obtain that

H
(
ui(t)

)k � H
(
ui

0

)k e−αkt + k

t∫
e−αk(t−s)H

(
ui(s)

)k−1 dM(s) + Ck. (2.32)
0
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Then, applying (2.32) to some stopping time τ , we obtain

EH
(
ui(τ ∧ t)

)k � H
(
ui

0

)k
E e−τ∧t + Ck, (2.33)

Fatou Lemma gives

EH
(
ui(τ )

)k1τ<∞ �H
(
ui

0

)k
E e−τ 1τ<∞ + Ck, (2.34)

which establishes Lemma 2.10.

2.6. Control of PT H by | · |2 in the second case

Now, we prove Proposition 2.12. Taking the expectation on (2.29), we obtain that for any T > t > 0

EH
(
u(T )

)
� EH

(
u(t)
)+ B(T − t).

Integrating over [0, T ] gives

EH
(
u(T )

)
� 1

T
E

T∫
0

H
(
u(t)
)

dt + BT . (2.35)

Applying Ito formula to |u|2 and taking the expectation, we obtain

E
∣∣u(t)

∣∣2 + 2ε

t∫
0

E
∥∥u(s)

∥∥2 ds + 2η

t∫
0

E
∣∣u(s)

∣∣2σ+2
2σ+2 ds = |u0|2 +

t∫
0

E
∣∣b(u(s)

)∣∣2
L2(L

2(D))
ds.

Applying H1′, we obtain

E

T∫
0

H
(
u(t)
)

dt � C|u0|2 + AT,

and by 2.35

EH
(
u(T )

)
� A + BT + C

T
|u0|2.

2.7. H 1 and H 2 estimates

We first establish that

E
∥∥u(T )

∥∥2 + ε

T∫
0

E
∥∥u(s)

∥∥2
2 ds � ‖u0‖2 + c1|u0|α1 + B ′

1T , (2.36)

and that

E
∥∥u(T )

∥∥2 � c

(
1 + 1

T
|u0|2 + |u0|2k + T

)
. (2.37)

In the second part of the proof, we establish that there exists γ0 > 0 such that

E
∥∥u(t)

∥∥2
2 + ε

t∫
0

E
∥∥u(s)

∥∥2
3 ds � ‖u0‖2

2 + c‖u0‖γ0 + C(t + 1). (2.38)

We deduce from Hölder inequality that

E

(∥∥u(t)
∥∥2

2 + ε

t∫ ∥∥u(s)
∥∥2

3 ds

)2/γ0

� c‖u0‖2
2 + C(t + 1) (2.39)
0
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and

E
∥∥u(T )

∥∥2
2 � c

(
1 + 1

T
‖u0‖2 + T

)
. (2.40)

Hence, combining (2.37), (2.39) and (2.40), we obtain

E

(∥∥u(T + t)
∥∥2

2 + ε

T +t∫
T

∥∥u(s)
∥∥2

3 ds

)2/γ0

� c
1

T
|u0|2 + |u0|2k + C(T + t + 1). (2.41)

Applying Hölder inequality allows to conclude.

Proof of (2.36) and (2.37). Note that (2.36) and (2.37) have already been demonstrated in the second case. Then it
remains to establish (2.36) in the first case, when λ = −1.

Remark that Ito’s formula applied to |u|2k gives

E

(∣∣u(t)
∣∣2k + ηk

t∫
0

∣∣u(s)
∣∣2(k−1)|u|2σ+2

2σ+2 ds

)
� |u0|2k + B ′′

k t. (2.42)

Taking the scalar product between (2.2) and 2(−�)u gives

d‖u‖2 + 2ε‖u‖2
2 dt � 2

(
(−�u),b(u)dW

)+ 2
(
�u, (η + λi)|u|2σ u

)
dt + B1 dt. (2.43)

We deduce from Schwartz inequality that

2
(
�u, (η + λi)|u|2σ u

)
� c‖u‖2|u|2σ+1

4σ+2.

The Gagliardo–Nirenberg inequality gives

2
(
�u, (η + λi)|u|2σ u

)
� c‖u‖1+σd/2

2 |u|2σ+1−σd/2.

Finally, since σd < 2, then we can deduce from a arithmetic-geometric inequality that

2
(
�u, (η + λi)|u|2σ u

)
� ε‖u‖2

2 + c|u|2(4σ+2−σd)/(2−σd).

