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Abstract

We prove invariance principles for phase separation lines in the two dimensional nearest neighbour Ising model up to the
critical temperature and for connectivity lines in the general context of high temperature finite range ferromagnetic Ising models.
0 2005 Elsevier SAS. All rights reserved.

Résumé
Nous démontrons des principes d’invariance d’une part pour les lignes de séparation de phase, dans le cas du modéle d'Ising
bidimensionnel a plus proches voisins jusqu’a la température critique, et d’autre part pour les lignes de connectivité dans le

contexte général des modeles d'Ising ferromagnétiques a portée finie, pour les hautes températures.
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1. Introduction and results
1.1. Phase separation lines

A canonical example of phase separation lines is given in the framework of the nearest neighbour two dimen-
sional Ising model below the critical temperatte It would be convenient to draw these lines through the bonds
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of the integer latticéZ?, which means that the corresponding spins should live on the vertices of the shifted dual
lattice Z2* = (1/2,1/2) + Z2. Let

S =(1/2,1/2)+1[0,....M — 1] x Z C Z*

be an infinite dual strip of widtli/. A spin configurationr onS;, is an element of—1, 1}Su . Given a unit vector
n e St with ny > 1/+/2 consider the so called Dobrushin’s boundary conditions

—ney [ L i ()220, 11

U(y)_{—l, if (nt,y)2<0 (1)
wherent = (—np, n1) and(-, -), is the usual scalar product @2. In this way the configuratioa" is defined on
the whole ofZ2* with all the spins above or on the life: (nt, y)» = 0} being set to+1 and all the remaining
spins being set te-1. Given a configuration € {—1, 1}5v consider a concatenation

noon o, ifyeS,

oy (y) = (), ifye 7.2% \S;;l

Abondb* = (x, y) of Z% is called frustrated iy, if oy (x) # oy (v). Each dual bond* intersects (as an interval
of R?) a unique direct bond of Z2. Thus, every € {—1, 1}S gives rise to the set

By (o) = {b: b* is frustratedl.

Connected (as subsetsif) components 0B}, (o) are called contours. These are microscopic boundaries between
regions occupied with spins of different signs. Using a “rounding of corners” procedure [12] contours can be
represented as either open or closed self-avoiding curvBS.i®f course, all the contours of are confined to

the stripSy, = [0, ..., M] x Z except for a unique infinite open contourwhich, outsideSy, is frozen by the
Dobrushin’s boundary conditions (1.1) but, of course, varies irSjgelepending on a particular choice®f This

portion of y inside Sy, which, with a slight abuse of notation, we shall continue to gail a self-avoiding line
connecting the points 0 andy, where (Fig. 1)

{ﬂnJ 2 [Nn] £ Up. (1.2)
ni

The contoury models then-oriented microscopic interface between co-existing phases of the nearest neighbour
Ising model at the inverse temperatte> B., whereg, = 1/ T, is the phase transition threshold. The statistics
E’%,ﬂ* of y is read from the Ising Gibbs distributiqm}“l’ﬂ* of o € {—1, +1}5 under Dobrushin boundary con-
ditionsa™ defined in (1.1). The relation between the strip widthand the projected length of the interfadeis

given by (1.2) above.
A F un L
ﬂlﬂ )

S M

Fig. 1. Phase separation line
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Our result, which we shall formulate in Subsection 1.6 asserts that mmgr an appropriate rescaling of
the interfacey converges to a Brownian bridge. We prove such convergence fopanyg.. The fact that the
Brownian bridge picture persists all the way to the critical temperature was a well known conjecture.

Over the years statistical properties of phase separation lines have attracted a fair amount of attention. Apart
from very specific exact computations of mean magnetization profiles (see e.g. [1,3]) and a study of a scaling limit
for a simplified model of random strings [13], the Brownian bridge/random walk structure of interfaces in two
dimensions has been previously investigated only for particular models in a perturbative (very low temperature)
regime building upon the method of cluster expansions. Important results along these lines include a proof of
Gaussian scaling for the interface height in [14] and a full invariance principle for the phase separation line in [15].
The local structure of very low temperature interfaces has been addressed in [5] and in [4].

