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Que peut-on affirmer, puisque ce qu’on avait cru probable d’abord s’est montré faux ensuite, et se trouve en troisieme lieu étre vrai?
M. Proust,Le coté de Guermantes

Abstract

A consequence of Vershik's results on discrete-time filtrations is the existence, in continuous time, of filFato# ), >0
which are “Brownian after zero” (that is, for eagh- 0, ° = (F¢41), >0 is generated by, and someF *-Brownian motion),
but not generated by and any Brownian motion. Among the filtrations that are Brownian after zero, how are the truly
Brownian ones characterized? An answer is given by the self-coupling criterion (ii) of Theorem 1. This criterion is always
satisfied wher# is immersible into the filtration of an infinite-dimensional Brownian motion.
0 2005 Elsevier SAS. All rights reserved.

Résumé

Une conséquence de la théorie des filtrations élaborée par Vershik il y a plus de trente ans est I'existence, en temps continu,
de filtrations# = (¥:);>0 telles que, pour chaque> 0, (Fe+/); >0 SOit engendrée paf. et par un mouvement brownien
(nous les dirons «browniennes aprées zéro »), maisfjue soit pas engendrée p&g et un mouvement brownien. Comment
caractériser les filtrations browniennes parmi les filtrations browniennes apres zéro ? Le théoreme 1(ii) répond a cette question
par un critére d'auto-couplage ; ce critére est toujours satisfait lorgquest immersible dans la filtration du mouvement
Brownien a une infinité de dimensions.
0 2005 Elsevier SAS. All rights reserved.

This work was done while visiting Kyoto University. | am very thankful to the Research Institute for Mathemat-
ical Sciences and to Professor S. Watanabe for their invitation and for making my stay most enjoyable—except for
the terrible shock from Strasbourg in late January 2003.

In 1995, L. Dubins, J. Feldman, M. Smorodinsky and B. Tsirelson [4] have shown that it is possible to replace
the Wiener measure by an equivalent probability in such a way that the new filtered probability space is no longer
Brownian (that is, it is not generated by any Brownian motion whatsoever). The filtered probability space they
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have constructed has two further features: first, it is Brownian on the intgrvab[ for eache > 0 (that is,

F¢ = (Feqt)rx0 is generated by, and some# *-Brownian motion); second, it is not immersible (this term

will be defined soon) into “the” filtered probability space generated by an infinite-dimensional Brownian motion.
The latter property looks stronger than mere non-Brownianness; but we shall see in Corollary 1 that, for a filtration
which is Brownian ore, ool for eache > 0, this property is in fact equivalent to being non-Brownian. In other
words, consider a filtratiotF which is Brownian or{e, oo[ for eache > 0; Corollary 1 says tha¥ is Brownian

as soon as it is immersible into some infinite-dimensional Brownian filtration.

Most ideas and arguments are borrowed, some almost verbatim, from the theory of standard filtrations in dis-
crete, negative time, mostly due to Vershik [14]. For instance, condition (iv) of Theorésmalstraightforward
adaptation of his first-level standardness criterion (Condition 2 in Theorem 3.2 of [14]), and our proof of it just
repeats his surprising argument. Similarly, the self-coupling condition (ii) of Theorem 1 is the continuous-time
analogue of the discrete-time property called “I-cosiness” in [6], which is equivalent to Vershik’'s standardness
criterion [14].

But Vershik’s criterion, with its tower of measures on iterated measure spaces, does not lend itself to a restate-
ment in continuous time; so the argument in [6], where Vershik’s criterion is used to show that I-cosiness entails
standardness, does not adapt to our setting. Fortunately, another proof, bypassing Vershik’s criterion, has been givel
by S. Laurent [9]. Laurent’s method can be made to work in continuous time, but some adaptation is required: his
approach relies on the explicit knowledge of the extremal points of some finite-dimensional set of joint laws; in
continuous time, the set becomes infinite-dimensional, and has too many extremal points. This difficulty can be
overcome by replacing the extremality argument with a density property (our Proposition 2).

This proposition says that, i is a filtration and ifX andY are two % -Brownian motions, their joint law
L(X,Y) can be approximated by laws of the fout(X’, Y’), whereX’ andY’ are two Brownian motions gen-
erating the same filtration. This was unexpected in the case when, for instaac, on [0, 7] and o = —dX
after T, whereT is a stopping time independent &fand of Y.

Conventions, notation and definitions

The words ‘positive’ and ‘increasing’ are always understood in the broad sense: the null function is positive and
increasing. An open interval is writtgm, ¢[; similarly [s, ¢[ and]s, 7] denote half-open intervals.

By a probability space, we always mean a tripfe, 4, P) where thes -field A is P-complete and essentially
separable. By a sub-field of A, we mean an(4, P)-complete sul=-field of «+; it automatically inherits the
property of being essentially separableClfis a class of events, ot a r.v. or a processy (C) or o (X) denotes
theo-field generated by or X, and by all negligible events o4; similarly, the expression ‘generated by’ means
‘generated by ... and by the null events’. A random variableBsesjuivalence class of measurable magsde-
notes the space of all a.s. finite r.v., endowed with the topology of convergence in probability; the eleménts of L
are also defined up tB-equivalence. I£8 andC are two subs -fields of A, B v € denotes the -field o (B U C).

An isomorphism between two probability spa¢ex’, A', P’) and(£2”, 4", P”) is a bijection between the quo-
tiento-fields A’ /P’ and A" /P” that preserves the-field structures and the probabilities; it extends (uniquely) to
random variables.

A filtration on (£2, 4, P) is an increasing, right-continuous famiy = (#;);>0 of subeo -fields of 4; a filtered
probability space is a systeq®, 4, P, ) where ¥ is a filtration. If & is a filtration, ¥, denotes ther-field
\/, F. Given two filtrations# and§ on (£2, 4,P), we say that¥ is includedin § if ¥, C §, for eachr; and
we say that¥ is immersedn § if furthermore every# -martingale is g-martingale. We denote b§ v 4 the
smallest filtration containing® and§; it is given by (¥ Vv §); = (.~ o(Fr+e V §i1+¢). We say thatF and§ are
jointly immersedf there exists a filtratio#¢ on the same probability space such that each @indg is immersed
in #. In that case, one can always chodge= ¥ V §. [Proof: each¥ -martingale is anf¢-martingale adapted to
the smaller filtrationF v 4, hence also aiF v §-martingale; similarly forg-martingales.]
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Given two filtered probability spaces?’, A', P, F') and (2", A”,P”, F"'), we say thatF’ and F” are iso-
morphic if there exists an isomorphisgn between the probability spacég’, ¥/, ) and (2", ¥, P") such
that, for eachy, #/ and " are in correspondence b¥. And we say thatr’ is immersibleinto #” if ' is
isomorphic to a filtration immersed iR,

By convention, a Brownian maotion (or, shortly, a BM) is always started at the origin. It may be one-dimensional,
or d-dimensional, wherd < oo; the casel = co means that the process consists of countably many independent
components, each of them a real BM. We shall abbreviagirensional BM’ by BM.. We call Brownian (more
precisely:d-Brownian) any filtration generated by some BM (more precisely: by somé)BAh #-BM (or ¥ -

BMY) is a (@-dimensional) Brownian motion for the filtratiof : its increment oris, ¢] is independent of7;
(equivalently, it is a BM and atF -martingale; or it is a BM whose natural filtration is immersedfii

A non-Brownian example

To make the kind of situation we have in mind less abstract, we start with an example. It will not be used nor
referred to in the sequel; skipping it is harmless.

Example 1.Suppose given a one-dimensional Brownian motkna finite setA (called the alphabet) with at
least two elements, and a sequeite= (W,),>o0 where, for eactn, W, is a random word of length”2 that
is, a random element of2". Each wordW,, is uniformly distributed onA2", and is independent of the whole
processB; but W is far from independent aB, for we supposéV, to be the first (resp. second) half of the twice
longer wordW,, 11 iff B-» is larger (resp. smaller) thaB,-.+1). It is easy to show the existence of such a pair
(B, W): first, takingW,, independent oB, construct the law of B, W,,, W,,_1, ..., Wp), and verify thatw,,_; too
is uniform and independent &; then, take a projective limit.

