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Abstract

Let u(x, €) denote the occupation measure of an interval of lengthehtered ak by the Cauchy process run until it hits
(—o0, —1]U[1, c0). We prove that SUR <1 1(x, €)/(e(log 5)2) — 2/m a.s. ag — 0. We also obtain the multifractal spectrum

for thick points, i.e. the Hausdorff dimension of the setvethick pointsx for which lim,_ g e (x, e)/(e(loge)z) =a>0.
0 2005 Elsevier SAS. All rights reserved.

Résumé
Soit u(x, €) la mesure d’'occupation de l'intervalle — ¢, x + €] par le processus de Cauchy arrété a sa sortie-del).
Nous prouvons que sup<i u(x, e)/(e(loge)z) — 2/m p.s. lorsque — 0. Nous obtenons également un spectre multifractal

de points épais en montrant que la dimension de Hausdorff des pgiatsr lesquels lim_, g u(x, e)/(e(loge)z) =a > 0est
égale a - an/2.
0 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Let X = (X, t > 0) be a Cauchy process on the real liRethat is a process starting at 0, with stationary
independent increments with the Cauchy distribution:

s dx

— 5,t>0, xeR.
7(s2 + x2)

P(Xi4s — Xs € (x —dx, x +dv)) =
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Next, let

g (A) = [ 1a(Xs)ds

o\.;:m

be the occupation measure of a measurable subséfR by the Cauchy process run unfik= inf{s: |X,| > 1}.
Let I (x, €) denote the interval of radiuscentered at. Our first theorem follows:

Theorem 1.1.
_ uy U (x,€)
lim sup————

=2 S. 1.1
e—0+ g €(loge)? /7 as (1)

This should be compared to the following analog of Ray’s result [12]: for some constant<0oco
: 130, €)
limsup =c
c—0+ €log(l/e)logloglogl/e)

The above is a spin-off result of this paper (in combination with [12]) whose proof we shall not include.
Next, it follows from the previous theorem (or more simply from [11, Lemma 2.3]) that for almost all paths,

. logud (I(x,€)
liminf ————M >
e—>0+ |Og€

a.s.

for all pointsx in the rangg X, | 0 < r < 8}. On the other hand, this fact together with [2, Chapter VIII, Theorem 5]
and Fubini’s theorem imply that fd? x Leb-almost everyw, t) in 2 x {0< 1 < 6}

log 3 (1 (X1, )
im —— =1,
e—>0+ loge

Hence, standard multifractal analysis must be refined in order to obtain a non-degenerate dimension spectrum for
thick points. This leads us to

Theorem 1.2. For anya < 2/,

X1
dim{xeR: lim M:a}=1—an/z a.s. (1.2)
e—0+ e(loge)?

The results obtained here are the analogues of those in [6], when replacing the planar Brownian motion (which
is a stable process of index 2 in dimension 2) by the Cauchy process (which is a stable process of index 1 in
dimension 1). Theorems 1.1 and 1.2 answer the first part of open pr@bjeshthat paper (also implicitly present
in [11]), the second part being solved in [7]. Our work relies heavily on the techniques developed in [6] and [7],
and therefore owes a substantial debt to these papers.

The Cauchy process is a symmetric stable process of indexi. Thick points for one-dimensional stable
processes have been studied in several papers. In [14], a multifractal spectrum of thick points is obtained for stable
subordinators of index < 1. A one-sided version of this result also follows from [10, Theorem A], which deals
with fast points of local times (recall that by [15] all stable subordinators of index1 appear as inverses of
appropriate local times; in this analogy fast points of local times correspond to thick points of subordinators). The
case of transient symmetric stable processes (i.e. symmetric stable processes with indlgis treated in [4]
and can be seen as a generalization of the results on thick points for spatial Brownian motion obtained in [5]. Note
that all these processes are transient (unlike the Cauchy process), and therefore the techniques used in these pape
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differ significantly from the ones we shall use to study the case of the Cauchy processa\WHethe process is
recurrent, and thick points are easier to understand, since for such processes there exists a bi-continuous local tim
(e.g. see [3]). Thus in that case Theorem 1.1 would hold, but with a different scaling (sijraotd 2/ would be

replaced by a random variable (more precisely: the supremum of the local time). In conclusion, our findings apply
only at the border of transience and recurrence of stable processes.

The main difficulty in obtaining results similar to those in [6] is that the Cauchy process is not continuous.
Indeed, the proof of the lower bounds in [6] relies on the idea that unusually high occupation measures in the
neighborhood of a point are the result of an unusually high number of excursions of all scales around this point.
But defining the notion of excursion is not clear when it comes to a non-continuous process. Our proof avoids this
problem essentially by working with the Brownian representation of the Cauchy process: up to a time-change, the
Cauchy process can be seen as the intersection of a two-dimensional Brownian motion and xsaxighesing
this framework we obtain lower bounds by adapting the strategy in [7]. The same strategy could be used to derive
upper bound results. However, because of its independent interest we use the following proposition as the key to
our proof of the upper bounds:

Proposition 1.3. Fix r > 0, and letd = inf{z: |X;| > r}. For anyxq € (—r, r) and any bounded Borel measurable
function f :[—r,r] — R,