Very low temperature cluster expansion based approach to a study of phase separation lines culminated in a
series of works [12,9-11,16-18]. In these works fluctuations of phase separation lines have been investigated for
Ising, Blume—Capel and lattice Widom—Rowlinson interfaces. The so called Dobrushin—Hryniv theory describes
fluctuation of interfaces around limiting equilibrium crystal shapes and, furthermore, exactly quantifies the impact
of the curvature of the equilibrium shape on the microscopic interface fluctuations in the corresponding directions.

In all the above works the role of very low temperature (very lg8ygvas a purely technical one, for a broad
class of models Dobrushin—Hryniv theory should be intrinsic for the whole of the (two) phase co-existing regime.
Indeed, in two dimensions interfaces look like essentially one dimensional aggregates of possibly complicated
geometric objects and the fact that the original two-dimensional system is away from criticality should, in principle,
find an expression in good mixing properties of the induced interface measures. In this respect interfaces in two
dimensional low temperature models should resemble connectivity lines/clusters in high temperature models and,
subsequently, a fluctuation analysis of the former should fit into a general framework of the Ornstein—Zernike
theory.

Our results are based on a recent version of the Ornstein—Zernike theory developed in [6-8]. In the case of
the two-dimensional nearest neighbour Ising model, due to very specific self-duality properties, there is a literal
correspondence between phase separation lines in a low temperature model and connectivity lines of the high
temperature dual model. In particular, an invariance principle for low temperature nearest neighbour Ising phase
separation lines is equivalent to a modification of an invariance principle for high temperature connectivity lines in
the context of nearest neighbour Ising models confined to lattice Syjps

In Subsection 1.5 we formulate an invariance principle for connectivity lines in the complete generality of
high temperature finite range ferromagnetic Ising type models. A [6]-based proof of an invariance principle for
subcritical percolation clusters has been previously given in [20].

Relevant facts from the Ornstein—Zernike theory [7] are collected in Section 2 and are used there for deriving
sharp asymptotics for certain partition functions which are needed in order to conclude the proof in Section 3.

1.2. Random line representation on Z¢

We consider a class of finite range Ising model€8nd > 2 with pair interactions given by the formal Hamil-
tonian

> Jy—xi0x0y, (1.3)
()

where the coupling constantd,} are non-negative and the dat J,| # 0} is bounded. To avoid trivialities we
shall also assume that a random walk with jump r@ts$ is irreducible. LetB. be the inverse critical temperature
corresponding to (1.3). For evepy< B, the following random line representation of two point functions is valid:

(oo )p= D ), (1.4)

L:0—x



874 L. Greenberg, D. loffe/ Ann. I. H. Poincaré — PR 41 (2005) 871-885

where(-)g it the unique infinite volume Gibbs state for the Hamiltonian (1.3 .aVe refer to [7] for a discussion
of (1.4), in particular for the compatibility conditions employed in the construction of paths

Givenn e S?~1, consider the sepy, of all compatible pathg :0 — uy = [Nn]. The weightsgg(-) induce a
probability distribution ori3};:

Py 5 (0 = qp(h). (1.5)

1
(000uy) g
We would like to say that under the diffusive scaling, with the directiom @iaying the role of time and the
remaining(d — 1) transverse dimensions playing the role of space, the family of mea{ﬂ}ygss} weakly converges
to the distribution of théd — 1)-dimensional Brownian bridge.