From B andW, define a filtration¥ by

Fi

o(Bs, s€[0,t]) Vo (W,, 27" <1).
Itis possible to show thaf is indeed a (right-continuous) filtration, enjoying the following three properties:

(1) forO<s <t, F =F; Vo (B,—Bs, uc€ls,t]),
(2) Fo (= Fo.) is degenerate: evel¥y, -measurable r.v. is a.s. constant;
(3) F is not Brownian.

The first property is very easy: at time'2the new wordW,, is observed,; it is a function of the previously
observed word¥,,_ 1 and of the increment a8 between 2”+D and 2, so the increments d suffice to generate
all information necessary to incremeft This property is not valid fos = 0, for there is more information i
than in B only, eachW,, being independent a8.

The second property, right-continuity at 0, is less straightforward, but not difficult. The third one is much deeper;
it can be deduced from Smorodinsky’s study [13] of the prod&sén inverse, discrete time), or, slightly less
directly, from Vershik’s Example 3 in his theory of reversed, discrete-time filtrations [14]. We shall not attempt to
give, or even sketch, the proofs of these properties. This example exhibits a pathological behaviour-at thee 0
non-Brownianness af being a germ property at timetQ even thougt#o.. is degenerate.

Definition. Fix 1 < d < oo. A filtration ¥ is d-Brownian after zerdf there exists arF-BM? B such that, for all
t > s >0, F, is generated by; and by the process,— By, u € [s, t]), which is independent of;.
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Lemma 1.Let ¥ be a filtrationy call ¥ = (F;4),>0 the filtration ¥ shifted bys. Suppose that for each> 0,
there exists arf¥*-BM¢ B* such that the filtratior#* is generated by its initiad -field #; and by the procesB®.
Then¥ is d-Brownian after zero.

Proof. Partition]0, oo into intervalsl, = 12", 2**1] wheren ranges oveF, and define atf -BM? B by B, — B»
= Btzfzn for t € I, (the increments oB on I, are given by the increments 8% on 10, 2"]). By induction onn,
the property by#; = ¥ v o (B,, u €0, t]), holds whers = 2™ andr = 2" with m < n; it then extends easily to
the general case wherandr are real numbers verifying@ s <rt. O

The (admittedly artificial) example of this section shows that, for a filtraffiowhich is Brownian after zero, the
degeneracy of is not sufficient to imply Brownianness. The next theorem bridges this gap and gives a necessary
and sufficient condition for Brownianness when the filtration is a priori known to be Brownian after zero.

Main results

Theorem 1.Fix d € N* U {oo} and a filtered probability spac&?, A, P, ¥); suppose thaF is d-Brownian after
zero. The following two statements are equivalent

(i) F isd-Brownian.
(i) (Self-coupling condition.yor eachR € L1(F,,) and eachs > 0, there exists a probability spaqez, 4, P)
endowed with two filtrationg” and " verifying the following four conditions
() £’ and F” are isomorphic taf ; in particular, there are two r.vR’ € Ll(}’o’o) andR” e Ll(ifgc’,) corre-
sponding toR by these isomorphisms
(b) £ and F” are jointly immersed
(c) for somes > 0, #/ and #,” are P-independent
(d) IR — R//|||_1(§) <34.

At first reading, condition (i) looks awful, with the appearance of another filtered probability $pace, P)
where two filtrations are jointly immersed. One way of understanding it is to congizles, P) as an “enlarge-
ment” of (2, 4, P), in the sense of the sentence ‘at the cost of enlarging the space, we may supposé Tt
new filtration ¥’ isomorphic toF should then be understood as beifgtself, and the meaning of (ii) becomes:
“After enlarging 2 if necessary, there exists another filtratigri, jointly immersed with#, such that ...”

Condition (i) is the analogue, in our continuous-time setting, of the property called ‘I-cosiness’ in [6]. It is
dubbed ‘self-coupling’ because, i is generated by some proceXs (ii)) means that it is possible, in some
universes?, to run simultaneously two copies &f, in such a way that they are independent up to somedimé,
but, at time infinity, the two values taken by some given functidhalf X have become close to each other. This
idea should be compared with the classical coupling method used to establish estimates for Markov processes.

The proof of Theorem 1 is rather long; it will be given later. Meanwhile, we shall comment on it, state and prove
a corollary, and establish Proposition 2, a crucial density property.

Remarks. (1) Let D be a dense subset ot (... If condition (ii) is satisfied for eact® € D and eacl$ > 0, it
holds in full generality. Indeed, faR € L ands > 0, there existsS € D such that|R — S|| < §; (i) applied to S
gives||S’ — §”|| < 8, and by isomorphismiR’ — §’|| = |[R” — S”|| = ||R — S|| <&, whence|R' — R”|| < 38, and
(ii) holds for R too.

In particular, taking forD the set of all simple#.,-measurable random variables, it suffices to verify (ii) for
taking finitely many values. (I do not know if it suffices to verify it f@ taking two values, that is, for indicators
of events; already in Vershik’s theory of filtrations in discrete, negative time, the corresponding question is open.)
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(2) In condition (i), the space Land its norm can equivalently be replaced b¥ fior any p < [1, oo[, or
by LO, with the distance ¢l X, Y) = E[1 A |X — Y|] for instance. Indeed, as shown by the preceding remark, we
may supposéRr| to be bounded by some numbek: 1; so|R’ — R”| < 2k. It then suffices to use the elementary
inequalityE[|R’ — R”|P]1 < (2k)PE[L A |R' — R"|].

(3) (Remark due to S. Laurent [9].) If condition (ii) holds for sorReand all §, it holds also for allR; €
L1(o(R)) and alls; consequently, it suffices to verify it for onk that generate§,,. To see this, suppose (ii)
to hold for R and consider the se® of all bounded, Borel mapg : R — R such that (ii) holds forfoR and
all § > 0; it suffices to verify thatb contains all bounded, Borel functions. The two-step argument is the same as in
Slutsky's lemma: Firstg contains all bounded, Lipschitz functions, for fifis k-Lipschitz, || foR' — foR"|| 1 <
k||IR" — R"|| 1. Second, the sep is closed under uniformly bounded pointwise limits:fif € @ are uniformly
bounded andf,,(x) — f(x) for all x € R, then f € @. To check this, fix$ > 0. The quantityE[| f,oR — foR|]
tends to 0 whem — oo, so it is smaller thaid for somen (fixed in the sequel). Since (ii) holds fg},oR ands,
there are¥’ and " verifying (ii-a), (ii-b), (ii-c) andE[| f,oR’ — f,oR"|] < 8. By isomorphism, one has also
E[| fuoR — foR'|| =E[| faoR" — foR"|]=E[| fuoR — foR|] < §8; SOE[| foR' — foR"|] < 38, yielding f € .
These two properties @ entail that® contains all bounded, Borel functions.

Ford < oo, call 8¢ “the” filtration of d-dimensional Brownian motion (it is unique up to isomorphism, whence
the quotation marks). The next statement, a corollary of Theorem 1, says that the filtB&tigolays in our
continuous-time framework the same role as the standard, non-atomic, discrete-time filtration in Vershik’s theory.

Corollary 1. Fix d < oco. Assume that a filtratiotF is d-Brownian after zero. The following three statements are
equivalent

(i) F isd-Brownian
(i) the independent produdt ® B8 is equal toB>;
(iii) F isimmersible intaB>.

The independent produ6t ® B> in (ii) is the filtration (more precisely: the filtered probability space) gen-
erated by two independent filtrations, respectively isomorphig tand to8B°°; this product is well defined up to
isomorphism only, so ‘equal to’ in (ii) really means ‘isomorphic to’.

Proof (the theorem is admittd (i) = (ii) = (iii) are trivial. To prove (iii)= (i), applying Theorem 1 tB*°, one
sees thaB> satisfies the self-coupling property. By immersion, every subfiltration immersgdimlso satisfies
the self-coupling property; this transfersfo by isomorphism. Applying now the theorem 0, one sees thaf
is d-Brownian. O

The interest of the theorem and its corollary is more theoretical than practical. In the special case that the
filtration is Brownian after zero, they answer the following general question (see D. Revuz and M. Yor [12, p. 219]):
if a filtration has the predictable representation property w.r.t. som&, BMich additional assumption is sufficient
to imply that it isd-Brownian? In view of Corollary 1, this question can be sharpened: If a filtration has the
predictable representation property w.r.t. some’BMd is immersible int@*°, is it necessarily/-Brownian?

As observed in the introduction, the corollary also explains why the non-Brownian counterexamples constructed
in [4] and [5] have the stronger property of not being immersible &6.

