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Abstract

Motivated by classical and quantum stochastic flows, particularly the distinction between inner and outer flows in the
case, we develop analogous notions which live in the Itô Hopf algebra, which is got by replacing the shuffle product in
Hopf algebra by a noncommutative multiplication which abstracts the product rule for iterated quantum stochastic i

Inner flows got by conjugation by ordered double product integrals
→←∏

(1+ dr[h]) are used to quantise Lie bialgebras.
 2005 Elsevier SAS. All rights reserved.

Résumé

Nous sommes motivés par les flots classiques et quantiques, notamment par la distinction entre les flots intérie
flots extérieurs dans le cas quantique. Nous développons les notions analogues dans l’algèbre de Hopf–Itô, qui est
remplaçant le produit dans l’algèbre de battage par un produit non commutatif qui imite la multiplication des intégra
chastiques quantiques itérées. Les flots intérieurs obtenus par conjugaison par les intégrales multiplicatives doubles
→←∏

(1+ dr[h]) sont utilisés pour la quantification des bialgébres de Lie.
 2005 Elsevier SAS. All rights reserved.

MSC:81S25; 17B62

1. Introduction

P.A. Meyer [10] emphasized that an algebraic viewpoint on stochastic flows is necessary to obtain a sat
quantum generalisation. This follows the viewpoint of Accardi, Frigerio and Lewis [1] that a quantum ra
variable is a homomorphism of associative algebras. Thus, for a stochastic flow, instead of a descript
stochastic differential equation which directly describes the evolution of a time dependent random pointX·

t starting
at a generic point of a state space, one considers a suitable algebraA of functions on the state space and descri
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the flow by means of the time dependent family of homomorphismsJt , whereJt (f ) = f (X·
t ), which takeA into a

larger algebraÃ of functions on the Cartesian product of the state space with the underlying probability spaΩ .
Corresponding to the stochastic differential equation forX·

t , one obtains a stochastic differential equation foJ

which, for example in the case of a flow driven by ann-dimensional Brownian motion(B1,B2, . . . ,Bn), takes the
form

dJt =
n∑

j=1

J ◦ β(j) dBj + J ◦ τ dt, J0(f ) = f ⊗ idΩ.

Hereβ(1), β(2), . . . , β(n) andτ are linear maps fromA to itself called structure maps, which, corresponding to
multiplicativity of Jt and the Itô product rules dBj dBk = δj,k dt , must satisfy the socalled structure relations

β(j)(fg) = β(j)(f )g + fβ(j)(g), τ (fg) = τ(f )g + f τ(g) +
n∑

j=1

β(j)(f )β(j)(g).

The quantum generalisation is twofold. First, there is in general no longer any state space so that nA is
a noncommutative algebra, typically the algebraB(H) of all bounded operators on a system Hilbert spaceH.
Secondly theItô algebra, which in the classical situation above is the complex associative algebra spanned
Itô differentials dB(1),dB(2), . . . ,dB(n),dt equipped with the Itô product rules, is replaced by a noncommut
associative algebraL, typically spanned by differentials dΛα

β , α,β = 0,1,2, . . . , n, with the multiplication rule

dΛα
β dΛ

γ
ε = (1 − δα

0 )δα
ε dΛ

γ
β . These correspond to operator-valued processesΛα

β , α,β = 0,1,2, . . . , n, living in

the Fock spaceF over the Hilbert spaceL2(R+;C
n) for which there is a corresponding theory of stocha

integration [5]. The case of flows driven by Brownian motion can be recovered by restriction to the m
commuting, self-adjoint processesBj = Λ

j

0 + Λ0
j and the timet = Λ0

0.
There is a canonicalsplitting of Fock space at each timet ∈ R

+ into the Hilbert space tensor productF =
Ft ⊗F t of the Fock spaces withR+ replaced by the intervals[0, t[ and[t,∞[ respectively, with respect to whic
each operatorΛα