In order to make such a statement precise we need to recall some facts related to the geometry of the inverse
correlation length and to the irreducible decomposition [7,8] of paths f&gm

1.3. The geometry of the problem
The inverse correlation leng# is defined via

. 1
‘i:ﬁ (y) = _nILmOO ; IOg(UOGLiiyj )/3-

By [2], &5 is an equivalent norm oR? for everyg < f.. Itis natural to study fluctuations of random lines By
in terms of the geometry dfs. Define

Up =[x eR% 50 <1} and Kg= () {reR @ma<gpm).
nesd-1

Ug is, of course, just the unit ball in th norm, wherea¥ g is the effective domain of the convex conjugate
(Fenchel transform) ofg. Clearly,&g could be completely recovered from either of the two compact convex sets
above. For example,

§() = max(r. Ja, (1.6)

where(-, -)4 stands for the usual scalar product Bfi. As it was proved in [70K g is locally analytic and has
positive Gaussian curvature at ang 9K g for every finite range Ising model # < g.. In particular, for every
y € R\ 0 the maximum in (1.6) is attained at the unique dual poiatz,. For anyr € 0Kg let k; = k; (1),
i=1,...,d -1, be the principal curvatures 6Kz ats. As we shall see below the magnitude of fluctuations of
pathsi € B}, under[P’;,ﬂ depends on the curvatures ..., x;—1 at the dual point,.

For the rest of this section let us a fix any particular model (interaction potehgafJ, }) with the Hamil-
tonian (1.3) and an inverse temperatgfire: 5.(J).

1.4. Irreducible decomposition of paths

Letn e SY~1 andt =1, € 8K is the dual pointz, n); = £(n). Givens > 0, a directionu € R? is called
forward if

(t,u)g > (1= 8)&p(u).

Let Cs(¢) be the cone of forward directions. In the sequel we shals fixnall enough in order to ensure that any
forward directioru has a positive projection an (n, 1)y > 0.

Given a compatible path = (uo, u1, ..., u,) and a numbek, let us say that; € A is a K-correct break point
if the following two conditions hold:
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(A) W), Mg < W, m)g < Ui,y forall j <[ <.
(B) The remaining sub-patfu;1, ..., u,) lies inside the set

2KUg(up) +Cs(1).

A path is said to b&X -irreducible if it does not contaik -correct break point at all. We useto denote the set of
all irreducible paths (modul@“-shifts). Define also the following three subsetsSof

S = {)\. =, ...,Un) €S VI>0;,n)yg < (um,n)d},

Sg={r=(uo,...,um) €S: VI >0 (u;,n)g > (uo,n)g andi C KUg(uo) + Cs(1)}, (1.7)
So =81 NSkg.
For any pathy = (u, ..., u,) onZ4 setV(y) = u,, — uo. In other wordsy (y) is just the displacement along

We employ the irreducible decomposition of paths ‘Y,
r=ntUy - Ly, Unk, (1.8)

For anya € BY which has at least tw& -correct break points the decomposition (1.8) is unambiguously defined
by the following set of conditions:

nleS,, nfeSg and Y1, ..., Vn € So.

In the above definition we have followed [8]. The only difference between (1.8) and the irreducible decomposition
employed in [7] is that the break points here are defined with respeciotthogonal hyper-planes instead of
tn-orthogonal hyper-planes. This is to ensure that the displacements along alpttas which appear in (1.8)
have positive projection on the direction:af

The renormalization calculus developed in [7] (see Theorem 2.3 there) implies that once thié s&calosen
sufficiently large, paths < B}, with only oneK -correct break point or without -correct break points at all have
exponentially smalP’, , probabilities. From now on we shall tacitly assume that such large &céadixed and,
hence, the notion of irreducible decomposition (1.8) is well defined and the renormalization estimates of [7] apply.

1.5. Invariance principle for connection paths

Our approach to the invariance principle is based on the irreducible decomposition (1.8). The following two
properties are crucial for the very formulation of the corresponding results:

min{(V(»").n) .. (Vo). n) 4 (V. 0) . (V@®).m),} >0 (1.9)
and

Py s (diam(nL) + maxdiam(y;) + diam(n*) > (log N)Z) = O(%), (1.10)
foranyp > 0.

Property (1.9) simply follows from the definition (1.7) of irreducible paths. Property (1.10) is a straightforward
consequence of the abovementioned renormalization result (Theorem 2.3 in [7]) on the mass gap for irreducible
connections.