Brownian examples

Putting the corollary at work to establish that a given particular filtration is Brownian, is disappointing: in all
instances | know, exhibiting a generating BM is possible, and more informative than merely asserting its existence.
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Nevertheless, in some cases, referring to the corollary is shorter and simpler than the constructive proof. Here are
two examples; in both of them, a constructive proof of Brownianness is already available.

Example 2 (Generalized Goswami—Rao filtratignd=ix an integerd < oo and a subgrougs of O(d). Let
w4, 84,24, 8%) denote the canonical filtered probability space of 8Mnd B the canonical process oi?.
Each orthogonal transformatigne G acts on the paths € W by (g-w)(r) = g-(w(¢)); this action is an isomor-
phism from(W¢, 84, 2, 89) to itself. A r.v. Y is said to be invariant if, for eache G, one has = Yog a.s.;
call 4 the sube -field of invariant events. As the action 6f commutes with conditional expectation w.ig¢, the
subfiltration¥ of 8¢ defined by#; = 8¢ N 4 is immersed inB<.

Malric has shown in [10] and [11] thahe filtration & is d-Brownian Since ¥ is immersed inB¢, this can
also be derived from Corollary 1, provided we sh@wto bed-Brownian after zero. As we shall now sée the
particular case whett is finite this is straightforward. (But Malric’s proof works for all, finite or not.)

We suppose from now o to be finite. There exists a Borel satc R¢ such thatA N g-A = @ for each
g € G\{I},andthaiG-A =, g-A has a Lebesgue-negligible complementary set. (One can for instance choose
apointz € R¢ such thaig-z # z forall g € G\ {1}, and takeA = {y e R¢: Vg e G\ {I}|ly —zll < ly — g-zll}.) The
action of G on G-A is faithful, so for eachx € G-A there exists a uniqug* € G such thaty*-x € A; moreover,
x — y* is a Borel map orG-A. Clearly,y$* = y*g~1 since each of them maps the pognt to an element ofi.
For fixeds > 0, By is a.s. inG-A, soy % is a.s. well defined. The proces= y 5 -(Bs,; — By) is a BM for
the flltratlon(£S+,)t>0. It is also invariant, for

Brog =v* 5 (g-Boys — g-By) =y P ¢ g-(Bys — By) = B

Hence it is adapted to the smaller filtratigh’, and it is anF*-BM?. Using Lemma 1, to establish th&t is
Brownian after zero, it remains to see tt¥gtand g generate‘,’”. PuttingV = (Bs+y, — Bs, v €[0,1]) andV =
(Bv, v €]0,1]), we have to show that, far L°°(£Y+,) the conditional expectatiof[Y | £] is measurable for
Fs Vv a(V) We may take¥ of the formU¢ (V), whereU is :Bd measurable; and it then suffices to write

1 1
EY |d]l=— Yog=— Uo Vo
[¥ | 1] |G|Z g |G|Z( 2)¢(Vog)

geG geG
1 1 ~
= g1 2 (Uesy™)e(Vegy™) = 7 ) (Uogy™)e (Vog)
geG geG
=112 (Uogy™)o (V) = "“V)E Y _Wog)=¢(V)ELU | 1],
G 8eG Gl geG

Example 3(Stationary Brownian motion on a sphgreet M be a compact, connectetidimensional Riemannian
manifold without boundary, and callX;);cr the stationary Brownian motion with values M for eachr € R,

X; is distributed onM according to the normalized Riemannian measure. Arnaudon [1] has established that the
filtration (F;);cr generated by is d-Brownian, that is, generated by &9 -valued Ornstein—Uhlenbeck process
indexed byR (or, equivalently, by a BM which is forced to jump to O at each integer instamtZ; equivalently

again, the logarithmically time-changed filtratiofiin;); >0 is d-Brownian). It may be interesting to observe here

that Arnaudon’s proof relies on a coupling argument. This situation, and other stationary processes indexed by
is a typical instance where Theorem 1 or Corollary 1, or their analogues obtained by a logarithmic time-change,
can be expected to enter the picture, because the hypothesis that everything goes well on eacfyjnterial

clearly satisfied; the problem is at time>c only.
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Corollary 1 gives a new proof of Arnaudon’s result, provided it is established that the ptkidessmmersed
in some, possibly higher-dimensional, Brownian motion. As we shall now $igis,immersion is quite simply
obtained in the particular case whehis ad-dimensional sphere.

So we are working in eternal time € R), andX takes values in the unit sphefec R*+1. Denote by ®; =
(dBtl, - dB,d“) a (d + 1)-dimensional Brownian innovation, and consider the SDE on the sphere

dX, = projxtl(dB,) - %X, dr.

The drift term—%Xt dr compensates for the extrinsic curvature of the spher#, anains orf and is a Brownian
motion onS. This SDE generates a stochastic flow of diffeomorphigmson S. A. Carverhill, M. Chappell and
D. Elworthy have shown in [3] tha® has only one characteristic exponent, namelj/2. Since it is strictly
negative, one has

sup E[dist(@y;(x), @5 (y))] > 0 whent —s — oco. (%)
x,yeS
(This property can also be obtained directly, by studying the diffusionidjstx), @, (y)), which is the solution
of some one-dimensional SDE.) A consequenceéxdfs that, for fixedx € S,

E[dist(® (x), @5 (x))] = E[dist( Dy (Prs (x)), Psr (x))] — O

whenr ands tend to—oo with r < s. By Cauchy’s criterion, for fixed € S, the limit X; = lim,_, _o @,; (x) exists
in probability; the flow property then shows thitis a solution to the SDE, hence a Brownian motionSois X,
is also measurable w.r.t. the past innovati®fi* = o (B, — By, s € |—00, t]), this realizes an immersion 6f in
the (d+1)-dimensional Brownian filtratiosB?**, and Corollary 1(iii) applies.

More generally, the same argument works for any embedded compact manifold such that all characteristic
exponents of the gradient Brownian flow (or, for that matter, of some Brownian flow) are strictly negative.

We now start proving Theorem 1. We begin with two sections devoted to establishing technical results that will
be useful later.

Preliminaries: (1) Substantial families of o -fields

If (£22,4,P) is a probability space and a finite set, we denote by (l4; F) the set of all F-valued,
A-measurable random variablegA; F) is a metric space when endowed with the distaiiteS) — P[R # S].

If (E,d) is a separable metric space(l4; (E, d)) (or L1(4; E) for short) denotes the set of all-valued,
A-measurable random variabl&ssuch thatE[d (R, x)] is finite for some & for all) x € E. It is endowed with
the distancéR, S) — E[d(R, S)]. It is well known that the setli4; E) of all simple, E-valued,.A-measurable
r.v., is a dense subset otLA; (E, d)).

[Proof: Choose a numbering,,),>o of a countable dense subgetof £; definey,, : D — D by v, (x,) = xp,
if m <n andy, (x,,) = xgif m > n. ForR € LY(A; (D, d)), E[d(¥,oR, R)] tends to 0 by dominated convergence;
so Lf(4; (D, d)) is dense in E(A; (D, d)). To see that the latter is dense if(l4; (E, d)), defineps : E — D by
¢s (x) = first x, such thati(x,, x) < §; ¢s is measurable and verifi@gx, ¢s(x)) < 8, SOE[d(R, pso0R)] < 8.]

Definition. Let (£2, +, P) be a probability space arigla set of subs-fields of 4. We shall say thaB is substantial
in A if Ugeg L1($2, B, P) is dense in L(£2, 4, P).

For instance, if(+4,),en IS an increasing sequence of suwifields of 4, the set{,, n € N} is substantial
in\/, An.

1 This argument is due to S. Watanabe; | thank him for allowing me to publish it here.
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Observe that iB is substantial in4, the clasy ;g 8 generates the-field +; but the converse is false: for
instance, the s& = {c (A), A € A} is in general not substantial iA.

Lemma 2.Let (£2, 4, P) be a probability space anB a set of subz-fields of 4. The following three conditions
are equivalent

(i) B is substantial inA;
(ii) for each finite seF, | Jg.gL(B; F) is dense irL(A; F);
(iii) for each separable metric spacg, d), |Ugcg L1(B; (E,d)) is dense ilL1(A; (E, d)).

Proof. (iii) = (i) is trivial: take E = R.