6 r
B [ 1ot ds = [ 706G a0 (13)
0 —r

wheregG is given by

_ 1 h@/r) = h(xo/r)
Gx0. ) = =5~ Iog‘l—h(x/r)h(xo/r)’ (2.4
and
— _
h(x):«/(1+x)/(1 x) 1. (L.5)
JA+x0)/A-x)+1
Remarks.

e By the scaling property of the Cauchy process, for any deterministie-G< oo, Theorems 1.1 and 1.2 still
hold if we replaced by 6, = inf{z: |X,| > r}. As a consequence, these results also hold if one repliabgs
any deterministid’ < oo, or any almost surely finite stopping time.

o In the course of our study, we will prove (see Eq. (3.5)) that almost surely

, i (xe)
dim{x € I(0,1): imsup—~———>a; <1— —.
e—0 €(loge)? 2
Using this fact, Theorem 1.2 still holds if in Eq. (1.2) one replaces lim by limsup or liminf, ang/er *
by ‘> a’. Note that this was also the case in [6]. By contrast [4,5] and [14] only deal with limit superior.
e Exactly as in [6], one can obtain the following result for the coarse multi-fractal spectrum: forevepyr,
log Leb(x: /Lg (I(x,€)) > ae(loge)?)

. T
lim =a—, a..
e—0 loge 2

am

It is quite natural to consider also the discrete analogues of the results presented here. For exaiipldadet
a sequence of i.i.d. variables with distribution:

P(X;=n)= nez

C
1+ n2’
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whereC is a normalizing constant. L&}, = > ; X;,
LS(x):=#i: Si=x, 0<i<n},
be the number of visits to € Z during the first: steps of the walk and
n

TX .= mafof (x),
X€Z

its maximal value. Then we conjecture that there exists a constamth that

X

lim 1 5 =0a, as.
n—oo (logn)

The source of the difficulty here is the absence of strong approximation theorems (such results were used to
prove the Er8s—Taylor conjecture in [6]). Another integer-valued random variable for which we expect similar
asymptotic results is the following one:Xf, = (X}, X2) is a simple random walk iZ?, then we defing’, := X}

wherer, is the time at which 0 is visited for theth time by X2. This is the discrete time analog of the Brownian
representation of the Cauchy process, so our techniques should apply here. More generally, we suspect the existenc
of similar results for random variables in the domain of attraction of the Cauchy distribution.

In the next section, we prove Proposition 1.3 using the Brownian representation of the Cauchy process and the
solution to some Dirichlet problem. In Section 3, we use this result to prove upper bounds for both theorems. In
Section 4 we prove the lower bounds, using a well defined system of excursions analogous to the one which appears
in [7]. Finally Section 5 establishes the connection between occupation measure and excursions.

2. Green function for the Cauchy process

This section will be devoted to proving Proposition 1.3. The proof is based on the Brownian representation
of the Cauchy process: {fB1, B?) is a planar Brownian motion, ang is the (right-continuous) inverse of the
local time of B2 at 0, thenB,lr is a Cauchy process. In what follows whenexgre R we letx; := (xo, 0). Let

& :=inf{t: B?=0, |B}| > r} andL be the local time o032 at 0 (more generally we will use the notatidf for
the local time ofB? ata e R, and will typically omit the superscript when denoting the local time at 0). We start
with the following lemma:

Lemma2.1. Let6® :=inf{s: |Bt1S| >r}. A.s. for every bounded measurable functfori—r, r] — R,
68 &

/ F(BLyds = / F(BY AL, 2.1)
0 0

Proof. We first show that® = L; almost surely. Since neither the Cauchy process nor the planar Brownian
motion hit points, we have

0% :=infls: |BL|>r} and &:=inf{r: B?=0, |B}|>r} as.
We need the following result, taken from [13, p. 242]:
Lemma 2.2 [13]. Let Z be the random sdt > 0O: B,2 =0}. Then
P(Vs>0, B2=B2 =0 =1

Conversely, for anyt € Z, eitheru = 7, or u = t-.
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Therefore with probability one
6 =inf{r: BZ=0, |B}| > r} =inf{z,: |B}|>r} ninf{z,~: |BL |>r}. (2.2)
Now (by definition)r,- = lim,_, ,- ;. So by continuity of the Brownian motion, for all such thaﬂBT17| >r
there exists < u such thaﬂB,lx| > r. Thus, the first infimum in (2.2) is less than or equal to the second one, and
therefores = inf{z,: |B}u| > r}. Sincer is non-decreasing and right-continuous, this implies éhatz;5, which

in turn givesLs = 6% (since it follows from the definition of and the continuity of. that for anyx > 0, L., = x).
In particular this yields

03

/f(B )ds—/f(B )ds as. (2.3)

Next, note that since has at most a countable number of discontinuittess (nonotonous and finite),

/f(Bl)ds—/f(B )iz, =,y ds  as. (2.4)

Now recall that by Lemma 2.2, anye Z is of the formz, or t,- for somes. Sincer,- =inf{z: L; > s}, we have
that in both caseg, =s. Hencer;, = u provided thatr; = t,-. Therefore, the change of variable= L, gives

