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Abstract

This paper is concerned with continuous-time portfolio selection models in a complete market where the object
minimize the risk subject to a prescribed expected payoff at the terminal time. The risk is measured by the expecta
certain function of the deviation of the terminal payoff from its mean. First of all, a model where the risk has different w
on the upside and downside variance is solved explicitly. The limit of this weighted mean–variance problem, as the w
the upside variance goes to zero, is the mean–semivariance model which is shown to admitno optimal solution. This negativ
result is further generalized to a mean–downside-risk portfolio selection problem where the risk has nonzero value o
the terminal payoff is lower than its mean. Finally, a general model is investigated where the risk function is convex. S
and necessary conditions for the existence of optimal portfolios are given. Moreover, optimal portfolios are obtained w
do exist. The solution is based on completely solving certain static, constrained optimization problems of random vari
 2005 Elsevier SAS. All rights reserved.

Résumé

Sélection de portefeuille de moyen-risque en temps continu.Ce papier est consacré à la sélection de portefeuilles à te
continu dans un marché complet. L’objectif est de minimiser le risque associé à un flux (“payoff”) versé au temps term
risque est mesuré par l’espérance d’une certaine fonction de l’écart du flux terminal à sa moyenne. Tout d’abord, u
où le risque est pondéré différemment sur et sous la moyenne est résolu explicitement. La limite de ce problème en
variance lorsque les poids tendent vers 0 est un modèle moyenne-semi-variance dont il est montré qu’il n’admet pas d
optimal. Ce résultat négatif est généralisé à un modèle de sélection de portefeuille où le risque n’existe que lorsq
terminal est sous sa moyenne. Finalement un modèle général est étudié dans lequel la fonction de risque est co
conditions nécesaires et suffisantes pour l’existence d’un portefeuille optimal sont données. En outre, les portefeuilles
sont explicités lorsqu’ils existent. La solution est fondée sur la résolution complète de certains problèmes d’optimisation
sous contraintes mettant en jeu des variables aléatoires.
 2005 Elsevier SAS. All rights reserved.

* Corresponding author.
E-mail addresses:hqjin@se.cuhk.edu.hk (H. Jin), jayan@amt.ac.cn (J.-A. Yan), xyzhou@se.cuhk.edu.hk (X.Y. Zhou).

1 Supported by the Ministry of Science and Technology, the 973 project on Mathematics, and the Knowledge Innovation Progra
Chinese Academy of Sciences.

2 Supported by the RGC Earmarked Grants CUHK4157/00E and CUHK4234/01E. Tel.: +852 2609 8320; fax: +852 2603 5505.
0246-0203/$ – see front matter 2005 Elsevier SAS. All rights reserved.
doi:10.1016/j.anihpb.2004.09.009



560 H. Jin et al. / Ann. I. H. Poincaré – PR 41 (2005) 559–580

efore, a
single-

sk. This
r, there
f the M–V
ownside
ures were
counted
ed that
le-period
absolute

various

nning”
,1] the
in most
ith risk
risk has
ile the
e model
d setting,

model.
e return
rovides

on of a
olution
ists.
to two

her is to
roblem is
that we
roblem

market
lection
e mean–
o the study
ufficient
MSC:91B28; 91B30; 60H10

Keywords:Mean–downside-risk; Mean–semivariance; Portfolio selection; Weighted mean–variance

1. Introduction

Risk is a central issue in financial investment, yet it is a subjective notion as opposed to return. Ther
fundamental problem is how risk should be measured. In the early 1950s, Markowitz [17] proposed the
period mean–variance (M–V) portfolio selection model, where he used the variance to measure the ri
seminal work has been widely recognized to have laid the foundation of modern portfolio theory. Howeve
has also been substantial amount of objection to the measurement of risk by variance. The main aspects o
theory under criticism include the penalty on the upside return, and the equal weight on the upside and d
whereas the asset return distribution is generally asymmetric. Consequently, some alternative risk meas
proposed, notably the so-called downside risk, where only the return below its mean or a target level is
as risk [6,22,19]. One of the downside risk measures is the semivariance. In [18] Markowitz himself agre
“semivariance seems more plausible than variance as a measure of risk”. On the other hand, in a sing
financial market, other risk measures have also been proposed and studied, including VaR [9], mean–
deviation [12], and minimax measure [2]. For a recent survey on the Markowitz model and models with
risk measures, refer to [23].

The M–V approach “has received comparably little attention in the context of long-term investment pla
[23, p. 32], especially in continuous time setting, until very recently. In a series of papers [26,14,13,25
continuous-time Markowitz models have been investigated thoroughly with closed-form solutions obtained
cases. In this paper, we will study continuous-time portfolio selection models, in a complete market, w
measures different from the variance. We will start with a weighted mean–variance problem where the
different weights on upside and downside returns. Explicit solution will be obtained for this model. Wh
weighted mean–variance model is important in its own right, it also converges to the mean–semivarianc
when the weight on the upside variance goes to zero. Surprisingly and in sharp contrast to the single-perio
based on this convergence approach we will show that the mean–semivariance model hasno optimal solution,
although asymptotically optimal solution can be obtained from the solution to the weighted mean–variance
This “negative” result motivates us to study a general mean–downside-risk model where only the downsid
is penalized, not necessarily in the fashion of variance. It turns out that this general downside-risk model p
no optimal solution either, under a very mild condition.

Finally, we will study a “most general” mean–risk model, where the risk is measured by the expectati
convex function of the deviation of the terminal payoff from its mean. For this model, we give a complete s
in terms of characterization of the existence of optimal portfolio and presentation of the solution when it ex

The basic approach to solving the dynamic mean–risk portfolio selection is to reduce the problem in
subproblems: one is to solve a constrained static optimization problem on the terminal wealth, and the ot
replicate the optimal terminal wealth. This approach is rather standard; see [20,7,11,1]. The second subp
straightforward to solve in view of the completeness of the market. The main contribution of this paper is
solve the first subproblem thoroughly for very general functions that define the underlying risk. This subp
is sufficiently interesting in its own right, from the viewpoints of both probability and optimization.

The rest of this paper is organized as follows. In Section 2, we specify the continuous-time financial
under consideration, and introduce the equivalent static optimization problem for a dynamic portfolio se
problem. In Section 3, we investigate the weighted mean–variance problem, and in Section 4, we treat th
semivariance model based on the results in Section 3 and a convergence approach. Section 5 is devoted t
on the mean–downside-risk problem. In Section 6, we turn to the general mean–risk model, and find the s
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and necessary conditions for the problem to admit optimal solutions. Several examples are presented to
the general results obtained. Finally, the paper is closed in Section 7 with some concluding remarks.

2. Problem formulation

In this paperT is a fixed terminal time and (Ω,F ,P , {Ft }t�0) a fixed filtered complete probability spa
on which is defined a standardFt -adaptedm-dimensional Brownian motionW(t) = (W1(t), . . . ,Wm(t))′ with
W(0) = 0. It is assumed thatFt = σ {W(s): s � t}. Forq � 1, we denote byLq

F (0, T ;Rd) the set of allRd -valued,

Ft -adapted measurable stochastic processesf (·) = {f (t): 0 � t � T } such thatE
∫ T

0 |f (t)|q dt < +∞, and by
Lq(FT ,Rd) the set of allRd -valued,FT -measurable random variablesX such thatE|X|q < +∞. Throughout
this paper, a.s. signifies that the corresponding statement holds true with probability 1 (with respect toP ).

Suppose there is a market in whichm + 1 assets (or securities) are traded continuously. One of the assets
bank account whose price processS0(t) is subject to the following (stochastic) ordinary differential equation:

dS0(t) = r(t)S0(t)dt, t ∈ [0, T ]; S0(0) = s0 > 0,

where the interest rater(t) is a uniformly bounded,Ft -adapted, scalar-valued stochastic process. Note that
mally one would assume thatr(t) � 0; yet this assumption is not necessary in our subsequent analysis. The om

assets are stocks whose price processesSi(t), i = 1, . . . ,m, satisfy the following stochastic differential equati
(SDE):

dSi(t) = Si(t)

[
bi(t)dt +

m∑
j=1

σij (t)dWj(t)

]
, t ∈ [0, T ]; Si(0) = si > 0,

where bi(t) and σij (t), the appreciation and dispersion (or volatility) rates, respectively, are scalar-v
Ft -adapted, uniformly bounded stochastic processes.

Define the volatility matrixσ(t) := (σij (t))m×m. A basic assumption throughout this paper is that the covari
matrix

σ(t)σ (t)′ � δIm, ∀t ∈ [0, T ], a.s.,

for someδ > 0, whereIm is them × m identity matrix. This assumption ensures that the market is complete.
Consider an agent whose total wealth at timet � 0 is denoted byx(t). Assume that the trading of shares tak

place continuously in a self-financing fashion (i.e., there is no consumption or income) and there are no tra
costs. Thenx(·) satisfies (see e.g. Karatzas and Shreve [10] and Elliott and Kopp [5])

dx(t) =
{

r(t)x(t) +
m∑

i=1

[
bi(t) − r(t)

]
πi(t)

}
dt +

m∑
j=1

m∑
i=1

σij (t)πi(t)dWj(t), x(0) = x0 � 0,

whereπi(t), i = 0,1,2, . . . ,m, denotes the total market value of the agent’s wealth in theith asset. We callπ(·) ≡
(π1(·), . . . , πm(·))′ theportfolio of the agent.

