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Abstract

In this paper almost sure convergence and asymptotic normality of generalized quadratic variation are studied. The m
in this paper extend classical results from Baxter and Gladyshev so that they can be applied to fractional Gaussian
An application to the estimation of the true axes of a fractional Brownian sheet is also obtained.
 2005 Elsevier SAS. All rights reserved.

Résumé

On étudie dans ce papier les propriétés de convergence et de normalité asymptotique des variations quadratiques g
d’un champ brownien fractionnaire. Le résultat principal est une extension des résultats classiques de Baxter et Gla
cas de processus gaussiens fractionnaires. Nous appliquons ce résultat à l’estimation de la direction privilégiée de tels
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Since [2] it is classical to show that quadratic variations of a Gaussian process converge to an integr
singularity function if it exists. This result is extended in [8] to some fractional processes including the well
fractional Brownian motion. In [8] the mesh of the increments that define the quadratic variation is 1/2n and an al-
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most sure convergence result is obtained whenn → ∞. Actually it is known (see [12]) that the almost convergen
is true when the mesh is o(1/ log(n)). Nevertheless quadratic variations are not suitable when one is intereste
central limit theorem for fractional Brownian motion. Actually it is shown in [9] that forH > 3/4 the central limit
theorem is false for fractional Brownian motion. To overcome this problem the usual increments in the qu
variations are replaced by second order increments to yield the generalized quadratic variations. In this ca
alized quadratic variations have been used in [10] for Gaussian processes with stationary increments and
filtered white noise that are fractional processes with non-stationary increments.

In the first part of the paper the almost sure convergence of the generalized quadratic variations is
under general assumption on the correlation of the Gaussian process when the mesh is 1/n. When the limit is
not vanishing it leads to a generalization of the singularity function in the spirit of Gladyshev. Then the asym
normality of the generalized quadratic variations is established in this general setting. In the second part an
of application of this theorem to spatial estimation for a Gaussian field is given. Actually we consider a fra
Brownian sheet which is a centered Gaussian field(WH1,H2(x, y))(x,y)∈R2 such that the correlation function is:

E
[
W(x1, y1) · W(x2, y2)

] = 1

4

(|x1|2H1 + |x2|2H1 − |x1 − x2|2H1
)(|y1|2H2 + |y2|2H2 − |y1 − y2|2H2

)
(1)

where 0< H1, H2 < 1.
With no loss of generality one can assume that theOx axis is the one corresponding to the minimum ofH1,H2;

hence, we denote byH1 this minimum from now on. This field has been introduced in [11] and studied in [
The estimation of the parameterH1, H2 is done in [13] under the assumption that the axes of the fractional Br
ian sheet are known. We refer to [13] for a discussion of the application of this estimation to the detec
osteoporosis with medical X-rays.

In our paper the parametersH1, H2 are identified with the help of generalized quadratic variations of the
tional Brownian sheet restricted to some segments and we do not assume that the axes of the fractional
sheet are known as in [13]. Please note that the use of generalized quadratic variations is quite importan
one constructs a confidence interval with the help of the central limit theorem. Moreover we address the pro
estimating the rotation between the axes of the fractional Brownian sheet and the axes of the observation
note that a similar problem is solved in [5] for standard Brownian sheet i.e.H1 = H2 = 1/2 (see [14] for a genera
reference).

Strongly consistent estimators ofH1, H2 andθ the angle between the axes of observations and the true ax
the fractional Brownian sheet are given. Moreover a confidence interval is obtained forH1.

In the second section almost sure convergence of the generalized quadratic variations is established,
Limit Theorem is also obtained. Section 3 is devoted to the application to the fractional Brownian sheet.

2. Singularity functions for fractional processes

In the following theorem the almost sure convergence of the generalized quadratic variations is proved
stress the fact that this theorem is classical for quadratic variations (cf. [8]) in [8] a bound for the second de
of the correlation functionr(s, t) is needed whens �= t. In the following theorem this bound is replaced by
which is a bound on the fourth derivative of the covariance functionr(s, t). Moreover the singularity function (se
Remark 2 for a precise definition) is now obtained in (6) as a limit of a fourth order difference operator a
to r . Those are the key points for describing the limit behavior of the generalized quadratic variations.

Theorem 1. Let (ξt , t ∈ [0,1]) be a real process with Gaussian increments such that

(1) mt = E(ξt ) exists and has a bounded derivative on the segment[0,1].
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(2) There exists a correlation function

r(s, t) = E
((

ξ(s) − Eξ(s)
)(

ξ(t) − Eξ(t)
))

(2)

having the following properties:
(a) r is continuous on[0,1]2;
(b) There exist two functionc1(s), c2(t) such that∂4(r − c1 − c2)/∂t2∂s2 exists and is a continuous functio

on [0,1]2 \Diag, where Diag= {(u, v): such thatu = v} and there exists a constantC0 and a real number
γ ∈ (0,2) such that∣∣∣∣∂4(r − c1 − c2)(s, t)

∂t2∂s2

∣∣∣∣ � C0

|s − t |γ+2
. (3)

(c) Let us define two order increments:

δh
1f (s, t) = f (s + h, t) + f (s − h, t) − 2f (s, t), (4)

δh
2f (s, t) = f (s, t + h) + f (s, t − h) − 2f (s, t) (5)

and let us suppose that there exists a bounded functiong defined on(0,1) such that:

lim
h→0+ sup

t∈[h,1−h]

∣∣∣∣ (δh
1 ◦ δh

2r)(t, t)

h2−γ
− g(t)

∣∣∣∣ = 0. (6)

Then

lim
N→∞N1−γ

N−1∑
k=1

[ξ(k+1)/N + ξ(k−1)/N − 2ξk/N ]2 =
1∫

0

g(t)dt. (7)

Remark 1. Please remark thatg is continuous on(0,1) because of (6).

