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Abstract

This paper is concerned with continuous-time portfolio selection models in a complete market where the objective is to
minimize the risk subject to a prescribed expected payoff at the terminal time. The risk is measured by the expectation of a
certain function of the deviation of the terminal payoff from its mean. First of all, a model where the risk has different weights
on the upside and downside variance is solved explicitly. The limit of this weighted mean—variance problem, as the weight on
the upside variance goes to zero, is the mean—semivariance model which is shown tecemjstiinal solution. This negative
result is further generalized to a mean—downside-risk portfolio selection problem where the risk has nonzero value only when
the terminal payoff is lower than its mean. Finally, a general model is investigated where the risk function is convex. Sufficient
and necessary conditions for the existence of optimal portfolios are given. Moreover, optimal portfolios are obtained when they
do exist. The solution is based on completely solving certain static, constrained optimization problems of random variables.

0 2005 Elsevier SAS. All rights reserved.

Résumé

Sélection de portefeuille de moyen-risque en temps contin@e papier est consacré a la sélection de portefeuilles a temps
continu dans un marché complet. L'objectif est de minimiser le risque associé a un flux (“payoff”) versé au temps terminal. Le
risque est mesuré par I'espérance d’'une certaine fonction de I'écart du flux terminal a sa moyenne. Tout d’abord, un modéle
ou le risque est pondéré différemment sur et sous la moyenne est résolu explicitement. La limite de ce probleme en moyenne-
variance lorsque les poids tendent vers 0 est un modéle moyenne-semi-variance dont il est montré qu'’il n'admet pas de solution
optimal. Ce résultat négatif est généralisé a un modéle de sélection de portefeuille ou le risque n’existe que lorsque le flux
terminal est sous sa moyenne. Finalement un modeéle général est étudié dans lequel la fonction de risque est convexe. De:
conditions nécesaires et suffisantes pour I'existence d’'un portefeuille optimal sont données. En outre, les portefeuilles optimaux
sont explicités lorsqu’ils existent. La solution est fondée sur la résolution compléte de certains problemes d’optimisation statique
sous contraintes mettant en jeu des variables aléatoires.

0 2005 Elsevier SAS. All rights reserved.

* Corresponding author.
E-mail addresseshgjin@se.cuhk.edu.hk (H. Jin), jayan@amt.ac.cn (J.-A. Yan), xyzhou@se.cuhk.edu.hk (X.Y. Zhou).
1 Supported by the Ministry of Science and Technology, the 973 project on Mathematics, and the Knowledge Innovation Program of the
Chinese Academy of Sciences.
2 supported by the RGC Earmarked Grants CUHK4157/00E and CUHK4234/01E. Tel.: +852 2609 8320; fax: +852 2603 5505.

0246-0203/$ — see front mattér 2005 Elsevier SAS. All rights reserved.
doi:10.1016/j.anihpb.2004.09.009



560 H. Jin etal./ Ann. I. H. Poincaré — PR 41 (2005) 559-580

MSC:91B28; 91B30; 60H10

Keywords:Mean—downside-risk; Mean—semivariance; Portfolio selection; Weighted mean—variance

1. Introduction

Risk is a central issue in financial investment, yet it is a subjective notion as opposed to return. Therefore, a
fundamental problem is how risk should be measured. In the early 1950s, Markowitz [17] proposed the single-
period mean—variance (M-V) portfolio selection model, where he used the variance to measure the risk. This
seminal work has been widely recognized to have laid the foundation of modern portfolio theory. However, there
has also been substantial amount of objection to the measurement of risk by variance. The main aspects of the M-V
theory under criticism include the penalty on the upside return, and the equal weight on the upside and downside
whereas the asset return distribution is generally asymmetric. Consequently, some alternative risk measures were
proposed, notably the so-called downside risk, where only the return below its mean or a target level is counted
as risk [6,22,19]. One of the downside risk measures is the semivariance. In [18] Markowitz himself agreed that
“semivariance seems more plausible than variance as a measure of risk”. On the other hand, in a single-period
financial market, other risk measures have also been proposed and studied, including VaR [9], mean—absolute
deviation [12], and minimax measure [2]. For a recent survey on the Markowitz model and models with various
risk measures, refer to [23].

The M-V approach “has received comparably little attention in the context of long-term investment planning”
[23, p. 32], especially in continuous time setting, until very recently. In a series of papers [26,14,13,25,1] the
continuous-time Markowitz models have been investigated thoroughly with closed-form solutions obtained in most
cases. In this paper, we will study continuous-time portfolio selection models, in a complete market, with risk
measures different from the variance. We will start with a weighted mean—variance problem where the risk has
different weights on upside and downside returns. Explicit solution will be obtained for this model. While the
weighted mean—variance model is important in its own right, it also converges to the mean—semivariance model
when the weight on the upside variance goes to zero. Surprisingly and in sharp contrast to the single-period setting,
based on this convergence approach we will show that the mean—semivariance maugbptimal solution,
although asymptotically optimal solution can be obtained from the solution to the weighted mean—variance model.
This “negative” result motivates us to study a general mean—downside-risk model where only the downside return
is penalized, not necessarily in the fashion of variance. It turns out that this general downside-risk model provides
no optimal solution either, under a very mild condition.

Finally, we will study a “most general” mean-risk model, where the risk is measured by the expectation of a
convex function of the deviation of the terminal payoff from its mean. For this model, we give a complete solution
in terms of characterization of the existence of optimal portfolio and presentation of the solution when it exists.

The basic approach to solving the dynamic mean—risk portfolio selection is to reduce the problem into two
subproblems: one is to solve a constrained static optimization problem on the terminal wealth, and the other is to
replicate the optimal terminal wealth. This approach is rather standard; see [20,7,11,1]. The second subproblem is
straightforward to solve in view of the completeness of the market. The main contribution of this paper is that we
solve the first subproblem thoroughly for very general functions that define the underlying risk. This subproblem
is sufficiently interesting in its own right, from the viewpoints of both probability and optimization.

The rest of this paper is organized as follows. In Section 2, we specify the continuous-time financial market
under consideration, and introduce the equivalent static optimization problem for a dynamic portfolio selection
problem. In Section 3, we investigate the weighted mean—variance problem, and in Section 4, we treat the mean—
semivariance model based on the results in Section 3 and a convergence approach. Section 5 is devoted to the stuc
on the mean—downside-risk problem. In Section 6, we turn to the general mean-risk model, and find the sufficient
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and necessary conditions for the problem to admit optimal solutions. Several examples are presented to illustrate
the general results obtained. Finally, the paper is closed in Section 7 with some concluding remarks.

2. Problem formulation

In this paperT is a fixed terminal time ands%, F, P, {F;};>0) a fixed filtered complete probability space
on which is defined a standarf -adaptedn-dimensional Brownian motioV (1) = (W(r),..., W”(t))’ with
W(0) = 0. Itis assumed thaf;, = o (W (s): s < }. Forg > 1, we denote by.% (0, T; R?) the set of alR?-valued,
F:-adapted measurable stochastic procegges= {f(¢): 0 <7 < T} such thatE fOT | f(®)|?df < 400, and by
L(Fr,R?) the set of allR?-valued, Fr-measurable random variabl&ssuch thatE|X|? < +o0. Throughout
this paper, a.s. signifies that the corresponding statement holds true with probability 1 (with regpect to

Suppose there is a market in whietH- 1 assets (or securities) are traded continuously. One of the assets is the
bank account whose price proce&s:) is subject to the following (stochastic) ordinary differential equation:

dSo(t) =r(t)So(r)dr, t€[0,T]; So0(0) =509 > 0,

where the interest rate(r) is a uniformly boundedf;-adapted, scalar-valued stochastic process. Note that nor-
mally one would assume thatt) > 0; yet this assumption is not necessary in our subsequent analysis. Theother
assets are stocks whose price processes, i =1, ..., m, satisfy the following stochastic differential equation
(SDE):

ds; (1) = S; (t)[bi (tyde+ ) 0y (1) de(t)i|, tel0,T]; S0 =s; >0,
j=1
where b; () and o;;(¢), the appreciation and dispersion (or volatility) rates, respectively, are scalar-valued,
Fi-adapted, uniformly bounded stochastic processes.

Define the volatility matrix (¢) := (0 (1)) xm- A basic assumption throughout this paper is that the covariance
matrix

o(t)o(t) >68I,, Vtel0,T], a.s,

for somes > 0, wherel,, is them x m identity matrix. This assumption ensures that the market is complete.