SetB(t) := (b1(t) − r(t), . . . , bm(t) − r(t)), and define therisk premium processθ(t) ≡ (θ1(t), . . . , θm(t)) :=
B(t)(σ (t)′)−1 and the pricing kernel

ρ(t) := exp

{
−

t∫
0

[
r(s) + 1

2

∣∣θ(s)
∣∣2]ds −

t∫
0

θ(s)dW(s)

}
. (1)

With this notation, wealth equation becomes

dx(t) = [
r(t)x(t) + B(t)π(t)

]
dt + π(t)′σ(t)dW(t), x(0) = x . (2)
0
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Before we formulate our continuous-time portfolio selection model, we specify the “allowable” investment p
with

Definition 2.1.A portfolio π(·) is said to beadmissibleif π(·) ∈ L2
F (0, T ;Rm).

The various portfolio selection models we are going to consider in this paper are all special cases of the fo
general problem

Minimize Ef
(
x(T ) − Ex(T )

)
,

subject to




π(·) ∈ L2
F (0, T ;Rm),(

x(·),π(·)) satisfes Eq. (2) with initial wealthx0,

Ex(T ) = z,

(3)

wherex0, z ∈ R and the functionf : R → R are given. In words, problem (3) is to minimize the risk, measure
certain function of the deviation of the terminal wealth from its mean, via continuous trading, subject to an
budget constraint (specified byx0) and a target expected terminal payoff (specified byz). The trade-off between
return and risk is realized by achieving the minimum possible risk after one specifies the target return. A me
efficient frontier will then be traced out asz varies over certain range. The Markowitz mean–variance problem
special case of (3) withf (x) = x2.

Applying [4, p. 22, Proposition 2.2] to Eq. (2) we have

x(t) = ρ(t)−1E
(
ρ(T )x(T )|Ft

)
, ∀t ∈ [0, T ], a.s. (4)

In particular,

x0 = E
[
ρ(T )x(T )

]
.

Hence, as in [1] the portfolio selection problem (3) can be decomposed into a static optimization problem
wealth replication problem. The static optimization problem is

Minimize Ef (X − z),

subject to EX = z, E
[
ρ(T )X

] = x0, X ∈ L2(FT ,R).
(5)

SupposeX∗ is an optimal solution to (5), then the replication problem is to find a portfolio such that its ter
wealth hitsX∗; in other words, the problem is to find(x(·),π(·)) that solves the following equation

dx(t) = [
r(t)x(t)dt + B(t)π(t)

]
dt + π(t)′σ(t)dW(t), x(T ) = X∗. (6)

Theorem 2.1.If (x∗(·),π∗(·)) is optimal for problem(3), thenx∗(T ) is optimal for problem(5) and(x∗(·),π∗(·))
satisfies(6). Conversely, ifX∗ is optimal for problem(5), then(6) must have a solution(x∗(·),π∗(·)) which is an
optimal solution for(3).

Proof. The proof is the same as that of [1, Theorem 2.1].�
Remark 2.1.The replication problem (6) is essentially a backward stochastic differential equation (BSDE)
to [15,16,24] for various approaches in solving BSDEs. Indeed, the unique solution(x∗(·),π∗(t)) of (6) is given
by

π∗(t) = (
σ(t)′

)−1
y∗(t), (7)

whereas(x∗(·), y∗(·)) is the unique solution to the BSDE

dx(t) = [
r(t)x(t) + θ(t)y(t)

]
dt + y(t)′ dW(t), x(T ) = X∗. (8)



H. Jin et al. / Ann. I. H. Poincaré – PR 41 (2005) 559–580 563

is paper

hich puts
e study
may be

al

n prob-

ge mul-

exity

llowing
Thus, according to Theorem 2.1 the key is to solve the static optimization problem (5). The remainder of th
will be mainly devoted to solving problem (5) for various situations.

3. The weighted mean–variance model

The classical mean–variance portfolio selection problem uses the variance as the measure for risk, w
the same weight on the downside and upside (in relation to the mean) of the return. In this section, w
the “weighted” mean–variance portfolio selection model where the weights on the downside and upside
different. Specifically, for givenα > 0, β > 0, z ∈ R, x0 ∈ R, we consider problem (3) withf (x) = αx2+ + βx2−,
wherex+ � 0 andx− � 0 denote the positive and negative parts ofx respectively. It reduces to the classic
mean–variance model whenα = β.

As discussed at the end of Section 2, to solve the above problem it suffices to solve a static optimizatio
lem (5) in terms ofX. DefineY := X − z, then (5) specializes to

Minimize E(αY 2+ + βY 2−),

subject to EY = 0, E[ρY ] = y0, Y ∈ L2(FT ,R),
(9)

whereρ := ρ(T ) andy0 := x0 − zEρ.
Since the above is a static convex optimization problem with a nonnegative infimum, using the Lagran

tiplier approach (see [1, Proposition 4.1]), we conclude thatY ∗ is an optimal solution of (9) if and only ifY ∗ is a
feasible solution of (9) and there exists a pair(λ,µ) such thatY ∗ is an optimal solution of the following problem

min
Y∈L2(FT ,R)

E
[
αY 2+ + βY 2− − 2(λ − µρ)Y

]
. (10)

Lemma 3.1.Problem(10)admits a unique optimal solutionY ∗ = (λ−µρ)+
α

− (λ−µρ)−
β

.

Proof. For anyY ∈ L2(FT ,R), we have, sample-wisely,

αY 2+ + βY 2− − 2(λ − µρ)Y = α

(
Y 2+ − 2

λ − µρ

α
Y+

)
+ β

(
Y 2− + 2

λ − µρ

β
Y−

)

= α

(
Y+ − λ − µρ

α

)2

− (λ − µρ)2

α
+ β

(
Y− + λ − µρ

β

)2

− (λ − µρ)2

β

� − (λ − µρ)2+
α

− (λ − µρ)2−
β

= α(Y ∗+)2 + β(Y ∗−)2 − 2(λ − µρ)Y ∗.
This shows thatY ∗ is an optimal solution. The uniqueness of the optimal solution follows from the strict conv
of the problem (10). �
Proposition 3.1.For any y0, there exists a unique pair(λ,µ) such that the optimal solutionY ∗ in Lemma3.1
satisfiesEY ∗ = 0, E[ρY ∗] = y0. Moreover,λ < 0, µ < 0 if y0 > 0, λ > 0, µ > 0 if y0 < 0, and λ = µ = 0 if
y0 = 0.

Proof. If y0 = 0, then we simply takeλ = µ = 0 (in which caseY ∗ = 0).
If y0 < 0, then it is easy to see, using the mean–value theorem of a continuous function, that the fo

equation admits a unique solutionζ > 0:

E(ζ − ρ) /α = E(ζ − ρ) /β. (11)
+ −
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nd part,
Set

a := E
[
ρ(ζ − ρ)+

]
/α − E

[
ρ(ζ − ρ)−

]
/β. (12)

Note

E
[
ρ(ζ − ρ)+

]
/α = E

[
ρ(ζ − ρ)+1ρ<ζ

]
/α < ζE(ζ − ρ)+/α

= ζE(ζ − ρ)−/β < E
[
ρ(ζ − ρ)−1ρ>ζ

]
/β = E

[
ρ(ζ − ρ)−

]
/β.

Hencea < 0. Takeµ := y0/a > 0, λ := ζµ > 0. Then it is straightforward that (λ,µ) is the desired pair.
Finally, if y0 > 0, then letξ > 0 be the unique solution of equation

E(ξ − ρ)−/α = E(ξ − ρ)+/β, (13)

and set

b := E
[
ρ(ξ − ρ)−

]
/α − E

[
ρ(ξ − ρ)+

]
/β. (14)

An argument similar to above yieldsb > 0. Takeµ := −y0/b < 0, λ := ξµ < 0. Then (λ,µ) is the desired pair.
For the uniqueness, it is not difficult to prove by discussing for the casesµ < 0 andµ > 0 respectively. �

Theorem 3.1.The unique optimal solution for problem(9) is

Y ∗ = (λ − µρ)+
α

− (λ − µρ)−
β

where(λ,µ) is the unique solution of the system of equations:


E(λ − µρ)+
α

− E(λ − µρ)−
β

= 0,

E[ρ(λ − µρ)+]
α

− E[ρ(λ − µρ)−]
β

= y0.

(15)

Moreover, for the casey0 < 0, y0 = 0, andy0 > 0 the minimum valueE[α(Y ∗+)2 + β(Y ∗−)2] of the problem(9) is
equal to−y2

0/a,0, y2
0/b, respectively, wherea is given by(12)andb is given by(14).

Proof. The first part of the theorem is immediate from Lemma 3.1 and Proposition 3.1. To prove the seco
note that the case wheny0 = 0 is trivial; so we considery0 �= 0. One has

− 1

β
E(λ − µρ)2− = 1

β
E

[
(λ − µρ)−(λ − µρ)

] = λ
E(λ − µρ)−

β
− µ

E[ρ(λ − µρ)−]
β

= λ
E(λ − µρ)+

α
− µ

{
E[ρ(λ − µρ)+]

α
− y0

}
= 1

α
E

[
(λ − µρ)+(λ − µρ)

] + µy0

= 1

α
E(λ − µρ)2+ + µy0,

where we have utilized Eqs. (15). Consequently,

E
[
α(Y ∗)2+ + β(Y ∗)2−

] = 1

α
E(λ − µρ)2+ + 1

β
E(λ − µρ)2− = −µy0.

By the proof of Proposition 3.1, we obtain immediately the desired result.�



H. Jin et al. / Ann. I. H. Poincaré – PR 41 (2005) 559–580 565

.1, the
im

tfolio
volves

ed. This

e,

ng

f

.1
Translating back to the weighted mean–variance portfolio selection problem (3), in view of Theorem 2
unique optimal portfolio corresponding toz > 0 is the replicating portfolio for the terminal contingent cla
x∗(T ) = (λ−µρ)+

α
− (λ−µρ)−

β
+ z. Details are left to the reader. We note that ifz = x0

Eρ
, thenλ = µ = 0 imply-

ing thatx∗(T ) = z a.s. under the optimal portfolio. Hence in this case the optimal portfolio is a risk-free por
or a zero-coupon bound. As a by-product, we have proved that a risk-free portfolio is available (which in
exposure to the stocks) even though the interest rate is random.