Remark 2. If assumption (2b) and assumption (2c) are satisfied forγ0 ∈ (0,2), they are also satisfied forγ > γ0 but
the corresponding functiongγ is vanishing. Whenγ0 is the infimum of the real number such that assumptions
and (2c) are satisfiedgγ0 can be viewed as a generalization of the singularity function introduced in [2].

Remark 3. In assumption (2b) the functionsc1(s), c2(t) are introduced so that Theorem 1 can be applied to
fractional Brownian motion with covariance

r(s, t) = 1

2

{|s|2H + |t |2H − |t − s|2H
}

(8)

where 0< H < 1. Actually the partial derivatives of the covariancer do not exist whens = 0 but assumption (2b
still holds. Assumption (2a) is clearly fulfilled for the fractional Brownian motion. Since

δh
1 ◦ δh

2r(t, t) = 4r(t, t) + 2r(t − h, t + h) − 4r(t + h, t) − 4r(t − h, t)

+ r(t + h, t + h) + r(t − h, t − h), (9)

we getδh
1 ◦ δh

2r(t, t) = (4− 22H )h2H . If one makes the choiceγ = 2− 2H then∀t ∈ [h,1− h] g(t) = (4− 22H ),
assumption (2c) is fulfilled.

Proof of Theorem 1. One can suppose thatm(t) = 0 for t ∈ [0,1] by considering the processξ̃ (t) = ξ(t)−Eξ(t).
Because of assumption 1, asN → ∞

N1−γ

N−1∑
[m(k+1)/N + m(k−1)/N − 2mk/N ]2 = O(N−γ ), (10)
k=1
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and
the existence of the limit (7) yields the result for a noncenteredξ(t). We suppose thatm(t) = 0 for t ∈ [0,1] until
the end of the proof.

Let us define∆ξk = ξ(k+1)/N + ξ(k−1)/N − 2ξk/N , and

ηN = N1−γ

N−1∑
k=1

(∆ξk)
2.

The following notations are introduced:

dj,k = N1−γ
E[∆ξj∆ξk] (11)

and

dN = 2
N−1∑
k=1

d2
k,k + 4

∑
1�k<j�N−1

d2
j,k. (12)

Let us first provedN = var(ηN). Actually

η2
N = N2−2γ

[
N−1∑
k=1

(∆ξk)
4 + 2

∑
1�k<j�N−1

(∆ξk)
2(∆ξj )

2

]
.

Since(∆ξk, k = 1, . . . ,N − 1) is a Gaussian vector

E
[
(∆ξk)

4] = 3
(
E

[
(∆ξk)

2])2

and

E
[
(∆ξk)

2(∆ξj )
2] = E

[
(∆ξk)

2]
E

[
(∆ξj )

2] + 2
(
E[∆ξk∆ξj ]

)2
.

Then

E[η2
N ] = 3

N−1∑
k=1

d2
k,k + 2

∑
1�k<j�N−1

[dk,kdj,j + 2d2
j,k]

that yields

var(ηN) = 2
N−1∑
k=1

d2
k,k + 4

∑
1�k<j�N−1

d2
j,k = dN .

Moreover we will show that there exists a generic constantC such that

E
[(

ηN − E(ηN)
)4] � Cd2

N. (13)

Let us remark thatηN is the square of the Euclidean norm of the Gaussian vectorN(1−γ )/2(∆ξk , k = 1, . . . ,

N − 1). The classical Cochran theorem yieldskN � N − 1 non-negative real numbers(λ1,N , . . . , λkN ,N ) and
a kN -dimensional Gaussian vectorζ such that its components are independent reduced Gaussian variables

ηN =
kN∑
j=1

λj,Nζ 2
j,N .

The components ofζ are obtained by a simple orthogonalization procedure. Then
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E
[(

ηN − E(ηN)
)4] = E

[(
kN∑
j=1

λj,N (ζ 2
j,N − 1)

)4]

= E
[
(ζ 2

1,N − 1)4] kN∑
j=1

λ4
j,N + 6

(
E

[
(ζ 2

1,N − 1)2])2 ∑
1�i<j�kN

λ2
i,Nλ2

j,N

� C

[
kN∑
j=1

λ2
j,N

]2

.

MoreoverdN = var(ηN) = E[(ζ 2
1,N − 1)2]∑kN

j=1 λ2
j,N yields the inequality (13).

Let us remark that

dj,k = N1−γ
(
δ

1/N

1 ◦ δ
1/N

2 r
)( j

N
,

k

N

)
(14)

and that

E(ηN) =
N−1∑
k=1

dk,k. (15)

Moreover the limit (6) yields

sup
1�k�N−1

∣∣∣∣Ndk,k − g

(
k

N

)∣∣∣∣ → 0 (16)

asN → ∞. Hence, forM > supt∈(0,1) |g(t)|

|dk,k| < M

N
(17)

for N large enough.
Please remark thatg is continuous (Remark 1) so that

lim
N→∞

1

N

N∑
k=1

g

(
k

N

)
=

1∫
0

g(t)dt.

So we get

lim
N→∞E(ηN) =

1∫
0

g(t)dt. (18)

The next step is to apply Borel–Cantelli lemma. To prove the almost sure convergence ofηN , an estimate of the
asymptotic ofdN whenN → ∞ is needed. Let us split the study of the asymptotic of (12) in three parts.

• We know thatdk,k < M/N (cf. (17)), then

N−1∑
k=1

d2
k,k <

M2

N
(19)

for M > supt∈(0,1) |g(t)| andN large enough.
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• For j = k + 1, k + 2, as|dj,k| �
√

dk,kdj,j , we have

|dj,k| � M

N
(20)

for M > supt∈(0,1) |g(t)| andN large enough.
• A sharper estimate is needed for|j − k| > 2.