We infer from (2.43) that

d‖u‖2 + ε‖u‖2
2 dt � 2

(
(−�u),b(u)dW

)+ c|u|2(4σ+2−σd)/(2−σd) dt + B1 dt,

and then

E
∥∥u(t)

∥∥2 + ε

t∫
0

E
∥∥u(s)

∥∥2
2 ds � ‖u0‖2 + c

t∫
0

E
∣∣u(s)

∣∣2(4σ+2−σd)/(2−σd) ds + B1t.

Applying (2.42), we obtain for a well-chosen k′

E
∥∥u(t)

∥∥2 + ε

t∫
0

E
∥∥u(s)

∥∥2
2 ds � c

(‖u0‖2 + |u0|2k′ + T
)
. (2.44)

Using the same argument as in the last subsection gives (2.37). �
Proof of (2.38), (2.39) and (2.40). Taking the scalar product between (2.2) and 2(−�)2u gives

d‖u‖2
2 + 2ε‖u‖2

3 dt � 2
(
(−�u)2, b(u)dW

)− 2
(
(−�)2u, (η + λi)|u|2σ u

)
dt + B2 dt. (2.45)

We deduce from an integration by part and Schwartz inequality that

−2
(
(−�)2u, (η + λi)|u|2σ u

)
� c‖u‖3

∣∣∇(u|u|2σ
)∣∣. (2.46)
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Hölder inequality gives∣∣∇(u|u|2σ
)∣∣� |∇u|p|u|2σ

2σq,

where 1
p

+ 1
q

= 1
2 . We choose s, p and q such that

1

p
= 1

2
− s

d
,

1

2σq
= 0 ∨

(
1

2
− 1

d

)
.

Since σ � 2
d−2 , then s ∈ [0,2). Hence the Sobolev embeddings Hs(D) → Lp(D) and H 1(D) → L2σq(D) imply∣∣∇u|u|2σ
∣∣� ‖u‖1+s‖u‖2σ ,

Then, we deduce from (2.46), an interpolatory inequality that

−2
(
(−�)2u, (η + λi)|u|2σ u

)
� c‖u‖1+s/2

3 ‖u‖2σ+1−s/2.

An arithmetic-geometric inequality gives

−2
(
(−�)2u, (η + λi)|u|2σ u

)
� ε‖u‖2

3 + c‖u‖β, (2.47)

with β > 0. We infer from (2.45) and (2.47) that

d‖u‖2
2 + ε‖u‖2

3 dt � 2
(
(−�u)2, b(u)dW

)+ c‖u‖β dt + B2 dt. (2.48)

Hence, we deduce (2.38) from (2.48). Then, applying Hölder inequality, we obtain (2.39). Using the same argument
as in the last subsection gives (2.40). �
3. The coupling of CGL

Recall that, as in the last section, we consider the two cases developed in Subsection 2.1 and use the properties
stated in Subsection 2.2. In this section, we make an other assumption

H4 N � N0, where N0 has been defined after Corollary 2.6 and Lemma 2.7.

In this section, we apply Theorem 1.8. Then we obtain there exists a unique invariant probability measure on H

and that there exists c > 0 and α > 0

P
(∣∣u1(t) − u2(t)

∣∣
H

> c e−αt
)
� c e−αt

(
1 +H

(
u1

0

)+H
(
u2

0

))
. (3.1)

Recalling Corollary 2.14, we obtain for any δ > 0,

P
(‖ui(t)‖H 2(D) � eδt

)
� Cδ e− δ

γ
t(|ui

0|2L2(D)
+ 1
)
. (3.2)

Combining (3.1), (3.2) and using an interpolatory inequality between L2(D) and H 2(D), we obtain that for any
s ∈ [0,2), there exists αs > 0 and Cs > 0 such that

P
(∥∥u1(t) − u2(t)

∥∥
Hs(D)

> c e−αs t
)
� Cs e−αs t

(
1 +

2∑
i=1

(∣∣ui
0

∣∣2
L2(D)

+H
(
ui

0

)))
,

which implies∥∥P∗
t μ − ν

∥∥∗
Lipb(H

s(D))
� Cs e−αs t

(
1 +
∫
H

(|u|2
L2(D)

+H(u)
)

dμ(u)

)
.