4. The mean–semivariance model

In this section we consider the mean–semivariance problem, where only the downside return is penaliz
is a case of (3) withf (x) = x2−.

As before we denoteρ := ρ(T ) whereρ(·) is defined by (1). Define

ρ0 := inf
{
η ∈ R: P(ρ < η) > 0

}
, ρ1 := sup

{
η ∈ R: P(ρ > η) > 0

}
. (16)

Lemma 4.1.Letζ(α), α ∈ (0,1), be the solution to(11)with β = 1−α, thenlimα↓0 ζ(α) = ρ0. Similarly, letξ(α),
α ∈ (0,1), be the solution to(13)with β = 1− α, thenlimα↓0 ξ(α) = ρ1.

Proof. Definef (ζ ) := E(ζ−ρ)+
E(ζ−ρ)− , ζ ∈ (ρ0, ρ1). Then Eq. (11) is equivalent tof (ζ ) = α

1−α
. Obviously,f (ζ ) is a

strictly positive and strictly increasing function onζ ∈ (ρ0, ρ1); henceζ(α) is strictly increasing onα ∈ (0,1), and
in this interval,ρ0 < ζ(α) < ρ1.

Denote limα↓0 ζ(α) = ζ0, thenζ0 � ρ0. If ζ0 > ρ0, then takeζ ∈ (ρ0, ζ0). Sinceζ < ζ0 = limα↓0 ζ(α), we have
E(ζ−ρ)+
E(ζ−ρ)− = 0, implyingE(ζ − ρ)+ = 0. However,ζ > ρ0, soP(ρ < ζ) > 0 leading to a contradiction. Therefor
ζ0 = ρ0.

Similarly, we can prove the other part of the lemma in terms ofξ(α). �
We are now in a position to prove the followingnegativeresult.

Theorem 4.1.The mean–semivariance problem(3) with f (x) = x2− does not admit any optimal solution so lo
asz �= x0

Eρ
.

Proof. In view of Theorem 2.1, it suffices to prove that the static optimization problem

Minimize E(Y 2−),

subject to EY = 0, E[ρY ] = y0 ≡ x0 − zEρ, Y ∈ L2(FT ,R)
(17)

has no optimal solution. Consider problem (9) withβ = 1 − α andα ∈ (0,1). It has been proved in the proof o
Proposition 3.1 that there exists a pair(λ(α),µ(α)) such that

Y(α) = (λ(α) − µ(α)ρ)+
α

− (λ(α) − µ(α)ρ)−
β

satisfiesEY(α) = 0, E[ρY (α)] = y0. This implies that eachY(α) is feasible for problem (17).
Sincez �= x0

Eρ
, we havey0 �= 0. First consider the case wheny0 < 0. It was proved in the proof of Proposition 3

that λ(α) > 0, µ(α) > 0. Let ζ(α) = λ(α)/µ(α). Thenζ(α) is the solution to (11) withβ = 1 − α. Lemma 4.1
along with its proof yieldsζ(α) > ρ0, andζ(α) → ρ0 asα ↓ 0. Consequently,

0 � E
[
(ρ − ρ0)

(
ζ(α) − ρ

)
+
]
/α �

(
ζ(α) − ρ0

)
E

(
ζ(α) − ρ

)
+/α

= (
ζ(α) − ρ

)
E

(
ζ(α) − ρ

)
/(1− α) �

(
ζ(α) − ρ

)
Eρ/(1− α) → 0, asα ↓ 0,
0 − 0
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E
[
(ρ − ρ0)

(
ζ(α) − ρ

)
−
]
/(1− α) → E(ρ − ρ0)

2, asα ↓ 0.

Let a(α) andb(α) be defined by (12) and (14) respectively. Since

µ(α) = y0

a(α)
= y0

E[(ρ − ρ0)(ζ(α) − ρ)+]/α − E[(ρ − ρ0)(ζ(α) − ρ)−]/(1− α)
,

we haveµ(α) → −y0/E(ρ − ρ0)
2, asα ↓ 0. Therefore,

E
[
Y(α)2−

] = µ(α)2E(ζ(α) − ρ)2−
(1− α)2

→ y2
0/E(ρ − ρ0)

2, asα ↓ 0. (18)

On the other hand, for any feasible solutionY of problem (17), Cauchy–Schwartz’s inequality yields{E[(ρ −
ρ0)Y−]}2 � E[Y−]2E[(ρ − ρ0)

21Y<0]. Note thatE[(ρ − ρ0)
21Y<0] �= 0, for otherwiseP(Y � 0) = 1 which to-

gether withEY = 0 would implyP(Y = 0) = 1 and hencey0 = 0. As a result,

E[Y−]2 � {E[(ρ − ρ0)Y−]}2

E[(ρ − ρ0)21Y<0] = {E[(ρ − ρ0)Y+] − y0}2

E[(ρ − ρ0)21Y<0] >
y2

0

E(ρ − ρ0)2
, (19)

where the laststrict inequality is due to the facts thaty0 < 0 andEY = 0. Comparing (18) and (19) we conclud
that there is no optimal solution for (17) in this case.

For the casey0 > 0, we have proved thatλ(α) < 0, µ(α) < 0 andξ(α) := λ(α)/µ(α) > 0, whereξ(α) is the
solution to (13) withβ = 1− α. According to Lemma 4.1,ξ(α) → ρ1 asα ↓ 0. First assume thatρ1 < +∞. Then
an argument completely analogous to the above yields

E
[
Y(α)2−

] → y2
0/E(ρ1 − ρ)2, asα ↓ 0, (20)

whereasE[Y−]2 > y2
0/E(ρ1 − ρ)2 for any feasible solutionY of problem (17). Thus there is no optimal soluti

for (17).
On the other hand, note that

b(α) � ξ(α)E
(
ξ(α) − ρ

)
−/α − E

[
ρ
(
ξ(α) − ρ

)
+
]
/(1− α)

= ξ(α)E
(
ξ(α) − ρ

)
+/(1− α) − E

[
ρ
(
ξ(α) − ρ

)
+
]
/(1− α)

= E
(
ξ(α) − ρ

)2
+/(1− α). (21)

Consequently, recalling thatµ(α) = −y0/b(α) we have

E
[
Y(α)2−

] = µ(α)2E(ξ(α) − ρ)2+
(1− α)2

� µ(α)2

1− α
b(α) = y2

0

(1− α)b(α)
. (22)

Thus, ifξ(α) → ρ1 = +∞ asα ↓ 0, thenE[Y(α)2−] → 0 asα ↓ 0. On the other hand, for any feasible solutionY ,
if EY 2− = 0, thenY = 0 implyingy0 = 0. This, once again, proves that (17) has no optimal solution.�

Remark that ifz = x0
Eρ

, then there is a risk-free portfolio under which the terminal wealth is exactlyz. This
portfolio is therefore an optimal portfolio for (17). Also, although the mean–semivariance problem in gener
not admit optimal solutions, the infimum of the problem has been obtained explicitly in the proof of Theore

Specifically, the infimum is
y2

0
E(ρ−ρ0)

2 , if y0 < 0, and is
y2

0
E(ρ1−ρ)2 if y0 > 0. Moreover, asymptotically optima

portfolios can be obtained by replicatingY(α) asα → 0.
Theorem 4.1 shows that, quite contrary to the single-period case, the mean–semivariance portfolio s

problem in a complete continuous-time financial market does not admit a solution (save for the trivial cas
z = x0

Eρ
). In the next section, we shall extend this “negative” result to a general model that concerns o

downside risk.
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5. The mean–downside-risk model

Some alternative measures for risk have been proposed in lieu of the variance, and one of such measu
downside risk which concerns only the downside deviation of the return from the mean. The semivariance
in the previous section is a typical type of downside risk measure. In this section, we will generalize the
obtained in Section 4 to a general portfolio selection model with downside risk.

Before we formulate the underlying portfolio selection problem, let us investigate an abstract static optim
problem, which is interesting in its own right. Let(Ω,F ,P ) be a probability space. Forq � 1, we denote by
Lq(F ,R) the set of allF -measurable real random variablesX such that|X|q is integrable underP . Let ξ be a
strictly positive real random variable, with the property that

P
{
ξ ∈ (M1,M2)

}
> 0, and P {ξ = M1} = P {ξ = M2} = 0, ∀0� M1 < M2 � +∞. (23)

Consider the following optimization problem, with a giveny0 ∈ R:

Minimize Ef (Y ),

subject to EY = 0, E[ξY ] = y0, Y ∈ Lq(F ,R),
(24)

wheref : R → R is a given function. Throughout this section we impose the following assumption onf :

Assumption 5.1.f � 0, left continuous at 0, strictly decreasing onR−, andf (x) = 0 ∀x ∈ R+.

An example of such a function isf (x) = (x−)p for somep � 0. By virtue of the assumed properties off ,
problem (24) has a finite (nonnegative, in fact) infimum.

Theorem 5.1.Problem(24)admits no optimal solution for anyy0 �= 0.

This theorem will be proved via several intermediate results. DenoteLq(F ,R−) := {X ∈ Lq(F ,R): X � 0}.
For anya � 0, define

h(a) := inf
Z∈Lq(F ,R−), E[ξZ]=a

Ef (Z).

Lemma 5.1.h(a) is decreasing onR−. Moreover, if for a givena1 < 0, there exists
Z ∈ Lq(FT ,R−) such that
E[ξ
Z] = a1, Ef (
Z) = h(a1), thenh(a1) > h(a2) ∀a2 ∈ (a1,0).