Define£y[1] to be the linear interpolation iR? through the vertices

0. V™), V") + V... V") + D V), LNn).
1
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By (1.9) the intersection numbet&y[A] NH}}) = 1 for everyh € [0, (n, [Nn])q], where theld — 1)-dimensional
hyper-plane;; is defined via

H} = {ueR" (u,n)g=h}.
Therefore, there is a natural parameterizatiof gfA] as a functiondy on the intervalO, (n, | Nu])4]:
@n(h) = LNIAINH) — hn.

Finally, we extend the domain @y (-) to [0, N] by setting it to zero ofi(n, [Nn])s, N]. Notice thatdy (-) takes

values in the tangent spat¥—1 to 0K g at the dual point,. From now on we shall record the valuesd®f (-) in

the orthonormal coordinate system given by the principal curvature direations , v;_1 of 0K g att = t,.
Since by (1.10) the Hausdorff distange(-) betweenl y[1] andA satisfies,

1
Py s(dn(LNIA], 1) > (IogN)Z) = O(W)’

any limit law for @ () which arises on length scales much larger thlag N )2 has a natural interpretation as a
limit law for original pathsk under the family of probability measuréEx_ﬂ}.
Define now the rescaled versigny of the effective patidy as

1
¢n(h) = ﬁ‘PN(Nh); h €10, 1]. (1.11)

By constructiongy (h) € C4~1[0, 1] = x31Co[0, 11, where the latter is the space of continuous functions
¢:0— R?-1 satisfying the boundary conditiogg0) = ¢ (1) =

Theorem 1.1. The distribution of ¢ (-) under P%, , weakly converges on €710, 1] to the distribution of

(V&1B1(), ..., /Ka—1Ba-1(")), (1.12)
where B1(+), ..., B4—1(-) areindependent standard Brownian bridgeson [0, 1] and 1, ..., kg1 are the principal

curvatures of 0K g at t,,.
1.6. Phase boundariesin the nearest neighbour 2D Ising model

Inthe sequeB* > B. is an inverse low temperature afidk B, is the corresponding dual inverse (high) tempera-
ture. We refer to [21,23] for a description of the duality relation between high and low temperature two dimensional
nearest neighbour Ising models. In particular inverse correlation lepgthat 8 equals to the surface tension
p+(-) at *.

Let us proceed with the notation introduced in the opening Subsection 1.1. Recaﬂ}}m@t is the Gibbs
measure orj—1, +1}S« subject to Dobrushin’s boundary conditioh8 defined in (1.1). The relation between the
strip width M and the projected interface lengthwas given in (1.2) and we usé%fv to denote the induced
measure on crossing low temperature interfacés— uy = | Nn). However, the set of such interfaces is precisely
the set of high temperature connectivity lines inside the direct SiipWith a slight abuse of notation we shall
continue to call this seB},. Furthermore, by duality,

PR e (1) = an 5 00)- (1.13)

<UOOMN>N,ﬂ
Apart from the fact that in the case of phase boundaries all our considerations are confined to two dimensions, the
only difference with (1.5) is that now both the weights s and the expectatiof) v g correspond to the free Ising—

Gibbs state at the inverse temperatgren Sy,. As we shall see, however, the boundary effects have no impact on
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the corresponding invariance principle. In order to decouple these effects from the predominant bulk behavior we
shall need, though, a slightly different setup for the decomposition of paths (phase bournidarigg). Namely,
instead of (1.8) we shall employ:

)»:QLI_IzLIQR, (1.14)

wherey = (y1,...,ys) is a string of elements frondy, whereas each of the left and right barrier_r% =
(. ....nF) andn® = F, ..., nf) contain exactly

r=|(logN)?|

elements witl! € S, and the rest belonging 8.
As in the case of (1.10) the renormalization Theorem 2.3 of [7] and the strong triangle inequality of [19,23]

imply:
P g« (diam(QL) + diam(n®) + ml_axdiam(y,-) > (log N)4) = O(%), (1.15)

foranyp > 0.
Similarly to the full-space case defiifgy[1] to be the linear interpolation iR? through the vertices