(i) = (ii). Fix F finite, R € L(A; F) andd > 0. Let¢: F — R be a map such that for all and f in F,
e f =) —o(f)| > 2. Applying hypothesis (i) tgpoR, one obtains @ € B and aT’ € L1(8; R) such that
E[|T — ¢oR|] < 8; SOP[|T — ¢poR| > 1] < §. Defineyr : R — ¢ (F) by ¥ (x) = the point ing (F) closest tax (the
leftmost such point if there are two). Qi — ¢oR| < 1}, one has/oT = ¢oR by the choice ofp; hence

PlyoT # ¢oR| < P[IT — ¢oR| > 1] <6.

It suffices to sef§ = ¢ toyoT to haveS € L(B; F) andP[S # R] =P[¢oS # ¢poR] < 6.

(i) = (iii). Fix R € L1(4; (E,d)) ands > 0. As Lf(4; E) is dense in L(4; E), there exist some finite subset
F of E and someT € L(+4; F) such thatE[d(R, T)] < §/2. Call a the diameter ofF. Hypothesis (ii) yields
a B e B and aS € L(8; F) such thatP[S # T] < §/(2a). Sinced(S,T) < alis+r), one hasE[d(S, T)] <
aP[S #T]<48/2,andE[d(R, $)] <E[d(R,T)] +E[d(S,T)] <§. O

Lemma 2 will be used only once, in the proof of Lemma 3; what we shall need is only (ii)), in the particular
case when the separable metric spAds equal taR*.

Lemma 3.Given(£2, 4, P), let 8 and C be sube -fields of A, andD a set of suhr-fields ofC, substantial inC.
The sef{ B v D, D € D} is substantial inB v €.

Proof. We have to show that 4 p LY(B v D) is dense in E(B v ). But the random variables of
the form ), o;1p,1¢c, (finite sum,o; € R, B; € B, C; € C) are dense in L8 v ¢). Fix such a r.v.

a1lp,1c; + -+ + axlp1c,. Applying Lemma 2 to the random variabler11c,, ..., axlc,) with values in

(E,d) = (R*, Y, |x; — yi]), one gets the existence of son® e D and (D1, ..., Dy) € LY(D, E) such that

E[}; lejlc; — Dill < 8, and a fortiori E[| >, («;1p,1c; — 1, Di)|l < 8. As the r.v. Y ;15 D; belongs to

L1(8 v D), the proof is over. O

Lemma 4.Fix s > 0. Let ¥ be afiltration andG a set such that each € G is a filtration immersed it ; suppose
{8, G € G} to be substantial iF,. Then{4;, § € G} is substantial inF;; moreover, ifC is ao-field such that
Fs V C = Foo, then{g, v €, 4§ € G} is substantial inF.

Proof. Since the maji, : X — E[X | %] is a contraction from L(#..) onto L1(F;), and since Jg.q L1(Goo) is
dense in E(Fx), Ugeo EsL1(Gs0) is dense in E(F;). The immersion hypothesis givé&L1(Goo) = L1(G);

S0 {4%s, & € G} is substantial in¥;. The second part of the conclusion follows immediately from this via
Lemma3. O
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Preliminaries: (2) Joint laws of Brownian motions

Throughout this section, the dimensians fixed andfinite.
Call COV(d) the set of alld x d real matrices: such that, for all real vectors

v1 w1
v=| : and w= ,
Vd Wd

one has the inequality

"vhw = Zvihijwj < [vllflw]]
iJ

(where’v denotes the transposewhaind||v|| its Euclidean norm).

The set COVd) draws its name from ‘covariance’; for ¥ andY are two random vectors iR? with unit
variance, their covariandg; = CovX;, Y;] belongs to COV); this stems directly from property (iv) in Proposi-
tion 1 below. But COVd) also means ‘covariation’, for ik andY are two BM for some filtration, the following
lemma asserts that their covariati@yds) (X;, Y;), takes its values in COM).

Lemma 5. If X and Y are two BM? for some filtration# , there exists a predictable proce#s with values
in COV(d) such thatd(X;, Y;)(t) = H;;(¢) dt.

Proof. The Kunita—Watanabe inequality says that there exists a predictable p#cesth values ind xd matri-
ces, defined up to & dc dP negligible set, such that#;, Y;)(r) = H;;(¢) dt; moreover, as

t
(-X,v-X) = vl (wY,wY) =wl* and <v-X,w-Y>,=/ZviHi,-<s)w,-ds,
o

one has

t

1

—— [ D vy w; du < o]
v

for all s, ¢, almost allw and all rational vectors andw. Hence,
1 t
PR / H(u)du € COV(d)
— S
N

for all s, r and almost allv. In the limit, H; (w) belongs to the closed set CQ¥ for almost all(¢, ). Replacing
H by 0 wherever necessary makes it possible to choose a versigmdiich is identically CO\d)-valued. O

Proposition 1. (1) For ad x d matrix i, the following are equivalent

(i) the matrixh belongs taCOV(d);
(i) the transposéh belongs taCOV(d);
(i) for all vectorsv, ||hv|| < ||v|;
(iv) the symmetric2d x 2d matrix (,2 ;’) is positive
(v) the symmetricd x d matrix I — "hh is positive.
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(2) The setCOV(d) is convex and compact. Its extremal points are the orthogonal mattiee®(d).
(3) Putd’ = d? + 1. There exist!’ measurable maps, ..., ry from COV(d) to O(d) andd’ measurable maps
a1, ..., 0y fromCOV(d) to [0, 1] such that, for eachh € COV(d)

d d
Y ei(hy=1 and Y ai()ri(h) =h.

i=1 i=1

Remark (not used in the sequelMore generally, ifG is any compact group of redl x d matrices, the set of
all extremal points of the convex hull @ is G itself. Indeed,G is a subgroup of QI), and every point of5 is
extremal in COVd) by (2), and a fortiori in the smaller set co6v

Proof of Proposition 1. (1) Equivalence between (i) and (ii) stems trivially frdohw = (*vhw) = 'w!hv. Also,
by homogeneity, (i) is equivalent to

Yw sup ‘vhw < JJw],
v v]|=1

or to (iii) since the left-hand side ighw|. In turn, (iii) amounts tdv'hhv < "vv, which says that —'hh > 0,
that is, (v). Last, (iv) means thabhw < %(||v||2+||w||2) for all v andw. If & is in COV(d), this inequality holds
because the right-hand side is minorated|by| w||; conversely, if this inequality holds, one Hagiw < ||v]|||w|
for all unit vectors, hence also for all vectors by homogeneity.

(2) Convexity, closedness and boundedness (each entry=dOV(d) verifies|h;;| < 1) are obvious on the
definition of COMd). The inclusion @d) ¢ COV(d) stems for instance from (v).

It is not difficult to see that the extremal subset of Q@Vis equal to @d); see [8]?

(3) The last assertion of Proposition 1 comes from Carathéodory’s theordmigifi compact, convex subset
of R", every point of K is a barycentre of at most + 1 extremal points ofK), and the measurable section
theorem. O

Still for finite d, denote byW? = {w € C(R, R%): w(0) = 0} the canonical space @tdimensional Brownian
motion, and by.? the Wiener measure ofif?.

We shall call JIB (for “jointly immersed Brownian motions”) the set of probability measures on the product
w4 x w? defined as follows: a probability on W9 x W< is an element of JIBif and only if there exist, on
some filtered probability spade2, 4, P, ), two F-BM? X andY with joint law L[ X, Y] = n. Observe that if
w € JIB?, both marginals of: are equal to.; but the converse does not hold. For instancé; is a BM? and if
Y; = X;+1 — X1, the law of(X, ¥) does not belong to Ji8 becauseX, — X is not independent af;.

Lemma 6. The setlIB? is convexendowed with the topology of weak convergeffoe the bounded, continuous
functions onW? x W), it is compact.

If X and Y are twoBM¢ for some filtration#, and if € is a sube-field of %y, the conditional joint law
£L[X,Y | €] a.s. belongs tdIB?.

If X andY are two processes, and ffp is a o-field such thatL[X, Y | o] is a.s. inJIB?, thenX andY are
BM¢ for the smallest filtratiorg such thatgo > Fo and thatX andY are §-adapted.

