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Abstract

We consider the motion of a discrete random surface interacting by exclusion with a random wall. The heights of
at the sites ofZd are i.i.d. random variables. Fixed the wall configuration, the dynamics is given by the serial harness
which is not allowed to go below the wall. We study the effect of the distribution of the wall heights on the repulsion sp
 2005 Elsevier SAS. All rights reserved.

Résumé

On considère le mouvement d’une surface aléatoire discrète interagissant par exclusion avec une paroi aléatoire. Le
de la paroi sont des variables aléatoires i.i.d. Une fois fixée la configuration de la paroi, la dynamique est donnée par un
de harnais qui ne peut descendre en dessous de la paroi. On étudie l’effet de la distribution hauteurs sur la vitesse de
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1. Introduction

This paper is part of a project aiming to understand the effect of the interaction with walls on the evoluti
d-dimensional random surface in(d + 1)-space.

The evolving random surface is modeled by the harness process introduced by Hammersley in [9], wher
other results, the fluctuations of the free case (no wall) were established in all dimensions (see also [7], w
is discussed in more detail than in here).

In [7], a solid flat wall is placed at the origin and its effect on the displacement of the surface with respe
initial location at the origin is studied.

In that reference, it is shown that in all dimensions the average height of the surface (say, at the origin)
to +∞ as time increases. This should be compared to the average absolute height of the surface at the
the free case. In the latter case, that quantity is bounded in dimensions 3 and higher [9,7]. An effect of re
on the wall is thus established in those dimensions. Estimates on the speed of repulsion are obtained for
noise distributions (including the Gaussian case). These are comparable to estimates of the entropic rep
the massless free field interacting with a flat wall (see [7] and references therein).

Motivated by work on the entropic repulsion for the massless free field interacting with a wall with ra
heights [1], we consider the same kind of wall here. In [1], estimates similar to those in [4–6] for the wa
fixed height case were obtained, showing in some cases an effect of the wall height distribution. We s
analogous effect, with analogous quantitative estimates, for the same class of noise distributions conside
(see Theorem 3.1 below).

Further studies on the massless free field interacting with a wall with random heights were carried on
We refer again to [7] for other works on surfaces interacting with walls, in and out of equilibrium.

In the next section we define precisely our model and describe the flat wall result of [7], which is relat
relevant to our main result. The latter is presented and argued in the following and final section. It was ann
previously in [8].

2. The model

Denote by|i − j | the number of edges in a minimal path connectingi andj (we will use this definition not only
for Z

d , but also for other graphs). LetP = {p(i, j)}i,j∈Zd be a symmetric stochastic matrix which satisfiesp(i, j) =
p(0, j − i) =: p(j − i) = p(i − j) (homogeneity) andp(j) = 0 for all |j | > v for somev (finiteness). Assume
also thatP is truly d-dimensional:{j ∈ Z

d : p(j) �= 0} generatesZd . The weightsp(i, j) can be interpreted a
transition probabilities of a random walk onZd ; denote byP its transition matrix and bypm(i, j) its m-step
transition probabilities. By homogeneity,pm(i, j) = pm(0, j − i) =: pm(j − i).

Let E := {ε, εn(i), i ∈ Z
d , n ∈ Z} be a family of i.i.d. integrable symmetric random variables with unboun

support.E represents the evolution noise variables.
We next introduce the wall variables, giving the heights at each space coordinate. Consider the family

random variablesW = {W(i)}i∈Zd , independent ofE . W(i) represents the height of the wall at sitei.
With a realization ofW fixed, the harness process interacting withW by exclusion is defined as follows.

XW
n (i) =

{
0∨ W(i), if n = 0,
W(i) + (

PXW
n−1(i) + εn(i) − W(i)

)+
, if n � 1. (2.1)

We allowW(i) to take the value−∞ (with positive probability), in which case the expression forn � 1 in (2.1) is

PXW
n−1(i) + εn(i). (2.2)
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Remark 2.1. Notice thatXW
n (i) so defined is nondecreasing in (the natural partial order for)W.

The case whereW ≡ −∞, in which we denoteXW by Y , is the free case introduced by Hammersley in
In that paper it is shown thatEY 2

n (0) is of order 1 ind � 3. (Notice that under our assumptions onXW
0 andε,

EYn(0) ≡ 0.)
The case whereW ≡ 0, in which we denoteXW by Z, was studied in [7]. We now quote some of the result

that paper, which are directly related to our main result here.