Proof. For anya1 < a2 < 0, we have

h(a2) � inf
Z∈Lq(FT ,R−), E[ξZ]=a1

Ef

(
a2

a1
Z

)
� inf

Z∈Lq(FT ,R−), E[ξZ]=a1

Ef (Z) = h(a1).

If there exists a
Z ∈ Lq(FT ,R−) with E[ξ
Z] = a1, Ef (
Z) = h(a1), then

h(a2) � Ef

(
a2

a1


Z
)

< Ef (
Z) = h(a1).

This completes the proof.�
Lemma 5.2.For anyα > 0, δ > 0, and0< β < αδ, there exists a uniformly bounded random variable
Y � 0 such
thatE
Y = α, E[ξ
Y ] = β, and
Y = 0 on the set{ω ∈ Ω: ξ � δ}.

Proof. Takeδ1 < δ2 < δ so thatE(ξ |δ1 � ξ < δ2) = β/α. The property of the distribution ofξ and the fact tha
β/α < δ ensure the existence of suchδ1, δ2. Define 
Y = α

P (δ1�ξ<δ2)
1δ1�ξ<δ2. Then 
Y satisfies all the desire

requirements. �
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Lemma 5.3.For any y0 < 0 and ε > 0, there exists a feasible solutionY for problem(24) such thatEf (Y ) <

h(y0) + ε.

Proof. For anyε > 0, there existsZ ∈ Lq(FT ,R−) such thatE[ξZ] = y0, andh(y0) � Ef (Z) < h(y0)+ ε. Since
a
y0

E[ξZ] = a ∀a < y0, we haveh(a) � Ef ( a
y0

Z). Fix a < y0. Since the distribution ofξ has no atom by the
assumption, there existsδ0(a) > 0 such that

a

y0
E

[
Zξ1ξ�δ0(a)

] = y0.

As a result, one can takeδ1(a) > 0 with δ1(a) < δ0(a) and

−E[(a/y0)Z1ξ�δ1(a)]
y0 − (a/y0)E[Zξ1ξ�δ1(a)] >

1

δ1(a)
.

It is easy to see that lima↑y0 δ0(a) = 0; hence lima↑y0 δ1(a) = 0.
DefineYa = a

y0
Z1ξ�δ1(a) + 
Ya1ξ<δ1(a), where
Ya � 0 is such that
Ya = 0 on the set{ω ∈ Ω: ξ � δ1(a)}, and

E
Ya = −E

[
a

y0
Z1ξ�δ1(a)

]
,

E[ξ
Ya] = y0 − E

[
a

y0
ξZ1ξ�δ1(a)

]
.

The existence of such
Ya is implied by Lemma 5.2. Consequently,EYa = 0, E[ξYa] = y0, meaning thatYa is
feasible for problem (24).

Now

Ef (Ya) = E

[
f

(
a

y0
Z

)
1ξ�δ1(a)

]
+ E

[
f (
Ya)1ξ<δ1(a)

] = E

[
f

(
a

y0
Z

)
1ξ�δ1(a)

]
.

Thus, we have

Ef

(
a

y0
Z

)
� Ef (Ya) � E

[
f (Z)1ξ�δ1(a)

]
which implies lima↑η Ef (Ya) = Ef (Z) < h(y0)+ ε. Thus, we can takea < y0 such thatEf (Ya) < h(y0)+ ε. �
Proposition 5.1.Problem(24)admits no optimal solution for anyy0 < 0.

Proof. In view of Lemma 5.3 it suffices to show thatEf (Y ) > h(y0) for any feasible solutionY of (24). To this
end, first note thatE[ξY+] > 0, for otherwiseY+ = 0 which along withEY = 0 yieldsY = 0 and hencey0 = 0.
Therefore,a := E[−ξY−] < y0, suggestingh(a) � h(y0) by virtue of Lemma 5.1. Ifh(a) = h(y0), then the con-
trapositive of Lemma 5.1 implies thatEf (−Y−) > h(a). Sincef (x) = f (−x−), we haveEf (Y ) = Ef (−Y−) >

h(a) = h(y0). Otherwise, ifh(a) > h(y0), thenEf (Y ) � h(a) > h(y0). �
Now let us turn to the case wheny0 > 0.

Proposition 5.2.Problem(24)admits no optimal solution for anyy0 > 0.

Proof. Sincey0 > 0, any feasible solutionY of problem (24) satisfiesEf (Y ) > 0. Thus we only need to sho
that there exists a sequence{Yn} of feasible solutions for problem (24) with limn→+∞ Ef (Yn) = 0. Indeed, for any
n > 0, defineYn = −an1ξ<n + bn1ξ�n, wherean, bn are defined by

an = y0
, bn = y0

.
[E(ξ |ξ � n) − E(ξ |ξ < n)]P(ξ < n) [E(ξ |ξ � n) − E(ξ |ξ < n)]P(ξ � n)
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Then it is easy to verify thatan > 0, bn > 0, limn→+∞ an = 0, andEYn = 0, E[ξYn] = y0. Thus,{Yn} are feasible
solutions for (24), and

0� Ef (Yn) = E
[
f (−an)1ξ<n

]
� f (−an).

Sincef is left continuous at 0, we conclude limn→+∞ Ef (Yn) = 0. �
Remark 5.1.In the proof of Proposition 5.2, only the following properties off (·) was utilized:f (x) > 0 if x < 0,
f (x) = 0 if x � 0, and limx↑0 f (x) = 0. The strictly decreasing property off (·) was not necessary.

Combining Propositions 5.1 and 5.2 yields the conclusion of Theorem 5.1.
Now we turn to the continuous-time portfolio selection problem (3) wheref satisfies Assumption 5.1. The wa

the functionf is given suggests that only the downside deviation of the terminal wealth from its mean is pen
hence the model constitutes a (very general) mean–downside-risk portfolio selection problem.

Let ρ(·) be the price kernel defined by (1). We impose the following assumption:

Assumption 5.2.For any 0� M1 < M2 � +∞, P {ρ(T ) ∈ (M1,M2)} > 0 andP {ρ(T ) = M1} = P {ρ(T ) =
M2} = 0.

This assumption is satisfied when, say,r(·) andθ(·) are deterministic and
∫ T

0 |θ(t)|2 dt > 0.
The corresponding static optimization problem (5), after taking a transformationY := X − z, is exactly the

problem (24) withq = 2. Hence, by virtue of Theorems 5.1 and 2.1, we conclude the following result.

Theorem 5.2.Under Assumptions5.1and5.2, problem(3) admits no optimal solution for anyz �= x0
Eρ(T )

. On the

other hand, ifz = x0
Eρ(T )

, then(3) has an optimal portfolio which is the risk-free portfolio.

Theorem 5.2 claims that a mean–downside-risk portfolio selection problem does not generally attain an
solution in a complete continuous-time financial market. It is a very general result; however it does not com
cover Theorem 4.1 since the latter does not require Assumption 5.2.

6. The general mean–risk model

We have shown in the last section that in the continuous-time setting, the mean–downside-risk model
achieve optimality in general. In other words, problem (3) does not admit an optimal solution if the funcf

has the property that it vanishes on the nonnegative half real axis. Notice that for this negative result to
functionf is not required to be convex. In this section, we will study model (3) where a generalconvexfunctionf

is used to measure the risk. We will give a complete solution to the problem in terms of telling exactly wh
problem possesses an optimal solution and, when it does, giving the explicit solution.

Let (Ω,F ,P ) be a probability space andξ a strictly positive real random variable on it satisfying (23). Cons
a convex (hence continuous) functionf : R → R, not necessarily differentiable. For anyx ∈ R, its subdifferential
∂f (x) in the sense of convex analysis (see, e.g., [21]), is defined as the set

∂f (x) := {
x∗ ∈ R :f (y) − f (x) � x∗(y − x), ∀y ∈ R

} ≡ [
f ′−(x), f ′+(x)

]
, (25)

wheref ′−(x) andf ′+(x) are the left and right derivatives off at x respectively. The set∂f (x) is a nonempty
bounded set for everyx ∈ R [21, Theorem 23.4]. Moreover, the convexity off implies that the subdifferential i
nondecreasing in the sense that

f ′ (x ) � f ′ (x ), ∀x � x . (26)
+ 1 − 2 1 2
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We call a convex functionf to be strictly convex atx0 ∈ R if

f (x0) < κf (x1) + (1− κ)f (x2)

for anyx1 < x0 < x2 andκ ∈ (0,1) with κx1 + (1− κ)x2 = x0. A convex function is called strictly convex if it i
strictly convex at everyx ∈ R. Some properties of a convex function that are useful in this paper are presen
an appendix.

Throughout this section we assume thatf satisfies

Assumption 6.1.f is convex, and strictly convex at 0.

Note that the strict convexity at 0 is a very mild condition, which is valid in many meaningful cases (s
examples at the end of this section).

In view of Jensen’s inequality, one hasEf (Y ) � f (EY) = f (0) for any feasible solutionY of (24). Hence prob-
lem (24) has a finite infimum if its feasible region is nonempty. Also we see that ify0 = 0, then (24) has (trivially)
an optimal solutionY ∗ = 0 a.s. On the other hand, due to the convexity off , we can apply [1, Proposition 4.1] t
conclude that (24) admits an optimal solutionY ∗ if and only if Y ∗ is feasible for (24) and there exists a pair(λ,µ)

such thatY ∗ solves the following problem

min
Y∈Lq(F ,R)

E
[
f (Y ) − (λ − µξ)Y

]
. (27)

Lemma 6.1.Y ∗ ∈ Lq(F ,R) is an optimal solution to(27) if and only if

f (Y ∗) − (λ − µξ)Y ∗ = min
y∈R

[
f (y) − (λ − µξ)y

]
, a.s.