Lemma 1. If [s − h, s + h] × [t − h, t + h] ∩ Diag = ∅, where Diag= {(u, v): such thatu = v}, and [s − h,

s + h] × [t − h, t + h] ⊂ [0,1]2, then∣∣(δh
1 ◦ δh

2r)(s, t)
∣∣ � C0h

4

|s − t − 2h|γ+2
(21)

for the constantC0 of (3).

Proof. One can rewrite

δh
1 ◦ δh

2(r − c1 − c2)(s, t) =
s+h∫
s

du

u∫
u−h

dx

t+h∫
t

dv

v∫
v−h

dy
∂4(r − c1 − c2)

∂s2∂t2
(x, y). (22)

Because of (3)∣∣∣∣∂4(r − c1 − c2)

∂s2∂t2
(x, y)

∣∣∣∣ <
C0

|x − y|γ+2

on the set{s − h � u − h � x � u � s + h; t − h � v − h � y � v � t + h} where|x − y| > |s − t − 2h|. Last
δh

1 ◦ δh
2(r − c1 − c2)(s, t) = (δh

1 ◦ δh
2r)(s, t). �

One can deduce from the preceding lemma that for|j − k| > 2

|dj,k| � C0N
−1

|j − k − 2|γ+2
. (23)

Hence forN � 5∑
1�k�j−3�N−4

d2
j,k � C2

0N−2
∑

1�k�j−3�N−4

|j − k − 2|−2γ−4 (24)

= C2
0N−2

N−4∑
t=1

N − 3− t

t2γ+4
(25)

� C2
0N−1

( N∫
1

dt

t2γ+4
+ 1

)
(26)

�
4C2

0

3N
. (27)

Since the number of terms that satisfy (20) is bounded by 2N , because of (12), of (19) and of (27) we get

NdN < 10M2 + 16

3
C2

0 (28)

for M > supt∈(0,1) |g(t)| andN large enough.
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Because of (13), forδ > 0

P
{∣∣ηN − E(ηN)

∣∣ > N(δ−1)/4} � N1−δCd2
N (29)

by Borel–Cantelli lemma forδ ∈ (0,1), one can deduce

lim
N→∞

(
ηN − E(ηN)

) = 0 a.s.

and the convergence (7) comes from (18).�
Let us now state some central limit theorems.

Theorem 2. Under the assumptions of Theorem1, if m(t) = 0 ∀t ∈ [0,1], and ifg(t) is a non-vanishing function

N1−γ [∑N−1
k=1 ∆ξ2

k − E
∑N−1

k=1 ∆ξ2
k ]√

dN

converges to a standard centered Gaussian variable, asN → +∞.

Proof. Let us recall

ηN =
kN∑
j=1

λj,Nζ 2
j,N ,

the central limit theorem with Lindeberg condition is applied to

SN =
kN∑
j=1

λj,N (ζ 2
j,N − 1).

Hence we have to check that max1�j�kN
λj,N = o(

√
var(SN)). This last condition is a consequence of an elem

tary result in linear algebra:

max
1�j�kN

λj,N � max
1�j�N−1

N−1∑
i=1

N1−γ
∣∣E(∆ξi∆ξj )

∣∣.
We already know estimates on the upper bound:

N1−γ max
1�j�N−1

N−1∑
i=1

∣∣E(∆ξi∆ξj )
∣∣ = max

1�j�N−1

N−1∑
i=1

|di,j |

�
[
O

(
N−1) + max

1�j�N−1

∑
|i−j |>2

C0N
−1(i − j − 2)−γ−2

]
= O

(
N−1).

A lower bound is needed for var(SN) = var(ηN) = dN . Because of (16) and the assumption thatg is non-vanishing
function

dN � 2
N−1∑
k=1

d2
k,k � 1

N2

N−1∑
k=1

g2
(

k

N

)
+ o

(
1

N

)
� 1

N

1∫
0

g2(t)dt + o

(
1

N

)
.

Hence varSN = dN > C/N for a generic positive constantC. The convergence in distribution to a stand
Gaussian variable of
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N1−γ [∑N−1
k=1 ∆ξ2

k − E
∑N−1

k=1 ∆ξ2
k ]√

dN

is proved. �

Remark 4. If γ > 1/2 Theorem 2 is still true even if the processξ is not centered. It is a consequence of (10)
of dN > C/N .

Let us now see when the bias termE[ηN ] − ∫ 1
0 g(t)dt is negligible. Assumptions (2b′) and (32) are introduce

below to ensure the convergence ofNdN. One can check that there are fulfilled for the fractional Brownian mot
fractional Brownian sheet is another instance where the following theorem can be applied.

Theorem 3. Let ξ be a centered Gaussian process such that assumptions(2a) is fulfilled.
Assumption(2b) is replaced by

(2b′) There exist two functionsc1(s), c2(t) such that∂4(r − c1 − c2)/∂s2∂t2 exists on[0,1]2\{(u,u): 0� u � 1}.
Let T + = {(s, t): 0 � s � t � 1} be the upper triangle in[0,1]2 (resp.T − = {(s, t): 0 � t � s � 1} be the
lower triangle) and we assume the existence of a continuous functionC+ on T + (respectivelyC− on T −)
such that

|s − t |γ+2∂4(r − c1 − c2)

∂s2∂t2
(s, t) = C+(s, t), s, t ∈ {

(s, t): 0� s < t � 1
}

(30)

(resp.C− on {(s, t): 0� t < s � 1}).