Theorem 2.1 (Part of Theorem 1.2 from [7]).Let Fε be the distribution function ofε and define the following
classes of distribution functions:

L−
α := {

F : F(x) � c e−c′xα

, x > 0, for some positivec, c′}, (2.3)

L+
α := {

F : F(x) � c e−c′xα

, x > 0, for some positivec, c′}, (2.4)

whereF = 1− F , and

Lα := L−
α ∩L+

α . (2.5)

For d � 3, there exist constantsc andC that may depend on the dimension such that

(i) if Fε ∈ Lα for some1� α �= 1+ d/2, then

c(logn)
1
α � EZn(0) � C(logn)

1
α
∨ 2

2+d ; (2.6)

(ii) if Fε ∈ L1+d/2, then

c(logn)
2

2+d � EZn(0) � C(logn)
2

2+d (log logn)
d

2+d . (2.7)

3. Results

In the following, which is our main result, we obtain bounds on the average height of the wall at the orig
function ofn, the number of iterations of the dynamics, ind � 3. The average is taken with respect to the noise
wall variables. The bounds are similar to the corresponding ones in Theorem 2.1 above, and show an effe
wall variables (to leading order, ignoring constants) when they have a heavy enough positive tail which is
than the noise ones. This is the case when the noise variables are Gaussian and the wall ones are sub-Ga
have distribution function belonging toLθ with θ < 2).

Theorem 3.1. Letd � 3 and suppose thatFε(x) ∈ Lα andFW(x) ∈ Lθ . Then there existc andC such that

c(logn)
1
α
∨ 1

θ � E XW
n (0) � C

(
An + (logn)

1
θ
)
, (3.1)

where

An =
{

(logn)
1
α
∨ 2

2+d , if α �= 1+ d
2 ,

(logn)
2

2+d (log logn)
d

d+2 , if α = 1+ d
2 .

The lower bound in(3.1) is valid forα, θ > 0, and the upper bounds are valid forα > 1, θ > 0.
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Proof.

Lower bound. Let nextŴ = {Ŵ (i)}i∈Zd , where

Ŵ (i) =
{−∞, if W(i) < 0,

0, if W(i) � 0.

It then follows thatXW
n � XŴ

n . So, we need to obtain a lower bound forµn := EXŴ
n (0).

Lemma 3.1. We haveµn � c(logn)1/α , wherec is a positive constant.

Proof. Denoteq = P(W(i) � 0). With a slight abuse of notation we identify beloŵW with the set{i ∈ Zd :
Ŵ (i) = 0}. We have then

µn = E
(
XŴ

n (0) | 0∈ Ŵ
)
q + E

(
XŴ

n (0) | 0 /∈ Ŵ
)
(1− q)

= E
[
E

((
PXŴ

n−1(0) + εn(0)
)+ | Ŵ,0∈ Ŵ

)]
q + E

[
E

(
PXŴ

n−1(0) + εn(0) | Ŵ, 0 /∈ Ŵ
)]

(1− q)

= EPXŴ
n−1(0) + E

[
E

((
PXŴ

n−1(0) + εn(0)
)− | Ŵ,0∈ Ŵ

)]
q

= PEXŴ
n−1(0) + E

[
E

((−PXŴ
n−1(0) + εn(0)

)+ | Ŵ,0∈ Ŵ
)]

q

� PEXŴ
n−1(0) + G

(
PEXŴ0

n−1(0)
)
q (3.2)

= µn−1 + G
(
PEXŴ0

n−1(0)
)
q, (3.3)

wherea− := a+ − a, G(x) = E(ε − x)+, Ŵ0 = Ŵ ∪ {0}, and (3.2) is due to Jensen’s inequality.
We want now to estimateEXŴ0

n (j) in terms ofEXŴ
n (j). Consider the processesXŴ0

n , XŴ
n andYn = X∅

n (free

process), all coupled together by using the sameεk(j). We have thatXŴ0

n (j) � XŴ
n (j) � Yn(j) for all j . So, if

j �= 0, using (2.1), (2.2) and the fact that fora � c it holds(a + b)+ − (c + b)+ � a − c, we get

XŴ0

n (j) − XŴ
n (j) �

∑
k∈Zd

p(j, k)
(
XŴ0

n−1(k) − XŴ
n−1(k)

)
. (3.4)

For j = 0 we have

XŴ0

n (0) − XŴ
n (0) �

∑
k∈Zd

p(0, k)
(
XŴ0

n−1(k) − XŴ
n−1(k)