Proof. The “if” part is obvious. We now prove the “only if” part. SupposeY ∗ ∈ Lq(F ,R) is an optimal solution
to (27). Defineh(y) := f (y) − (λ − µξ)y, y ∈ R, andc := infy∈R h(y). Let Z := ⋃

n∈N{(z1, . . . , zn): zi ∈ Q},
whereQ is the set of rational numbers, andh̄(z) := inf1�i�n h(zi,ω) for z = (z1, . . . , zn) ∈ Z. Sinceh(y) is
continuous iny, we havec = infz∈Z h̄(z). Now, if Y ∗ is not almost surely a minimum point ofh(·), namely,
P {c < h(Y ∗)} > 0, then there existsz = (z1, . . . , zn) ∈ Z such thatP {h̄(z) < h(Y ∗)} > 0. It is easy to see then th
there isy∗ ∈ Q with P {h(y∗) < h(Y ∗)} > 0. PutA := {ω: h(y∗,ω) < h(Y ∗(ω),ω)}, andY ′ := y∗1A + Y ∗1Ac .
ThenY ′ ∈ Lq(F ,R), andEh(Y ′) < Eh(Y ∗), leading to a contradiction.�

Define a set-valued functionG :
⋃

x∈R ∂f (x) → 2R

G(y) := {
x ∈ R: y ∈ ∂f (x)

}
, ∀y ∈

⋃
x∈R

∂f (x),

and defineg :
⋃

x∈R ∂f (x) → R as the “inverse function” of∂f as follows

g(y) := argmin
x∈G(y)

|x|, ∀y ∈
⋃
x∈R

∂f (x).

In appendix we prove thatg is a well-defined function (on its domain), and the set ofy ’s whereG(y) is not a
singleton is countable. In other words, denoting

Γ :=
{
y ∈

⋃
x∈R

∂f (x): G(y) is a singleton

}
,

then the set[⋃x∈R ∂f (x)]\Γ is countable. Moreover,g(·) is increasing on
⋃

x∈R ∂f (x) and continuous at point
in Γ (Proposition A.5).
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The objective of this subsection is to identify the ranges ofy0 where problem (24) admits optimal solution(
and, when it does, to obtain an optimal solution in various situations off . It follows from Lemma 6.1 that prob
lem (24) admits an optimal solution if and only if there exists a pair(λ,µ) satisfying the following condition:

There isY ∗ ∈ Lq(F ,R) with Y ∗ ∈ G(λ − µξ), a.s., EY ∗ = 0, andE[ξY ∗] = y0. (28)

Moreover, when there exists a pair(λ,µ) satisfying the above condition,Y ∗ is one of the optimal solutions for (24
Remark that ifµ �= 0, then, since the set[⋃x∈R ∂f (x)]\Γ is countable and the distribution ofξ has no atom, we
haveP {λ − µξ ∈ Γ } = 1. In this caseG(λ − µξ) is almost surely a singleton; hence problem (24) has a un
optimal solutionY ∗ = g(λ − µξ).

We will solve problem (24) in each of the following four (mutually exclusive) cases:

Case 1: The set
⋃

x∈R ∂f (x) is upper bounded but not lower bounded;
Case 2: The set

⋃
x∈R ∂f (x) is lower bounded but not upper bounded;

Case 3:
⋃

x∈R ∂f (x) = R;
Case 4: The set

⋃
x∈R ∂f (x) is both upper and lower bounded.

Let us first focus on Case 1. In this case, it follows from Proposition A.1 that
⋃

x∈R ∂f (x) is either a closed
interval(−∞, k̄] or an open one(−∞, k̄) where

k̄ := lim
x→+∞f ′+(x) ∈ R. (29)

It is also clear that limy→−∞ g(y) = −∞. Moreover, in this case one only needs to considerµ � 0 in searching
for (λ,µ) satisfying condition (28), for otherwise

⋃
x∈R ∂f (x) would be unbounded from above.

The following technical lemma plays an important role in the subsequent analysis.

Lemma 6.2.In Case1, assume that there areλ0 > f ′−(0), µ0 > 0 such thatg(λ0 − µ0ξ) ∈ Lq(F ,R). Then for
any µ1 ∈ (0,µ0), λ1 ∈ (f ′−(0), λ0), there existsγ ∈ Lq(F ,R+), such that|g(λ − µξ)| � γ for any µ ∈ [0,µ1]
andλ ∈ [f ′−(0), λ1]. If in additionξg(λ0 − µ0ξ) ∈ Lq(F ,R), thenγ satisfiesξγ ∈ Lq(F ,R).

Proof. Sinceg(·) is increasing (Proposition A.5), for anyµ ∈ [0,µ1], λ ∈ [f ′−(0), λ1], we have

g(f ′−(0) − µ1ξ) � g(λ − µξ) � g(λ1).

On the other hand, on the set{ω: ξ(ω) � (λ0 − f ′−(0))/(µ0 − µ1)}, we have

g(f ′−(0) − µ1ξ) � g

(
µ0f

′−(0) − λ0µ1

µ0 − µ1

)
;

and on the set{ω: ξ(ω) > (λ0 − f ′−(0))/(µ0 − µ1)} we have

g
(
f ′−(0) − µ1ξ

)
� g(λ0 − µ0ξ).

Thus, if we put

γ := g(λ1) +
∣∣∣∣g

(
µ0f

′−(0) − λ0µ1

µ0 − µ1

)∣∣∣∣ + ∣∣g(λ0 − µ0ξ)
∣∣,

thenγ meets the requirement.�
Lemma 6.3.In Case1, for any givenλ ∈ (−∞, k̄), g (µ) := Eg(λ − µξ) is strictly decreasing inµ ∈ R+.
λ
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Proof. Sinceg(·) is increasing,gλ(·) is decreasing. Moreover, for anyµ > 0, gλ(µ) < gλ(0). Indeed, ifgλ(µ) =
gλ(0), thenEg(λ − µξ) = Eg(λ) leading tog(λ − µξ) = g(λ). This, in turn, implies thatλ − µξ ∈ ∂f (g(λ))

which contradicts to the boundedness of∂f (g(λ)).
Next, for any 0< µ1 < µ2, if gλ(µ1) = gλ(µ2), theng(λ − µ1ξ) = g(λ − µ2ξ) a.s. We are to show that in th

caseg(·) must be constant on(−∞, λ−1]. In fact, if g(·) is not constant on(−∞, λ−1], then for anyε > 0, there
existsy1 � λ−1 such thatg(y1) < g(y1 + ε). Takeε = (µ2 −µ1)/(2/µ2). Then it is straightforward to verify tha
(λ − y1)/µ2 < (λ − (y1 + ε))/µ1. Now, if ξ ∈ [(λ − y1)/µ2, (λ − (y1 + ε))/µ1], then the monotonicity ofg(·)
yieldsg(λ−µ1ξ) � g(y1 + ε) andg(λ−µ2ξ) � g(y1). It then follows from the inequalityg(y1) < g(y1 + ε) that
P {g(λ − µ2ξ) < g(λ − µ1ξ)} � P {ξ ∈ [(λ − y1)/µ2, (λ − (y1 + ε))/µ1]} > 0, which contradicts the assumptio
thatg(λ − µ1ξ) = g(λ − µ2ξ) a.s.

We have shown thatg(·) is constant on(−∞, λ − 1]; nevertheless this is impossible because limy→−∞ g(y) =
−∞. The proof is complete. �
Theorem 6.1. In Case1, assume that there areλ0 > f ′−(0), µ0 > 0 such thatg(λ0 − µ0ξ) ∈ Lq(F ,R) and
Eg(λ0 − µ0ξ) = 0. Then for anyλ ∈ [f ′−(0), λ0], there exists a unique0 � µ(λ) � µ0 such thatg(λ − µ(λ)ξ) ∈
Lq(F ,R) andEg(λ − µ(λ)ξ) = 0. Moreover,µ(λ) = 0 for λ ∈ [f ′−(0), f ′+(0)] ≡ ∂f (0), andµ(·) is continuous
and strictly increasing on[f ′+(0), λ0].

Proof. For any fixedλ ∈ (f ′−(0), λ0), definegλ(µ) := Eg(λ − µξ) for µ ∈ [0,µ0). It follows from Lemma 6.2
that for anyµ1 ∈ (0,µ0), the family of random variables{g(λ−µξ): µ ∈ [0,µ1]} are uniformly integrable. Henc
by the dominated convergence theoremgλ(·) is continuous on[0,µ0). On the other hand,g(λ − µξ) is decreas-
ing whenµ ↑ µ0, and whenµ0 > µ > µ0/2, g(λ − µξ) � g(λ − ξµ0/2) ∈ Lq(F ,R). Hence, the monotoni
convergence theorem yields

lim
µ↑µ0

Eg(λ − µξ) = E lim
µ↑µ0

g(λ − µξ) = Eg(λ − µ0ξ).

Note that the above equality may take the value of−∞. If Eg(λ − µ0ξ) > −∞, then the strict monotonicity ofg
leads toEg(λ − µ0ξ) < Eg(λ0 − µ0ξ) = 0. Thus it always holds that limµ↑µ0 gλ(µ) < 0. But gλ(0) ≡ Eg(λ) �
Eg(f ′−(0)) = 0; so it follows from the facts thatgλ(·) is strictly decreasing (Lemma 6.3) and continuous on[0,µ0)

that there exists a uniqueµ(λ) ∈ [0,µ0) with gλ(µ(λ)) ≡ Eg(λ − µ(λ)ξ) = 0. Moreover, Lemma 6.2 ensures th
g(λ − µ(λ)ξ) ∈ Lq(F ,R).