/ F(BD) L —gyds = f fBDLYy, =q,ydL, as. (2.5)
0 0

The same change of variable and countability argument gives that

Ls

o
O:/1{1}77513,}ds:/l{rLu7¢TLu}dLu a.s.
0 0

and therefore (2.5) becomes

Ls o
[ 11, yas= [ rahaL, as (2.6)
0 0
Combining (2.3), (2.4) and (2.6) finishes the proof of Lemma 21.
In particular, sinceB;, is a Cauchy process, the above result implies that
0 G
o [ =g [ @b, 2.7)
0

From here on, without loss of generality we assufnt® be continuous with compact support(ar, r) (by the
monotone class theorem, Proposition 1.3 will then follow for any bounded measurable function). We now need the
following
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Lemma 2.3. Letgs : R — R be a family of continuous functions with support(ins, §) and such thatf gs = 1.
Then

X / f(BHALY = (!iLnOExs / F(BhHgs(B2) du. (2.8)
0 0

Let us postpone the proof of this lemma, and continue with the proof of Proposition 1.3. We first rewrite the
quantity in the right-hand side of (2.8). Using for example [9, Exercise 2.25, p. 253], we know it is eggialda0)
whereu; is defined as follows:

Lemma 2.4. The unique solution to the partial differential equation

{ —(1/2) Aus(x1, x2) = g5(x2) f(x1) oOND,,
us(xy,x2) =0 onodD,

whereD, :=R?\ ((—oo, r] U [r, 00)), is given by
us(x) = f 2¢5(z2) f(21)G(x,2) dz (2.9)
D,

wheregG is the Green function ab,.. G is given by a complex analog ¢1.4), i.e.

1 h(z/r) — h(zo/r)
G(z0,2) = ——| —, 2.10
(20.2) == Og‘l—h(z/r)h(zg/r) (2.10)
where, as in(1.5),
A1/ (1=2) —
ho=YEra/d-o -1 2.11)

VA +/d-2+1
Proof of Lemma 2.4. h(z) can be written:(v(z)) where

14z z—1
, and u(z):= .
1-z @ z+1

v is a conformal mapping ab4 to the upper half-plane, andis a conformal mapping of the upper-half plane to
the unit disk. Thug mapsD1 conformally to the unit disk, and sends 0 to 0. Hence foraw D, ,

h(z/r) —h(zo/r)

1—h(z/r)h(zo/r)
is a conformal mapping oD, to the unit disk, which sendg to 0. Now the Green function of the unit disk
with pole at 0 is—(1/2r) logz. Since Green functions are conformally invariant (e.g. see [1, p. 26T}p, z) as

defined in (2.10) is indeed the Green functiorpfwith pole atzg. Then (2.9) is simply the Green'’s representation
formula (e.g. see [8, Chapter 2])O

v(z) =

So the expectation in the right-hand side of (2.8) becomes

o0

Ma(x8)=2/ ga(zz)(ff(u)G(XS,(u,zz))du) dzo.

—0o0
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Now by dominated convergence, the second integral is a continuous functigninfleed, sincé: is one-to-one
and analytic, for; in a compact subsét of D, there existg\ such that

h(z/r) —h(xg/7)
1—h(z/r)h(xy/r)
Thus,

> M|z — xg|.

1 1
G(xg,2) < o log(M) — g log|xo — z1l (2.12)

which does not depend @i and is integrable as a function of. We have proved that
im 5% [ f(Bhes B2 di=2 [ F:G (5. (c2.0) e
0 —r
This, together with (2.7) and Lemma 2.3 yields

6 r
]E’“’/f(Xs)ds =2/f(11)G((XO, 0), (z1,0)) dz1
0 —r

which completes the proof of Proposition 1.33

Proof of Lemma 2.3. We will prove the following stronger version of (2.8):

5 G
[ rband=iim [ rsbes s d (2.13)
0 0
where the limit is taken with respect to the nojtm||2. To this aim, we first notice that
o o u o oo
[ rbes = [ f(Bi)d( [ esiy dt> ~ [ ra d( [ s da)
0 0 0 0 o0
oo 5
= / gs(a)( / f(BY) de,) da
—00 0

where the second step follows from the occupation time formula [13, Corollary (1.6) p. 224], and the last one by
Fubini’s theorem. Therefore (2.13) will follow once we prove that

/ f(BHdLY = lim, / f(BhHdL® (2.14)
0 0

in| -|l2. Now leta > 0. By Tanaka’s formula (see e.g. [13], p. 222), for any 0

1 t

1
EL? =BZ-a)t - (BS —a)t — / 1p2=a) dB? = — / 1p2.a) dBZ.
0 0



960 O. Daviaud / Ann. |. H. Poincaré — PR 41 (2005) 953-970

Therefore forany >0
t
L —19=2 / Li0-p2<a) dBZ,
0

hence
o o o
f f(BHALY — f f(BHALY =2 / F(BYLo<p2<q) dBZ.
0 0 0

By L2-isometry we obtain

& 2 G &
o [( / FBHALE ~ L?)) } =E [4 / F2(B) Y0 p2<a) ds} <A 2l oo [ / Lo<B2<a) ds}
0 0 0

:4||f2||oo/ / G (x5, (x. y)) d dy.
0 —oo

A careful study of the inner integral on the last line reveals that it is finite, and continuous as a function of
Indeed, let us fix > 0 and define

—r—e —r+e€ r—e

fG(z,(x,y))dx: / G(z. (x,y))dx + / G(z, (x,y))dx + / G(z, (x,y))dx

—00 —r—e —r+e

r+e

+ / G(z. (x, ) dx + / G (2 (x.y)) dr
+e

r—e r

=h+ DL+ 13+ 14+ Is.