The assumption(2c) is replaced by:

let us suppose that there exists a functiong such that

sup
t∈[h,1−h]

∣∣∣∣δh
1 ◦ δh

2r(t, t)

|h|2−γ
− g(t)

∣∣∣∣ < Chε+1/2 (31)

whereε > 0, h → 0, C is a generic constant. Let us assume thatg is a 1/2 + ε Hölder continuous non
vanishing function.

Moreover we assume that there exists a functiong̃

lim
h→0+ sup

t∈[h,1−2h]

∣∣∣∣δh
1 ◦ δh

2r(t + h, t)

|h|2−γ
− g̃(t)

∣∣∣∣ = 0. (32)

Then

√
N

(
N1−γ

N−1∑
k=1

∆ξ2
k −

1∫
0

g(t)dt

)

converges to a centered Gaussian random variable.

Proof. The bound (31) and (15) yield forh = 1
N

:∣∣∣∣∣E[ηN ] − 1

N

N−1∑
g

(
k

N

)∣∣∣∣∣ <
C

Nε+1/2
.

k=1
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Sinceg is Hölder continuous∣∣∣∣∣ 1

N

N−1∑
k=1

g

(
k

N

)
−

1∫
0

g(t)dt

∣∣∣∣∣ <
C

Nε+1/2
.

Let us show that limN→∞ NdN exists. Recall (12)

dN = 2
N−1∑
k=1

d2
k,k + 4

∑
1�k<j�N−1

d2
j,k.

Because of (16)

lim
N→∞N

N−1∑
k=1

d2
k,k =

1∫
0

g2(t)dt.

Let us now consider the case whenj − k � 3. In this case because of (14) and (22)

Ndj,k = N2−γ

j+1/N∫
j/N

du

u∫
u−1/N

dx

k+1/N∫
k/N

dv

v∫
v−1/N

dy
C+(x, y)

(x − y)γ+2
. (33)

Then ∣∣∣∣∣Ndj,k − N2−γ

j+1/N∫
j/N

du

u∫
u−1/N

dx

k+1/N∫
k/N

dv

v∫
v−1/N

dy
C+(j/N,k/N)

(x − y)γ+2

∣∣∣∣∣ � εN

(j − k − 2)γ+2

with εN → 0 whenN → ∞. Actually we use|C+(x, y) − C+(j/N,k/N)| → 0 uniformly with respect toj, k
whenN → ∞. Moreover

N2−γ

j+1/N∫
j/N

du

u∫
u−1/N

dx

k+1/N∫
k/N

dv

v∫
v−1/N

dy
1

(x − y)γ+2

is a function ofj − k that will be denoted byf (j − k) such that∣∣f (j − k)
∣∣ � M

(j − k − 2)γ+2

for M a generic constant. Then

N
∑

1�k<j−2�N−4

d2
j,k = 1

N

∑
1�k<j−2�N−4

C2+
(

j

N
,

k

N

)
f 2(j − k)

=
N−3∑
l=3

f 2(l)

(
1

N

N−1−l∑
k=1

C2+
(

l + k

N
,

k

N

))
.

Whenl is fixed one can show that

lim
N→∞

1

N

N−1−l∑
k=1

C2+
(

l + k

N
,

k

N

)
=

1∫
C2+(x, x)dx
0
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he

ent

sheet.
icted to

in O

n
n sheet

-

dis-
and since
∑N−3

l=3 f 2(l) < +∞, the limit ofN
∑

1�k<j−2�N−4 d2
j,k exists. At this point we are reduced to prove t

convergenceN
∑

1�k�N−2 d2
k+2,k andN

∑
1�k�N−1 d2

k+1,k . For the first limit one uses a perturbation argum
that can be found in [8], and (32) yields the existence of the second limit. Similar arguments hold whenk > j and
we skip the technical details.�

3. Application to fractional Brownian sheet

3.1. Application of Theorem 1

In this part, theorems of Section 2 are applied to the identification of the axes of the fractional Brownian
They are identified with the help of generalized quadratic variations of the fractional Brownian sheet restr
some segments. The geometry of the problem is described in Fig. 1.

In this paper radial segments[A,B] with lengthL are considered. The distance of the segment to the orig
is Lε > 0 (see Section 3.2 whenε = 0). The angle of[A,B] with respect to the axes of observationsOxy is β a
parameter under our control. The oriented angleθ betweenOxy andOx′y′, the true axes of the fractional Brownia
sheet, is the parameter we want to estimate. Let us recall the correlation function of the fractional Brownia
(WH1,H2(x

′, y′))(x′,y′)∈R2:

E
[
W(x′

1, y
′
1) · W(x′

2, y
′
2)

] = 1

4

(|x′
1|2H1 + |x′

2|2H1 − |x′
1 − x′

2|2H1
)(|y′

1|2H2 + |y′
2|2H2 − |y′

1 − y′
2|2H2

)
(34)

where 0< H1, H2 < 1.
Let us discuss why we considerθ as an oriented angle and what is the range ofθ . It is obvious that the distri

bution of the fractional Brownian sheet is invariant with respect to the transformationy′ → −y′. Hence, one can
always assume that the orthonormal framesOxy andOx′y′, have the same orientation. Moreover, since the
tribution of the fractional Brownian sheet is invariant with respect to the transformationx′ → −x′ we are actually

Fig. 1. Geometry of the observations.
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vari-

)

interested in the angle between the two linesOx andOx′ with no privileged sensex′ > 0. Since we are working
with oriented frames, it means that one can always assume thatθ ∈ (−π

2 , π
2 ].

Let us denote the oriented anglesβ andθ as shown in Fig. 1. Then,α = θ −β is the angle of[A,B] with respect
to the true axes ofOx′y′ of the fractional Brownian sheet.