To prove the second part of the theorem, first notice thatλ0 > f ′+(0). Indeed, if it is not true, thenλ0 ∈ ∂f (0) and
henceg(λ0) = 0. However, appealing to Lemma 6.3 we haveEg(λ0 − µ0ξ) > g(λ0) = 0 which is a contradiction
Now, wheneverλ ∈ [f ′−(0), f ′+(0)] ≡ ∂f (0), we haveEg(λ) = g(λ) = 0; thus the uniqueness ofµ(λ) yields
µ(λ) = 0. Next, considerλ0 � λ1 > λ2 � f ′+(0). Sinceµ(λ) > 0 wheneverλ > f ′+(0), and Eg(λ2 − µξ) <

Eg(λ1 − µξ) wheneverµ > 0, we havegλ2(µ(λ1)) = Eg(λ2 − µ(λ1)ξ) < Eg(λ1 − µ(λ1)ξ) ≡ 0 ≡ gλ2(µ(λ2)).
Sincegλ2(·) strictly decreasing, we concludeµ(λ1) > µ(λ2), proving thatµ(·) is strictly increasing on[f ′+(0), λ0].

Next we show by contradiction the right continuity ofµ(·) on [f ′+(0), λ0). Assume that there existsλ ∈ [0, λ0),
andε > 0 such that for anyλ′ > λ, µ(λ′) > µ(λ) + ε. Without loss of generality, supposeµ(λ) + ε < µ(λ0). Then

0= lim
λ′↓λ

Eg
(
λ′ − µ(λ′)ξ

)
� lim

λ′↓λ
Eg

(
λ′ − (

µ(λ) + ε
)
ξ
)
.

On the other hand, it follows from Lemma 6.2 that the family of random variables{g(λ′ − (µ(λ) + ε)ξ): λ′ ∈
[λ,λ1]}, for any fixedλ1 ∈ (λ,λ0), is uniformly integrable. Therefore we have

lim
λ′↓λ

Eg
(
λ′ − (

µ(λ) + ε
)
ξ
) = Eg

(
λ − (

µ(λ) + ε
)
ξ
)
< Eg

(
λ − µ(λ)ξ

) = 0,

leading to a contradiction.
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It finally remains to prove the left continuity ofµ(·) on (f ′+(0), λ0]. Assume that there existsλ ∈ (f ′+(0), λ0]
andε > 0 such that for anyλ′ < λ, µ(λ′) < µ(λ) − ε. Without loss of generality, supposeµ(λ) − ε > 0. Then

0= lim
λ′↑λ

Eg
(
λ′ − µ(λ′)ξ

)
� lim

λ′↑λ
Eg

(
λ′ − (

µ(λ) − ε
)
ξ
)
.

Obviously,g(λ′ − (µ(λ) − ε)ξ) is increasing whenλ′ ↑ λ, and whenλ′ > λ/2, g(λ′ − (µ(λ) − ε)ξ) � g(λ/2 −
(µ(λ) − ε)ξ) ∈ Lq(F ,R) by virtue of Lemma 6.2. Hence by the monotonic convergence theorem,

lim
λ′↑λ

Eg
(
λ′ − (

µ(λ) − ε
)
ξ
) = Eg

(
λ − (

µ(λ) − ε
)
ξ
)
> Eg

(
λ − µ(λ)ξ

) = 0.

Again, this is a contradiction. �
Define




Λ := {
λ ∈ [f ′−(0), k̄]: there existsµ = µ(λ) so thatg

(
λ − µ(λ)ξ

) ∈ Lq(F ,R),

Eg
(
λ − µ(λ)ξ

) = 0, ξg
(
λ − µ(λ)ξ

) ∈ L1(F ,R)
}
,

λ̄ := sup
λ∈ 
Λ

λ,

g̃(λ) := E
[
ξg

(
λ − µ(λ)ξ

)]
, λ ∈ [

f ′−(0), λ̄
)
.

(30)

Notice that
Λ �= ∅, since∂f (0) ⊆ 
Λ. As a resultf ′+(0) � λ̄ � k̄. Also, by virtue of Lemma 6.2 and Theorem 6
[f ′−(0), λ̄) ⊆ 
Λ.

Theorem 6.2.In Case1, g̃(λ) = 0 for λ ∈ [f ′−(0), f ′+(0)] ≡ ∂f (0), andg̃(·) is continuous and strictly decreasin
on [f ′+(0), λ̄). Moreover, ifλ̄ ∈ 
Λ and λ̄ < k̄, theng̃(·) is also left continuous at̄λ.

Proof. Theorem 6.1 provides thatµ(λ) = 0 for any λ ∈ ∂f (0); henceg̃(λ) = E[ξg(λ)] = 0. Furthermore, for
λ̄ > λ1 > λ2 � f ′+(0) (if λ̄ ∈ 
Λ, thenλ1 may take the value of̄λ), it follows from Theorem 6.1 thatµ(λ1) >

µ(λ2) � 0. Denoteξ0 := (λ1 − λ2)/(µ(λ1) − µ(λ2)) > 0. If ξ � ξ0, thenλ1 − µ(λ1)ξ � λ2 − µ(λ2)ξ resulting
in g(λ1 − µ(λ1)ξ) − g(λ2 − µ(λ2)ξ) � 0. Similarly, if ξ < ξ0, theng(λ1 − µ(λ1)ξ) − g(λ2 − µ(λ2)ξ) � 0. As a
consequence,

g̃(λ1) − g̃(λ2)

= E
{
ξ
[
g
(
λ1 − µ(λ1)ξ

) − g
(
λ2 − µ(λ2)ξ

)]}
= E

{
ξ
[
g
(
λ1 − µ(λ1)ξ

) − g
(
λ2 − µ(λ2)ξ

)]
1ξ�ξ0

} + E
{
ξ
[
g
(
λ1 − µ(λ1)ξ

) − g
(
λ2 − µ(λ2)ξ

)]
1ξ<ξ0

}
� ξ0E

{[
g
(
λ1 − µ(λ1)ξ

) − g
(
λ2 − µ(λ2)ξ

)]
1ξ�ξ0

} + ξ0E
{[

g
(
λ1 − µ(λ1)ξ

) − g
(
λ2 − µ(λ2)ξ

)]
1ξ<ξ0

}
= ξ0E

[
g
(
λ1 − µ(λ1)ξ

) − g
(
λ2 − µ(λ2)ξ

)] = 0.

Moreover, ifg̃(λ1) − g̃(λ2) = 0, theng(λ1 − µ(λ1)ξ) = g(λ2 − µ(λ2)ξ) a.s. By a reasoning similar to that in th
proof of Lemma 6.3, we can prove that this is impossible. Sog̃(·) is strictly decreasing on[f ′+(0), λ̄).

Fix λ ∈ [f ′+(0), λ̄). There isλ0 ∈ 
Λ with λ < λ0. By Lemma 6.2, the family{ξg(λ′ − µ(λ′)ξ): λ′ ∈ [0, (λ +
λ0)/2]} is uniformly integrable. Thus by the continuity ofµ(·), we have

lim
λ′→λ

g̃(λ′) = lim
λ′→λ

E
[
ξg

(
λ′ − µ(λ′)ξ

)] = E
[

lim
λ′→λ

ξg
(
λ′ − µ(λ′)ξ

)] = E
[
ξg

(
λ − µ(λ)ξ

)] = g̃(λ).

This proves the continuity of̃g(·) on [f ′+(0), λ̄).
Finally, in the case when̄λ ∈ 
Λ andλ̄ < k̄, one has

g̃(λ̄) � lim g̃(λ′) = lim E
[
ξg

(
λ′ − µ(λ′)ξ

)]
� lim E

[
ξg

(
λ̄ − µ(λ′)ξ

)]
.

λ′↑λ̄ λ′↑λ̄ λ′↑λ̄
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On the other hand, sinceg(·) is increasing, we have|g(λ̄−µ(λ′)ξ)| � |g(λ̄)|+|g(λ̄−µ(λ̄)ξ)|. Thus the dominated
convergence theorem yields

lim
λ′↑λ̄

E
[
g
(
λ̄ − µ(λ′)ξ

)
ξ
] = E

[
g
(
λ̄ − µ(λ̄)ξ

)
ξ
] = g̃(λ̄).

Therefore,g̃(·) is left continuous at̄λ. �
The following result gives the complete solution to problem (24) for Case 1.

Theorem 6.3.Consider Case1.

(i) If λ̄ /∈ 
Λ, then(24)admits an optimal solution if and only ify0 ∈ (y,0], wherey = limλ↑λ̄ g̃(λ). If λ̄ ∈ 
Λ, then

(24)admits an optimal solution if and only ify0 ∈ {g̃(λ̄)} ∪ (y,0]. If in addition λ̄ < k̄, theng̃(λ̄) = y.
(ii) Wheny0 = 0, Y ∗ := 0 is the unique optimal solution to(24).

(iii) Wheny0 < 0 and the existence of optimal solution is assured,Y ∗ := g(λ − µ(λ)ξ) is the unique optima
solution to(24), whereλ is the unique solution tõg(λ) = y0.

Proof. (i) The “if” part follows immediately from Theorem 6.2. To prove the “only if” part, suppose that
admits an optimal solutionY ∗, then there exists a pair(λ,µ) satisfying condition (28). Ifλ < f ′−(0), thenµ = 0
(for otherwiseEg(λ − µξ) < Eg(λ) � g(f ′−(0)) = 0). Hence it follows from (28) thatEY ∗ = 0 andY ∗ ∈ G(λ),
a.s. orλ ∈ ∂f (Y ∗), a.s. IfP(Y ∗ = 0) < 1, thenP(Y ∗ > 0) > 0, P(Y ∗ < 0) > 0. Thereforeλ ∈ [⋃x>0 ∂f (x)] ∩
[⋃x<0 ∂f (x)], which is impossible by Proposition A.2 and the fact thatf is strictly convex at 0. ThusP(Y ∗ =
0) = 1 and, consequently,y0 = E[ξY ∗] = 0. On the other hand, ifλ � f ′−(0), then the conclusion follows from
Theorem 6.2.