β(t) is the ampliation toF by the identity operator in the future sectorF t of an operator in the pas
sectorFt and similarly each incrementΛα

β(s)−Λα
β(t) with s > t is the ampliation toF of an operator in the futur

sector. Splitting gives a natural notion of adaptedness and allows an interpretation in which all the basic p
Λα

β have independent increments.
In this context a quantum stochastic flow is described by a family(Jt )t∈R+ of C∗- or von Neumann algebr

homomorphisms fromB(H) to B(H⊗F) satisfying

dJ =
n∑

α,β=0

J ◦ λα
β dΛβ

α, J0(x) = x ⊗ 1B(F)

where the structure mapsλα
β :B(H) → B(H) satisfy the structure relations

λα
β(xy) = λα

β(x)y + xλα
β(y) +

n∑
j=1

λα
j (x)λ

j
β(y).

More concisely we may write

dJ = J 1,2j1,3, J0 = idB(H) ⊗ 1B(F),

where the superscripts are place notation indicating in which factors of the triple tensor product spaceB(H⊗F)⊗
L = B(H) ⊗ B(F) ⊗ L the relevant map lives, and thegeneratorj of the flow is the map

∑n
α,β=0 λα

β(·) ⊗ dΛ
β
α

from B(H) to B(H) ⊗L, and satisfies the structure relation

j (xy) = j (x)y + xj (y) + j (x)j (y).
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A flow J is calledinner if its generatorj takes the form

j (x) = ux + xv + uxv

whereu andv are elements ofB(H) ⊗L which are mutually quasiinverse in the sense that

u + v + uv = v + u + vu = 0.

CorrespondinglyJ takes the form

J (x) = U(x ⊗ 1B(F))V

whereU , andV are the mutually inverse operator valued processes solving the stochastic differential equa

dU = U1,2u1,3, U0 = 1B(H) ⊗ 1B(F), dV = v1,3V 1,2, V0 = 1B(H) ⊗ 1B(F). (1)

Note that the concept of an inner flow has no classical counterpart. For comparison with what follows, it is
to introduce the product integral notations

J =
∏

(id + dj), U =
−−→∏

(1+ du), V =
←−−∏

(1+ dv)

for the flowJ generated byj and the operator-valued processes solving (1).
The purpose of this paper can now be explained. We first equip the space of tensorsT (L) over an arbitrary

finite-dimensional associative algebraL with operations which make it a Hopf algebra, called the Itô Hopf alge
which is a noncommutative generalisation of the Hopf algebra based on the shuffle product inT (L) used in [2],
to which it reduces in the case when the multiplication inL is the trivial one for which all products vanis
WhenL is either the quantum or classical algebras of Itô differentials spanned by dB(1),dB(2), . . . ,dB(n),dt or by
dΛα

β , α,β = 0,1,2, . . . , n, the multiplication in the Itô Hopf algebra corresponds to the multiplication formula
iterated stochastic integrals. The coproduct is similarly related to the property of independent increments
cases. It is convenient to introduceright and left differential maps

−→
d and

←−
d in T (L) corresponding to both th

usual forward derivative and its backward counterpart in the stochastic case. Then we can definesimple product
integralsandproduct flows∏(

1+ dL[h]), ∏(
id + dj [h]).

The first of these is an element of the spaceT (L)�h� of formal power series with coefficients inT (L) which
is generated by an elementL[h] of hL�h�. The second is a linear map fromT (L) to T (L)�h� and is generate
by a linear mapj [h] from L to L�h�. Both are defined as solutions of differential equations, but they can al
characterised by algebraic properties. The inverse of

∏
(1+dL[h]) is

∏
(1+dL′[h]) whereL′[h] is the quasiinverse

of L[h] in hL�h�; conjugation by
∏

(1+ drL[h]) is then aninner product flow which is multiplicative.
Of more use for applications to quantisation is the theory ofdouble product integrals