Let us call(Zt , t ∈ [0,1]) the restriction of the fractional Brownian sheet to segment[A,B], which can be
parameterized as follows:

x′
t = L(t + ε)cosα,

y′
t = L(t + ε)sinα,

Zt = W(x′
t , y

′
t ) for t ∈ [0,1]. Then the covariance ofZ, r(s, t) = E(ZsZt ), is

r(s, t) = 1

4
L2(H1+H2)|cosα|2H1|sinα|2H2

(|t + ε|2H1 + |s + ε|2H1 − |t − s|2H1
)

× (|t + ε|2H2 + |s + ε|2H2 − |t − s|2H2
)
. (35)

By applying Theorem 1 we will prove the following result.

Proposition 1.

lim
N→∞N2H1−1

N−1∑
k=1

(Z(k+1)/N − 2Zk/N + Z(k−1)/N )2 =
1∫

0

g(t)dt

almost surely where:

g(t) = (
4− 22H1

)
L2(H1+H2)|cosα|2H1|sinα|2H2(t + ε)2H2

whenH1 < H2 and

g(t) = 2
(
4− 22H1

)
L4H1|cosα|2H1|sinα|2H1(t + ε)2H1

whenH1 = H2.

Proof. We have to check assumptions of Theorem 1. FirstZ is a centered Gaussian process and clearly the co
ance function is continuous on[0,1]2.

Concerning assumption (2b), the partial derivatives ofr exist in[0,1]2\{(u,u): 0� u � 1}, let us now check (3
for γ = 2(1−H1) andc1 = c2 = 0. Sincer is up to a multiplicative constant the product offi(t, s) = (|t + ε|2Hi +
|s + ε|2Hi − |t − s|2Hi ), for i = 1,2, by Leibnitz rule it is enough to have bounds on partial derivatives of thefi ’s.
Elementary computations postponed to the Appendix yields the bound forC0:

C0(ε) � 1

4
L2(H1+H2)|cosα|2H1|sinα|2H2

[
4(1+ ε)2H2

+ 8
2

3
√

3

(
1+ max

(
ε2H1−1, (1+ ε)2H1−1, ε2H2−1, (1+ ε)2H2−1))

+ 8
2

3
√

3
max

(
1, (1+ ε)2H1−1, (1+ ε)2H2−1) + 8 max

(
1, ε2H2−2, ε2H1−2) + 16

]
. (36)

Let us denote

C(α,H1,H2,L) = 1
L2(H1+H2)|cosα|2H1|sinα|2H2.
4
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Thus we have in caseε = 1:

C0(1) � C(α,H1,H2,L)

(
40+ 80

3
√

3

)
(37)

whereC0(1) is a constant for inequality (3).
Let us now check assumption (2c) fort + ε � h � 0

(t + ε + δjh)2Hi = (t + ε)2Hi + 2Hi(t + ε)2Hi−1δjh + O
(
(t + ε)2Hi−2h2) (38)

for i = 1,2; j = 1,2,3, δj = +1,−1,0. Moreover

fi(t + δjh, t + δkh) = 2(t + ε)2Hi + 2Hi(δj + δk)(t + ε)2Hi−1h − (|δj − δk|h
)2Hi

+ Hi(2Hi − 1)(t + ε)2Hi−2(δ2
j + δ2

k )h
2 + O(h3)(t + ε)2Hi−3. (39)

This yields an asymptotic expansion forr(t + δjh, t + δkh) and because of (9) one gets forh > 0

δh
2 ◦ δh

1r(t, t) = 4C(α,H1,H2,L)h2H1(t + ε)2H2
(
4− 22H1

)
× [

1+ O
(
h2(H2−H1)

) + O
(
h2(1−H1)

) + O(h)
]

(40)

if H1 < H2. Then, if we set

g(t) = (
4− 22H1

)
L2H |cosα|2H1|sinα|2H2(t + ε)2H2,∣∣∣∣δh

1 ◦ δh
2r(t, t)

h2−γ
− g(t)

∣∣∣∣ = O
(
h2(H2−H1)(t + ε)2H1

)
, (41)

which establishes (6).
Whereas whenH1 = H2,

δh
2 ◦ δh

1r(t, t) = 8C(α,H1,H1,L)h2H1(t + ε)2H1
(
4− 22H1

)[
1+ O

(
h2(1−H1)

) + O(h)
]

(42)

and

g(t) = 2
(
4− 22H1

)
L2H |cosα|2H1|sinα|2H1(t + ε)2H1

and ∣∣∣∣δh
1 ◦ δh

2r(t, t)

h2−γ
− g(t)

∣∣∣∣ = O
(
h2−2H1(t + ε)4H1−2). � (43)

Let us denote by

VN(β,L, ε) =
N−1∑
k=1

(Z(k+1)/N − 2Zk/N + Z(k−1)/N )2 (44)

and state a central limit theorem forVN(β,L, ε).

Proposition 2. If H1 + 1/4< H2 then

D(H1,H2, α,L, ε) = (
4− 22H1

)
L2(H1+H2)|cosα|2H1|sinα|2H2

(1+ ε)2H2+1 − ε2H2+1

2H2 + 1

then
√

N
(
N2H1−1VN(β,L, ε) − D(H1,H2, θ − β,L, ε)

)
(45)
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first

in the

totic
ed for

e origin.
ore
of

he
converges to a standard centered Gaussian random variable.
If H1 = H2, H1 < 3/4 then

D̃(H1, α,L, ε) = 2
(
4− 22H1

)
L4H1|cosα|2H1|sinα|2H1

(1+ ε)2H1+1 − ε2H1+1

2H1 + 1

× √
N

(
N2H1−1VN(β,L, ε) − D̃(H1, θ − β,L, ε)

)
(46)

converges to a centered Gaussian random variable.