Now it remains to conclude the second case, we consider (u,W) a weak solution and we apply Proposition 2.12

E
(
H
(
u(T )

)+ ∣∣u(T )
∣∣2

2

)
� 1

E|u0|2 2 + C(1 + T ),

L (D) T L (D)
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which implies for all cases∣∣∣∣Ef
(
u(t)
)− ∫

H

f (u)dν(u)

∣∣∣∣� cs |f |Lipb(H
s(D)) e−αs t

(
1 + E|u0|2L2(D)

)
,

for any s < 2, for any f ∈ Lipb(H
s(D)).

It follows from this discussion that it suffices to prove that Theorem 1.8 can be applied and that (3.1) holds. Then
Theorem 2.1 is proved.

3.1. Preliminaries

We set | · | = | · |H and

X = PNu, Y = QNu, β = PNW, η = QNW, σl = PNbPN, σh = QNbQN,

and

f (X,Y ) = (η + λi)PN

(|X + Y |2σ (X + Y)
)
,

g(X,Y ) = (η + λi)QN

(|X + Y |2σ (X + Y)
)
.

Now, taking into account H2 and H3, the system has the form{dX + (ε + i)AX dt + f (X,Y )dt = σl(X)dβ,

dY + (ε + i)AY dt + g(X,Y )dt = σh(X)dη,

X(0) = x0, Y (0) = y0.

(3.3)

Recall that H3 states that

There exists σ0 > 0 such that,
∣∣(σl(x)

)−1∣∣� 1

σ0
, for any x ∈ PNH. (3.4)

Now we can define l0

l0(k) = min
{
l ∈ {0, . . . , k}|Pl,k

}
,

where minφ = ∞ and

(Pl,k)

⎧⎨⎩
X1(t) = X2(t), η1(t) = η2(t), ∀t ∈ [lT , kT ],
Hl � d0, i = 1,2,

Eui
(t + lT , lT ) � ℵ1t<T + Bt + 1i=21t�T CN

(
1 + tα

)
, ∀t ∈ [0, (k − l)T

]
,

where B , α, CN are defined in Propositions 2.8 and 2.9, where ℵ will be chosen later and where

Hk = H
(
u1(kT )

)+H
(
u2(kT )

)
.

Notice that (1.45) is obvious. Corollary 2.6 and H4 gives

l0(k) = l implies
∣∣u1(t) − u2(t)

∣∣� C(d0) e−(t−lT ), for any t ∈ [lT , kT ], (3.5)

and we have establish (1.46). Lemma 2.10 implies the Lyapounov structure (1.49).
From now on we say that (X1,X2) are coupled at kT if l0(k) � k, in other words if l0(k) 	= ∞. Now it remains to

build a coupling such that (3.6) and (3.7) holds, where⎧⎨⎩
∀d0, ∃p0(d0) > 0, (pi)i∈N∗ , T0(d0) > 0 such that for any l � k,

P
(
l0(k + 1) = l|l0(k) = l

)
� pk−l , for any T � T0(d0),

1 − pi � e−iT , i ∈ N
∗,

(3.6)

and, for any (R0, d0) sufficiently large,{∃T ∗(R0) > 0 and p−1 > 0 such that for any T � T ∗(R0)

P
(
l0(k + 1) = k + 1|l0(k) = ∞, Hk � R0

)
� p−1.

(3.7)

These properties imply (1.47) and (1.48) and Theorem 1.8 can be applied.
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As in the example of Section 1.2, we remark that by induction, it suffices to construct a probability space
(Ω0,F0,P0) and two measurable couples of functions (ω0, u

1
0, u

2
0) → (Vi(·, u1

0, u
2
0))i=1,2 and (V ′

i (·, u1
0, u

2
0))i=1,2

and such that, for any (u1
0, u

2
0), (Vi(·, u1

0, u
2
0))i=1,2 and (V ′

i (·, u1
0, u

2
0))i=1,2 are two couplings of (D(u(·, ui

0),W))i=1,2
on [0, T ]. Indeed, we first set

ui(0) = ui
0, Wi(0) = 0, i = 1,2.