By choosinge appropriately,l> and 4 can be made arbitrarily small. And by (2.123,is a continuous function

of y. Finally, on|x| > r +¢, G(z, (x, y)) can be seen to be dominated®yx? for some constard > 0 uniformly

ony (y small enough). Thus by dominated convergelrige; Is tends to 0 ag — 0. These facts put together prove

the continuity and the finiteness of the inner integral in (2.15). Thus the right-hand side of (2.15) tends to 0 when
a — 0%, The caser — 0~ being similar, we have proved (2.14), and hence (2.13), which completes the proof of
Lemma2.3. O

3. Upper bounds

Throughout this section, fix & r1 < r3/2, let X be a Cauchy processg(x, €) the open interval of radius
centered at, 6 :=inf{r > 0: | X;| > r3} and define

ui ) = [ 110, (Xs) ds.

o\%.
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Lemma 3.1. There existg > 0 such that for all-; < r3/2 and|xg| < r3 we have

R (M (71)) r1|:c + — |09<r1>:| (3.1)
and forallk >0
k
E*0 (Mg(rl)) < k'rl |:c + — Iog(r3):| 3.2)

Proof of Lemma 3.1. Recall that by Proposition 1.3,
rn

1IX |<r ds =2 /G(XS,(ZL 0)) dzs.
—r

To prove Lemma 3.1 we therefore need to find an upper bound for the right-hand side of the above equation. We
have

\Q:u

rn r

1
. . 1 h(z1/r3) — h(xo/r3)
2 / G (%6, (21,0)) deg = / nlog‘l—h(zl/rs)h(m/rs)
r1
<- / loglh

J(2)4(2)

becausé takes values in the unit disk. We will treat the casg$ < (3/4)r3 and|xg| > (3/4)r3 independently, and
start with the former. The functioh, when restricted to the compact $et3/4, 3/4] is smooth and its derivative
does not vanish. Sinde;|/r3 < 1/2 whenzy € (—r1, r1), this yields

h2)-4)

for some constan¥ > 0. Hence

—r —r

2
dz1 + —r1 log2

71— X0
r3

> M

r1 ry r1
1 - 1 2
/ log|h <Z1> —h<x0> dz1 < /—Iog a0 dz1 — f —IogMdz1<r1<—Iogr3+A)
r3 r3 b r3 b T
—r —r —r

for someA uniformly in |xg| < (3/4)r3. It remains to treat the caseg| > (3/4)r3. But then|xg/r3| > 3/4 while
again|zi/r3| < 1/2. Therefores being continuous and one-to-one, there exists a constan0 uniform inr3
such that wheng > (3/4)rs3, |h(z1/r3) — h(xo/r3)| = B. So that in that case

r
[ 3ea() (%)
r3 3
“n
for some constan® uniformly in r3. This finishes the proof of equation (3.1). (3.2) will then follow from the strong
Markov property for the Cauchy process. Indeed,

dz1 <Crq

k
E0 (M();( (r1))k = kIE*0 ( / 1_[ 170,y (X, ) dsq - - dsk)

_ =1
01 < <O '
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k=1

2
< k!IEX(’( / l_[ 10 Xs)r1 (c +— IOg(r—g)) dsg--- dsk1>
T r1

0<s1 < <sp1 <

=r (c + Iog(:—j»mxo (X )

proving (3.2) by induction oth. O
This leads us to

Lemma 3.2. We use the same notation as in Lenfta For 0 < A < [(2/7)rlog(ra/r1) + cri] ™1,

-1
E*o (e“‘?f‘”)) < (1 - m[E |og(’—3) + cD , (3.3)
b4 ri

which implies that for > 0

P(;Lg(rl) >1) < t<r1[§ Iog(}i—i) + c])lexp<1 — t(rl[; Iog(}i—j) + c]>l>. 3.4

Proof of Lemma 3.2. (3.4) follows from (3.3) by Chebyshev’s inequality. (3.3) is a straightforward consequence
of (3.2). O

In the remainder of this section, we use Lemma 3.1 to prove the upper bounds in Theorems 1.1 and 1.2. Namely
if we define

Thick>, 1= {x e I(0,1): Iim supM > }
- e—0 €(loge)?
(whered = inf{z: |X,;| > 1}), then we will show that for any € (0, 2/7],
dim(Thick>,) <1—an/2, a.s, (3.5
and

X

uz(I(x,€) 2
limsupsup &——— <=, as. 3.6

e—0 p|x|<FZI). E(|Og€)2 s (3.6)
Note that (3.5) will give the correct upper-bound for Theorem 1.2, since

Thicks, D Thick 1(0,1): lim #y 4G
ick>, ick, := € ,1): - =
z . e—0 e(loge)?