Consider an agent whose total wealth at tim¥e 0 is denoted by (¢). Assume that the trading of shares takes
place continuously in a self-financing fashion (i.e., there is no consumption or income) and there are no transaction
costs. Then(-) satisfies (see e.g. Karatzas and Shreve [10] and Elliott and Kopp [5])

dx(r) = {r(t)x(t) + ) [bi6) = r®)]m (1‘)} dt+ Y > 0y (0)m (1) dW/ (1), x(0)=x0 >0,

i=1 j=1li=1

wherer;(t),i =0, 1, 2,...,m, denotes the total market value of the agent’s wealth iritthasset. We calt (-) =
(m1(9), ..., Ty () theportfolio of the agent.

SetB(t) := (b1(t) — r (1), ..., b, (t) — r(t)), and define theisk premium procesg(r) = (61(¢), ..., 0, (1)) :=
B(t)(o (t))~1 and the pricing kernel

o) = exp{—/[r(s)—i— %|9(s)|2] dS—/H(s) dW(s)]. Q)
0 0

With this notation, wealth equation becomes
dx (1) = [r(Ox(t) + BO)m (1) ] dr + 7 () o (1) dW (1),  x(0) = xo. @)
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Before we formulate our continuous-time portfolio selection model, we specify the “allowable” investment policies
with

Definition 2.1. A portfolio 7 (-) is said to beadmissiblef 7 () € LZF(O, T;R™).

The various portfolio selection models we are going to consider in this paper are all special cases of the following
general problem

Minimize Ef(x(T)— Ex(T)),
m(-) € L%(0, T:R™),

subjectto { (x(-), 7 (-)) satisfes Eq. (2) with initial wealtho,
Ex(T)=z,

wherexo, z € R and the functionf : R — R are given. In words, problem (3) is to minimize the risk, measured by
certain function of the deviation of the terminal wealth from its mean, via continuous trading, subject to an initial
budget constraint (specified hy) and a target expected terminal payoff (specified:oyThe trade-off between
return and risk is realized by achieving the minimum possible risk after one specifies the target return. A mean-risk
efficient frontier will then be traced out gsvaries over certain range. The Markowitz mean—variance problem is a
special case of (3) withf (x) = x2.

Applying [4, p. 22, Proposition 2.2] to Eq. (2) we have

x(t) = p(t) T E(p(T)x(T)|F;), Vtel0,T], as. (4)
In particular,
xo=E[p(T)x(T)].

Hence, as in [1] the portfolio selection problem (3) can be decomposed into a static optimization problem and a
wealth replication problem. The static optimization problem is

Minimize Ef(X —z),
subjectto EX =z, E[p(T)X]=x0, X eL*Fr,R).

®)

(5)
SupposeX* is an optimal solution to (5), then the replication problem is to find a portfolio such that its terminal
wealth hitsX*; in other words, the problem is to fin@d (), 7 (-)) that solves the following equation

dx(1) = [r(Ox (@) dt + BO)m ()] dt +7(1) o () dW (1), x(T)=X". (6)
Theorem 2.1.If (x*(-), #*(-)) is optimal for problen(3), thenx*(T') is optimal for problen{5) and (x*(-), 7*(-))

satisfieg6). Conversely, ifX* is optimal for problem(5), then(6) must have a solutiofx™(-), 7*(-)) which is an
optimal solution for(3).

Proof. The proof is the same as that of [1, Theorem 2.1}

Remark 2.1. The replication problem (6) is essentially a backward stochastic differential equation (BSDE); refer
to [15,16,24] for various approaches in solving BSDEs. Indeed, the unique solutioh, = *(¢)) of (6) is given
by

@) = (o)) Ty (), @)
whereagx*(-), y*()) is the unique solution to the BSDE

de(t) = [r(Ox(®) + 0Oy (@] dr +y@) dW (1), x(T) = X*. (8)
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Thus, according to Theorem 2.1 the key is to solve the static optimization problem (5). The remainder of this paper
will be mainly devoted to solving problem (5) for various situations.

3. The weighted mean—variance model

The classical mean—variance portfolio selection problem uses the variance as the measure for risk, which puts
the same weight on the downside and upside (in relation to the mean) of the return. In this section, we study
the “weighted” mean—variance portfolio selection model where the weights on the downside and upside may be
different. Specifically, for giverx > 0, 8 > 0, z € R, xg € R, we consider problem (3) withf (x) = ozx?r + Bx2,
wherex; > 0 andx_ > 0 denote the positive and negative partscofespectively. It reduces to the classical
mean-variance model when= 8.

As discussed at the end of Section 2, to solve the above problem it suffices to solve a static optimization prob-
lem (5) in terms ofX. DefineY := X — z, then (5) specializes to

Minimize E(aY2 + Y2),
subjectto EY =0, E[pY]=yo. Y eL(Fr,R),
wherep := p(T) andyg := xo — zEp.
Since the above is a static convex optimization problem with a nonnegative infimum, using the Lagrange mul-
tiplier approach (see [1, Proposition 4.1]), we conclude H#iaits an optimal solution of (9) if and only iF* is a
feasible solution of (9) and there exists a p@air ) such that’* is an optimal solution of the following problem

min _ E[aY2 + Y2 — 200 — up)Y]. (10)
YeL2(Fr,R)

©)

Lemma 3.1.Problem(10) admits a unique optimal solutior* = ¢=£2x _ (A_/‘;p)* .

Proof. For anyY e L?(Fr, R), we have, sample-wisely,

o

_ 2 _ 2 _ 2 _ 2
=a<Y+_ A MP) (A —up) +ﬁ<Y_+ A MP) (A —up)
o a B B

A .
aYi+’3YE_2(k_“p)Y=“<Yf—2 M'OY+>+/3<YE+2 ﬂ“py_>

L 0= pe)i (o= np)?
o B
=a(Y])?+ B(Y*)% =200 — up)Y™.

This shows that * is an optimal solution. The uniqueness of the optimal solution follows from the strict convexity
of the problem (10). O

Proposition 3.1.For any yg, there exists a unique pai, u) such that the optimal solutiofi* in Lemma3.1
satisfiesEY* =0, E[pY*] = yo. MoreoverA <0, u <0if yo>0, A >0, u>0if yg <0, andA =u =0 if
yo=0.

Proof. If yo =0, then we simply také = u = 0 (in which cas&’* = 0).
If yo <0, then it is easy to see, using the mean-value theorem of a continuous function, that the following
equation admits a unique solutign>- 0:

E@ —p)y/a=E& —p)-/B. (11)
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Set

a:=E[p(& —p)y]/a—E[p¢& —p)-]/B. (12)
Note

E[p( —p)+]/a=E[p(t —p)+1p<c]/a <CEC —p)t/a
=(E( —p)-/B<E[p(t —p)-1p=¢]/B=E[p( — p)-]/B.

Hencea < 0. Takeu := yg/a > 0,1 :=¢u > 0. Then it is straightforward that (1) is the desired pair.
Finally, if yo > 0, then lett > 0 be the unique solution of equation

E —p)-Ja=EE —p)+/B, (13)
and set
b:=E[p& —p)_]/a—E[p& —p)+]/B (14)

An argument similar to above yields> 0. Takeu := —yg/b < 0,2 :=&u < 0. Then {, w) is the desired pair.
For the uniqueness, it is not difficult to prove by discussing for the gase$ andu > O respectively. O

Theorem 3.1.The unique optimal solution for problef8) is

_O—up)r  G—po)-
o p

where(i, 1) is the unique solution of the system of equations

EQA—pp)y  EQ—pp)- _0

o B -7
Elp(A —up)+]1  Elp(A—up)-1
- =)o
o p

Moreover, for the caseg < 0, yo =0, and yg > 0 the minimum vaIuaE[oz(Yjﬁ)2 + B(Y*)?] of the problem(9) is
equal to—y2/a, 0, y2/b, respectively, where is given by(12) andb is given by(14).

Y*

(15)

Proof. The first part of the theorem is immediate from Lemma 3.1 and Proposition 3.1. To prove the second part,
note that the case whei = 0 is trivial; so we considepg # 0. One has

1 2 1 E(— up)— E[p(A — pup)-]
—ZE(— = ZE[(n—up)_(r — = -
gEG—up)~ =7 [ — o) - (h — pp)] 3 I 3
E(— Elp(h — 1
_ EC-—po)s —M{ Lo - #0)+] —yo} = EE[(k—up)+(?»—up)] + wyo

1 2
= EE('\ — )5 + myo,

where we have utilized Egs. (15). Consequently,

1 1
Ehﬂﬂi+ﬂ@ﬁﬂ=aEu—umi+EEu—um%=—mn

By the proof of Proposition 3.1, we obtain immediately the desired resuit.
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Translating back to the weighted mean—variance portfolio selection problem (3), in view of Theorem 2.1, the
unique optimal portfolio corresponding to> O is the replicating portfolio for the terminal contingent claim
X*(T) = Gbeds (A’g”)‘ + z. Details are left to the reader. We note that i 42, then’ = ju = 0 imply-
ing thatx*(T) = z a.s. under the optimal portfolio. Hence in this case the optimal portfolio is a risk-free portfolio
or a zero-coupon bound. As a by-product, we have proved that a risk-free portfolio is available (which involves
exposure to the stocks) even though the interest rate is random.