Assuming that we have built (ui,Wi)i=1,2 on [0, kT ], then we take (Vi)i and (V ′
i )i as above independent of

(ui,Wi)i=1,2 on [0, kT ] and set(
ui(kT + t),Wi(kT + t)

)= {Vi

(
t, u1(kT ),u2(kT )

)
if l0(k) � k,

V ′
i

(
t, u1(kT ),u2(kT )

)
if l0(k) = ∞,

(3.8)

for any t ∈ [0, T ].

3.2. Proof of (3.6)

The essential difference between this proof and the proof of (1.18) in the example in Section 1.2 is that a cut-off is
used to control the energy.

To build (Vi(·, u1
0, u

2
0))i=1,2, we apply Proposition 1.7 to

E = C
(
(0, T );H )× C

(
(0, T );H−d/2−1(D)

)
,

F = C
(
(0, T );PNH

)× C
(
(0, T );QNH−d/2−1(D)

)
,

f0(u,W) = (X,η),

μi = D
(
u
(·, ui

0

)
,W
)
, on [0, T ].

Remark that if we set νi = f ∗
0 μi , we obtain

νi = D
(
X
(·, ui

0

)
, η
)
, on [0, T ].

We set

(Zi, ξi) = f0(Vi), i = 1,2.

Then (Vi(·, u1
0, u

2
0))i=1,2 is a coupling of (μ1,μ2) such that ((Zi, ξi)(·, u1

0, u
2
0))i=1,2 is a maximal coupling of

(ν1, ν2).
We first use a Girsanov formula to estimate Ip , where

Ip =
∫

Ak,l

(
dν2

dν1

)p+1

dν2,

Ak,l = {(Z, ξ) | τk,l = T
}
,

τk,l = inf
{
t ∈ [0, T ] | Eûi

(t + kT , lT ) > ℵ1k=l + B
(
t + (k − l)T

)+ 1i=21k=lCN

(
1 + tα

)
, i ∈ {1,2}},

where

ûi = ui on [0, kT ], ûi (kT + ·) = Z + Φ
(
Z,ξ,ui

0

)
on [0, T ].

Then, using Lemma 1.2, we establish (3.6).
We consider a couple of (ui,Wi)i=1,2, two solutions of (3.3) on [0, kT ] and a trajectory of (ui,Wi)i=1,2 such that

l0(k) = l. We set

x = X1(kT ) = X2(kT ), yi = Yi(kT ), i = 1,2.

Let W = (β, ξ) a cylindrical Wiener process defined on a probability space (Ω,F ,P). We denote by Z the unique
solution of the truncated equation{

dZ + (ε + i)AZ dt + 1t�τk,l
f
(
Z,Φ

(
Z,ξ, (x, y1)

))
dt = σl(Z)dβ, (3.9)
Z(0) = x.
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We denote by λ1 the distribution of (Z, ξ) under the probability P.
We set β̃(t) = β(t) + ∫ t

0 d(s)dt where

d(t) = 1t�τk,l

(
σl

(
Z(t)
))−1(

f
(
Z(t),Φ

(
Z,ξ, (x, y2)

)
(t)
)− f

(
Z(t),Φ

(
Z,ξ, (x, y1)

)
(t)
))

.

Then Z is a solution of{
dZ + (ε + i)AZ dt + 1t�τk,l

f
(
Z,Φ

(
Z,ξ, (x, y2)

))
dt = σl(Z)dβ̃,

Z(0) = x.
(3.10)

The drift estimate in Lemma 2.7 ensures that

T∫
0

∣∣d(t)
∣∣2 dt � cd0σ

−2
0 exp

(−3(k − l)T + cℵ1k=l

)
. (3.11)

Hence the Novikov condition is satisfied and the Girsanov formula can be applied. Then we set

dP̃ = exp

( T∫
0

d(s)dW(s) − 1

2

T∫
0

∣∣d(s)
∣∣2 dt

)
dP.

We deduce from the Girsanov formula that P̃ is a probability under which (β̃, ξ) is a cylindrical Wiener process and
we denote by λ2 the law of (Z, ξ) under P̃. Moreover, remarking that

λi(Ak,l ∩ ·) = νi(Ak,l ∩ ·), i = 1,2, (3.12)

we obtain

Ip � I ′
p � E exp

(
cp

T∫
0

∣∣d(s)
∣∣2 dt

)
, (3.13)

where

I ′
p =
∫
F

(
dλ2

dλ1

)p+1

dλ2.