0. V™). V") + V..., V(™) + Y V(). LNn],
1

and then define the rescaled effective pati(-) exactly as in (1.11).
By (1.15) the Hausdorff distaneky(-) betweenl y[A] andi is now bounded as,

1
P g(dn (LA 1) > (logN)?) = O(W)’
which is still a vanishing quantity under the diffusive scaling.

Theorem 1.2. The distribution of ¢y (-) under ]P%’ p weakly converges on Cy[0, 1] to the distribution of
1

/rg* (x) + T4+ (x)

where B(-) is the standard Brownian bridge and 3+ is the surface tension of the dual low temperature model
(considered here as a function on the unit circle S+). Alternatively, (rlg* (x) + rﬂ*(x))*l is the curvature of the
boundary 9K g of the WUIff shape at the dual point #,,, £g(n) = T+ () = (tn, n)2.

B(-) (1.16)

2. Decomposition of path weights
2.1. Propertiesof gg(-)-weights

We use notatiogg 4 (-) for path weights which correspond to the Ising model with Hamiltonian (1.8)<ais.
with free boundary conditions diA. As before notatiogg(-) is reserved for infinite volume path weights . A basic
reference for the definition and properties of these path weights and for the related path-compatibility conventions
is [7,22,23]. As in [7] we shall repeatedly rely on the following decoupling property ofyg(e-weights (see
Lemma 5.3 in [23] or the proof of Lemma 3.1 in [7]):
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Lemma2.1. Let y be a (compatible) path and A, B C Z2. Then,

98.4() > exp{ —c1 Y G'Y_)‘}, (2.17)
qp.8(7) fee
yeAAB

wherec1 =c1(8) and 0 =6(B) € (0, 1).

Given two compatible pathg and define the conditional weights

qp.A(y UAr)
Y IA)="————
A I = @
By (2.17)
A
qp,A(Y | )>exp{—c1 Z Qy—x}. (2.18)
qp,Aa(y I'n) ey
YEAAD

2.2. Srings of paths and semi-norm || - |lg

It would be convenient to consider countable stringsf irreducible paths. Any finite string = (A1, ..., ;)
is canonically extended to an infinite string by attaching from the right the dummy string of empty¢paths
@,9,...);

Ay ees ) > A1, oo, A, 0,0, ..) = (A, 0).
For any two countable strings « define the proximity index
(A, o) =inf{k: Ap # ag},
and withe = 6(B) € (0, 1) from (2.18) define the distance
dp (1, 00) = 0B~
Let us say that a functioyf is locally uniformly Lipschitz continuous if
LA S T

2.3. Uniform Ornstein—Zer nike formula

Let us fix notation: unless it is explicitly mentioned, all paths or strings of paths are assumed to originate at 0.
Given a stringh. and a point, let us use: = A ( A - u) to denote the shift of which starts (respectively ends up)
inu.

Here is our main input from [7]: Given positive constanisa, andas the OZ formula

Crym)
Yo as(y IV ) S = ——=e ¥ (1+00), (2.19)
yiV()=INm] Vi1

holds uniformly inm € St N Cs(r), boundary stringg and functionsf satisfying

1
" <f()<az and | fllp <as. (2.20)
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For everyn and f the functionCy ,(-) is real analytic onS?~1 N Cs(r) and, furthermore, there exisy =
c1(ay, az, az) andca = ca(ay, az, az) such that

0 <1 <INfCy () <SUPC 1y () < c2 < 00,
faﬂ - f’ﬂ -

where both the inf and sup above are over all boundary strjraged over all functiong’ satisfying (2.20).
2.4. Decomposition of gy (n" L y L n®)

Let q;_ . andg g be the path weights in the right (respectively left) half- spdeesZ?: z1 > 0} (respectively
{z € Z¢: z1 < 0}. Then, in view of the decoupling property (2.18), the super-logarithmic choice of the sizes of
barriersp™ andn” in (1.14) ensures:

gn. (" Ly L)
IV VI

as(v V) F ") fn () (1+0()), (2.21)

where
ap(m IV Fy)
qs(nt)