Our proof follows [6]. Sefi(¢) = €| loge|? and

g (x,€)
z(x,€):= 7}1(6) .
Fix 0 < 8 < 1 and choose a sequerig) 0 asn — oo in such a way thaf, < ¢~2 and
h(gn+l) = (1 - S)h(gn), (37)

implying thate, is monotone decreasing in Since, foré, 11 < € < €, we have

h(gn+1) H—é(l (x,€1))
h(€n)  h(€nt1)

7(x, &) = >(1-8)z(x,e), (3.8)
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it is easy to see that for any> 0,

Thicksq € Dy 1= |x €1, 1)) lim supz(x, &) > (1 — 5)a}

n—oo

Let{x;: j=1,..., K,) denote a maximal collec_tion of points (0, 1) such that inf.; |x; — x;| > 8€,. Let
6> :=inf{t: | X;| > 2} and A, be the set of K j < K}, such that

uy (I(xj, (14 8)é)) = (1— 28)ah(&y). (3.9)
Applying (3.4) withr1 = (14 §)€, andrz = 2 gives

P* (15, (1(0. (14 8)&,)) > (1 — 28)ah(&y)) < c& 772,
for somec = ¢(8) < 0o, and anyx € (0, 1). Note that for allx € 1(0, 1) ande, b >0

P(ug(I(x,€) = b) <P (ug,(1(0,€) >b).

Thus for anyj anda > 0,

P(j € A,) < cedd-59m/2

implying that
E|A,| < c/edd-%m/2-1 (3.10)

(by definition of K,,). LetV, ; = I (x;, §&,). For anyx € I(0, 1) there existsj € {1,..., K,} such thatc € V), ;,
hencel (x, &) < I(x;, (1 + 8)é,). Consequentiyl J,,~,, U c 4, Va,; forms a cover ofD, by sets of maximal
diameter 3¢,,. Fixa € (0, 2/x]. SinceV, ; have diameteré%,,, it follows from (3.10) that foy = 1—nwa(1—-658)/
2>0,

EZ > Wl <207 Z~5a”/2<oo.

n=m je A,

Thus,Y 2, ZjeA,, [V, ;17 is finite a.s. implying that dirfD,) < y a.s. Taking$ | 0 completes the proof of the
upper bound (3.5).
Turning to prove (3.6), set=2(1+ §)/(;r (1 — 58)) noting that by (3.10)

o0

Z |An > Z]EIA,, < Ze < 0.

n=1
By Borel-Cantelli, it follows that a.s4,, is empty for alln > ng(w) and someip(w) < co. By (3.8) we then have

5(1 (x, 1-26
sup sup He x 62)) <a
e<eng Ir1<1 €(10g€) 1-3

and (3.6) follows by taking | 0. O

<a,

4. Lower bounds

In this section we adapt the proof of [7, Section 3]. While its authors studied the intersection local time for
two independent Brownian motions, we are interested in the same quantity but for the intersection of a Brownian
motion with a line. Throughout what follows we use notation similar to that in [7, Section 3].

Fixinga < 2/m, ¢ > 0ands > 0, let
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_ | o g Ure)
QC—Inf{t>0 |X[|>C}, Fc—Fc(CU) = {XEI(O,].) !EPOW_ }’

andé, := {w: dim(I;(w)) > 1—ax/2— §}. In view of the results of Section 3, we will obtain Theorem 1.2 once
we show thaP(€1) = 1 for anya < 2/7 andé > 0. Indeed, sinc&hick, C Thick>, and since we have seen that
dim(Thicksq) <1— % as,
provingP(&1) = 1 will imply
aim

dlmTh|Cka = 1_ 7’ a.s.
Moreover, the inequality
5 (I (x, g (I (x,
liminf sup M > supliminf M
=0 |x<1 e(loge) lx|<1 €0 e(loge)

then implies that for any > 0,

liminf sup ryx. €)

>2/t —n, a.s.
e—0 Ix]<1 6('096)2 > 2/ 7

In view of (3.6), these lower bounds establish Theorem 1.1.

The bulk of this section and the next will be dedicated to showingRt@t) > 0. Assuming this for the moment,
let us show that this implieB(£1) = 1. Let us momentarily assume thitis the canonical version of the process.
If w:= X denotes the sample path, akifl := c~1X,, we have thatf () = inf{ct: |c"1X./| > 1} = 0. (w), and
hence

() () cf(0°)

X = /1 ds= [ 1 do— 1 1 do = L

ny (Ix,e) = {1Xs—x|<e) A = (1Xes—ex|<ee) A5 = — (1%, —exl<ee) Os = —u5 (1 (ex, ce)).
0 0 0

Consequentlyl’. (w) = cIM(w°), so the Cauchy process’ scaling property implies ghatP(&,) is independent of
c> 0. Let

& :=limsup&,-1,

n— oo

so thatP(€) > p. The Cauchy process is a Feller process; hence if weHgtbe the usual augmentation of the
natural filtration, it can be shown th&f;) is right-continuous (e.g. see [13, IlI-2]). Therefore, sittes 7 ,

& € Fo which impliesP(€) € {0, 1}. Thus,p > 0 yieldsP(£) = 1. We will see momentarily that the everfisare
essentially increasing iy i.e.