Then it follows from (3.11) that

Ip � I ′
p � exp

(
cpσ−2

0 d0 e−3(k−l)T +cℵ1k=l
)
. (3.14)

Notice that

‖λ1 − λ2‖var =
∫
F

∣∣∣∣dλ2

dλ1
− 1

∣∣∣∣dλ2 �

√∫ (
dλ2

dλ1

)2

dλ2 − 1.

We infer from (3.14) that, for T � T3(d0) = 2 ln(cpσ−2
0 d0),

‖λ1 − λ2‖var � 1

2
e−2(k−l)T .

Using (3.12), we obtain for k > l

‖ν1 − ν2‖var � ‖λ1 − λ2‖var +
2∑

i=1

νi

(
Ai

k,l

)
� 1

2
e−2(k−l)T +

2∑
i=1

νi

(
Ai

k,l

)
,

where

Ai = {(Z, ξ) | E i (t, lT ) � B
(
t + (k − l)T

)
for any t ∈ [0, T ]}.
k,l Z+φ(Z,ξ,u0)
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Applying Lemma 1.2 to the maximal coupling (Z1,Z2)i=1,2 of (ν1, ν2) gives for k > l

P
(
(Z1, ξ1) 	= (Z2, ξ2)

)
� ‖ν1 − ν2‖var � 1

2
e−2(k−l)T +

2∑
i=1

νi

(
Ai

k,l

)
. (3.15)

Using (3.8) and (3.15), we obtain that on l0(k) = l

P
(
(X1, η1) 	= (X2, η2) on

[
kT , (k + 1)T

]∣∣FkT

)
� 1

2
e−2(k−l)T + 2P(Bl,k|FkT ),

where

Bl,k = {Eui
(t, lT ) � B(t − lT ), for any t ∈ [kT , (k + 1)T

]
, i = 1,2

}
.

Noticing that for k > l{
l0(k + 1) = l

}= {l0(k) = l
}∩ {(X1, η1) = (X2, η2) on

[
kT , (k + 1)T

]}∩ Bl,k,

and integrating over l0(k) = l gives for T � T1(d0) and for k > l

P
(
l0(k + 1) 	= l|l0(k) = l

)
� 1

2
e−2(k−l)T + 3P

(
Bl,k|l0(k) = l

)
,

and then

P
(
l0(k + 1) 	= l, l0(k) = l|l0(l) = l

)
� 1

2
e−2(k−l)T + 3P

(
Bl,k|l0(l) = l

)
.

The exponential estimate for growth of the solution (Proposition 2.8) gives that for T sufficiently high

P
(
l0(k + 1) 	= l, l0(k) = l|l0(l) = l

)
� exp

(−2(k − l)T
)
. (3.16)

Now, it remains to consider the case k = l, we apply Lemmas 1.2 and 1.3 to (Zi, ξi)i=1,2 which gives

P
(
(Z1, ξ1) = (Z2, ξ2), A2

l,l

)
� (ν1 ∧ ν2)(Al,l) �

(
1 − 1

p

)
(pIp)−1/(p−1)ν1(Al,l)

p/(p−1).

Choosing ℵ sufficiently high and applying the exponential for growth of the solution (Propositions 2.8 and 2.9), we
obtain

ν1(Al,l) � 1

2
,

and then applying (3.13) and fixing p > 1,

P
(
(Z1, ξ1) = (Z2, ξ2), Al,l

)
� p0(d0) > 0.

That gives

P
(
l0(l + 1) = l|l0(l) = l

)
� p0(d0) > 0. (3.17)

Since

P
(
l0(k) 	= l|l0(l) = l

)
�

k−1∑
n=l

P
(
l0(n + 1) 	= l, l0(n) = l|l0(l) = l

)
,

then, by applying (3.16) and (3.17), we obtain

P
(
l0(k) 	= l|l0(l) = l

)
� 1 − p0 +

∞∑
n=1

exp(−2nT ) � 1 − p0 + exp(−2T )

1 − exp(−2T )
,

which implies that for T � T0(d0)

P
(
l0(k) = l|l0(l) = l

)
� p0

2
. (3.18)

Combining (3.16), (3.17) and (3.18), we establish (3.6) for T sufficiently high.
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3.3. Proof of (3.7)