Notice thatf, . satisfies (2.20) for all possible choices of the left barﬂi%r

for(v) =

2.5. Partition function Z y (n)

By (1.10) we may restrict attention only to pathsO — u such that each irreducible piece in the decomposi-
tion of A has a diameter bounded above(lng N)2. In particular, we may assume that the diameters of the barriers
R andp’ in (2.21) are bounded above bipg N)*. By the uniform Ornstein-Zernike formula (2.19),

CO)_ ~Nesm)
Zym = > grpt) = s (o), (2.22)
rePy

whereC is a strictly positive locally analytic function d&f—1 N Cs (1),

Coy =D a-pm")g-pm™) expl(r. V") + V@)}Cy , e,
nt.nR N

2.6. Decomposition of gg(y“ La LTy ® | V(y) F %)

In order to prove convergence of finite dimensional distributions we shall consider a further splitginin of
(1.14) as N

y=y ' UallyX,

where each of the three strings above contain at léagtV)? irreducible pieces. The induced decomposition of
the conditional weights on the right-hand side of (2.21) is:

qp(y" UaUy® | V() Fn®)
qp ()

as(r" IV E) IV En®) fu ™). (2.23)
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Again, notice thatf, satisfies (2.20) for all possible choices of the bamieFurthermore,
fﬁL(ZL o Lly®) =fQL(ZL)(1+o(1)), (2.24)

whenever the stringL contains at leasiog N)? irreducible pieces (which it will always do).
2.7. Partition function Zy (n, v, )

Define the interior of the strip
Sh = {y = (1. y2) € Sz min{y1, M — y1} > (log N)*}.

Let us fixv € S‘,L such that bothv anduy — v belong to the forward coné;(¢). Fix also an irreducible string
o =(a0, a1, ..., Qogn)2)- The patrtition functiorZ y (n, v, @) corresponds to the paths0 — uy = [ Nn] whose
irreducible decompositiogL Uyl QR containsv - « as a substring. By (2.21), (2.23) and (2.24),

e*fﬁ(“)*éﬁ(uN*U)qﬁ(g) elt, V()

VIv[d=tuy —v]d-1

where, as before=1,, n, = ¢/| o | and given two unit vectors, [ € C5(¢) N §4-1,

gam, D= 3" grpm")g150" ) exp{(t, V") + V@™)}Cr amCy, e (D).

ZN(n,U, Q)Zgg(nv nvanu;va) (1+0(1))’ (225)

3. Proof of theinvariance principle

In this section we prove the invariance principle for phase boundaries as stated in Theorem 1.2. Since we rely on

the high temperature dual representation (1.13) it would be convenient thWrge: P% .. for the corresponding
interface measures, where, of couré,> . is an inverse low temperature where%l& B¢ is the dual inverse

high temperature. The general invariance principle for high temperature connectivity lines (Theorem 1.1) follows
along the very same lines and, since we do not have to bother about boundary effects, is actually simpler. The
corresponding multi-dimensional curvature computation could be found in [8].

3.1. The curvature computation

Letn = (n1, np) € ST andn’ = (—ny, n1) be the unit orthogonal direction. Then, usih@) to denote the angle

of n +en*;
en
0(e) = arctan 2+ €™
ng —eny

and recording the derivatives of.. in it restriction to the unit circl&!, we obtain:
Tp(n+ent) — 15,.(n) = vV 1+ €215, (0(6)) — 754(6(0))
1 4 /
= Eez(rﬂ*(n) +14,(0) + 74, () (0(e) — 0(0) + 0(€). (3.26)

Let nowuy = | Nn] be as in the statement of Theorem 1.2 and, giwen(0,1) anda € R, let vy = Nhn +
V/Nant be an intermediate point inside the interior stﬂb. Then (3.26) (notice that(e) + 6(—¢) — 26(0) =
o(e?)) readily implies:
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T8+ (UN) + T+ (un — V) — T (U p)