4. The mean—semivariance model

In this section we consider the mean—semivariance problem, where only the downside return is penalized. This
is a case of (3) withf (x) = x2.
As before we denotg := p(T) wherep(-) is defined by (1). Define

p0:=inf{neR: P(,o<77)>0}, ,01:=Sup{r]€RZ P(,o>n)>0}. (16)

Lemma4.1.Lets(a), @ € (0, 1), be the solution t¢11) with § = 1 —«, thenlimy 0 ¢ (o) = pg. Similarly, leté («),
a € (0,1), be the solution t§13) with 8 = 1 — «, thenlimg 0 & («) = p1.

Proof. Define f(¢) := Eﬁiiﬁif, ¢ € (po, p1). Then Eq. (11) is equivalent t§(¢) = 2. Obviously, f(¢) is a

strictly positive and strictly increasing function gre (oo, p1); hencez («) is strictly increasing ow € (0, 1), and
in this interval,pg < ¢ (@) < p1.

Denote limy 0 ¢ (a) = ¢o, thengo > po. If $o > po, then take; e (po, £o). Sinces < {g =limgy 0 (), we have
gg—:’;;j =0, implying E(¢ — p)+ = 0. However¢ > pg, SOP(p < ¢) > 0 leading to a contradiction. Therefore,
£o = po-

Similarly, we can prove the other part of the lemma in terms(af). O

We are now in a position to prove the followimggativeresult.

Theorem 4.1.The mean—semivariance probléB) with f(x) = x2 does not admit any optimal solution so long
asz # E—%.

Proof. In view of Theorem 2.1, it suffices to prove that the static optimization problem
Minimize E(Y2),
subjectto EY =0, E[pY]=yo=x0—zEp, Y e L% Fr,R)

has no optimal solution. Consider problem (9) with= 1 — « and« € (0, 1). It has been proved in the proof of
Proposition 3.1 that there exists a p@ifa), () such that
_ G@) —pl@)p)s (o) — pl@)p)-
p

satisfiesEY (o) =0, E[pY («)] = yo. This implies that eacli («) is feasible for problem (17).

Sincez # £2, we haveyg # 0. First consider the case whef < 0. It was proved in the proof of Proposition 3.1
thati(a) > 0, u(a) > 0. Let¢ (o) = M(a)/u(x). Then (a) is the solution to (11) withB =1 — «. Lemma 4.1
along with its proof yields («) > po, and¢ (@) — pg asa | 0. Consequently,

0< E[(0 — po)(§(@) = p), ]/ < (¢(@) = po) E(5 (@) = p) , e
= (¢@) — p0)E(s(@) — p)_/(1— o) < (@) — po) Ep/(L—a) - 0, as« |0,

(17)

Y(x)
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and

E[(p = po) (¢ (@) = p) _]/(1—a) > E(p — po)®, asa | 0.
Leta(a) andb(a) be defined by (12) and (14) respectively. Since
Yo Y0
a(@)  E[(p — po) (¢ (@) — p)41/a — E[(p — po) (¢ (@) — p)-1/(1—a)’
we haveu (o) — —yo/E (p — po)?, asa | 0. Therefore,

2 2
E[Y(oz)%] = G (E:L(C(Z))z P)= — yS/E(p - ,00)2, asa | 0. (18)
On the other hand, for any feasible solutiBnof problem (17), Cauchy—Schwartz’s inequality yields[(p —
p0)Y_1}2 < E[Y_12E[(p — p0o)?1y -0l. Note thatE[(p — po)21ly -0l # O, for otherwiseP (Y > 0) = 1 which to-
gether withEY = 0 would imply P(Y = 0) = 1 and henceg = 0. As a result,
pry s ELe—pY- B2 {Elo—po¥d=yol® 35
E[(p — p0)?1y <o) E[(p — p0)?1y <o) E(p — po)?
where the lasstrict inequality is due to the facts thag < 0 andEY = 0. Comparing (18) and (19) we conclude
that there is no optimal solution for (17) in this case.
For the caseyp > 0, we have proved that(a) < 0, u(a) < 0 andé(«) := A(a)/u(a) > 0, wheret(a) is the
solution to (13) with8 = 1 — «. According to Lemma 4.3 (@) — p1 asa | 0. First assume that; < +o0. Then
an argument completely analogous to the above yields

E[Y(@?2] — y§/E(pr—p)®. asa |0, (20)

pla) =

(19)

whereasE[Y_]? > yg/E(,ol — p)? for any feasible solutiory of problem (17). Thus there is no optimal solution
for (17).
On the other hand, note that
b(a) 2 E(@E(E@) —p)_/a—E[p(E@) —p),]/1-a)
=E@E(E@ —p) /L—a) = E[p(E@@) — p),]/(1—a)

= E(5() —p); /(1 ). (21)
Consequently, recalling that(o) = —yo/b(«) we have
21 M@PEGE@ —p3 _p@? ¥
E[rZ]= (1—a)2 ST 'Y= @ (22)

Thus, if&(a) — p1 = +o0 asa | 0, thenE[Y («)2] — 0 as« | 0. On the other hand, for any feasible solution
if EY2 =0, thenY = 0 implying yo = 0. This, once again, proves that (17) has no optimal solutian.

Remark that ifz = g—%, then there is a risk-free portfolio under which the terminal wealth is exacthkhis
portfolio is therefore an optimal portfolio for (17). Also, although the mean—semivariance problem in general does
not admit optimal solutions, the infimum of the problem has been obtained explicitly in the proof of Theorem 4.1.

72 . . .
’70_0)2 if yo > 0. Moreover, asymptotically optimal

2
Specifically, the infimgm isﬁ, if yo < 0, and is Eos
portfolios can be obtained by replicatinfga) asa — 0.

Theorem 4.1 shows that, quite contrary to the single-period case, the mean—semivariance portfolio selection
problem in a complete continuous-time financial market does not admit a solution (save for the trivial case when
z= x—g). In the next section, we shall extend this “negative” result to a general model that concerns only the

downside risk.
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5. The mean—downside-risk model

Some alternative measures for risk have been proposed in lieu of the variance, and one of such measures is th
downside risk which concerns only the downside deviation of the return from the mean. The semivariance studied
in the previous section is a typical type of downside risk measure. In this section, we will generalize the result
obtained in Section 4 to a general portfolio selection model with downside risk.

Before we formulate the underlying portfolio selection problem, let us investigate an abstract static optimization
problem, which is interesting in its own right. Léf2, 7, P) be a probability space. Fer > 1, we denote by
L1(F,R) the set of allF-measurable real random variablEssuch that{ X |7 is integrable undeP. Let ¢ be a
strictly positive real random variable, with the property that

Plé € (M1,M2)} >0, and P{§=M1}=P{E=M2}=0, VYO M1<My<+oo. (23)
Consider the following optimization problem, with a givesne R:

Minimize Ef(Y),

subjectto EY =0, E[£Y]=yy, Y elLi(F,R),
where f : R — R is a given function. Throughout this section we impose the following assumptigh on

(24)

Assumption 5.1. f > 0, left continuous at 0, strictly decreasing@n, andf (x) =0Vx € R™.

An example of such a function ig(x) = (x_)? for somep > 0. By virtue of the assumed properties pf
problem (24) has a finite (nonnegative, in fact) infimum.

Theorem 5.1.Problem(24) admits no optimal solution for any # 0.

This theorem will be proved via several intermediate results. Deht{&, R™) := {X € LY(F,R): X <0}.
For anya < 0, define
h(a) := inf Ef(Z).
ZeLd(F,R™), E[tZ]=a

Lemma 5.1.h4(a) is decreasing oiR™. Moreover, if for a giveru; < 0, there existsZ € L(Fr,R™) such that
E[Z] = a1, Ef(Z) = h(a1), thenh(a1) > h(a2) Vaz € (a1, 0).