(ii) If y0 = 0, it follows from Jensen’s inequality that, for any feasible solutionY of (24), Ef (Y ) � f (EY) =
f (0) ≡ Ef (0). HenceY ∗ := 0 is an optimal solution. To prove thatY ∗ is the only solution, letY be any feasible
solution of (24) withP(Y �= 0) > 0. Sincef is strictly convex at 0, there exists an affine functiong(x) = ax + b

so thatf (0) = g(0) andf (x) > g(x) ∀x �= 0. ThereforeP(f (Y ) > g(Y )) > 0, resulting inEf (Y ) > Eg(Y ) =
g(EY) = g(0) = f (0) = Ef (0). This shows thatY is not optimal.

(iii) This is evident from Theorem 6.2.�
Note that the “if” part of Theorem 6.3(i) does not require the strict convexity off at 0. However, this assumptio

cannot be dropped for the “only if” part; see the following example.

Example 6.1.Takef (x) = (x2 − 1)1x<−1, which isnot strictly convex at 0. It is easy to see that
⋃

x∈R ∂f (x) =
(−∞,0]. Pick a ∈ R such thatP(ξ > a) > 1

2 > P(ξ � a) > 0, and takeY ∗ := P(ξ�a)
P (ξ>a)

1ξ>a − 1ξ�a . Then,
EY ∗ = 0, andy∗

0 := E[ξY ∗] = P(ξ � a)[E(ξ |ξ > a) − E(ξ |ξ � a)] > 0. On the other hand,Y ∗ � −1 a.s., hence
Ef (Y ∗) = 0. This shows that problem (24) does admit an optimal solutionY ∗ even thoughy0 = y∗

0 > 0.

We have now completed the study on Case 1. As for Case 2, it can be turned into Case 1 by con
f̃ (x) = f (−x). Hence we only state the result.

Set

k := lim f ′ (x) ∈ R, (31)

x→−∞ −
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

Λ := {
λ ∈ [

k,f ′+(0)
]
: there existsµ = µ(λ) so thatg

(
λ − µ(λ)ξ

) ∈ Lq(F ,R),

Eg
(
λ − µ(λ)ξ

) = 0, ξg
(
λ − µ(λ)ξ

) ∈ L1(F ,R)
}
,

λ := inf
λ∈Λ

λ,

g̃(λ) := E
[
ξg

(
λ − µ(λ)ξ

)]
, λ ∈ (

λ,f ′+(0)
]
.

(32)

Theorem 6.4.Consider Case2.

(i) If λ /∈ Λ, then(24)admits an optimal solution if and only ify0 ∈ [0, ȳ), whereȳ = limλ↓λ g̃(λ). If λ ∈ Λ, then
(24)admits an optimal solution if and only ify0 ∈ {g̃(λ)} ∪ [0, ȳ). If in additionλ > k, theng̃(λ̄) = ȳ.

(ii) Wheny0 = 0, Y ∗ := 0 is the unique optimal solution to(24).
(iii) Wheny0 > 0 and the existence of optimal solution is assured,Y ∗ := g(λ − µ(λ)ξ) is the unique optima

solution to(24), whereλ is the unique solution tõg(λ) = y0.

Let us now turn to Case 3. It can be dealt with similarly combining the analyses for the previous two
Define



Λ := {
λ ∈ R: there existsµ = µ(λ) so thatg

(
λ − µ(λ)ξ

) ∈ Lq(F ,R),

Eg
(
λ − µ(λ)ξ

) = 0, ξg
(
λ − µ(λ)ξ

) ∈ L1(F ,R)
}
,

λ̄ := sup
λ∈Λ

λ, λ := inf
λ∈Λ

λ,

g̃(λ) := E
[
ξg

(
λ − µ(λ)ξ

)]
, λ ∈ (λ, λ̄),

ȳ := lim
λ↓λ

g̃(λ), y := lim
λ↑λ̄

g̃(λ).

(33)

Theorem 6.5.Consider Case3. Problem(24)admits an optimal solution if and only ify0 ∈ A ∪ B, where

A =
{

[y,0], if λ̄ ∈ Λ,

(y,0], if λ̄ /∈ Λ,
B =

{ [0, ȳ], if λ ∈ Λ,

[0, ȳ), if λ /∈ Λ.

Moreover, wheny0 = 0, Y ∗ := 0 is the unique optimal solution to(24), and wheny0 �= 0 and the existence o
optimal solution is assured,Y ∗ := g(λ − µ(λ)ξ) is the unique optimal solution to(24), whereλ is the unique
solution tog̃(λ) = y0.

The final case, Case 4, only has a trivial solution, as shown in the following theorem.

Theorem 6.6.Consider Case4. Problem(24) admits an optimal solution if and only ify0 = 0, in which case the
unique optimal solution isY ∗ = 0.

Proof. Suppose thatY ∗ is optimal to (24). Then there exists(λ,µ) so thatλ − µξ ∈ ∂f (Y ∗), a.s. It follows from
the uniform boundedness of∂f (x) thatµ = 0. Employing the same argument as in the proof of Theorem 6.3(
conclude thatY ∗ = 0, a.s. �

Once the static optimization problem (24) is completely solved, as before we can then immediately ob
solution for the continuous-time portfolio selection problem (3) by applying Theorem 2.1. We omit the de
statement of the results here; instead we give several examples to demonstrate the results.
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Example 6.2.Let f (x) = αx2+ + βx2− with α,β > 0. This corresponds to the weighted mean–variance mode
has been studied in Section 3.f is strictly convex,

⋃
x∈R ∂f (x) = R, andg(y) = 1

2α
y+ − 1

2β
y−. For anyλ > 0, it is

straightforward to see that the equationEg(λ − µρ) = 0 has a unique solutionµ(λ) = λ/ζ whereζ > 0 uniquely
solves (11). Hencēλ = +∞, and

g̃(λ) = E[ρ(λ − µ(λ)ρ)+]
2α

− E[ρ(λ − µ(λ)ρ)−]
2β

= λg̃(1).

As a result, limλ→+∞ g̃(λ) = −∞ (recall that g̃(1) < g̃(0) = 0). Similarly, we can prove thatλ = −∞ and
limλ→−∞ g̃(λ) = +∞. We can then apply Theorem 6.5 to conclude that the weighted mean–variance mo
mits a unique optimal solution for anyz ∈ R. Finally, the optimal portfolio obtained in Section 3 can be ea
recovered. (It should be noted, however, the result in Section 3 cannot be superseded as Assumption
imposed there.)

Example 6.3.Let f (x) = x2−. This is the mean–semivariance model investigated in Section 4. Clearly,f is convex,
strictly convex at 0, and

⋃
x∈R ∂f (x) = (−∞,0]. The inverse functiong(y) = 1

2y, y � 0. It is easily seen tha


Λ = {0} andλ̄ = 0∈ 
Λ. Now, g̃(λ) = E[ρg(λ − µρ)] = 1
2(Eρ − Eρ2

Eρ
)λ. Thusy = limλ↑0 g̃(λ) = 0. It then follows

from Theorem 6.3 that the mean–semivariance model admits an optimal solution if and only ifz = x0/Eρ. (Again,
this does not recover Theorem 4.1 completely due to Assumption 5.2.)

Example 6.4.Letf (x) = |x|. The corresponding portfolio selection problem is called the mean–absolute-dev
model. Single-period mean–absolute-deviation model is studied in [12]. Now,f is strictly convex at 0, and⋃

x∈R ∂f (x) = [−1,1]. Thus in view of Theorem 6.6 the continuous-time mean–absolute-deviation model a
an optimal solution if and only ifz = x0/Eρ, in which case the optimal portfolio is simply the risk-free one.

Example 6.5.Let f (x) = e−x . This function captures the situation where lager deviation of the terminal w
from its mean is heavily penalized. Again,f is strictly convex,

⋃
x∈R ∂f (x) = (−∞,0) (hencek̄ = 0), andg(y) =

− ln(−y), y < 0. Now, the equationEg(0− µρ) = 0 has a solutionµ ≡ µ(0) = e−E lnρ > 0. Moreover,

g
(
0− µ(0)ρ

) =
T∫

0

[
r(s) + |θ(s)|2

2

]
ds +

T∫
0

θ(s)dW(s) + E lnρ ∈ L2(F ,R).

It follows then from Theorem 6.1 that
Λ = [−1,0] and, consequently,̄λ = 0 = k̄. Furthermore,̃g(0) = E[g(0 −
µ(0)ρ)ρ] = (Eρ)(E lnρ)−E(ρ lnρ). On the other hand, when−1< λ ↑ 0,g(λ−µ(λ)ρ) = − ln(−λ+µ(λ)ρ) �
− ln(1 + µ(0)ρ) � −µ(0)ρ, andg(λ − µ(λ)ρ) = − ln(−λ + µ(λ)ρ) � − ln(µ(λ)ρ) � − ln(µ(−1/2)) − lnρ.
Thus the dominated convergence theorem ensures thaty ≡ limλ↑0 g̃(λ) = g̃(0). By Theorem 6.3, the mean–ris
portfolio selection problem admits an optimal solution if and only ifx0 − zEρ ∈ [(Eρ)(E lnρ) − E(ρ lnρ),0]
or, equivalently,z ∈ [ x0

Eρ
,

x0−(Eρ)(E lnρ)+E(ρ lnρ)
Eρ

]. Finally, when the problem does admit an optimal solution,
optimal portfolio is the one replicating the claimz − ln(−λ + µρ) where(λ,µ) is the unique solution pair to th
following algebraic equation (which must admit a solution):{

E ln(−λ + µρ) = 0,

E
[
ρ ln(−λ + µρ)

] = zEρ − x0.