- hN(rﬁ* (n + thnL) - rﬁ*(n)> +(1- h)N(rg* (n - m&) - rﬂ*(n)>

Tp(M) + 74, () [uy — N |2 1
= ol —=). 3.27
2h(1—h) VN " (\/N) 20

3.2. Finitedimensional distributions

We proceed with the setup of Subsection 1.6.4£& (T4, (n) + rg*(n))*l be the curvature ofK 4 at the dual
pointz,. In this section we shall prove convergence of one-dimensional distributions:
Lemma3.1. For any 2 € (0,1) and any f € Co(R),
IJiI)nOOEx’ﬂf(dw(h)) =Ef(/xpB(h)). (3.28)
As it will be clear from the proof, a generalization to finite dimensional distributions of higher order is straight-

forward.
It would suffice to show that one can find a sequenge> 0 such that for any € (0, 1),

h+en
. 1
lim = f ED o f (on() ds = Ef (JGFB(R)). (3.29)
N—o00 ZEN

h—en

Givenh € (0, 1) anda € R define
vy =vny(h,a)=Nhn+ VNan*t.
Thus,
{ov () =a} = vy € Ly[A1} 2 {3 e By )}

We record the decomposition (1.14) of each regular (that is satisfying the condition in (1.15))8h (vy) as,
see Fig. 2,

A=pt Uyt Uolly®1nk,
where the barriet = («g, o1, . . ., ;) (recallr = | (log N)2]) is unambiguously defined by the condition
we (Ve +veh, v + vyt + Vi),
where[u, v) is the semi-open linear segmenti$ with end-points at andv. In the notation of Subsections 2.5

and 2.7,

Zy(m, v,
]P%’ﬁ(v]v S EN[A]) = Z %. (3.30)

(v,2):
vy €[v,v+V (ag))

By (1.15) we can restrict attention tes satisfyingjv — vy| < (logN)*. Then the asymptotic expressions (2.22)
and (2.25) and the curvature computation (3.27) yield:

— Nhn|?
PR 5(vn € Ly[A]) (14 0(D) = vy i } > G, (3.31)

1
expy —
VNRA—h) p{ 2Nh(1— h)g ot

vy €[v,v+V(xp))
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M

Fig. 2. Decomposition of a path € B (vy). The pointvy belongs to the segmedt’ (nL) + V(yL), v(nh) + v(yL) + V(wo)).
o= (xg,-.., ay) is a decoupling barrier.

whereG(a) = g4 (n, 1, n)gp () €-V(@) in the notation of (2.25).

Consequently,
_ —|v—(v,n)2n[?/ 2N h(1—h)kp)
EY 5 f (63 (1) (1+0(D) = > f (” %’””‘) 2 N @

(v,2):
[v,v+V (@0)HY,, 79

where we have again relied on the possibility to restrict attentidki tag)| < (logN)2.
We are now in a position to derive (3.29): Choasgein such a way thaNey > (log N)2. Then,
h+en
(1 + 0(1)) / E&ﬁf(qﬁ]\] (s)) ds
h—en
h+en
v— (@, “)2“)ev(vm)znz/(zz\m(lh)x,s)G(g )

- L ¥ (
~ VNR(I=h) wf VN ,

C 1 — (v,
(n) Z f(v (v n)zn) V= 2n 2/ @NEA-E) 4 o).

L{(v,n)a<s NS (0+V (@), n)2) A

= N N32
(=) N¥ N(h—en)<(,m)2<N (h+ey) VN
where
Cn) =) (V(x0).n),G(a). (3.32)

oQ
In fact, C(n) = 1/+/27 + 0(1). Indeed, the expression above is just the Riemannian sum for the integral
° a2/ (2h(A—h)kp)
2¢ _—
N / F@ J2h(L— hys
—0o0

and (3.29) follows.

dz + o(en),
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3.3. Tightness

In this section we prove tightness of thg. In order to simplify the proof we introduce a modificationeg§,
which is a linear approximation @fy on a larger mesoscopic scale with step sige= |[N1/279].