Proof. When H1 + 1/4 < H2, (31) is satisfied because 2(H2 − H1) > 1/2 and we have (41). Moreoverg is
continuously differentiable. Sinceg is non-vanishing and since

1∫
0

g(t)dt = (
4− 22H1

)
L2(H1+H2)|cosα|2H1|sinα|2H2

(1+ ε)2H2+1 − ε2H2+1

2H2 + 1
,

one can check (32) with an asymptotic development ofδh
2 ◦ δh

1r(t + h, t) similar to (40). The existence ofC+ and

C− is a consequence of the computation of∂4r

∂s2∂t2 (s, t) done in the appendix. One can apply Theorem 3. The
part of the proposition is proved.

WhenH1 = H2, 2− 2H1 > 1/2 and Eq. (43) allow application of Theorem 3 with the same arguments as
previous case. �
Remark 5. Let us defineXN = N2H1−1VN(β,L, ε). Note that with the same arguments, we prove the asymp
normality of a pair(XN,X2N) of rescaled quadratic variations since the central limit theorem can be prov
every linear combinationλXN + µX2N which is still a rescaled quadratic variation.

3.2. Case whereε = 0

In the previous section, the fractional Brownian sheet is restricted to a segment that does not intersect th
Technically it yieldsε > 0. One may wonder what happens whenε = 0. Although this choice is in some sense m
natural the application of the theorems of the section 2 is more difficult whenε = 0. For instance the covariance
Z is no longer differentiable whent = 0.

In this section one extend the result of Proposition 1 whenε = 0. Let us now consider the restriction of t
fractional Brownian sheet to[O,B] parameterized by

x′
t = Lt cosα,

y′
t = Lt sinα,

Z̃t = W(x′
t , y

′
t ) for t ∈ [0,1],

Proposition 3. If H2 > H1 > 3/4, then

lim
N→∞N2H1−1

N−1∑
k=1

(Z̃(k+1)/N − 2Z̃k/N + Z̃(k−1)/N )2 = (4− 22H1)L2(H1+H2)|cosα|2H1|sinα|2H2

2H2 + 1
. (47)

If H2 = H1 > 3/4, then

lim
N→∞N2H1−1

N−1∑
k=1

(Z̃(k+1)/N − 2Z̃k/N + Z̃(k−1)/N )2 = 2(4− 22H1)L4H1|cosα|2H1|sinα|2H1

2H1 + 1
. (48)



200 S. Cohen et al. / Ann. I. H. Poincaré – PR 42 (2006) 187–205

the

se

4

actional
Proof. The assumption (2b) is not satisfied for̃Z. More precisely, the bound obtained in (36) shows that
covariancer of Z̃ satisfies for 1> ε > 0 ands, t ∈ [ε,1]2 \ {(u,u): ε � u � 1},∣∣∣∣∂4r(s, t)

∂t2∂s2

∣∣∣∣ � C2ε
2H1−2

|s − t |γ+2

for some positive constantC2. Let εN → +∞ be such thatεN/N → 0 whenN → +∞. This yields

|dj,k| � C2N
−1

|j − k − 2|γ+2

(
εN

N

)2H1−2

.

One can show as in (24) that∑
εN�k�j−3�N−4

d2
j,k � C2

2N−2
(

εN

N

)4H1−4 ∑
εN�k�j−3�N−4

|j − k − 2|−2γ−4 = O

(
ε

4H1−4
N

N4H1−3

)
,

and that ∑
1�k�j−3�N−4;k<εN

d2
j,k � C

εN

N
,

for a generic constantC, becausedj,k = O(1/N). Let us chooseεN = N(4−4H1)/(5−4H1), thendN = O(N1/(4H1−5)).
Because of (29) we get the almost sure convergence if

1

2
<

1

5− 4H1

which leads toH1 > 3/4. The same arguments hold forH1 = H2 > 3/4. �
3.3. Estimators of the parametersH1, H2 andθ

Let us recall thatH1 � H2 whereH1 is attached to axeOx′ of the fractional Brownian sheet. In this part, we u
previous results to construct consistent estimators ofH1, H2 andθ = (Ox,Ox′), the angle between theOx′ axis
of the fractional Brownian sheet with the observation axisOx. Estimators ofH1, H2 are studied in Propositions
and 5, while Proposition 6 gives an estimator ofθ .

In the following propositions we assume that the segment is not contained in one of the axes of the fr
Brownian sheet i.e.β �= θ + kπ/2, ∀k ∈ Z.

Proposition 4. If β �= θ + kπ/2, ∀k ∈ Z, and ifVN is defined by(44)

Ĥ1N = 1+ log(VN(β,L, ε)/V2N(β,L, ε))/ log 2

2
(49)

and

Ĥ2N = 1

2 log2
log

[
VN(β,2L,ε)

VN(β,L, ε)

]
− Ĥ1N (50)

are respectively strongly consistent estimators ofH1 andH2.

Proof. Because of Proposition 1,

lim
N→+∞

VN(β,L, ε)

N1−2H1
=

1∫
g(t)dt.
0
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the
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te.
Whenβ �= θ + kπ/2, ∀k ∈ Z,

1∫
0

g(t)dt �= 0

and (49) is established.
To prove (50) let us remark that

VN(β,2L,ε)

VN(β,L, ε)
→ 22(H1+H2)

whenN → +∞. �
Then we can give a confidence interval for the estimation ofH1.

Proposition 5. LetH1 + 1/4< H2, and letα �= kπ/2, ∀k ∈ Z.
Letm = D(H1,H2, α,L, ε) defined in Proposition2. If Γ denoteslimN→∞ NE(X2N − XN)2, thenΓ > 0 and

P
{
2mΓ −1/2 log2

√
N |H1N − H1| � 1.96

} → 0.95

whenN → +∞.