) + εn(0)− +PY−
n−1(0) (3.5)

(here we used the fact that fora � c � g it holds(a + b)+ − (c + b) � a − c + b− + g−). Iterating (3.4) and (3.5)
one can get that

XŴ0

n (j) − XŴ
n (j) �

n∑
m=1

pm−1(j)
(
εn−m+1(0)− +PY−

n−m(0)
)
. (3.6)

Note that, asd � 3, random walk with transition matrixP is transient and alsoEY−
n (0) � const, so (3.6) implies

that

EXŴ0

n (j) − EXŴ
n (j) � C0 (3.7)

for someC0 > 0, for all n, i, andj .
So,µn satisfies

µn � µn−1 + G̃(µn−1) (3.8)
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whereG̃(x) = G(x + C0)q. A lower bound of O((logn)1/α) for EXW
n (0) then follows as in the proof of Theo

rem 3.1 and Corollary 3.3 in [7]. �
We derive next a lower bound of O((logn)1/θ ). Let µW

n (i) = E(XW
n (i) | W). As the dynamics of the proce

can be re-written as

XW
n (i) =

{
0∨ W(i), if n = 0,
PXW

n−1(i) + εn(i) + (
W(i) −PXW

n−1(i) − εn(i)
)+

, if n � 1, (3.9)

we have

µW
n (i) = PµW

n−1(i) + E

((
W(i) −

∑
j∈Zd

p(i, j)XW
n−1(j) − εn(i)

)+
| W

)
� PµW

n−1(i) + (
W(i) −PµW

n−1(i)
)+

. (3.10)

ForW fixed, andi ∈ Z
d let

νW
n (i) =

{
0∨ W(i), if n = 0,
PνW

n−1(i) + (
W(i) −PνW

n−1(i)
)+

, if n � 1. (3.11)

We then have (sincex + (a − x)+ is nondecreasing inx for all a) thatµW
n (i) � νW

n (i) for all W, n, i.
Let nextW̃ = {W̃ (i)}i∈Zd , where

W̃ (j) =
{

W(j), if W(j) � 0,
−∞, if W(j) < 0.

It follows thatνW
n (i) � νW̃

n (i) for all W, n, i.

We will estimateνW̃
n (i). Let us decomposẽW in the following way.W̃ = W̃i ∨ W̃i , with W̃i = {W̃i(j)}j∈Zd

andW̃i = {W̃ i(j)}j∈Zd , where

W̃ i(j) =
{

W̃ (i), if i �= j ,
−∞, if i = j ,

W̃i(j) =
{−∞, if i �= j ,

W̃ (i), if i = j .
(3.12)

Lemma 3.2. For all n andj it holds

νW̃i

n (j) ∨ νW̃i
n (j) � νW̃

n (j) � νW̃i

n (j) + νW̃i
n (j). (3.13)

Proof. We prove the lemma by induction. Forn = 0 (3.13) is evident.
Suppose (3.13) holds forn − 1. Forj �= i, we have

νW̃
n (j) = PνW̃

n−1(j) + (
W̃ (j) −PνW̃

n−1(j)
)+

,

νW̃i

n (j) = PνW̃i

n−1(j) + (
W̃ (j) −PνW̃i

n−1(j)
)+

,

and

νW̃i
n (j) = Pν

W̃i

n−1(j).

Note that induction assumption impliesPνW̃i

n−1(j) � PνW̃
n−1(j) andPν

W̃i

n−1(j) � PνW̃
n−1(j). So,νW̃i

n (j) � νW̃
n (j),

and, asx + (a − x)+ is increasing,νW̃i

n (j) � νW̃
n (j). Also by induction assumption,

PνW̃
n−1(j) � PνW̃i

n−1(j) +Pν
W̃i (j ).
n−1
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As (a − x)+ is decreasing, we have(
W̃ (j) −PνW̃

n−1(j)
)+ �

(
W̃ (j) −PνW̃i

n−1(j)
)+

.

Thus,

νW̃
n (j) � νW̃i

n (j) + νW̃i
n (j).

The casej = i is similar. �
Let us now estimatePν

W̃0
n (0). We suppose thatW(0) =: W > 0, otherwiseνW̃0

n ≡ 0. We have

νW̃0
n (i) =


W, if i = 0, n = 0,
0, if i �= 0, n = 0,

Pν
W̃0
n−1(0) + (

W −Pν
W̃0
n−1(0)

)+
, if i = 0, n � 1,

Pν
W̃0
n−1(i), if i �= 0, n � 1.