2 | thank an anonymous referee for this reference.
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Proof. If X andY are¥-BM?, then, forallk >1,all0O<s1 <---<sp <t <u,and allp, o1, ...,0k, 11, ..., Tk
in the dual ofR?,

k
]E[(eip(xu—x,) _ e—%\lpHZ(u—t)) expiZ(anSj +71; Ysj)} =0,
j=1
S0, putting
k
x(x,y) = (eip(xufm) _ ef%Hsz(uft)) exp iZ(ijs,- + Tj)’s]-),
j=1

everyu € JIB? verifiesu(x) = 0. Similarly, ;(x) = 0, wherey (x, y) = x (v, x).

Conversely, ifu(x) = u(x) =0 for all &k and all dyadics;,?,u, p,0;, tj, then, calling# the smallest
u-complete, right-continuous filtration oWw? x W¢ to which the canonical process, y) is adaptedx andy
are(u, F)-BM4, and sou is in JIBY.

Hence, JIB is characterized as the set of all probabilitiesn W¢ x W¢ such thaf.(f) = 0 for all f belong-
ing to some countable set of bounded, continuous functions. Consequenflys iBsed and convex. It is also
relatively compact, because it is tight: tightness follows immediately from both marginals of aB¢ being
equal tor?.

If X andY are twoF-BM?, and if € is a sube -field of Fo, one ha[x (X, Y) | C]1=E[x(X,Y) | C]=0a.s.
for each dyadig, showing thate[X,Y | €] € JIBY a.s.

Conversely, ifX andY are two processes, and4f{ X, Y | Fo] belongs almost surely to JfBone hast[X | Fol
=24 a.s., whencef[X] = A4, and X is a BM?. Moreover, for everyfo-measurable r.vFg and every dyadig,
one hagE[x (X, Y)expiFp] = 0. Consequently, for all dyadic < r < u and p, and all¢;-measurable, bounded
rv. Gy, one has

E[ (e Xu=Xn) _ ef%npnz(ufz))GS] —0,

showing thatX is ag-BM?¢. 0O

Keepingd finite, call MAB? (for “mutually adapted Brownian motions”) the set of all probabilitieson
W9 x W4 such that there exist two Brownian motioksandY which generate the same filtration and have joint
law L[ X, Y] = u. Clearly, MAB? is a subset of JI3

Remark (notused in the seqyelt is easy to see that each element of M/AB an extremal point of JIB because

it is already extremal in the much bigger set consisting of all probabilitie®6n« W< with first margini<. The
converse does not hold: there are many extremal points 6ftBi& do not belong to MAB. (Consider for instance,

if d =1, the joint law ofX andT X, whereT is the Lévy transform.) It would be interesting to characterize all
extremal points of JIB; this seems to be a difficult problem. (Already, in two dimensions, call JU (for ‘joint
uniform’) the set of all probabilitieg. on the unit square such that both marginalg.@fre the Lebesgue measure;
characterizing the extremal points of JU is, as far as | know, an open question.)

Proposition 2. The seMAB¥ is dense inJIBZ. In other words, ifX andY are two# -BM?, there exist Brownian
motions¢”™ andn” such that

o for each fixed:, £ andn™ generate the same filtration
e whenn tends to infinity(¢", n"*) converges in law t@¢X, Y).

Remark (not used in the sequelAn analogue of Proposition 2 is the following fact: whEmranges over the set
of all bimeasurable, Lebesgue-measure preserving bijectiof df to itself, the probabilitiegfol 8(x,Tx) dx are
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dense in the set JU defined just before Proposition 2. In other, more probabilistic, words, if, on some sample space,
X andY are two uniform r.v. on0, 1], there exis€”, ", also with uniform law ori0, 1], such that

e for eachn, &" andn” generate the same-field;
e whenn tends to infinity,(¢", n™) converges in law tgX, Y).

A proof of this remark is given by Gangbo [7]Another, more direct, proof is the following. We shall work with
10, 1] instead of[0, 1]; by ‘interval’, we shall always mean an interval of the fofm 5]. Call JU the subset of JU
which we claim is dense.

Partition ]0, 1] into n subintervalsiy, ..., I, of length Yn; put J, = I;. (The intervalsl; will be used on
the first factor, theJ; on the second factor.) The squafe= 10, 1] x 10, 1] is partitioned inta? smaller squares
Ske = I x Jy. Given a probability. € JU, it suffices to exhibit a probability € JU such that (Si,) = u(Sk¢) for
all k and¢; whenn tends to infinity, these will converge towardg:, thus proving the remark.

Put mi; = 1(Ske). The hypothesigc € JU implies that the 2 sums);_; my and ) ;_; my, are all equal
to 1/n. This makes it possible to partition the intendal (respectivelyJ,) into n subintervalsiy1, ..., Iy, (re-
spectivelyJy, ..., Jy¢) such that Lebly,) = Leb(Jx¢) = my,. (It is not really a partition, becauserify, = 0 the
corresponding subintervals are empty.) The farfily, 1<k, £ <n} (respectively{Ji¢, 1 <k, £ <n})is a“par-
tition” of 10, 1] into n? subintervals with lengtha . Since Leljl,) = Leb(Jy,), there exists a bi-Borel, measure-
preserving bijectionT :]0, 1] — ]0, 1] such thatT (I;,) = Ji¢ for all k and ¢; the measure = fola(x,rx)dx
belongs to JU Call G the graph off'. The subseG,, of G corresponding to abscissae iy and ordinates
in Jy verifiesGye C Irg X Jre C Ske; asUk’,Z Gi¢ = G and as thesy, are disjoint, one ha&y, = G N S¢. Thus
V(Ske) = v(Gre) = Leb(Ixe) = Leb(Jie), that is,v(Ske) = mre = 1(Ske). The claim is established.

We now come back to Proposition 2. Before proving it, here is a small lemma, obvious from the point of view
of Rohlin’s theory, that will be needed in the proof.

Lemma 7.LetZ andk be two r.v. on some probability spa¢®, 4, ). On another probability spacg?’, A/, ),
let ¢ andy be two independent r.v., such thahas the same law ag andy has a diffuse law. There exists @1
arv.h’, measurable for (¢, y), such that the joint lawc (7', ¢) is equal to.L (h, Z).

Proof of Lemma 7. By replacingy with Foy, where F(x) = P'[y < x], we may suppose to be uni-
formly distributed on[0, 1]. Call p,(dj) a regular version of the conditional lalRih e dj | Z = 7], let f,(r) =
inf{j: p.(]1—o0, j1) > r} denote the inverse of the distribution function®f and sett’ = f; (y). Owing to the
independence af andy, one hast[h' | ¢ = z] = L[ f;oy] = p;. Calling u the law of Z and¢, this gives

Plh' edj, ¢ € dz] = u(dz)p,(dj) =Plh €dj, Z € dz],
so (', ¢) has the same law &8, Z). O

We now have all the necessary ingredients to prove Proposition 2. The proof is rather long; it can be best
understood by keeping in mind two very different particular cases: the case (\Whex); = ht, whereh belongs
to COV(d) by Lemma 5 and isfp-measurable; and the case when & (10,77 — Lj7.001) (t) dX;, whereT is a
stopping time, independent &f and ofY .

Proof of Proposition 2. The goal is to approximate an arbitrguye JIB? by elements of MAB. The first steps

of the proof will consist in replacing. by an element of some suitably chosen sequence tendipgttmat is, in
taking . in some suitable dense subset of9)B

3 | thank F. Delbaen and S. Laurent who independently pointed out this reference to me.
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So we start with a filtered probability space, 4, P, £) and twoF -BM? X andY. According to Lemma 5,
there exists a COW/)-valued predictable procegs such that

t
(Yi’Xj>t=/Hij(S)dS,
0

or, in matrix notation, considering andY as column vectors,
d(Y,'X) = H dr.

By (v) and (ii) of Proposition 1] — H'H > 0.

By an independent enlargement of the filtered probability space, we may suppose without loss of general-
ity that there exists arF -BM? g independent of X, Y). PutY? = Y cosd + Bsind. For eachy, Y? is also an
F-BM?. Wheno — 0, Y? — Y and (X, Y?) tends in law to(X, Y). So we may work with(X, Y?) in place
of (X,Y), for someé € ]0, 5[ fixed in the sequel. What we have gained from this replacement isHhlaas
been multiplied by co8 < 1, so we have a stronger inequalitgos 6 — H’H > 0. Thus, the predictable process
K = /T — H"H (symmetric square root of a symmetric, positive matrix) has a well-defined inker$avhich is
bounded (by 1sing).