Proof. Because of Remark 5(XN,X2N) is asymptotically normal and the limit limN→∞ NE(X2N −XN)2 exists.
ThenNE(X2N − XN)2 � (3

2 − √
2) limN→+∞ NdN . Hence,Γ > 0 and because of Slutsky theorem:

√
N log(XN/X2N) →N (0, σ 2) (51)

whenN → ∞, where the convergence is in distribution, and where

σ 2 = lim
N→∞

NE(X2N − XN)2

m2
.

Since

log(XN/X2N) = 2 log2(Ĥ1N − H1),

andσ 2 = Γ/m2, the proposition is proved.�
Please note that the rate of convergence O(1/

√
N) is known to be of the same order as the one given by

Cramér–Rao bound (cf. [6] and [4] when the Hurst exponent of a fractional Brownian Motion is identified).
case, since the processZ is not with stationary increments, the Cramér–Rao bound seems difficult to estima

Let us give a numerical application of the previous proposition. In practice we have to computem−2Γ . Actually
the computation ofΓ seems delicate butNE(X2N − XN)2 � 3NE(XN − m)2 = 3NdN with dN defined by (12)
with Z in place ofξ . And we have an upper bound forNdN . More precisely, because of (28)

NdN � 10M2 + 16

3
C2

0(ε).

Moreoverg(1) is the supremum ofg and we can take

M > 4
(
4− 22H1

)
C(α,H1,H2,L)(1+ ε)2H2

(for instanceM = 4(4− 22H1)C(α,H1,H2,L)(1+ ε)2). Let us assumeε = 1 and recall that

C0(1) �
(

40+ 80√
)

C(α,H1,H2,L)

3 3
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l.

nal

p-
s

then

NdN � C2(α,H1,H2,L)

[
160

(
4− 22H1

)24+ 16

3

(
40+ 80

3
√

3

)2]
.

Moreover

m = 4(4− 22H1)(22H2+1 − 1)C(α,H1,H2,L)

2H2 + 1

for ε = 1 and

Γ

m2
� 3[160(4− 22H1)24+ (16/3)(40+ 80/(3

√
3))2](2H2 + 1)2

16(4− 22H1)2(22H2+1 − 1)2

= 3

[
40+ 16

3(4− 22H1)2

(
10+ 20

3
√

3

)2](
2H2 + 1

22H2+1 − 1

)2

.

Let us assumeH1 < 1
2 < H2 as an example to have an order of how big shall beN to have a meaningful interva

Then,(2H2 + 1)/(22H2+1 − 1) � 1 and 4− 22H1 > 2.

1.96
√

Γ

m
< 58.39

and the confidence interval length is bounded with 58.39/
√

N .
In practical situations, we may assumeH1 �= H2. In this case we can detect the anisotropy of the fractio

Brownian sheet, which means than we can estimateθ .

Proposition 6. If H1 �= H2, θ ∈ (−π/2,0) ∪ (0,π/2), andβ �= θ + kπ/2, ∀k ∈ Z, set

fN(β) = arctan

((
VN(β + π/2,L, ε)

VN(β,L, ε)

)1/(2(Ĥ1N−Ĥ2N)))
then

θ̂N = sign

(
fN

(−π

4

)
− fN

(
π

4

))
fN(0) (52)

is a strongly consistent estimator ofθ , wheresign(x) = 1 if x � 0 andsign(x) = −1 if x < 0.

Proof. Because of Proposition 1

VN(β + π/2,L, ε)

VN(β,L, ε)
→ ∣∣tan(θ − β)

∣∣2(H1−H2)

whenN → +∞. Hence, with our assumptions,

fN(β) → arctan
(∣∣tan(θ − β)

∣∣),
whenN → +∞. Sinceθ ∈ (−π/2,0) ∪ (0,π/2), fN(0) → |θ | whenN → +∞. Please note that the last assum
tion is not a real loss of generality since in general we may chooseθ ∈ [−π/2,π/2]. Elementary computation
show that

arctan

(∣∣∣∣tan

(
θ + π

4

)∣∣∣∣) − arctan

(∣∣∣∣tan

(
θ − π

4

)∣∣∣∣) > 0

if and only if θ ∈ (0,π/2). Since

fN

(−π
)

− fN

(
π

)
→ arctan

(∣∣∣∣tan

(
θ + π

)∣∣∣∣) − arctan

(∣∣∣∣tan

(
θ − π

)∣∣∣∣)
4 4 4 4
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t be an
an sheet

a
y also be
whenN → +∞, the proof is complete. �
Please remark that we do not use all the information available to construct our estimators. This migh

advantage if the parameters are actually functions of the position, which means that the fractional Browni
is actually a first order simplification. To better use the available information we could considerK generalized
quadratic variations for differentβj , j = 1, . . . ,K , we get estimatorŝHj

1N, Ĥ
j

2N, θ̂
j
n . Thus, we could propose

more robust version of the estimators as the empirical means of these estimators. Other problems ma
addressed in the future such as estimation of the variance of the estimators proposed above.