As in the example of Section 1.2, The Lyapounov structure gives that it is sufficient to find d0 > 0, p̃ > 0, R1 > 4K1
and a coupling (Vi(·, u1

0, u
2
0))i=1,2 of (μ1,μ2), where

μi = D
(
u
(·, ui

0

)
,W
)
, on [0,1], i = 1,2,

and such that

P

(
Z1
(
1, u1

0, u
2
0

)= Z2
(
1, u1

0, u
2
0

)
,

2∑
i=1

H
(
ui

(
1, u1

0, u
2
0

))
� d0

)
� p̃, (3.19)

where

Vi

(·, u1
0, u

2
0

)= (ui

(·, u1
0, u

2
0

)
,Wi

(·, u1
0, u

2
0

))
, ui

(·, u1
0, u

2
0

)= (Zi

Gi

)
, i = 1,2.

Now we fix R1 > 4K1 and consider a cimetery value Δ (some people prefer calling it a heaven value). To build
(Vi(·, u1

0, u
2
0))i=1,2, we apply Proposition 1.7 to

E = C
(
(0,1);H )× C

(
(0,1);H−d/2−1(D)

)
,

F = (PNH × C
(
(0,1);QNH−d/2−1(D)

))∪ {Δ},
f0(u,W) = X(1)1A(X,η) + Δ1Ac(X,η),

and to μi where

A = {(X,η) | τ = 1
}
,

τ = inf
{
t ∈ [0,1] | EX+Φ(X,η,ui

0)
(t) > ℵ + Bt + 1i=2CN

(
1 + tα

)
, i ∈ {1,2}}.

We set νi = f ∗
0 μi . Then (Vi(·, u1

0, u
2
0))i=1,2 is a coupling of (μ1,μ2) such that (Zi(1, u1

0, u
2
0))i=1,2 is a maximal

coupling of (ν1, ν2).
Now, we define

f1(u,W) = (X,η) and f2(X,η) = X(1)1A(X,η) + Δ1Ac(X,η),

and we set θi = f ∗
1 μi for i = 1,2. Now we consider (θ̂1, θ̂2) such that θi(A ∩ ·) is equivalent to θ̂i (A ∩ ·) for i = 1,2

and such that (ν̂1, ν̂2) = (f ∗
2 θ̂1, f

∗
2 θ̂2) are two equivalent measures. Then by applying two Schwartz inequalities, we

obtain that

Ip �
(
J 1

2p+2

)1/2(
J 2

4p

)1/4(
Î4p+2

)1/4
, (3.20)

where

Ip =
∫
B ′

(
dν1

dν2

)p+1

dν2, J 1
p =
∫
A

(
dθ1

dθ̂1

)p

dθ̂1,

Îp =
∫
B ′

(
dν̂1

dν̂2

)p

dν̂2, J 2
p =
∫
A

(
dθ̂2

dθ2

)p

dθ̂2,

Let us consider Z̄i the unique solution of{
dZ̄i + (ε + i)AZ̄i dt + 1t�τ f

(
Z̄i ,Φ

(
Z̄i(·), ξ(·), ui

0

))
dt = σl(Z̄i)dβi,

Z̄i(0) = xi
0.

(3.21)

Taking into account (3.9), we denote by λi the distribution of (Z̄i , ξi) under the probability P and we obtain

θi(A ∩ ·) = λi(A ∩ ·). (3.22)
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We set β̃i (t) = βi(t) + ∫ t

0 di(s)dt where

di (t) = −1t�τ

(
σl

(
Z̄i(t)

))−1
f
(
Z̄i(t),Φ

(
Z̄i(·), ξ(·), ui

0

)
(t)
)
. (3.23)

Then �Zi is a solution of{
d�Zi + (ε + i)A�Zi dt = σl(�Zi)dβ̃i ,�Zi(0) = xi

0.
(3.24)

Since the energy is bounded and σl is bounded below, then d is uniformly bounded. Hence, the Novikov condition is
satisfied and the Girsanov formula can be applied. Then we set

dP̃i = exp

( T∫
0

di(s)dW(s) − 1

2

T∫
0

∣∣d(s)
∣∣2 dt

)
dP.