This makes it possible to defineladimensional? -local martingale/ by

U= / K~y — HdX).
As
d(U,'U) = K1y — HdX)(dYy —"dX'H)K %
=K Y(dt — H'Hdt — H'Hdr + HI'Hd)K 1
=K YU -HHK  d=1dr,
U is an¥-BM<; and as
d(U," X)=K Ydy — HdX)'dX =K Y(Hdr — HIdr) =0,

U is independent ok . By the very definition o/, one has

Y:/HdX+deU.

Now, for§ = 27", define

0 if 1 €0, 48],
H® = 1 (ks .
! 5 Jo—1)s Hgds ifr €]ks, (k+1)8]fork > 1.

By Lemma 5, the procesd takes values in the compact, convex set G@Vso does alsd’. Hence we may put
K? =./I — H} 'H} and define a new -local martingale by

Y5=/H5dx+fK“dU.

Since dY?, 'v®) = (H® 'H® + K%%)dr = I dr, Y is anF-BM9. Whenn — oo (ands = 2" — 0), H® tends to

H in L1([0, 1]) for fixed w andt, and also, by boundedness, iR([0, 1] x £2) for eachr > 0; similarly for K°.
ThusE[sup ¢, [[Y? — Y,[|I?] — 0, and(X, ¥°) tends in law to(X, Y). Working with (X, Y°) instead of(X, Y),

and consequently witl7® instead ofH, we may henceforth forget about the preceding construction, and simply
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suppose thafpr n = ng (and hence also for alt > ng), the process{ is constaniwith respect to timegon each
interval 1k27", (k + 1)27"].

Let V be a BM independent of7,.. Call (Vi)i>0 the filtration generated by, and, fore = 27" with n > ny,
define

Xg— Vt iftée, Y‘E— Vt ifl‘<8, e V, ift<8,
PN Ve+ X ifr>e P\ Vet Yo, ift>e; Pl Vv Fle ifr>e.

’

Both X* andY* areg?-Brownian motions; when — oo (andes = 27" — 0), (X?, Y?) tends to(X, Y) pathwise,
hence also in law. Calt® (resp.Z) the 2i-dimensional processx?®, Y¢) (resp.(X, Y)).

For fixede, we shall now construct two Brownian motio&% and»®, generating the same filtration, and such
that, puttingz® = (£¢, n°), one has

LIS o ber - | = L[ 28, 25, 2.

The existence of sucif will suffice to prove the proposition. Indeed, Igt. .., ¢, be some dyadic instants. For
(=27") small enough, each is a multiple ofe, hence, when — oo,

.,c[gfl,...,g;’;] =L[Z;, ...,pr] = L[Zpy, ... 2,

that is, the finite-dimensional dyadic marginal laws of the progéssonverge to those af. By a well-known
criterion for weak convergence (see for instance Billingsley [2]), this imptigs] — L[ Z] provided the sequence
of laws L£[z?] is tight; but tightness is here a direct consequence of both compaffeatsdn® of ¢¢ having the
same lawa independent of. So.£[¢¢] — £L[Z], establishing the proposition.

It only remains to construct, for fixed, two mutually adapted Brownian motiog$ and »® such that the
sequence&;,),. o and(Z;,),. o have the same law.

Let £¢ be some BM (on any probability space) angl the filtration generated bg®. We shall construct?®
stepwise, successively on each intefval (k + 1)e].

First, on the time-intervalo, €], setn® = £°. Since, on[0, ¢], X* =Y?® (= V), one hasf[¢f] = L[ Z]] (both
are normal, centred, with covarian&:(af ;’)) On|0, e[, £¢ andn® generate the same filtration. Fix an independent
sequencéyy)i>o0 of &-measurable random variables with diffuse laws, starting ygte: £2. (Take for instance
vk = Jo (1) d&f, wheregy are orthogonal in ([0, £]) andgo = 1.)

Now suppose that, for somke> 1, the Brownian motiom?® has been defined on the intery8] k¢], satisfying
the following three properties:

(a) the random vecta;, ..., ¢;,) has the same law ag;, ..., Z;,);
(b) on the time interval0, k<[, n° generates the same filtratiénasé®;
(c) the processsf, t € [¢, ke]) is independent of the sequeng@e, yi+1, .. .).

We shall further extend® to Jke, (k + 1)¢] so that these three properties hold with- 1 instead ok. As they
already hold fork = 1, by induction ork this will define the process® for all ¢, in such a way that, by (a), the
sequences;,),. o and (Z;,),., have the same law, and, by (b); generates. The proposition will thus be
proved.

Recall the existence of a CQ@¥)-valued r.vh; suchthat dY,’ X) = h; dr on](k — 1)e, ke]. By right-continuity

of the filtration ¥, iy is Fx—1).-measurable. Thus the conditional a8y Z. | Fx—1)s] is the normal distribution
with meanZ_1). and covariance(,ék ’;k) Enlarging#—1). with theo-field V, (which is independent af)
does not modify this conditional law; so

- I h
L[ Zis1e = Zie | Gie] = L1 Zke — Zie-vpe | F-nel = N (0, e (’hk ! )) :
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Call p,.... ;, (dh) a regular version of the conditional laif/x € dh | Z{ = z1, ..., Z;, = z;]. Conditioning both

sides of the above equality w.r.t. the sakfield o (Z;, ..., Z;,) of §;, yields
& & & I h
°C[Z(k+l)e | Zgo oo Zie) = / N (Zkg’ £ (th I )) Pzs,...Z¢, (dh). ()
heCOV(d)
By hypothesis (c)yx is independent ofz;, ..., ¢;,); so Lemma 7 gives the existence of a C@)*valued r.v.

h;, of the form

= fi(vio €0 Ske)
and such thait [k, ¢7, ..., ¢ 1= LI, ZE, ..., Z;,]; consequently

LI, =21, G =zl =L | Zi =21, ..., Ziy = 2] = pzy.. i (k)
By Proposition 1, there exist random variabigs=ri(h}), ..., 04 = rd/ (hy) InO(d) andpr = ay(hy), ..., Bs =
ag (hy) in [0, 1] suchthapBy +-- -+ By = 1andpror +- - - +,Bd/od/ = hy; by definition of#;, and by hypothesis (b),

all these r.v. aré&;.-measurable. This entails that, foe {0, 1, ..., d/}, T,- =ke+(f1+--- + Bi)e is an&-stopping
time; observe thalp = ke andT, = (k + 1)e. Define now the Brownian motionf on the intervallke, (k + 1)¢]

by

d/

Like, 1l (D Anf =D Lyz,_y 1y(0)o; d&f.
i=1

This formula inverts itself as

d/

Lk, e+ 01 () 0EF =D Lz, y 1y (0)0; * dnf,
i=1

showing that the mutual adaptednesg©andn® extends to the intervadD, (k+21)¢[; so (b) holds fork + 1.
From the definition ofy® on Jke, (k+1)¢], the conditional IawcC[;(SkH)g — ¢, | Eke] is the centred normal
distribution with covariance

d/
1 i I h
;(Ti—Ti—l)<;0i ) Zﬂ,( 0):8<’h;( Ik>.

Using (xx) and further conditioning w.r.(z;, ..., ¢;,) gives
L[¢§ £ Fl= N ¢ [n dn
g‘(k+1)g|§g""’§kg]_ Ske€\ 1y 1)) Pesos ACOR
heCOV(d)

Comparing with(x) and recalling that, by induction hypothesi§[¢;, ..., ¢ 1 = L[Z;, ..., Z}, ], one obtains
LIS, s G §5<+1)g] =L[Z;, ..., Z;,, ka+1)s] showing that (a) holds for + 1.

Last, there remains to show that (c) holds for 1. If Q is any process, denote hyQ;,  the process
(Qu — Qs, u € [s,t]), and by Q1 the processQ,, u € [s,t]). By induction hypothesis, we know that
the sequenceg“sks Yk, Vk+1, - --) 1S independent. As this sequenceéig-measurable, it is also independent
of d&;, i1er hence the sequenc@é;, ;. 1)c: ¢ kep> Vi Vi+1, ---) IS independent too. So the-field € =
a(dgks (k+De” ;Sks yx) is independent ofy+1, yk+2, - - .). Now, h/ is C-measurable by definition, sbykg (k+1)e
and consequently alsagp, (k+1)e are C- measurable, and by concatenatlon with .. finally g“[g (+Dye] 1S
C-measurable and therefore independer®®f1, yik+2,...). O
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Restatement of Theorem 1

Theorem 1 asserts the equivalence of two conditions. To prove it, it will be convenient to introduce two more
equivalent conditions, thus splitting up the argument into shorter chunks and making the ideas stand out more
clearly. That is why we state it again, with four equivalent conditions instead of two; the first half of the statement
is copied verbatim from Theorem 1.