→←∏ (
1+ dr[h]), ←→∏ (

1+ dr ′[h])
which are elements of(T (L) ⊗ T (L))�h� with generatorsr[h] andr ′[h] in h(L ⊗ L)�h�. Unlike simple product
integrals, their definitions incorporate directional senses. From the point of view of stochastic calculus

space, regarded through splitting as a continuous tensor product [11],
→←∏

(1 + dr[h]) may be regarded as
continuous analog, living in the double Fock spaceF ⊗F , of a discrete double product of the form

→←∏
(j,k)∈Nm×Nn

xj ;k =
→∏

j∈Nm

{ ←∏
k∈Nn

xj ;k
}

=
←∏

k∈Nn

{ →∏
j∈Nm

xj ;k
}

in which x is an element of a tensor product algebraA ⊗ A and the place notationxj ;k indicates thatx occupies
the tensor product of thej -th copy ofA within ⊗mA and thek-th copy ofA within ⊗nA so that the two iterate
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products (which are indeed equal [9]) are elements of(⊗mA) ⊗ (⊗nA). However such a Fock space interpretat
is inhibited by severe divergence difficulties when the formal parameterh is replaced by a complex variable [9].

Though once again they can be defined as solutions of stochastic differential equations, forward–b

double product integralsR[h] =
→←∏

(1 + dr[h]) can be characterised algebraically [7] by the socalled qua
angularity relations which form the starting point of Enriquez’s approach to the quantisation problem f
bialgebras [2]. The second stage of his approach is to require thatR[h] satisfy the quantum Yang–Baxter equ
tion and there is a necessary and sufficient condition on the generatorr[h] for this [8]. Using the fact tha
→←∏

(1+ dr[h]) and
←→∏

(1+ dr ′[h]) are mutual inverses ifr[h] andr ′[h] are mutually quasiinverse one may th
construct a deformation coproduct by composing the coproduct inT (L) with conjugation by the invertible eleme
→←∏

(1 + dr[h]) of (T (L) ⊗ T (L))�h�. In this way we obtain a simple and general procedure for quantising
bialgebras of quasitriangular type in which the Lie bracket is got by taking commutators in an associative a

It is natural to regard the map got by conjugation by
→←∏

(1 + dr[h]) as an inner double flow and to seek
more general notion of double flow with the expectation that these will similarly quantise Lie bialgebras of
general type.

We use the following notations.N denotes the set of natural numbers and, forl < m belonging toN, N
l
m and

Nm denote its subsets{l + 1, l + 2, . . . ,m} and{1,2, . . . ,m}.

2. The Itô Hopf algebra

Let L be a not necessarily unital complex associative algebra. We may think ofL as the Itô algebra of differen
tials in a classical or quantum stochastic calculus.

Let T (L) = ⊕∞
n=0(

⊗n L) denote the space of all tensors overL. Thus elements ofL are sequencesα =
(α0, α1, α2, . . .) where eachαn is a homogeneous tensor of rankn, in which only finitely manyαn are nonzero
Generalising the well known shuffle product, which is obtained whenL has the trivial multiplication where a
products vanish, we equipT (L) with the product defined by bilinear extension of the rule

(L1 ⊗ L2 ⊗ · · · ⊗ Lm)(Lm+1 ⊗ Lm+2 ⊗ · · · ⊗ Lm+n) =
∑

P∈Pm,n

(LP1 ⊗ LP2 ⊗ · · · ⊗ LPk
) (2)

wherePm,n is the set ofItô shuffles(or sticky shuffles, in which a card from the first pack may stick to a card fro
the second), that is, ordered partitionsP = (P1,P2, . . . ,Pk) of {1,2, . . . ,m + n} into subsetsPj which are either
singletons{s}, in which caseLPj

= Ls , or pairs(s, t) with s ∈ {1,2, . . . ,m} andt ∈ {m + 1,m + 2, . . . ,m + n}, in
which caseLPj

= LsLt , and in which the subsets{1,2, . . . ,m} and{m + 1,m + 2, . . . ,m + n} retain their natura
relative orders in the ordered set got by deleting internal brackets in(P1,P2, . . . ,Pk).