VO<b<c P& \E)=0. 4.1)

Thus,P(€ \ &1) < P(U,{&,-1 \ £€1}) =0, so that alsd®(£1) = 1. To see (4.1), we proceed exactly as in [6, Sec-
tion 3]. First notice that fob < c,

Ty(w) \ {w;: 0y <t <0} C To(w).
Hence
P(Ep \ &) <EP(dIm(I}(w)) # dim(Iy () \ {or: 6 <1 <0:})|F3,)-

Then applying the strong Markov property at tiheand observing that the sé&} (w) is Borel gives (4.1) exactly
asin [6, Section 3, p. 247] (since the Cauchy process does not hit points).
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So we just have to show th&(&1) > 0. To achieve this goal we will use the Brownian representation of the
Cauchy process, and follow the strategy of [7]. More precisely, moving to a Brownian setting, we will now focus
our attention on the “projected intersection local time measures”:

t
Zi(A) = / 1(p,ea dL?,

0
whereB = (B, B?) is a planar Brownian motiorL_0 is the local time ofB2 at 0 andA is any measurable subset
of R2. 7 is simply the amount of local time spent i befores. To see how this relates to the Cauchy process,
note that, for example, for any satc R2, Z; (A) = nz(A N x—axis) wheres := inf{z: Bt2 =0 and|B}| > 1},
0 :=inf{t: |X,| > 1}, X is the Cauchy process associated to the planar Brownian mBt&nd is the occupation
measure foX. Indeed this follows from Lemma 2.1

We then reproduce the setting of [7, p. 248]:dix 2, €1 = 1/8 and the squars = S1 = [e1, 2¢1]2 € D(0, 1),
where forx € R2, p > 0, D(x, p) denotes the closed disk of centerand radiusp. Note that for allx € S and
y € S U {0} both 0¢ D(x, 1) and Oc D(x,1/2) C D(y,1) C D(x,2). Let ¢, = e1(k)™3 = e1[]/_,/~3. For
x €S, k>2andp > €1, let Nif (p) denote the number of excursions&ffrom d D (x, ;) t0 dD(x, €, —1) prior to
hitting D (x, p). Setn; = 3ak?logk. We will say that a poink € S is n-perfectif

ng—k< Ny (1/2) <K Nf Q) <ng+k, Vk=2,...n.

Forn > 2 we partitionS into M, = ef/(Ze,,)2 = (1/4) ]_[?:116 non-overlapping squares of edge lengt) 2
2¢1/(n!)3, which we denote bys(n,i); i = 1,..., M, with x,,; denoting the center of eact(n, i). Let Y (n, i);
i=1,..., M, be the sequence of random variables defined by

Y(n,i)=1 Iif x,; isn-perfect
andY (n, i) = 0 otherwise. Define
A= |J S@.i).
it Y(n,i)=1
and
F=F@)=()J A= )Fn- (4.2)
m n}m m

Note that eachx € F is the limit of a sequencér,} such thaty, is n-perfect. We finally rotate this picture by
45 degrees clockwise. now intersects the-axis; letD be this intersection. The next lemma will be proved in the
next section.

Lemma4.1. Letd :=inf{r: |B;| > 1}. A.s.forallx e FN D
Z5(D(x,€)) 2

e—0 e(loge)2 — w
Now Lemma 3.2 in [7] shows that for evesy< 1, and everys > 0 suchthat --a — § > 0,
P(dim(FND)>1—a—3§)>0. (4.3)

This, together with Lemma 4.1 implies
P(dim(Dﬂ {Iim Z;(D(x. €)) =3a}> >1—a—a) > 0.

>0 e(loge)? T
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Now if & denotes the first time that the planar Brownian motion hits the compleméntlofl) (on the real axis),
we have by the strong Markov property

P(dim(Dm {Iim LD, ) _ Ea}) >1—a —5)
>0 e(loge)? T
>1<P<dim<Dm{|im M:Ea}) >1—a—a>
e—0 e(loge)? T

where

K= | ir‘1f1P“(Brownian motion hitg—oo, —1] U [1, o) beforeD).

SincekK > 0, in view of Lemma 2.1 we have proved tHR(1) > 0, which concludes the section.

5. From excursionsto inter section local time

This section follows (very) closely the argument developed in [7, Section 4]. Thé'satsl D are the same as
in the previous section, aride) := e(loge)2. Lemma 4.1 will follow from the next two lemmas.