We deduce from the Girsanov formula that P̃ is a probability under which (β̃, ξ) is a cylindrical Wiener process. We
denote by θ̂i the law of (�Zi, ξi) under P̃i . Moreover using (3.22), we obtain

J 1
p ∨ J 2

p � E exp

(
cp

T∫
0

∣∣d(s)
∣∣2 dt

)
� C(p,ℵ,R1). (3.25)

We set ν̂i = f ∗
2 θ̂i for i = 1,2. It is classical that ν̂i has a density q(xi

0, z) with respect to Lebesgue measure dz, that q

is continuous for the couple (xi
0, z), where xi

0 is the initial value and where z is the target value and that q > 0. Then,
we can bound q and q−1 uniformly on H(xi

0) � R1 and on z ∈ B ′ = {H(z) � C} provided C = C(ℵ). It allows us to

bound Îp and then Ip . Actually, d1 � d1(ℵ) implies

A ⊂ B, (3.26)

where

B = {(Z, ξ) |H(Z(1) + φ
(
Z,ξ,ui

0

)
(1)
)
� d1, i = 1,2

}
.

Hence it follows that for d1 � d1(ℵ)

Ip � C′(p,ℵ,R1) < ∞. (3.27)

Now we apply Lemmas 1.3 and 1.2:

P
(
Z1(1) = Z2(1), (A ∩ B ′)2)� (1 − 1

p

)
(pIp)−1/(p−1)ν1(B

′)p/(p−1). (3.28)

We deduce from Propositions 2.8 and 2.9 and from C(ℵ) → ∞ when ℵ → ∞ that ℵ sufficiently high gives

ν1(B
′) � 1

2
. (3.29)

Combining (3.26)–(3.28) and (3.29) gives for d1 � d1(ℵ)

P
(
Z1(1) = Z2(1), B2)� p̃ = p̃(p,ℵ,R1) > 0. (3.30)

Taking into account the definition of φ and choosing d0 = 2d1, it follows that (3.19) holds.

Appendix A. Proof of Lemma 1.2

Let (Yi)i be a coupling of (μi)i . Let Γ be a measurable set. There exists (Γi)i such that

Γ =
⋃
i

Γi,
⋂
i

Γi = ∅, (μ2 − μ1)
+(Γ2) = 0, (μ1 − μ2)

+(Γ1) = 0.

It follows from a ∧ b = a − (a − b)+ and (μ1 − μ2)
+(Γ1) = 0 that

(μ1 ∧ μ2)(Γ1) = μ1(Γ1) − (μ1 − μ2)
+(Γ1) = μ1(Γ1) = P(Y1 ∈ Γ1).
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Symmetrical, we obtain (μ1 ∧ μ2)(Γ2) = P(Y2 ∈ Γ2).
Thus, it follows from Γ =⋃i Γi and

⋂
i Γi = ∅ that

(μ1 ∧ μ2)(Γ ) = P(Y1 ∈ Γ1) + P(Y2 ∈ Γ2) �
2∑

i=1

P(Y1 = Y2, Y1 ∈ Γi).

Since Γ =⋃i Γi and
⋂

i Γi = ∅, then

(μ1 ∧ μ2)(Γ ) � P(Y1 = Y2, Y1 ∈ Γ ). (A.1)

Then it follows from ‖μ1 − μ2‖var = 1 − (μ1 ∧ μ2)(E) that

‖μ1 − μ2‖var � P(Y1 	= Y2).

We have equality only if (A.1) appears for Γ = E, which is true only if (A.1) appears for any Γ . For any measure μ

on (E,E), we denote by μ the measure on (E,E) ⊗ (E,E) define by

μ(A) = μ
({a ∈ E | (a, a) ∈ A}).

If μ1 = μ2, we set P = μ1. Else we set

P = μ1 ∧ μ2 + 1

‖μ2 − μ1‖var
(μ1 − μ2)

+ ⊗ (μ2 − μ1)
+. (A.2)

Noticing that a = a ∧ b + (a − b)+ and using ‖μ1 − μ2‖var = (μ1 − μ2)
+(E), we obtain that P(· × E) = μ1 ∧ μ2 +

(μ1 − μ2)
+ = μ1 and P(E × ·) = μ2. Thus if we denote by (Yi)i the projectors, we obtain that (Yi)i is a coupling of

(μi)i . Moreover,

P(Y1 = Y2, Y1 ∈ A) = (μ1 ∧ μ2)(A).