Proof. For anya; < az <0, we have

. a .

inf (—ZZ> < inf
ZeLd(Fr,R™), E[£Z]=a1 ai ZeLd(Fr,R™), E[EZ]=a1

If there exists & € LI (Fr, R™) with E[§Z] = a1, Ef(Z) = h(a1), then

h(az) < Ef(Z) = h(ay).

h(a) < Ef(“—27> < Ef(Z) = h(ay).
al
This completes the proof.O

Lemma 5.2.For anya > 0, § > 0, and0 < 8 < a4, there exists a uniformly bounded random variable: 0 such
thatEY =, E[§Y] = B, andY = 0on the sefw € 2: & > §}.

Proof. Taked; < 82 < § so thatE(£]61 < & < 82) = B/a. The property of the distribution df and the fact that

B/ < § ensure the existence of suéh, §>. DefineY = m1¢31<§<52. ThenY satisfies all the desired
requirements. O
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Lemma 5.3.For any yo < 0 and ¢ > 0, there exists a feasible solutidh for problem(24) such thatEf(Y) <
h(yo) +e€.

Proof. For anye > 0, there exist¥ € LY(Fr, R™) such thatE[£ Z] = yo, andh(yo) < Ef(Z) < h(yo) + €. Since
< E[f;‘Z =a Va < yo, we haveh(a) < Ef( OZ) Fix a < yg. Since the distribution of has no atom by the
assumptlon there exiség(a) > 0 such that

% E[Z&L:>50()] = yo.

As aresult, one can takig (a) > 0 with §1(a) < do(a) and
—E[(a/y0) Z1le>s1(a)] - 1
y0o— (a/YO)E[ZELe>s,)] ~ S1(a)”
It is easy to see that lim,, do(a) = 0; hence lim4, 81(a) =
DefineY, = Zl§>51(a) +Y, Le <51(a)s whereY, >0 is such that’, = 0 on the sefw € 2: £ > 81(a)}, and

— a
EY, = _E|:_Zlé>51(a)i|’
Yo

— a
E[EY,]=y0— E[%EZ]-S)M(:;)]

The existence of suchi, is implied by Lemma 5.2. Consequentlyy, = 0, E[£Y,] = yo, meaning that’, is
feasible for problem (24).
Now

Ef(Ys) = E[f(%Z) 1525@)} + E[f(YD)ls<si] = E[f(%l) 15251(@}

Thus, we have

Ef(%z> > Ef(Ya) 2 E[f(2)lezs,(0)]

which implies lim,y,, Ef (Y,) = Ef (Z) < h(yo) + €. Thus, we can take < yg such thatt f (Y,) < h(yg) +€. O
Proposition 5.1.Problem(24) admits no optimal solution for anyy < O.

Proof. In view of Lemma 5.3 it suffices to show thatf (Y) > k(yg) for any feasible solutiory of (24). To this
end, first note thaE[$Y+] > 0, for otherwiseY+ = 0 which along withEY = 0 yieldsY = 0 and henceg =0
Thereforea := E[—£Y ] < yo, suggestingdi(a) > h(yo) by virtue of Lemma 5.1. If:(a) = h(yo), then the con-
trapositive of Lemma 5.1 implies th&tf (—Y ™) > h(a). Sincef(x) = f(—x~),we haveEf(Y) = Ef(-Y ™) >
h(a) = h(yg). Otherwise, ifi(a) > h(yg), thenEf(Y) > h(a) > h(yg). O

Now let us turn to the case wheg > 0.
Proposition 5.2.Problem(24) admits no optimal solution for anyy > 0.

Proof. Sinceyg > 0, any feasible solutioy of problem (24) satisfie& f (Y) > 0. Thus we only need to show
that there exists a sequendg } of feasible solutions for problem (24) with lim, ;. Ef (Y,,) = 0. Indeed, for any
n > 0, defineY,, = —a, ¢, + by 1e>,, Wherea,, b, are defined by

Jo Yo

n = s bn: .
¢ [EGIE =n) — E]§ <n)]P(§ <n) [E(|§ =n) — E&|§ <n)]P(§ >n)
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Then it is easy to verify that,, > 0, b, > 0, lim,_, s a, =0, andEY, =0, E[£Y,] = yo. Thus,{Y, } are feasible
solutions for (24), and

O0< Ef(Yy) = E[f(—an)le<n] < f(—an).
Sincef is left continuous at 0, we conclude lim  Ef (Y;,) =0. O

Remark 5.1.In the proof of Proposition 5.2, only the following propertiesfaf) was utilized: f (x) > 0 if x <0,
fx)=0if x >0, and lim4o f (x) = 0. The strictly decreasing property ¢{-) was not necessary.

Combining Propositions 5.1 and 5.2 yields the conclusion of Theorem 5.1.

Now we turn to the continuous-time portfolio selection problem (3) whesatisfies Assumption 5.1. The way
the functionf is given suggests that only the downside deviation of the terminal wealth from its mean is penalized;
hence the model constitutes a (very general) mean—downside-risk portfolio selection problem.

Let p(-) be the price kernel defined by (1). We impose the following assumption:

Assumption 5.2.For any 0< M1 < My < 400, P{p(T) € (M1, M2)} > 0 and P{p(T) = M1} = P{p(T) =
M2} =0.

This assumption is satisfied when, saly) andd(-) are deterministic ang%T 16(t)|2dr > 0.
The corresponding static optimization problem (5), after taking a transformétien X — z, is exactly the
problem (24) withg = 2. Hence, by virtue of Theorems 5.1 and 2.1, we conclude the following result.

Theorem 5.2.Under AssumptionS.1and5.2, problem(3) admits no optimal solution for any+ E;‘?T). On the
other hand, if; = then(3) has an optimal portfolio which is the risk-free portfolio.

X0
Ep(T)’

Theorem 5.2 claims that a mean—downside-risk portfolio selection problem does not generally attain an optimal
solution in a complete continuous-time financial market. It is a very general result; however it does not completely
cover Theorem 4.1 since the latter does not require Assumption 5.2.

6. The general mean-risk model

We have shown in the last section that in the continuous-time setting, the mean—downside-risk model does not
achieve optimality in general. In other words, problem (3) does not admit an optimal solution if the fuyiction
has the property that it vanishes on the nonnegative half real axis. Notice that for this negative result to hold the
function f is notrequired to be convex. In this section, we will study model (3) where a gecamaexunction f
is used to measure the risk. We will give a complete solution to the problem in terms of telling exactly when the
problem possesses an optimal solution and, when it does, giving the explicit solution.

Let(£2, F, P) be a probability space argda strictly positive real random variable on it satisfying (23). Consider
a convex (hence continuous) functighR — R, not necessarily differentiable. For any R, its subdifferential
af (x) in the sense of convex analysis (see, e.g., [21]), is defined as the set

Af () =={x* €eR: f(y) — f(x) Zx*(y —x), Vy eR} = [fL(x), fL ()], (25)

where f (x) and f/ (x) are the left and right derivatives of at x respectively. The seif (x) is a nonempty
bounded set for every € R [21, Theorem 23.4]. Moreover, the convexity gfimplies that the subdifferential is
nondecreasing in the sense that

i) < fL(x2), Vxp<xg (26)
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We call a convex functiorf to be strictly convex atg € R if

fxo) <kf(xp)+ 1 —«)f(x2)

for anyx; < xo < x2 andk € (0, 1) with xx1 + (1 — x)x2 = xg. A convex function is called strictly convex if it is
strictly convex at every € R. Some properties of a convex function that are useful in this paper are presented in
an appendix.

Throughout this section we assume thiagatisfies

Assumption 6.1. f is convex, and strictly convex at 0.

Note that the strict convexity at 0 is a very mild condition, which is valid in many meaningful cases (see the
examples at the end of this section).

In view of Jensen’s inequality, one h&g (Y) > f(EY) = f(0) for any feasible solutioir of (24). Hence prob-
lem (24) has a finite infimum if its feasible region is nonempty. Also we see thgtf0, then (24) has (trivially)
an optimal solutior* = 0 a.s. On the other hand, due to the convexity pfve can apply [1, Proposition 4.1] to
conclude that (24) admits an optimal solutibhi if and only if Y* is feasible for (24) and there exists a p@ir 1)
such thatr * solves the following problem

yomin E[f() = (= pd)Y]. (27)

Lemma6.1.Y* € L9(F, R) is an optimal solution t¢27) if and only if

fY") =G —pdY = fyT;iQ[f(y) —(—ué)y], as.