Example 6.6. Let f (x) = (x − 1)2−. The corresponding portfolio selection model is a variant of the me
semivariance model, except that the terminal wealth being less than its mean plus 1 is now considered
In this case,f is not strictly convex everywhere; but it is indeed strictly convex at 0. It is easy to see⋃

x∈R ∂f (x) = (−∞,0] (hencek̄ = 0), andg(y) = y/2 + 1, y � 0. Meanwhile the equationEg(0 − µρ) = 0
has a solutionµ ≡ µ(0) = 2/Eρ > 0. By virtue of Theorem 6.1,
Λ = [−2,0] and, consequently,̄λ = 0 = k̄. Note
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thatg(0− µ(0)ρ) = g(0− µρ) = Eρ − Eρ2/Eρ, andy ≡ limλ↑0 g̃(λ) = g̃(0). By Theorem 6.3 the original por

folio selection problem admits an optimal solution if and only ifx0 − zEρ ∈ [Eρ − Eρ2/Eρ,0] or, equivalently,

z ∈ [ x0
Eρ

,
x0
Eρ

+ Eρ2

(Eρ)2 − 1]. At last, when the problem does admit an optimal solution, the optimal portfolio i

one replicating the claimz + 1 + λ−µρ
2 where(λ,µ) is the unique solution pair to the followinglinear algebraic

equation:{
λ − µEρ = −2,

λEρ − µEρ2 = 2x0 − 2(1+ z)Eρ.

Compared with Example 6.3 it is interesting to see that a shift of the mean makes the mean–semivarianc
which does not admit an optimal solution in any nontrivial case, possess nontrivial optimal solution.

7. Conclusion

In this paper we have first solved a weighted mean–variance portfolio selection model in a complete con
time financial market. In spired by its result, we have proved that, other than a trivial case, the mean–semi
problem in the same market is not well-posed in the sense that it does not have any optimal solution. This
result has then been extended to a general mean–downside-risk mode. Furthermore, for the model with
convex risk measure, delicate analysis has been carried out to obtain a complete solution. The results in t
suggest that there are strikingly difference between the single-period and continuous-time markets.

There have been many researches on hedging and/or optimization problems; see [3,4,10,7,11] just t
few. However, the constraintEx(T ) = z is absent from these work (probably a sample-wise constraint su
0 � x(T ) � Y is present instead). We should emphasize that the constraintEx(T ) = z is dictated by the very
framework we are working within, i.e., a framework à la Markowitz, except that we went beyond Marko
original measure of risk – the variance – and considered risk measures determined by very general func
mentioned in introduction this mean–risk model has received little attention in the dynamic setting unt
recently). On the other hand, it is this constraint that made our models different from those in the aforeme
papers as well as those utility based models, both in terms of economic interpretations and the math
techniques required to tackle them.

While the continuous-time portfolio selection models with the security price processes governed by d
processes are considered in this paper, our results readily extend to any semimartingale models, inclu
discrete-time case, as long as the completeness of the underlying market is assumed and some other te
sumptions are modified accordingly. On the other hand, the incomplete market case will be fundamentally
and more difficult to solve. In this case not every terminal contingent claim is replicable by admissible por
In a recent paper [8], the mean–variance problem in an incomplete market is solved by explicitly characteri
attainable terminal wealth set and solving the static optimization problem with the attainable set as anadditional
constraint. The general mean–risk problem in an incomplete market, however, is yet to be explored.
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Appendix. Some properties of convex functions on R

In this appendix we present some properties of a convex functionf : R → R, which are useful in the mai
context. Let such a convex functionf be fixed, and∂f (x) be its subdifferential atx ∈ R.
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Proposition A.1.For any intervalA ⊂ R,
⋃

x∈A ∂f (x) is a convex set(and hence is an interval).

Proof. Supposey1 ∈ ∂f (x1), y2 ∈ ∂f (x2) wherex1, x2 ∈ A with x1 < x2 andy1 < y2. It suffices to show that fo
anyy0 ∈ (y1, y2), there isx0 ∈ [x1, x2] such thaty0 ∈ ∂f (x0).

It follows from the convexity thatx1 ∈ argminx∈R{f (x) − y1x} andx2 ∈ argminx∈R{f (x) − y2x}. On the other
hand, the continuity off ensures that there existsx0 ∈ [x1, x2] so thatf (x0) − y0x0 = minx∈[x1,x2]{f (x) − y0x}.
However, for anyx � x1,

f (x) − y0x = f (x) − y1x + (y1 − y0)x � f (x1) − y1x1 + (y1 − y0)x

= f (x1) − y0x1 + (y1 − y0)(x − x1) � f (x1) − y0x1

� f (x0) − y0x0.

Similarly we can prove thatf (x) − y0x � f (x0) − y0x0 for anyx � x2. Thereforex0 ∈ argminx∈R{f (x) − y0x},
which implies thaty0 ∈ ∂f (x0). �
Proposition A.2. If f is strictly convex atx0, then( ⋃

x<x0

∂f (x)

)
∩

( ⋃
x>x0

∂f (x)

)
= ∅. (34)

Proof. If the conclusion is not true, then there arex1 < x0 < x2 so thatf ′−(x2) � f ′+(x1). Hencef ′−(x2) = f ′+(x1)

due to the nondecreasing property of the subdifferential off . However, the convexity off yields

f ′+(x1) � f ′−(x0) � f ′+(x0) � f ′−(x2).

Thus, all the above inequalities become equalities which, in turn, implies thatf is not strictly convex atx0. �
Define a set-valued functionG :

⋃
x∈R ∂f (x) → 2R

G(y) := {
x ∈ R: y ∈ ∂f (x)

}
, ∀y ∈

⋃
x∈R

∂f (x).

If f is strictly convex, thenG(y) is a singleton for eachy. In general, we have

Proposition A.3.For anyy ∈ ⋃
x∈R ∂f (x), G(y) is a closed interval inR.

Proof. First we prove thatG(y) is an interval. For anyx1 ∈ G(y), x2 ∈ G(y) with x1 � x2, and anyx ∈ (x1, x2),
we havef ′−(x) � f ′−(x2) � y � f ′+(x1) � f ′+(x). This impliesy ∈ ∂f (x), or x ∈ G(y).

To show the closedness ofG(y), takexn ∈ G(y) with xn → x ∈ R. Sincey ∈ ∂f (xn), we havef (x′)−f (xn) �
y(x′ − xn) ∀x′ ∈ R. This yieldsf (x′) − f (x) � y(x′ − x) ∀x′ ∈ R, implying thaty ∈ ∂f (x) or x ∈ G(y). �

Now, define the functiong :
⋃

x∈R ∂f (x) → R as

g(y) := argmin
x∈G(y)

|x|, ∀y ∈
⋃
x∈R

∂f (x).

Thanks to Proposition A.3,g is well defined.

Proposition A.4.The set{y ∈ ⋃
∂f (x): G(y) is not a singleton} is countable.
x∈R
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Proof. Take anyy1 < y2 such thatG(y1) andG(y2) are not singletons. It follows from Proposition A.3 that bo
int(G(y1)) and int(G(y2)) are nonempty. Moreover, int(G(y1)) ∩ int(G(y2)) = ∅. Indeed, if it is not true, then
there exista < b such that[a, b] ⊂ G(y1) ∩ G(y2), leading tof ′+(a) � y2 > y1 � f ′−(b) which is impossible. This
proves the desired result.�

DenoteΓ := {y ∈ ⋃
x∈R ∂f (x): G(y) is a singleton}.

Proposition A.5.g is increasing on
⋃

x∈R ∂f (x), and continuous at everyy ∈ Γ .

Proof. For anyy1, y2 ∈ ⋃
x∈R ∂f (x) with y1 < y2, if x1 := g(y1) > g(y2) =: x2, theny1 � f ′−(x1) � f ′+(x2) � y2

which is a contradiction. Sog(y1) � g(y2).
To prove the continuity at points inΓ , fix y0 ∈ Γ and letx0 := g(y0). Sinceg is an increasing function

x̄ := limy↓y0 g(y) � g(y0) = x0. If x̄ > x0, then for anyε > 0 andy > y0, one hasg(y) > x̄ − ε. Hencey �
f ′−(g(y)) � f ′+(x̄ − ε), which implies

y0 � f ′+(x1 − ε) ∀ε > 0. (35)

Now, for anyx ∈ (x0, x̄) andy ∈ ∂f (x), we have

y0 � f ′+(x0) � y � f ′+(x) � y0

where the last inequality is due to (35). The above argument leads to
⋃

x∈(x0,x̄) ∂f (x) = {y0}; soG(y0) ⊇ (x0, x̄)

is not a singleton, which contradicts the fact thaty0 ∈ Γ . This proves the right continuity ofg. Similarly, one can
show the left continuity ofg. �
Corollary A.1. If f is strictly convex, theng is increasing and continuous on

⋃
x∈R ∂f (x).

Proof. In view of Proposition A.5, it suffices to proveΓ = ⋃
x∈R ∂f (x) or, equivalently,G(y) is a singleton for

anyy ∈ ⋃
x∈R ∂f (x).

Suppose[x1, x2] ⊂ G(y), theny � f ′+(x1) � f ′−(x2) � y. Hencef ′+(x1) = f ′−(x2) = y which implies that
∂f (x) = {y} for all x ∈ (x1, x2). Thereforef (·) is not strictly convex on(x1, x2). �
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