So it is the desired maximal coupling �
Remark A.1. Moreover, in all this article, we admit that the maximal coupling (Yi(u

i
0))i could be chosen such that

(Yi(u
1
0, u

2
0))i depend measurably on the initials conditions (ui

0)i . The idea is the following. Since we only work in nice
spaces, we can consider that we are working on the real line. It can be seen that the laws we use depend measurably
on (ui

0)i and then the law define by (A.2) will do it too. Then its repartition function F(u1
0,u

2
0)

is measurable too and

finally the pseudo-inverse of the repartition function F−1
(u1

0,u
2
0)

is measurable with respect to (u1
0, u

2
0). We consider

([0,1],B[0,1], λ), where λ is the Lebesgue measure and we set Yi(u
1
0, u

2
0,ω) = F−1

(u1
0,u

2
0)

(ω). Then (Yi)i is measurable

with respect to (u1
0, u

2
0,ω) and for every (u1

0, u
2
0), it is a coupling of (μi(u

i
0))i . For a proof see [13].

Appendix B. Proof of Proposition 1.7

We set

Ω = E2, F = B(E2),

and Vi the ith projector on Ω :

Vi(v1, v2) = vi, i = 1,2.

Let (U1,U2) be a coupling of (μ1,μ2).
In order to establish Proposition 1.7, we build a probability measure Q on (Ω,F) such that{

(α) Q(· × E) = μ1, Q(E × ·) = μ2,

(β) Q
(
f0(V1) = f0(V2)

)
� (ν1 ∧ ν2)(E).

(B.1)

Then (V1,V2) seen as a couple of random variables defined on
(
Ω,F ,Q

)
is a coupling of (μ1,μ2) such that

(f (V1), f (V2)) is a maximal coupling of (ν1, ν2).
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Recall that

νi = ν1 ∧ ν2 + ((−1)i(ν1 − ν2)
)+

, i = 1,2, (B.2)

and that since E, F are polish spaces, then there exists a version of P(Ui ∈ A | f0(Ui) = x) which is measurable for
any A ∈ B(E) and which is probability measure for any x ∈ F . Moreover

μi(A) =
∫
F

P
(
Ui ∈ A | f0(Ui) = x

)
νi(dx), i = 1,2. (B.3)

Combining (B.2) and (B.3), we obtain

μi = μs
i + μr

i , i = 1,2, (B.4)

where

μs
i (A) =

∫
F

P
(
Ui ∈ A | f0(Ui) = x

)
(ν1 ∧ ν2)(dx), i = 1,2,

μr
i (A) =

∫
F

P
(
Ui ∈ A | f0(Ui) = x

)(
(−1)i(ν1 − ν2)

)+
(dx), i = 1,2.

Remark that⎧⎪⎨⎪⎩
μs

i ,μ
r
i � 0, i = 1,2,

μs
i (E) = (ν1 ∧ ν2)(E),

μr
i (E) = ‖ν1 − ν2‖var.

(B.5)

Taking into account (B.4) and (B.5), we can write problem (B.1) in the form⎧⎪⎪⎨⎪⎪⎩
Find r, s two positive measures on (Ω,F) such that
(i) s(· × E) = μs

1, s(E × ·) = μs
2,

(ii) r(· × E) = μr
1, r(E × ·) = μr

2,

(iii) s
(
f0(V1) 	= f0(V2)

)= 0.

(B.6)

Once (B.6) is true, we can set

Q = r + s.

Then (B.1)(α) is an obvious consequence of (B.4). Furthermore, since r � 0, then (B.6)(iii), (B.6)(i) and (B.5) gives

Q
(
f0(V1) = f0(V2)

)
� s
(
f0(V1) = f0(V2)

)= s(Ω) = μs
i (E) = (ν1 ∧ ν2)(E).

Now we build r by setting

r = 1

‖ν1 − ν2‖var
μr

1 × μr
2.

Notice that r � 0 and (B.6)(ii) are obvious consequence of (B.5).
Now we build s by setting

s(A × B) =
∫
F

P
(
U1 ∈ A | f0(U1) = x

)× P
(
U2 ∈ B | f0(U2) = x

)
(ν1 ∧ ν2)(dx).

Notice that (B.6)(i) and (B.6)(iii) are obvious.
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