Appendix

Let us prove the upper bound (36). For 1� s > t � 0,

∂fi

∂t
(t, s) = 2Hi

(
(t + ε)2Hi−1 + (s − t)2Hi−1), (53)

∂fi

∂s
(t, s) = 2Hi

(
(s + ε)2Hi−1 − (s − t)2Hi−1), (54)

∂2fi

∂t2
(t, s) = 2Hi(2Hi − 1)

[
(t + ε)2Hi−2 − (s − t)2Hi−2], (55)

∂2fi

∂s2
(t, s) = 2Hi(2Hi − 1)

[
(s + ε)2Hi−2 − (s − t)2Hi−2], (56)

∂2fi

∂s∂t
(t, s) = 2Hi(2Hi − 1)(s − t)2Hi−2, (57)

∂3fi

∂s2∂t
(t, s) = 2Hi(2Hi − 1)(2Hi − 2)(s − t)2Hi−3, (58)

∂4fi

∂s2∂t2
(t, s) = −2Hi(2Hi − 1)(2Hi − 2)(2Hi − 3)(s − t)2Hi−4 (59)

for i = 1,2. Hence:

(s − t)γ+2 ∂4f1

∂s2∂t2
f2 = −2H1(2H1 − 1)(2H1 − 2)(2H1 − 3)f2, (60)

(s − t)γ+2 ∂3f1

∂s2∂t

∂f2

∂t
= 2H1(2H1 − 1)(2H1 − 2)(s − t)2H2

[(
(t + ε)2H2−1 + (s − t)2H2−1)], (61)

(s − t)γ+2 ∂3f1

∂t2∂s

∂f2

∂t
= −2H1(2H1 − 1)(2H1 − 2)(s − t)2H2

[(
(s + ε)2H2−1 − (s − t)2H2−1)], (62)

(s − t)γ+2∂2f1

∂s2

∂2f2

∂t2
= 4

∏
i=1,2

Hi(2Hi − 1)
[
(s + ε)2H1−2(s − t)2−H1 − (s − t)H1

]
× [

(t + ε)2H2−2(s − t)2−H1 − (s − t)2H2−H1
]
, (63)

(s − t)γ+2∂2f1

∂s∂t

∂2f2

∂s∂t
= 4

∏
i=1,2

Hi(2Hi − 1)(s − t)2H2 (64)

are bounded on[0,1]2, and consequently assumption (2b) is fulfilled. More precisely, sinceHi ∈ ]0,14[, for
i = 1,2:
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|2Hi | � 2,∣∣2Hi(2Hi − 1)
∣∣ � 2,∣∣2Hi(2Hi − 1)(2Hi − 2)

∣∣ � 2

3
√

3
,∣∣2Hi(2Hi − 1)(2Hi − 2)(2Hi − 3)
∣∣ � 1

and

sup
0�t<s�1

∣∣(t + ε)2Hi + (s + ε)2Hi − (s − t)2Hi
∣∣ = 2(1+ ε)2Hi ,

sup
0�t<s�1

∣∣((s − t)(t + ε)2Hi−1 + (s − t)2Hi
)∣∣ �

(
1+ max

(
ε2Hi−1, (1+ ε)2Hi−1)),

sup
0�t<s�1

∣∣((s − t)(t + ε)2Hi−1 − (s − t)2Hi
)∣∣ � max

(
1, (1+ ε)2Hi−1),

sup
0�t<s�1

∣∣(s + ε)2Hi−2(s − t)2−Hi − (s − t)Hi
∣∣ = sup

0�t<s�1

∣∣∣∣(s − t)Hi

[
1−

(
s − t

s + ε

)2−2Hi
]∣∣∣∣ � 1,

sup
0�s<t�1

∣∣(s + ε)2H1−2(s − t)2−H1 − (s − t)H1
∣∣ � max

(
1, ε2H1−2),

sup
0�t<s�1

∣∣(t + ε)2H2−2(s − t)2−H1 − (s − t)2H2−H1
∣∣ = sup

0�t<s�1

∣∣∣∣(s − t)2H2−H1

[
1−

(
s − t

t + ε

)2−2H2
]∣∣∣∣

� max
(
1, ε2H2−2),

sup
0�t<s�1

(s − t)2Hi = 1.

The fourth derivative ofr is the sum of terms of the following form:

(s − t)γ+2
(

∂4

∂s2∂t2
f1 · f2 + ∂4

∂s2∂t2
f2 · f1

)
� 4(1+ ε)2H2,

(s − t)γ+2 ∂3

∂s2∂t
f1 · ∂

∂t
f2 � 4

3
√

3

(
1+ max

(
ε2H1−1, (1+ ε)2H1−1))

two of them are in this form, similarly

(s − t)γ+2 ∂3

∂s2∂t
f2 · ∂

∂t
f1 � 4

3
√

3

(
1+ max

(
ε2H2−1, (1+ ε)2H2−1)),

(s − t)γ+2 ∂3

∂t2∂s
f1 · ∂

∂s
f2 � 4

3
√

3
max

(
1, (1+ ε)2H2−1)

two of them are in this form, similar terms exist when we interchangef1 andf2,

(s − t)γ+2 ∂2

∂s2
f1 · ∂2

∂t2
f2 � 4 max

(
1, ε2H2−2, ε2H1−2)

and two of them are in this form, so they add 8 max(1, ε2H2−2, ε2H1−2),

(s − t)γ+2 ∂2

∂s∂t
f1 · ∂2

∂s∂t
f2 � 4

and four of them are in this form, so they add 16.
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raître au

265–282.
(4) (1997)

.
999) 293–
This sum of terms has to be multiplied by the coefficient

1

4
L2(H1+H2)|cosα|2H1|sinα|2H2,

and

C0(ε) � 1

4
L2(H1+H2)|cosα|2H1|sinα|2H2

[
4(1+ ε)2H2

+ 8
2

3
√

3

(
1+ max

(
ε2H1−1, (1+ ε)2H1−1, ε2H2−1, (1+ ε)2H2−1))

+ 8
2

3
√

3
max

(
1, (1+ ε)2H1−1, (1+ ε)2H2−1) + 8 max

(
1, ε2H2−2, ε2H1−2) + 16

]
.
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