Proof. The “if” part is obvious. We now prove the “only if” part. Suppogé € L7 (F, R) is an optimal solution
to (27). Defineh(y) := f(y) — (A — n&)y, y € R, andc := infycr h(y). Let Z := Unent(z1, ..., z0): zi € Q},
whereQ is the set of rational numbers, andz) := infi¢;<, h(z;, w) for z = (z1,...,2,) € Z. Sinceh(y) is
continuous iny, we havec = inf.cz h(z). Now, if Y* is not almost surely a minimum point @f(-), namely,
P{c < h(Y*)} > 0, then there exists= (z1, ..., z,) € Z such thatP{A(z) < h(Y*)} > 0. Itis easy to see then that
there isy* € Q with P{h(y*) < h(Y*)} > 0. PutA := {w: h(y*, w) < h(Y*(w), )}, andY’ := y*14 + Y*1 ¢.
ThenY’ € L9(F,R), andEh(Y’) < Eh(Y*), leading to a contradiction. O

Define a set-valued functio@ : |, g 8f (x) — 2R

G(y):={xeRyedf}. Vyel]Jafw,

xeR
and defingg : (g 3f (x) — R as the “inverse function” odf as follows
g(y) :=argminjx|, Vye | Jaf ).
x€G() xeR

In appendix we prove that is a well-defined function (on its domain), and the setysfwhereG(y) is not a
singleton is countable. In other words, denoting

r:= {y € U Af(x): G(y)isa singletor},

xeR

then the sefl J, g 3f (x)]\I" is countable. Moreoveg(-) is increasing on J, . 3f (x) and continuous at points
in I (Proposition A.5).
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The objective of this subsection is to identify the rangesgivhere problem (24) admits optimal solution(s)
and, when it does, to obtain an optimal solution in various situations df follows from Lemma 6.1 that prob-
lem (24) admits an optimal solution if and only if there exists a pain) satisfying the following condition:

ThereisY* € LY(F,R) with Y* € G(A — ué), a.s, EY* =0, andE[£Y*] = yo. (28)

Moreover, when there exists a péir, 1) satisfying the above conditioiii;* is one of the optimal solutions for (24).
Remark that ifw # 0, then, since the s¢t J,..r 9/ (x)I\I" is countable and the distribution §fhas no atom, we
have P{A» — u& € I'} = 1. In this cas&G (A — n&) is almost surely a singleton; hence problem (24) has a unique
optimal solutionY* = g(x — ué&).

We will solve problem (24) in each of the following four (mutually exclusive) cases:

Case 1. The sdt),.g df (x) is upper bounded but not lower bounded;
Case 2: The sdt), g df (x) is lower bounded but not upper bounded;
Case 3:|J,.rdf(x) =R;

Case 4: The sdt),.g df (x) is both upper and lower bounded.

Let us first focus on Case 1. In this case, it follows from Proposition Allthats 9f (x) is either a closed
interval (—oo, k] or an open oné—oo, k) where
S ,
k.= xﬂToo fi(x)eR. (29)
It is also clear that lim_, _, g(y) = —oo. Moreover, in this case one only needs to consjder 0 in searching

for (A, n) satisfying condition (28), for otherwidg), g 9/ (x) would be unbounded from above.
The following technical lemma plays an important role in the subsequent analysis.

Lemma 6.2.In Casel, assume that there avey > f’ (0), uo > 0 such thatg(ro — noé) € LY(F, R). Then for
any i1 € (0, o), A1 € (f”(0), Mo), there existyy € L4(F, R*), such thatlg(r — u&)| < y for any u € [0, 1]
anda € [/ (0), A1]. Ifin addition&g (Ao — noé) € LY(F, R), theny satisfiety € LY(F, R).

Proof. Sinceg(-) is increasing (Proposition A.5), for any< [0, 111, A € [f (0), A1], we have
g(fL(0) — &) < g(h — ug) < g(r).
On the other hand, on the det: &(w) < (Ao — f/(0))/(;o — 1)}, we have

uofL(0) — Kom)
[0 — 1

)

g(fL(0) — 1) >g(

and on the sefw: &(w) > (Ao — f/(0))/(uo — 1)} we have
g(fL(0) — n1&) > g(ho — pok).
Thus, if we put

uofL(0) — Aoma
Mo — 1

’

v :=go»1)+‘g( )‘Hg(ko—uoé)
theny meets the requirement.0

Lemma 6.3.In Casel, for any given € (—oo, k), g, () := Eg(x — u&) is strictly decreasing i € R™.
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Proof. Sinceg(-) is increasingg; (-) is decreasing. Moreover, for apy> 0, g, (1) < ¢,(0). Indeed, ifg; (u) =
2,(0), thenEg(x — n&) = Eg() leading tog(A — u&) = g(A). This, in turn, implies thak — u& € af (g(1))
which contradicts to the boundedness¢fg(1)).

Next, for any O< u1 < uo, if g5 (1) = ga(n2), theng(h — w1&) = g(A — u2é) a.s. We are to show that in this
caseg(-) must be constant of+-oo, A — 1]. In fact, if g(-) is not constant oi—oo, A — 1], then for any > 0, there
existsy; < A —1suchthag(y1) < g(y1+¢€). Takee = (u2 — n1)/(2/u2). Then it is straightforward to verify that
A —yD)/u2 < A= (y1+€))/u1. Now, if & € [(A — y1)/u2, (A — (y1+ €))/n1], then the monotonicity of(-)
yieldsg(A — u18) > g(y1+¢€) andg(h — u28) < g(y1). It then follows from the inequalitg (y1) < g(y1 + €) that
Pl{g(h — u26) < g(h — u18)} = P{E e [(M — y1) /2, (A — (y1 +€))/u1]} > 0, which contradicts the assumption
thatg(r — pn1§) = g(r — u2é) as.

We have shown thaf(-) is constant orf—oo, A — 1]; nevertheless this is impossible becausg lim, g(y) =
—o0. The proof is complete. O

Theorem 6.1.In Casel, assume that there arky > f’ (0), uo > 0 such thatg(ho — noé) € LY(F,R) and
Eg(o — po&) = 0. Then for anyi € [ £ (0), Ag], there exists a unique < u(A) < uo such thatg(A — w(A)é) €

L?(F,R) and Eg(A — u(1)&) = 0. Moreover,u(r) =0 for & € [f/(0), f1(0)] =3 (0), and w(-) is continuous
and strictly increasing or[nfjr (0), Aol.

Proof. For any fixedx € (f/.(0), Ao), defineg; (1) := Eg(h — u&) for u € [0, wo). It follows from Lemma 6.2
that for anyu € (0, up), the family of random variablelg (A — u€): n € [0, 1]} are uniformly integrable. Hence
by the dominated convergence theorgng-) is continuous on0, o). On the other hangg (A — n€) is decreas-
ing whenu 1 wo, and whenug > > wo/2, gh — né) < g(h — Eno/2) € L1(F, R). Hence, the monotonic
convergence theorem yields

lim Eg(A —u&§)=E lim g — ué§) = Eg(h — uoé).
ntio utio

Note that the above equality may take the value-ob. If Eg(A — no&) > —o0, then the strict monotonicity of
leads toEg (A — uo&) < Eg(ro — nof) = 0. Thus it always holds that lim ., g1 () < 0. Butg, (0) = Eg(A) >
Eg(f’ (0)) =0; so it follows from the facts that, (-) is strictly decreasing (Lemma 6.3) and continuoug@n.o)
that there exists a unique(i) € [0, o) with g, (L (1)) = Eg(A — n(1)€) = 0. Moreover, Lemma 6.2 ensures that
g —u)é) € L1(F,R).

To prove the second part of the theorem, first noticexbat f; (0). Indeed, ifitis not true, thehg € 3f (0) and
henceg(1o) = 0. However, appealing to Lemma 6.3 we hag(lo — wo€) > g(Ao) = 0 which is a contradiction.
Now, whenever € [/ (0), f1(0)] = 3f(0), we haveEg(d) = g(1) = 0; thus the uniqueness @f(1) yields
n(2) = 0. Next, considetio > A1 > A2 > f(0). Sincepn(r) > 0 wheneverr > £/ (0), and Eg(A — ué) <
Eg(r1 — &) wheneveru > 0, we haveg,,(n(r1)) = Eg(h2 — n(21)§) < Eg(h1 — n(r1)§) = 0= g, (1(12)).
Sinceg;, (+) strictly decreasing, we conclugdgi1) > 1(A2), proving thatu(-) is strictly increasing oif; (0), Ao].

Next we show by contradiction the right continuity@t-) on[ /7 (0), A0). Assume that there exisise [0, Ao),
ande > 0 such that for any’ > A, w(1) > u(1) + €. Without loss of generality, suppoggi) + € < u(ig). Then

0=lim Eg(2 — n(2)%) < lim Eg(' — (u(®) +€)5).