Theorem Y. Fixd € N* U {oo} and a filtered probability spac&?, 4, P, ); suppose thaF is d-Brownian after
zero. The following four statements are equivalent

(i) F isd-Brownian.

(i) (Self-coupling condition.yFor eachR € L1(F.,) and eachs > 0, there exists a probability spaqe2, 4, P)
endowed with two filtration§’ and " verifying the following four conditions
(@) #' and ¥ are isomorphic taf ; in particular, there are two r.vR’ € L1(F.) and R” € L1(F) corre-

sponding toR by these isomorphisms

(b) £ and F” are jointly immersed
(c) for somes > 0, / and #,” are P-independent
(d) IR = R"ll 1) <.

(iii) (Approximation by a Brownian filtration.JFor eachR € L1(#4,) and eachs > 0, there exists a probability
space(£2, A4, P) with two filtrations#’ and 8 such that
(a) ¥’ isisomorphic toF; in particular, thereisar.vR’ € Ll(}'go) corresponding taR by this isomorphism
(b) 8B is d-Brownian
(c) ¥’ and B are jointly immersed
(d) there existsR” € L(8) such thati| R’ — R 1) <.

(iv) (Vershik’s first-level criterion.fFor eachR € L1(£4) and eachs > 0, there exists ai¥ -BM¢ B such that
(@) Vs >0Vt >s F =F;Vo(B, — B, ucls,tl);
(b) there existsR’ € L1(o(B)) such that| R — Rl 1) < 6.

Remarks (extension tdiii) and(iv) of the remarks following Theoref). (1) Let D be a dense subset ot (F,.).
In Remark 1 following Theorem 1, we saw thatR € L1(F..)” in (i) can be replaced with¥R € D”. It is also
true in (iii) and (iv), by the same argument.

(2) As in condition (i), and for the same reason, the spdcarid its norm can equivalently be replaced in (iii) or
(iv) by L? for any p € [1, oo[, or by L°, with the distanc&[1 A |X — Y|]. In the case whep = 2, one can tak&®”
in (iii-d) or R’ in (iv-b) to be the best £-approximation, that isR” = E[R’ | B] in (iii-d) or R’ =E[R | o (B)]
in (iv-b).

(3) S. Laurent’s observation that (ii) needs to be verified for Bnenly, provided thisR generatesF,, also
extends to (iii) and (iv).

Proof of (i) = (ii) in Theorems 1 and

SupposeF to be generated by some BM3, and fixR € L1(F.) ands > 0. Theo -fields A, = o (B; — B1/n,
t € [1/n, o0[) form an increasing sequence with limt, 4, = F.; hence, for a suitable integer, the r.v.
S =E[R | An] verifies||S — R|| 1o <.
Let B’ andC be two independent Bilon some filtered probability spa¢e, A4, P, F); the proces®” defined
by Bj =0 and
dBt” = 1[0q1/m](t) dc; + 1]l/m,oo[(t) dBt/
is also anF -BM¢. Call #” and ¥ the filtrations on(2 respectively generated B/ andB” .
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(b) SinceB’ and B” are ¥ -Brownian motions. ¥’ and #” are immersed ii¥ .
(a) F' andF” are isomorphic toF, by the isomorphism&’ and¥” such thatB’ =v¥'(B), B” = ¥’ (B). Put
=y/(R), R"=¥"(R), S =W¥'(S) andS” = ¥’ (S).

(c) 3—'1 Im = =o(B], t€[0,1/m]) andifl”m =0(C;, t €[0,1/m]) are independent, becauBéandC are.

(d) AsS is A, -measurable, one has: h(B;—Bi/m, t € [1/m, oo[) a.s. for some Boret. By isomorphisms,

=h(B,—B l/m, t €[1/m,o0]) a.s. andS” = h(B; — B/l’/m, t € [1/m, oo]) a.s. By definition ofB”, this implies

= §". Now, from||R — S|| 1) < 8, One gets by isomorphismR’ — §'|| 15, <8 and||R" — "l 1z, <
consequentI)H R' =Rl 1) < 28.

Proof of (ii) = (iii) in Theorem 1’

We shall give the proof in the (slightly more complicated) casedhatro, and briefly indicate between brackets
the simplifications to be made whéris finite.

Fix R € L1(F) ands > 0; fix alsoF’, £” ands verifying conditions (ii-a) to (ii-d). Call¥* the filtration ¥

shifted bys. As ¥ is d-Brownian after zero, there exists &'-BM? X* such thatF* is generated by, and X*.
Call 4, the s -field generated byF; and by the firsk components of(*; theseA,, form an increasing sequence
with limit \/, A, = F;vo (X*) = F. By martingale convergence, there exists an integerd = oo and a r.v.
S € L1(A,) such that|S — Rll 1oy < 8. Call X the BM* consisting of the first components of*, so thatS is
measurable fofF; vo (X). [In the case whed < oo, the 4,, and the replacement dfby ¢, R by S, X* by X, are
not needed.] Calling’ andS” the copies ofS in £’ and¥”, one hag| S’ — R/|||_1(§) <8 and| S — R”|||_1(§) )
by isomorphisms; from{R" — R"|| 1.5, < 8, one getd|S’ — §”[| 1z < 3.

Let F denote a r.v. generating thefield £;, and¢ the law of F. There exists a measurabfe such that
S = f(F, X); transferringF and X from # to ¥’ and #” yields F’, X', F”, X" such thatE[|f(F', X") —
FF", XM <38,

By (ii-b), ¥’ andF " are jointly immersed; so are al§, ), -, and(¥;’,),-o; hencex’ andx” are#-BM,

for some filtration# on £2 such that?, v #,” C #o. By Lemma 6, the conditional joint lawe[X', X" | F/VF,']
belongs to JIB. So, using the independence®f and ", given by (ii-c), the joint law ofF’, F”, X', X" can be
written

F[F/ c dz/, F' e dz", X ¢ dx/, X’ e dx”] =¢(dz’)¢(dz”)uzgzn(dx’,dx”)

with u, .» € JIB for ¢-almost allz” andz”. The estimate of’ — S” becomes

/|f(Z’, ) = @ x")|p () (dz" )y o (dx', dx”) < 35.

Consequently, the set of all such that
{ Wy o € JIBC for ¢-almost allz’
J1fE X)) = f&7 XAz )y o (dx', dx”) < 38

is not¢-negligible and a fortiori non empty. Fix such’aand putg(y) = f(z”, y) andv, = i, ,»; one has, € JIB¢
for almost allz and

/|f(z,X) - g(y)|¢(dZ)vz(dx, dy) < 3.

~AA A A~

the BM™ Uis not needed] Slnce the f|rst marginalefis the W|ener measurg’, X is a BI\/F mdependent
of F and the infinite-dimensional proceX§ =(X,0) is a BM™® independent of. [Whend is finite, there is
noU, andX* = X |s a BI\/rd | The palr(F X ) has the same law &%, X*); this gives an isomorphism between
(2, Foo, P) and(Q,o(F, Xs ),IP’), call ¥ the filtration on2 corresponding t¢F by this isomorphism. Similarly,
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using the second marginal of, ¥ is a BV, and the infinite-dimensional proceEs = (¥, U) is a BM™. [When
d is finite, Y =Y is a BM.] So the process

B — i/':, R if r <s,
PV Y, ifr>s

is also a BM® [a BMY if d is finite]. Call B the filtration it generates. To establish (iii), it suffices to check #at
and 3 satisfy conditions (jii-a) to (iii-d); (a) and (b) follow from the defmmonsj‘aT and 3.

(d) Since the law o(F X Y) |S¢(dz)vz(dx dy), one ha£[|f(F X)— (Y)|] < 33. Now, f(F X) is nothing
but S, correspondmg i to S in . Hence, ||S - g(Y)|||_1(Q) < 38, and, S|nce||S R||,_1(Q) < 8, one has
IR — g(Y)|||_1(Q) < 45. AsY is B,,-measurable, this gives (d) witls dnstead ofs [W|th § if d is finite].