Lemma5.1. For everys > 0, if x € F N D then

2 I_ D )
2 4(1— 5)° < liminf Z22&- ) (5.1)
T e—0 h(é)
Lemma5.2. For everys > 0, if x € F N D then
Z;(D(x, 2
imsupZ2 P 24 g5 (5.2)
e—>0 h(é) T

Proof of Lemma 5.1. We use the same notation as in [7]. lsetbe as in the previous sectiod), := ¢ /k® and
let Dy be asi-net of points inS. Let

€ = ekel/ks, €h_1= ek,le_z/ks,
so that fork large enough,

€ = €x + 8k, €1 < €x—1— 8. (5.3)
We will say that a poink’ € Dy is lower k-successfuf there are at least; — k excursions ofB from dD(x', €;)
to 0D (x’, €] ) prior tod. Let

aj=eef j=01,...,3klogk + 1),
and lete; ; = ey ek = €, e I/k e~4/K*~1/k° By analogy with [7], we say that’ e Dy is lower k, 8-successful
if it is lower k-successful and in addition,

2

—(1-8)¢ ; <p(D(',€ ), Vj=0,...,3klog(k + 1) (5.4)

T N ,
wherep denotes the measure supported on the real axis, and whose restriction to the real axiiise$ the
Lebesgue measure. We recall Lemma 2.3 of [7], adapted to our situation. In what follows,

Oy = inf{t: |B; — x| =r},

and we writea = b + ¢ as a shorthand fde: — b| < c.
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Lemma 5.3. We can find: < oo such that for allk > 1, r1 <r2 <r/2<1/2, x andxg with |xg — x| =2,

k
X0 (Ie_x,r (D(x, rl)))k < k!(p (D(x, rl)) |Og<:—l) + cr1> , (5.5)
and

E*0 (Ié” (D(x, rl))) = ,O(D(x, rl)) |0g<:—2> +cr1. (5.6)

The above lemma can be seen as an analog of Lemma 3.1; the main difference lies in the fact that the Brownian
motion is now stopped when it leaves a disk of radiusVe are now in a position to prove Lemmas 5.1 and 5.2.
We will derive Lemma 5.1 from the following lemma, which is an analog of Lemma 4.3 in [7].

Lemma 5.4. There exists &g = ko(8, w) such that for allk > kg andx’ € Dy, if x’ is lowerk, §-successful then

2
~(1- 8)*h(e; ;) <T;(D(x' € ;). Vj=0.1,....3klog(k +1). (5.7)

The derivation of Lemma 5.1 from Lemma 5.4 is exactly the same as the derivation of Lemma 4.1 from
Lemma 4.3 in [7]. For the reader’s convenience, we repeat this argument here. Firsk fbr there exists a
sequencgy, } of n-perfect points which tends ta Sincen-perfect points are also-perfect fork < n, we can find
a sequencéry} of k-perfect points such that — x| < §¢. Finally, by definition ofD;, for any such poing; there
exitsx; € Dy such thax;, — xi| < 8. Sincexy is k-perfect, (5.3) and the fact thét is decreasing guarantee that
x is lower k-successful. Note that — x| < 28;. Thus, since/(ex164**) — 0 ask — oo,

2 .
~a- e <p(DG.e ). Vj=0....,3klog(k +1)

as soon as is greater than somig (8). Thereforex; is lowerk, §-successful as soon as> k1. Consequently, by
Lemma 5.4,

2
;(1 —8)*h(e; ) <T3(D(xi. € ). Vj=0.1,....3klog(k + 1) (5.8)

as soon ask is greater thanz (8, w) = k1 V ko. Now notice that fok large enough (say greater thy), €, it 28 <
e, j for all j in the range of interest. This implies

2¢
T;(D(x, . ))) >I§(D<x, €+ k—é‘)) > T;(D(x. ) ;).
Combined with (5.8) this gives
2 4 ’ 2 5
Z5(D(x, €. j)) = ;(1— 8)"h(e ;) = ;(1— 8) h (e, ;)

forall j =0,1,..., 3klog(k+ 1) andk sufficiently large. Finally, for any, 1 < e < ¢, let j be such thad; ;11 <
€ < ¢, j. Then, using the monotonicity &f we obtain that

Z;(D(x,€)) - Z5(D(x, €k, j+1)) < Z5(D(x, €k, j+1)) <1 3 g)
he) ~ h(e)) T h(erjy) k)
where the last step holds férarge enough. This completes the proof of Lemma 5.

Proof of Lemma5.4. Here again most of the proof is identical to the one of [7, Lemma 4.3]xLetD; be lower
k, 8-successful. The® makes at least; = n; — k excursions betweehD(x', ;) anddD(x’, ¢;_,). For such a
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point we letz; ;. ; denote the projected intersection Iocal time measuR@f, ¢, j) C D(x', ;) accumulated by
B during its/-th excursion fromd D(x", ;) to dD(x', ¢;_;). Let

, . ’or 2 4yt
Ak, j) = {Ie—(D(x ,Ek,j)) < ;(l— L)) h(fk,./)}-

We define
ny
Py .j:=P(A(X',k, j), x" is lowerk, §-successf)l< Py A(Z Tk,j < —a(l 8)4h(ekj))
=1

whereP, ((-) := P(:|x’ is lowerk, §-successfyl If we let El _be the conditional expectation with respect to the
measurd®,, ; and given the trajectory a® up to the startlng t|me of thieth excursion, then

p
Ei',s(fz,k,j)>;(1—5)2|09<E>r1 Py as. (5.9)

wherery := ek rp:= €., r:=¢/_,, and where we have used (5.6) in conjunction with (5.4). The e&ttras)
factor comes fjrom the fact that log r2) tends to infinity ak becomes large. Note that the left-hand side of (5.9)
is random, while the right-hand side is not. Now