On the other hand, it follows from Lemma 6.2 that the family of random variafgés — (u (1) + €)&): A/ €
[A, A1]}, for any fixedrs € (A, Lg), is uniformly integrable. Therefore we have

im Eg (1 = () +€)8) = Eg (1 — (1) +€)8) < Eg (1 — (%) =0,

leading to a contradiction.
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It finally remains to prove the left continuity @f(-) on (£} (0), Ao]. Assume that there exisise (f/.(0), Ao]
ande > 0 such that for ang’ < A, u(1) < u(1) — e. Without loss of generality, suppoggi) — e > 0. Then

o—nm Eg( — nE) = ii/rT]lEg(y_(M()\)_e)s).

Obviously,g(/\’ — (u(r) — €)&) is increasing when' 4 A, and whem\” > /2, g\ — (u(L) — €)€) > g(A/2 —
(u(A) —e)&) € L1(F, R) by virtue of Lemma 6.2. Hence by the monotonic convergence theorem,

im Eg(M — (n() —€)&) = Eg(h — (1(M) — €)§) > Eg(r — n(M)§) =
Again, this is a contradiction. O

Define
A:={re[fL(0),k]: there existg. = u(1) so thatg(h — u(1)€) € LY(F,R),

Eg(h —n(0)g) =0, &g(r — n()§) € LYF, R},
A 1= SupA,
reA
g0 = E[gg(h —nE)], re[fL(0),1).
Notice thatA + ¢, sincedf (0) € A. As a resultf| (0) < A < k. Also, by virtue of Lemma 6.2 and Theorem 6.1,
[f2(0), ) € A.

(30)

Theorem 6.2.In Casel, g(A) =0for A € [f (0), f1(0)] = df(0), andg(-) is continuous and strictly decreasing
on[f}(0), ). Moreover, if. € A andx < k, theng(-) is also left continuous a.

Proof. Theorem 6.1 provides that(A) = 0 for any A € 3/ (0); henceg(1) = E[£g())] = 0. Furthermore, for
A >A1> A2 > f1(0) (if X € A, theniy may take the value of), it follows from Theorem 6.1 that(r1) >
u(r2) = 0. Denotefp := (A1 — A2)/((A1) — (r2)) > 0. If & > &o, theniy — n(r1)€ < A2 — u(r2)é resulting
in g(A1 — u(A1)§) — g(h2 — u(12)§) < 0. Similarly, if & < &o, theng(A1 — u(r1)§) — g(h2 — n(12)§) 2 0. As a
conseguence,
g(h1) —g(r2)

= E{&[g(r1— n(h)E) — g(h2 — n(12)§)]}

= E{&[g(A1 — nODE) — g(h2 — n(A2E) |Lengo} + E{E[g (A — n(M)E) — g(h2 — 1 (12)§) | 1e <, }

<&E{[g(r1— n(nE) — g(ha — n(A2)E)|Lezeo} + E0E{[g (A1 — n(ADE) — g(h2 — n(A2)E) ] Le g, }

=&E[g(M — n(r1)§) — g(ka — nG2)§)] =0.

Moreover, ifg(r1) — g(A2) =0, theng(h1 — u(A1)€) = g(h2 — n(A2)€) a.s. By a reasoning similar to that in the
proof of Lemma 6.3, we can prove that this is impossibleg&pis strictly decreasing ofyf; (0), 1).

Fix 2 € [f1(0),1). There isig € A with A < Ao. By Lemma 6.2, the family&g(A" — u(A)€): A" € [0, (A +
A0)/2]} is uniformly integrable. Thus by the continuity af-), we have

lim gy = im E[gg( = n)8)] = E[ im £g(x' = u698)] = E[gg (- n(0g) ] = 20,

This proves the continuity gf(-) on [fJr (0), 2.
Finally, in the case wheh € A andX < k, one has

g < m g0 = m E[gg(2 —nNE)] < i'/?nx E[gg(r - n()E)].
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On the other hand, singg-) is increasing, we havg (A — u(A)&)| < |g(A)|+|g (A — n(1)E)|. Thus the dominated
convergence theorem yields

lim E[g(% — n()€)€] = E[g(x — n()E)E] = ().

VS

Therefore g(-) is left continuous at. O
The following result gives the complete solution to problem (24) for Case 1.

Theorem 6.3.Consider Casd.

(i) If & ¢ A, then(24) admits an optimal solution if and onlyjb € (y, 0], wherey =lim, .; 2(1). If € A, then
(24) admits an optimal solution if and only§ € {g(1)} U (y, 0]. If in addition » < k, theng(x) = y.
(i) Whenyp =0, Y* := 0is the unique optimal solution {@4). B
(i) Whenyg < 0 and the existence of optimal solution is assurBdl,.= g(A» — u(1)&) is the unique optimal
solution to(24), wherea is the unique solution t@(1) = yo.

Proof. (i) The “if” part follows immediately from Theorem 6.2. To prove the “only if” part, suppose that (24)
admits an optimal solutioi’*, then there exists a paik, u) satisfying condition (28). I < f’ (0), thenu =0

(for otherwiseEg (A — &) < Eg()) < g(f(0)) =0). Hence it follows from (28) thakEY* = 0 andY* € G (1),
as.orA e df(¥Y*),as. IfP(Y*=0) <1, thenP(Y* > 0) >0, P(Y* <0) > 0. Thereforer € [ J,.o3f (x)]1N
[U,<0df (x)], which is impossible by Proposition A.2 and the fact tifais strictly convex at 0. Thu® (Y* =

0) =1 and, consequentlyp = E[§Y*] = 0. On the other hand, if > f’ (0), then the conclusion follows from
Theorem 6.2.

(i) If yo =0, it follows from Jensen’s inequality that, for any feasible solufioof (24), Ef (Y) > f(EY) =
f(0)= Ef(0). HenceY™* := 0 is an optimal solution. To prove th&t* is the only solution, let’ be any feasible
solution of (24) withP (Y # 0) > 0. Sincef is strictly convex at 0, there exists an affine functigit) = ax + b
so thatf(0) = g(0) and f(x) > g(x) VYx # 0. ThereforeP(f(Y) > g(¥)) > 0, resulting inEf(Y) > Eg(Y) =
g(EY)=g(0)= f(0) = Ef(0). This shows that is not optimal.

(iii) This is evident from Theorem 6.2. 0

Note that the “if” part of Theorem 6.3(i) does not require the strict convexity af 0. However, this assumption
cannot be dropped for the “only if” part; see the following example.

Example 6.1.Take f(x) = (x? — 1)1, _1, which isnot strictly convex at 0. It is easy to see that g 0f (x) =
(—00,0]. Pick a € R such thatP(¢ > a) > 3 > P(§ <a) > 0, and takey* := %1@ — Le<,. Then,
EY* =0, andyg := E[§Y*] = P(§ <a)[E(|§ > a) — E(£]§ <a)] > 0. On the other hand;* > —1 a.s., hence

Ef(Y*) =0. This shows that problem (24) does admit an optimal solutioeven thoughy = yg > 0.

_ We have now completed the study on Case 1. As for Case 2, it can be turned into Case 1 by considering
f(x) = f(—x). Hence we only state the result.
Set

ki=_lim_ fl(x) eR, (31)
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and define
A:={xrek, f,(0)]: there existge = u(1) so thatg(r — n(1)€) € LY(F,R),

Eg(h—pn)§) =0, £g(r — () e LYF. R},

A:=inf A,
reA

g =E[Eg(A —nE)]. re(d fLO].

(32)

Theorem 6.4.Consider Case.

(i) If A ¢ A, then(24) admits an optimal solution if and onlyyb € [0, y), wherey =lim, , g(A). If L € A, then
(24) admits an optimal solution if and only§ € {g(1)} U [0, ¥). If in addition A > k, theng (1) = .
(i) Whenyg =0, Y* := 0is the unique optimal solution {@4).
(i) Whenyg > 0 and the existence of optimal solution is assurBdl,.= g(A» — u(1)&) is the unique optimal
solution to(24), wherea is the unique solution tg@ (1) = yo.

Let us now turn to Case 3. It can be dealt with similarly combining the analyses for the previous two cases.
Define

A= {1 €R: there existg. = (1) so thatg (A — n(1)§) € LY(F,R),

Eg(h—p)E) =0, &g(r — n(h)§) € LNF, R},

J:=sSupir, A:=inf A,
Ae/Fl) T hea (33)

g =E[Eg(A —n(E)], re@.h),
y:=limg®), y:=IlimgQ).
AMA = M

Theorem 6.5.Consider Cas@&. Problem(24) admits an optimal solution if and onlyyb € A U B, where

.ol ifrea, _[10,7], if reA,
T @.0n ifaga, [0,y), if L¢A.