The number of irreducible components in the decomposition (1.8) of axpiagtiore the-th step on the meso-
scopic grid will be denoted by ; (A)

k

Ty () =maxtk: (Vi ).n),+ Y (V(j).n), <iSy
j=0

the coordinates of the displacement of the fifgt; (1) irreducible components in the pattdenoted by

T,

Cni)=Vnh)+ ) V.
j=0

Our mesoscopic linear approximation of 0 — uy, which will be denoted byCy, is the linear interpolation
through the points

0. V1,....Vinssy)-1.  un €R?,
where theV; is recorded inn, n')-coordinate system as:
V; =iSyn+ (Cn,i—1(A), nt),nt.

The above definition of the verticé¥;} is tuned in such a way that their(time) projections live on the stefy
mesoscopic grid.

Similarly to the rescaled version of the effective path, we define a rescaled version of the approximation
by @ . Note that the irreducible decomposition procedure along with the restriction on the length of the irreducible
components bylog N)* imply that

lim dn(en, on) =0, (3.33)
N—o0

where d4(-, -) is Hausdorff distance.
To prove tightness dpy it is enough to show that

_ _ 4
EY 4@ (h2) — @y (h1)|” < Clha — haf? (3.34)
uniformly on 0< 21 < ho < 1.

Lemma3.2. There exist c1, ¢2 > 0 such that
Py 5(|on ()| = av'h) < crexp(—camina?, a)) (3.35)

holds uniformly on i € (0,1) and a > 0.

Proof. By definition of gy, we have

Zyn, v,
P (1w )| > avh) = 3 e (3.36)

(v,2):

I(v,n1)2l>av/hN
(v,n)2<hN <(v+V (@), n)2

moreover it is sufficient to prove (3.35) fare (0,1) N (Z - SWN).
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We divide the sum in (3.36) into two regimes: the very large deviations regime wheneih®i(¢) oruy — v ¢
Cs (1) and the large to moderate deviations regime when bahduy — v belong to the forward coné; (¢). It
enough to show that the bound (3.35) holds when we restrict the sum to each of the regimes.

Letv ¢ Cs(¢). Then the renormalization Theorem 2.3 of [7] readily implies: There existsO such that,

> apn(t Uy ) etk
QLLIZ: O—u

uniformly in « and inju — v| < (log N)2. Consequently,

Zy(m,v,a)
Zy(m)
and, in view of convexity ofg, a substitution of the above estimate to (3.36) clearly implies (3.35). A completely
similar argument applies in the casexgf — v ¢ Cs (7).
It remains to consider the case when botAndu — v belong to the forward coné;(¢). In this case we are
entitled to use the asymptotic formula (2.25). In fact, since the strict triangle inequality of [19,23] implies that
(v, 1)2)?

Es(v) +Eg(uy —v) —Ep(uy) > 4

we can restrict attention only to the case of moderate deviations)z| < N 1/2+3 For such values of we,
exactly as in (3.31), infer that the right-hand side of (3.36) is bounded above by

< exp{—(§s(v) + &5 (un — v) — Ep(un)) — calvl},

UM O [ P
VNh(1—h) JWbe(/Nia.00Z 2h(1— h)kg

whereC (n) is given in (3.32), and (3.35) follows from the usual Gaussian summation procedure.

The decomposition bounds imply that
anp(m" Uy, Uy, Un®) <cagnpn” Uy, Uy, Uy
which along with Lemma 3.2 yields: there ex&t, C3 > 0 such that
n (1oNn(h2) —@n(h1)]
NP |ho — il

holds uniformly on 0< k1 < hp < 1 anda > 0.
Finally, the bound (3.37) gives us the tightness criterion (3.34)sfpr which along with (3.33) implies the
tightness of theyy .

> a> <C3 eXp(—C2 min(az, a)) (3.37)
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