4
= |loge1 — 3log(k + 1)! + al= (14 o(1))3k logk, (5.10)

, 4
[log(e;, )| < |log(ers) + 73

where the last step follows from Sterling’s formula. On the other hand, aypeeSakz logk — k,
ny, Iog<L> =n,(3logk — 3k%) = (14 0(1))a(3k logk)?. (5.11)
r2
Therefore, (5.9) (multiplied by, ) together with (5.10) and (5.11) gives

2 ,
n;cEﬁc,,s(r,,k,j»;a(1—5)3h(ek,j) Py, a.s.

providedk is large enough. This results with

Pug < ( an, )

k11

wherefl,k,j = Tl,k,j/]Ei/ S(Tl,k,j)- By definition,]Ei/ S(fl,k,j) =1, so that, With‘fl’k,j = fl,k,j — Ei/ s(fl,k,j) we
have ’ ’ '

Pug < ( an] )

k =1
Since

|og<i) — 3logk — 3k~©
r2
and

|og<i) < 3logk(k + 1) — 2k~6 + 4k~3,
ry
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Lemma 5.3 implies tthi, S(ffk.j) < C for someC > 0. Now remark that there exisi3 > 0 such that forr < 1
e" < 1+x + Dx2. Sincef ;. ; > —1, it follows that for all 0< 6 < 1,

Ei/,s (e_ef]’k’j) <1+ DOZEQ’,s(flz,k,j) <1+ CDH%< eCDOZI

Taking6 = §/(2C D) (which is smaller than 1 provided th&is small enough) and applying Chebyshev’s inequality
(together with the Markov property) shows that for saime A(a, §) > 0, C1 < oo and allk, x’ € Dy, j,

2
Px’,k,j < Cle—)\,k |ng

Now since| D | < e©2k199% for someCs < oo and allk, it follows that
oo 3klog(k+1)

Z Z 3 P < Zsclklog(k+1) Caklogh g2k2l0gk _ oo (5.12)

X EDk

The Borel-Cantelli lemma completes the proofz

Proof of Lemma5.2. Again, we use the same notation as in [7]: we let
Gmae? G =a e/

so that fork large enough
€ < €x — &, € 1 = €k—1+ 8.

Lete ek =€, /% We now say that’ e Dy is upperk-successfuif there are at most; := n; + k excursions

of B from dD(x', &) t0dD(x', & _,) prior tod, and if in addition
ekj p(D(',& ), Vj=0,...,3klogk +1). (5.13)

The constant r on the left-hand side could be replaced by any positive constant smaller tharJ2ing the
same argument as in the previous case, Lemma 5.2 can be derived from

Lemma5.5. There exists &g = ko(8, w) such that for allk > ko andx’ € Dy, if x’ is upper k-successful then

2
—a(l+ 5°h(E, ) > T;(DW. & ). Vj=1,....3klog(k +1).

Proof of Lemmab5.5. Again, the proofis very similar to the one of [7, Lemma 4.4]. In a similar manner we |t
denote the projected intersection local time measui2(af, E,’( ) accumulated by during its/-th excursion from
dD(x', &) to dD(x',€_;) (note thatD(x’, E,/( ;) C D(x', &) for k large enough since we only considgee 1).
Let E! denote the conditional expectation given the trajectoryafp to the starting time of theth excursion.
Using the same line of arguments as in the proof of Lemma 5.4 (whefeandr, are set tae]_;, ek j andé;
respectively, and where (5.9) is replaced by

| 2 r
Ey (k) < —(1+8)log o) Py as. (5.14)
sincep(D(x', €, ) is now simply bounded biﬁ/ﬂ)fk .) we obtain that if
B(x',k, )= {IQ(D()C/ &) = ;(1+6)3h(€;{’j)}

then
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ny
. 2 _
Oy x,j :=P(B(' k, j),x" is upperk-successfyl= P E Tk > —a(l+8)3h(E, P)
. :
=1

"
n

1 -
<P FZU,M?S
k=1

Here 7y ; ; := (T[’k’./'/ElTl,k’j) — 1 whenever there are at ledsexcursions andj x ; := 0 otherwise. For any
a,b>0,(a+b)' <2'(a" + b"), and therefore by (5.5), (5.6) and (5.13)

E' (& ;) <n!AB" (5.15)

for someA, B > 0. Thus,

(o) o

- A 2

I N I _ 2 Ch

Bl =1+ —E(EFy ) =1+) AGB)" <1+Cr*<e
n=2 n=2

for someC > 0, where the first inequality holds as soonjas small enough. As in the proof of Lemma 5.4,

Chebyshev’s inequality then implies that, ; ; < be~ak210gk for some constants, b. A last argument of the
form (5.12) finishes the proof.O
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