(3.14)

It follows readily by induction thatνW̃0
n (i) � W for all i, n. Thence, we haveνW̃0

n (0) ≡ W . It is now readily
verified by induction that fori �= 0

νW̃0
n (i) = W

n∑
k=1

p
{0}
k (i,0), (3.15)

where, for anyj , p
{0}
k (j,0) is the probability that the random walk with transition matrixP starting fromj returns

to 0 for the first time at stepk. It follows that

PνW̃0
n (0) = W

n+1∑
k=1

p
{0}
k (0,0) � aW, (3.16)

wherea = ∑∞
k=1 p

{0}
k (0,0) < 1, sinced � 3.

By (3.13) and (3.16), we have

νW̃
n (0) � PνW̃

n−1(0) + (
(1− a)W −PνW̃′

n−1(0)
)+

, (3.17)

whereW̃′ = {W̃ ′(i)}i∈Zd , with W̃ ′(i) = W̃ (i) if i �= 0, andW̃ ′(0) independent of̃W. Taking now expectations wit
respect tõW, W̃ ′(0), and applying Jensen’s inequality, we get

EνW̃
n (0) � EPνW̃

n−1(0) + G
(
EPνW̃′

n−1(0)
) = PEνW̃

n−1(0) + G
(
PEνW̃′

n−1(0)
)

= PEνW̃
n−1(0) + G

(
PEνW̃

n−1(0)
) = EνW̃

n−1(0) + G
(
EνW̃

n−1(0)
)
, (3.18)

whereG(x) = E((1− a)W − x)+, and we have used the equidistribution ofW̃ andW̃′, and the translation invari
ance of the joint distribution of̃W andE .

We then see thatνn ≡ EνW̃
n (0) is of the same form as(3.3) in [7], and a lower bound of O((logn)1/θ ) for νn

follows as in the proof of(3.4) in [7].

Upper bound. As in [7], in order to obtain an upper bound, we compare the wall process with a free p
started sufficiently high. LetXW,rn

n andY
rn
n have the same evolution asXW

n (resp.Yn), butXW,rn
0 (i) = rn ∨W(i),

Y
rn
0 (i) ≡ rn. LetRn = max{W(i): |i| � vn} (recall thatv is a range ofP), and

an =
{

2K
(
(logn)

1
α
∨ 2

2+d + (logn)
1
θ

)
, if α �= 1+ d

2,

2K
(
(logn)

2
2+d (log logn)

d
d+2 + (logn)

1
θ

)
, if α = 1+ d .

(3.19)

2
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Note thatP(Rn > K(logn)
1
θ ) � nc1−c2K

θ
. Takern = an/2. We have

P
(
XW

n (0) � an

)
� P

(
XW,rn

n (0) � an

)
= P

(
XW,rn

n (0) � an,X
W,rn
n (0) = Y rn

n (0)
) + P

(
XW,rn

n (0) � an,X
W,rn
n (0) �= Y rn

n (0)
)

� P
(
Y rn

n (0) � an

) + P
(
XW,rn

n (0) �= Y rn
n (0)

)
. (3.20)

In Section 5 of [7] it was shown thatP(Y
rn
n (0) � an) � knc3−c4K . As forP(X

W,rn
n (0) �= Y

rn
n (0)), note thatXW,rn

n (0)

andY
rn
n (0)) can be different if either ifRn > rn, or if it occurs{
Y

rn
l (j) < Rn for some(l, j) with l � n, |j | � v(n − l)

}
.

We have then

P
(
Y

rn
l (j) < Rn

)
� P

(
Y

rn
l (j) < K(logn)

1
θ
) + P

(
Rn > K(logn)

1
θ
)

� P
(
Yl(j) < K(logn)

1
θ − rn

) + nc1−c2K
θ

� P
(
Yl(j) > rn − K(logn)

1
θ
) + nc1−c2K

θ

� knc5−c6K
θ∧1

, (3.21)

whereθ ∧ 1= min{θ,1}, and

P
(
XW,rn

n (0) �= Y rn
n (0)

)
� nc1−c2K

θ +
n∑

l=0

∑
|j |�v(n−l)

knc5−c6K
θ∧1 � k′nc7−c8K

θ∧1
.

So,

P
(
XW

n (0) � an

)
� k∗nc′−c′′Kθ∧1

and, by takingK large enough, this implies thatEXW
n (0) � C

2K
an (see end of Section 6 of [7] for the reasoning

a similar situation). �
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