It remains to show (c). Since € JIB® for almost allz, Lemma 6 says that andY are BM for the filtration
generated by( Y, and the constant proceEs Performing the independent enlargementbpne obtains thax’*
andYA are BV for the flltrat|ong3 generated by(” Ys andF Consequently, the f||trat|o(b?s+t)t>o generated
by X* andF is immersed irg*, andY* is a*-BM<. Defineg by

g 57, if t <s,
TG, ifr>s.

? is |mmersed ng this is trivial on[0, s[, and holds ons, co[ because{fs+[)t>o is |mmersed wgﬁ Similarly,
Y(t o+ is a(g,) martingale (null or{0, s], Brownian afters) The independent enlargementgof/vlth the process
V gives a filtration such that¥ is immersed in#, andY: (H~)+ is anJ¢-martingale. Sinc&’ is an#-BM?, B

is anJ¢-BM too, and this means tha is immersed in#. So¥ and3 are jointly immersed.

Proof of (iii) = (iv) in Theorem 1’

Fix R € LY(¥5) ands > 0. Assumption (iii) provides us wittF’ and B; by isomorphism, instead of proving
property (iv) for the r.v.R in the filtration F, it suffices to prove it folR’ in £’. So, without loss of generality, we
shall suppose that the isomorphism in (jii-a) is ident#/,= # and R’ = R. Hypothesis (iii) provides us with a
filtration # such that¥ is immersed in¥#, and an#-BM? Y such thatr is s-close in L* to a functional ofy .

Approximatingo (Y) with o (Y2 — Y2, ..., Y —Y¢, 1 € [r, oo|) for a suitablee’ < oo [equal tod if d is finite]
and a suitable > 0, we obtain that

|R—g(PL.... 7)), <5

where?, =Y,y — Y. Call F ar.v. generating?,, and¢ the law of F. Since¥ is d-Brownian after zero, there
exists anF”-BM“ X generating the increments 8f afterr; by the same argument as above, one has also

IR—f(F. X% ....X%)| <8

for a suitable finitee > ¢’ [equal toe’ andd if d is finite]. Adding if necessary some unused arguments to the
functional g, we henceforth supposé = ¢; so both processe% = (X1,..., X¢) andY = (YL,...,Y°) are BW
for the filtration (#,+/):>0.

Now, f(F, X) can be L-approximated byf¢(F, X) with f¢ bounded and continuous @ x W¢; similarly,
g(Y) is approximated by (Y) with g¢ bounded and continuous d#¢. So we have|R — f¢(F, X)| < § and
IR —g°(Y)| <8, whence

E[| f<(F.X) - g“(7)|] < 25.
The functioni, (x, y) = | f(z, x) — g°(y)| is bounded and continuous (g, x, y).
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As F generates, which is included in#,, and asX andY are (Hr+1)1>0-BM¢, Lemma 6 says that the
conditional joint law

pe=LIX,Y | F=¢]

belongs to JIB for ¢-almost allz.
The set MAB, with the topology inherited from JIBis separable (because JIB separable and metrizable).
Let (my)ren be a dense sequence in MABY Proposition 2, this sequence is also dense iff. JI®nsequently,

n(z) =inflk: |mg(hy) — p(hy)| <8}
is finite for ¢p-almost allz. Since the map
2> pe(h) =E[| £ X) — g ()| | F =2]
is measurable and+— my(h;) is continuousz — n(z) is measurable too. Integratingout of the inequality

My (hy) < pz(h;) 48, one gets

/hz(x,y)qﬁ(dz)mn(z)(dx,dy) < /hz(x,y)¢(dz)uz(dx,dy) +8=E[hr(X,Y)]+8<35.

Eachmy is the joint law of two BM & andn that generate the same filtration; to eachis associated a trans-
formation 7 : W¢ — W¢ which is invertible, bi-measurable¢-preservingd’ filtration-preserving, and such that
n = Ti£ a.s. and one hasy (dx, dy) = A¢(dx)er,, (), whereg, denotes the unit mass at PuttingU = T,(r) X,
the F-estimate becomes

35 > /hz(x,y)tﬁ(dZ)mn(z)(dx,dy)=/hz(x,Tn(z>X)¢(dZ))»e(dX)
=E[hr(X, Tyr X)) =E[| f(F. X) — g°U)]].
The eventsA; = {n(F) = k} form a countablef,-measurable partition af2. As T is invertible and filtration-
preserving, the filtrations
X =% vo(Xs, sel0,t]) and U, =F Vo (Us, se€l0,1])

agree on eachi;; as A, belongs to bothXo and Uo, the filtrations X and U are equal. On4;, U is equal
to T X, which is anX-BM¢; soU is anX-BM¢. The independent enlargement with the componenss which
do not appear irX shows that the proceds = (U?,...,U¢, x¢*t1, x¢+2, .. ) [take U = U if d is finite] is an
(Fr+1)r>0-BM? such that the filtrations

Xi=%vo(Xs, s€l0,t]) and U, =F Vo (U, s€[0,1])

are equal; as¢; = ¥, one also ha&/;, = F,4;.
Recall thatf; = F5 Vo (X, — X5, u els,t]) forall 0 <s <t. As U, = F,4, the process

B — Xt Iftér,
r= Xr+Ut—r |ft>r

is also an¥ -BM? with the same generating property; in other words, it satisfies (iv-a).

From [|[R — f°(F, X)|l <& and || f°(F,X) — g°(U)|| < 38, one deriveg|R — g°(U)|| < 48. As U is o (B)-
measurableR’ = g¢(U) verifies (iv-b) (with 4 instead of).

4 Recall that.¢ denotes the-dimensional Wiener measure.
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Proof of (iv) = (i) in Theorem 1’

Fix a r.v. R € L1(¥4) such thatR generates the-field ... By induction, we shall construct a sequence of
numberss,, > 0 and a sequence of procesa&ssuch that

(1) Sp < Sp-1/2;

(2) X" =00n[0,s,];

(3) (X} ,)i>0is a BM for the filtration (F;, 1) >0;
(@) dx” =dx" 1 on]s,_1, o0[;

(5) 5, Vo(X") = Foo;

(6) for someU, € LY(a(X™)), R — Up|lL1 < 1/n.

Assuming this has been done, thieBM? Y defined by
dy = Z L5110 AX7 + Ly 00 (1) AX?

n>0

verifies X" = [ 1), o dY and in particular (X") C o (Y); consequently eacly, is o (¥)-measurable, and so
is R = L-lim U, too. The filtrationy generated by is immersed in¥ (because’ is an ¥ -BM) and verifies
Y = Fo (becauser generatesF,, and is Y.-measurable). So, iA € F,, the martingaleP[A | Y;] is the
F-martingale with terminal valugy ; in particular, forA € &, P[A | 4,1 =P[A | F;] = 14, showingy, = ¥;; and
F is generated by, proving (i).

It remains to perform the induction. Cdll the set of all#-BM? B such that, for all O< s < t, F = F; Vv
o (B, — By, u € [s,t]). By (iv) we know that the sefo (B), B € B} is substantial inf,. For B € B, putB[“ =
B — Bips = fé 1;.~5y dB,. Start the induction by choosing somte> 0 and someZ € B, and by setting‘(0 = 7%
so and X verify properties (2), (3) and (5) with = 0.

Now, for some fixed: > 0, suppose,, and X" have been constructed, verifying (2), (3) and (5); we shall show
the existence aof,,1 and X"+ verifying the six properties (1)—(6).

Define a seG" by § € G" iff § is the natural filtration of som®!*, with B € B ands < 10, 5,,/2]. For fixed
B € B, whens | 0, the increasing limit o& (B*) is o (B); hence, the set

{600, §€G"} ={o(BY), BeB, 5€10,5,/2]}

is substantial inf.,. As everyB € B is an¥ -BM¢, eachg € G" is immersed inf . Since¥;, v o (X") = Foo by
induction hypothesis\g;, v o(X"), § € G"} is substantial i, by Lemma 4. Consequently, there exiSe B
ands, 1 € 10, s,/2] such that|R — U1l < 1/(n + 1) for someU, 1 € L1(o (C"" vt X™). DefineX™*+1 by

dxm =1 1) dCy + L5, 001 (1) X

]Sn+lasn

Properties (1)—(4) hold far,1 and X"*1 by the very choice of these objects; (6) holds beca:t{x{é[s”+l X" =
o (X1 last, (5) holds since, a8 € B, one has

For VoX" Y =F, Vo (€Y Vo (X" = F, Vo (X") = Fo.
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