Moreover, whenyg = 0, Y* := 0 is the unique optimal solution t(24), and whenyg = 0 and the existence of
optimal solution is assured* := g(A — u(1)€) is the unique optimal solution t(24), where i is the unique
solution tog (1) = yo.

The final case, Case 4, only has a trivial solution, as shown in the following theorem.

Theorem 6.6.Consider Casé. Problem(24) admits an optimal solution if and only jf = O, in which case the
unigue optimal solution i* = 0.

Proof. Suppose thar* is optimal to (24). Then there exists, 1) so thath, — ué € f(Y*), a.s. It follows from
the uniform boundedness &f (x) thatu = 0. Employing the same argument as in the proof of Theorem 6.3(i) we
conclude that* =0, a.s. O

Once the static optimization problem (24) is completely solved, as before we can then immediately obtain the
solution for the continuous-time portfolio selection problem (3) by applying Theorem 2.1. We omit the detailed
statement of the results here; instead we give several examples to demonstrate the results.
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Example 6.2.Let f(x) = o:x_{ + Bx2 with «, 8 > 0. This corresponds to the weighted mean—variance model that
has been studied in Section8is strictly convex| J,..g 3f (x) =R, andg(y) = %er - %y_. Foranyx > 0, itis
straightforward to see that the equatibp(A — up) = 0 has a unique solution(A) = /¢ where¢ > 0 uniquely
solves (11). Hencg = +oo, and

_ Elp =pu)p)+]  Elp(r —pn@R)p)-]
N 20 28

As a result, lim_ ;1 g(A) = —oo (recall thatg(1) < g(0) = 0). Similarly, we can prove that = —oco and

lim;— —s0 §(1) = +00. We can then apply Theorem 6.5 to conclude that the weighted mean—variance model ad-
mits a unique optimal solution for anye R. Finally, the optimal portfolio obtained in Section 3 can be easily
recovered. (It should be noted, however, the result in Section 3 cannot be superseded as Assumption 5.2 is nof
imposed there.)

&)

=22(1).

Example 6.3.Let f(x) = x2. This is the mean—semivariance model investigated in Section 4. Clgaslgonvex,
strictly convex at 0, and J, . 3f (x) = (—o0, O]. The inverse functiorg (y) = %y, y < 0. It is easily seen that

A={0}andx =0¢€ A. Now, g(1) = E[pg(> — up)1 = 3(Ep — ’ij—f)x. Thusy = lim;40g(1) =0. It then follows
from Theorem 6.3 that the mean—semivariance model admits an optimal solution if andzosalydf Ep. (Again,
this does not recover Theorem 4.1 completely due to Assumption 5.2.)

Example 6.4.Let f(x) = |x|. The corresponding portfolio selection problem is called the mean—absolute-deviation
model. Single-period mean—absolute-deviation model is studied in [12]. Mois, strictly convex at 0, and

U, er 8f (x) =[—1,1]. Thus in view of Theorem 6.6 the continuous-time mean—absolute-deviation model admits
an optimal solution if and only if = xo/ Ep, in which case the optimal portfolio is simply the risk-free one.

Example 6.5.Let f(x) = e™*. This function captures the situation where lager deviation of the terminal wealth
from its mean is heavily penalized. Agaif,is strictly convex| J, .g 3f (x) = (—o0, 0) (hencek = 0), andg(y) =
—In(—y), y < 0. Now, the equatiog(0 — up) = 0 has a solution = 1.(0) = e £I"» > 0. Moreover,

16(s)?

T T
g(O—u(O),O) =/[r(s)+ }ds—i—/@(s)dW(s)—}—ElnpeLZ(]-', R).
0 0

It follows then from Theorem 6.1 that = [—1, 0] and, consequently, = 0 = k. Furthermoreg(0) = E[g(0 —

w0 p)pl=(Ep)(EInp)— E(plnp). Onthe other hand, whenl <A 1 0,g(A —u(X)p) = —In(—A+ () p) >
—IN(1 + 1(0)p) = —p(0)p, andg(r — u(A)p) = —In(=A + n(A)p) < —In(k*)p) < —IN(u(=1/2)) — Inp.
Thus the dominated convergence theorem ensureg thatm; 10 g(1) = g(0). By Theorem 6.3, the mean—risk
portfolio selection problem admits an optimal solution if and onlygf— zEp € [(Ep)(EInp) — E(plnp), 0]

or, equivalentlyz € [g—%, 2—(Ep)(E '25)+E("'“”)]. Finally, when the problem does admit an optimal solution, the
optimal portfolio is the one replicating the claim- In(—A + wp) where(i, w) is the unique solution pair to the
following algebraic equation (which must admit a solution):

EIn(—x + pup) =0,
{ E[,o In(—x + /L,O)] =zEp — xo.

Example 6.6.Let f(x) = (x — 1)2. The corresponding portfolio selection model is a variant of the mean—
semivariance model, except that the terminal wealth being less than its mean plus 1 is now considered as risk.
In this case,f is not strictly convex everywhere; but it is indeed strictly convex at 0. It is easy to see that

U er 8f (x) = (=00, 0] (hencek = 0), andg(y) = y/2 + 1, y < 0. Meanwhile the equatiog(0 — up) =0

has a solutionw = 1 (0) = 2/Ep > 0. By virtue of Theorem 6.14 = [—2, 0] and, consequently, = 0 = k. Note
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thatg (0 — (0)p) = g(0— up) = Ep — Ep?/Ep, andy =lim;;0g(%) = g(0). By Theorem 6.3 the original port-
folio selection problem admits an optimal solution if and onlydf— zEp € [Ep — Ep2/Ep, 0] or, equivalently,

2
ZE€ [l’;—%, g—‘/’) + (22)2 — 1]. At last, when the problem does admit an optimal solution, the optimal portfolio is the

one replicating the claim + 1 + A’T“p where(x, u) is the unique solution pair to the followinmear algebraic
equation:

A—uEp=-2,
AEp — pEp? =2xg —2(1+2) Ep.

Compared with Example 6.3 it is interesting to see that a shift of the mean makes the mean—-semivariance model,
which does not admit an optimal solution in any nontrivial case, possess nontrivial optimal solution.

7. Conclusion

In this paper we have first solved a weighted mean—variance portfolio selection model in a complete continuous-
time financial market. In spired by its result, we have proved that, other than a trivial case, the mean—semivariance
problem in the same market is not well-posed in the sense that it does not have any optimal solution. This negative
result has then been extended to a general mean—downside-risk mode. Furthermore, for the model with a genera
convex risk measure, delicate analysis has been carried out to obtain a complete solution. The results in this papel
suggest that there are strikingly difference between the single-period and continuous-time markets.

There have been many researches on hedging and/or optimization problems; see [3,4,10,7,11] just to name ¢
few. However, the constraintx(7T) = z is absent from these work (probably a sample-wise constraint such as
0 < x(T) <Y is present instead). We should emphasize that the constai(if) = z is dictated by the very
framework we are working within, i.e., a framework a la Markowitz, except that we went beyond Markowitz’s
original measure of risk — the variance — and considered risk measures determined by very general functions (as
mentioned in introduction this mean-risk model has received little attention in the dynamic setting until very
recently). On the other hand, it is this constraint that made our models different from those in the aforementioned
papers as well as those utility based models, both in terms of economic interpretations and the mathematical
techniques required to tackle them.

While the continuous-time portfolio selection models with the security price processes governed by diffusion
processes are considered in this paper, our results readily extend to any semimartingale models, including the
discrete-time case, as long as the completeness of the underlying market is assumed and some other technical a
sumptions are modified accordingly. On the other hand, the incomplete market case will be fundamentally different
and more difficult to solve. In this case not every terminal contingent claim is replicable by admissible portfolios.

In a recent paper [8], the mean—variance problem in an incomplete market is solved by explicitly characterizing the
attainable terminal wealth set and solving the static optimization problem with the attainable setdalitianal
constraint. The general mean—risk problem in an incomplete market, however, is yet to be explored.
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Appendix. Some properties of convex functions on R

In this appendix we present some properties of a convex fungtidR — R, which are useful in the main
context. Let such a convex functighbe fixed, andf (x) be its subdifferential at € R.
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Proposition A.1.For any intervalA C R, |, .4 3f (x) is a convex sefand hence is an interval

xeA

Proof. Supposey; € 3f (x1), y2 € af (x2) wherex1, x2 € A with x1 < x2 andy; < y». It suffices to show that for
any yo € (y1, y2), there isxg € [x1, x2] such thatyg € 3f (xg).

It follows from the convexity that; € argmin.cg{f (x) — y1x} andxz € argmin.cg{ f (x) — y2x}. On the other
hand, the continuity off ensures that there exists € [x1, x2] S0 thatf (xg) — yoxo = MiNge[xy.xo1{ f (X) — yox}.
However, for any < x1,

S&x) = yox = f(x) —y1x + (y1 — yo)x = f(x1) — y1x1 + (y1 — yo)x
= f(x1) —yox1+ (y1 — yo)(x —x1) = f(x1) — yox1
= f(x0) — yoxo.

Similarly we can prove thaf (x) — yox > f (xg) — yoxo for anyx > xp. Thereforexg € argmin.cg{f (x) — yox},
which implies thatyg € 0f (xp). O

Proposition A.2.If f is strictly convex akg, then

(U)o

Proof. If the conclusion is not true, then there afie< xo < x2 so thatf” (x2) < f1 (x1). Hencef’ (x2) = f (x1)
due to the nondecreasing property of the subdifferentigl.dlowever, the convexity of yields

frx) < f(x0) < f(x0) < £ (x2).

Thus, all the above inequalities become equalities which, in turn, implieg'tlgatot strictly convex atg. O

U 8f(x)> =4. (34)

X>Xx0

Define a set-valued functio@ : |, g 3f (x) — 2R
G(y):={xeR yedf}, Vyel]Jofx).
xeR

If f is strictly convex, therG(y) is a singleton for each. In general, we have
Proposition A.3.Foranyy € |J,.gr 3f (x), G(y) is a closed interval irR.

Proof. First we prove thatG (y) is an interval. For any1 € G(y), x2 € G(y) with x1 < x2, and anyx € (x1, x2),
we havef’ (x) < f/ (x2) <y < fi(x1) < fi (x). This impliesy € 3f (x), orx € G(y).

To show the closedness 6f(y), takex, € G(y) with x, — x € R. Sincey € df (x,,), we havef (x') — f(x,) >
y(x' —x,) ¥Vx' € R. This yields f (x") — f(x) > y(x’ — x) Vx’ € R, implying thaty € 3f (x) orx € G(y). O

Now, define the functiog :( J,.g f(x) = R as

g(y):=argminjx|, Vye | Jaf).

xeG(y) reR

Thanks to Proposition A.3; is well defined.

Proposition A.4.The sefly € (J,.g 3f (x): G() is not a singletohis countable.
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Proof. Take anyy; < y2 such thatG(y1) andG(y2) are not singletons. It follows from Proposition A.3 that both
int(G(y1)) and in{G(y2)) are nonempty. Moreover, if@(y1)) N int(G(y2)) = @. Indeed, if it is not true, then
there existz < b such thafa, b] C G(y1) N G(y2), leading tof} (a) > y2 > y1 > f/ (b) which is impossible. This
proves the desired result.o

Denotel" :={y € | J,.r 3f (x): G(y) is a singletoh.

xeR

Proposition A.5. g is increasing orlJ, . 3f (x), and continuous at everye I.

Proof. Foranyys, y2 € U, 8f (x) with y1 < y2, if x1:=g(y1) > g(y2) =: x2, thenys > f" (x1) > f|(x2) > y2
which is a contradiction. Sg(y1) < g(y2).

To prove the continuity at points ifi", fix yo € I" and letxp := g(yo). Sinceg is an increasing function,
x:=1imy,y,8() > g(yo) = xo. If X > xg, then for anye > 0 andy > yg, one hasg(y) > X — €. Hencey >

fL(g(y) = fi(x —€), which implies
y0>f_;_(x1—€) Ve > 0. (35)
Now, for anyx € (xg, X) andy € daf (x), we have

yo < fi(x0) <y < fL(x) <o

where the last inequality is due to (35). The above argument Iea@s(ggcoj) af (x) = {yo}; SOG(y0) 2 (xp, X)
is not a singleton, which contradicts the fact thgk I". This proves the right continuity gf. Similarly, one can
show the left continuity of. 0O

Corollary A.1. If f is strictly convex, theg is increasing and continuous 4, .g 3 (x).

Proof. In view of Proposition A.5, it suffices to prov€ = | J,.g 3f (x) or, equivalently,G(y) is a singleton for

anyy € J,cr af (x).
Supposegfx1, x2] C G(y), theny < f1(x1) < f/ (x2) < y. Hence f{ (x1) = f’ (x2) = y which implies that
af (x) ={y} for all x € (x1, x2). Thereforef (-) is not strictly convex orix1, x2). O

References

[1] T.R. Bielecki, S.R. Pliska, H. Jin, X.Y. Zhou, Continuous-time mean—variance portfolio selection with bankruptcy prohibition, Math.
Finance, in press.
[2] X. Cai, K.L. Teo, X. Yang, X.Y. Zhou, Portfolio optimization under a minimax rule, Manag. Sci. 46 (2000) 957-972.
[3] J. Cvitant, I. Karatzas, On dynamic measures of risk, Finance Stochast. 3 (1999) 451-482.
[4] N. El Karoui, S. Peng, M.C. Quenez, Backward stochastic differential equations in finance, Math. Finance 7 (1997) 1-71.
[5] R.J. Elliott, P.E. Kopp, Mathematics of Financial Markets, Springer-Verlag, New York, 1999.
[6] P.C. Fishburn, Mean-risk analysis with risk associated with below-target returns, Amer. Econ. Rev. 67 (1977) 116-126.
[7] H. Folimer, P. Leukert, Quantile hedging, Finance Stochast. 3 (1999) 251-273.
[8] H. Jin, X.Y. Zhou, Continuous-time Markowitz's problems in an incomplete market, with constrained portfolios, Working paper, 2004.
[9] P. Jorion, Vale at Risk: The New Benchmark for Managing Financial Risk, McGraw-Hill, New York, 2001.
[10] I. Karatzas, S.E. Shreve, Methods of Mathematical Finance, Springer-Verlag, New York, 1998.
[11] M. Kulldorff, Optimal control of a favorable game with a time-limit, SIAM J. Contr. Optim. 31 (1993) 52-69.
[12] H. Konno, H. Yamazaki, Mean—absolute deviation portfolio optimization model and its application to Tokyo stock market, Manag. Sci. 37
(1991) 519-531.
[13] X. Li, X.Y. Zhou, A.E.B. Lim, Dynamic mean-variance portfolio selection with no-shorting constraints, SIAM J. Contr. Optim. 40 (2001)
1540-1555.
[14] A.E.B. Lim, X.Y. Zhou, Mean—variance portfolio selection with random parameters in a complete market, Math. Oper. Res. 27 (2002)
101-120.



580 H. Jin etal./ Ann. I. H. Poincaré — PR 41 (2005) 559-580

[15] J. Ma, P. Protter, J. Yong, Solving forward—backward stochastic differential equations explicitly — a four step scheme, Prob. Theory Related
Fields 98 (1994) 339-359.

[16] J. Ma, J. Yong, Forward—Backward Stochastic Differential Equations and Their Applications, Lect. Notes in Math., vol. 1702, Springer-

Verlag, New York, 1999.

H. Markowitz, Portfolio selection, J. Finance 7 (1952) 77-91.

H. Markowitz, Portfolio Selection: Efficient Diversification of Investments, Wiley, New York, 1959.

D. Nawrocki, A brief history of downside risk measures, J. Investing 8 (1999) 9-25.

S.R. Pliska, A discrete time stochastic decision model, in: W.H. Fleming, L.G. Gorostiza (Eds.), Advances in Filtering and Optimal

Stochastic Control, in: Lecture Notes in Control and Information Sci., vol. 42, Springer-Verlag, New York, 1982, pp. 290-304.

[21] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.

[22] F.A. Sortino, R. van der Meer, Downside risk, J. Portfolio Manag. 17 (1991) 27-31.

[23] M.C. Steinbach, Markowitz revisited: mean—variance models in financial portfolio analysis, SIAM Rev. 43 (2001) 31-85.

[24] J. Yong, X.Y. Zhou, Stochastic Controls: Hamiltonian Systems and HIB Equations, Springer, New York, 1999.

[25] X.Y. Zhou, Markowitz’s world in continuous-time, and beyond, in: D.D. Yao, et al. (Eds.), Stochastic Modeling and Optimization, Springer,
New York, 2003, pp. 279-310.

[26] X.Y. Zhou, D. Li, Continuous time mean-variance portfolio selection: a stochastic LQ framework, Appl. Math. Optim. 42 (2000) 19-33.

[17
[18
[19
[20