WhenL is an Itô algebra, the multiplication (1) can be understood as follows. We fix a finite subinterval[a, b[
of the real half-lineR+, and map each homogeneous product tensor to a corresponding iterated stochastic

I b
a (L1 ⊗ L2 ⊗ · · · ⊗ Lm) =

∫
a<t1<t2<···<tm<b

dL1(t1)dL2(t2) · · ·dLm(tm).

Then (1) gives the multiplication rule for such integrals:

I b
a (L1 ⊗ L2 ⊗ · · · ⊗ Lm)Ib

a (Lm+1 ⊗ Lm+2 ⊗ · · · ⊗ Lm+n) =
∑

I b
a (LP1 ⊗ LP2 ⊗ · · · ⊗ LPk

).
P∈Pm,n
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Alternatively we may describe the multiplication inT (L) by αβ = γ where the homogeneous components
the tensorγ are given in terms of those ofα andβ by

γn =
∑

A∪B=Nn

αA|A|βB|B|. (3)

Here and subsequently we use the place notation that, for example,αA|A| indicates that the|A|-th rank homogeneou

componentα|A| ∈ ⊗|A| L of α is placed in the tensor product of those copies ofL within then-fold tensor produc⊗n L labelled by the elements ofA. SinceA ∪ B = {1,2, . . . , n} all copies ofL in
⊗nL are occupied in the

combinationαA|A|βB|B|; whenA ∩ B �= ∅ double occupancies ofL are resolved using the multiplication inL.
It is well known that the shuffle product algebra becomes a Hopf algebra when equipped with the copro∆

defined by linear extension of the rule

∆(L1 ⊗ L2 ⊗ · · · ⊗ Lm) =
m∑

j=0

(L1 ⊗ L2 ⊗ · · · ⊗ Lj ) ⊗ (Lj+1 ⊗ Lj+2 ⊗ · · · ⊗ Lm). (4)

The counitε is given by

ε(α0, α1, α2, . . .) = α0

and the antipode by linear extension of the map

L1 ⊗ L2 ⊗ · · · ⊗ Lm 
−→ (−1)m(Lm ⊗ Lm−1 ⊗ · · · ⊗ L1). (5)

It can be shown [7] that∆ remains a coproduct, with the same counitε, when the shuffle product is replaced
the Itô shuffle product (1), and makes the Itô shuffle algebraT (L) into a Hopf algebra, theItô Hopf algebra, when
equipped with an antipodeS which is a deformation of (5) in the sense that

S(L1 ⊗ L2 ⊗ · · · ⊗ Lm) = (−1)m(Lm ⊗ Lm−1 ⊗ · · · ⊗ L1) + terms of rank< m.

WhenL is an Itô algebra, the coproduct can be given a simple interpretation in Fock space quantum st
calculus as follows. Leta < b < c ∈ R

+. Then, corresponding to the canonical splitting of Fock space at timb,
we have

I c
a = (I b

a ⊗ I c
b )∆

where the ranges ofI b
a andI c

b are identified with their preampliations in the past and future Fock spaces o
splitting at timeb.

We shall find the following observation useful. Denote by∆(n), n = 1,2, . . . , the iterated coproducts mappin
T (L) to

⊗n T (L), defined by∆(1) = idT (L),∆
(2) = ∆, and forn > 2,

∆(n) = (∆ ⊗ id⊗n−2T (L)
)∆(n−1).

Then then-th rank homogeneous componentαn ∈ ⊗n L of an elementα = (α0, α1, α2, . . .) of T (L) is equal to

the component of joint rank(1,1, . . . ,
(n)

1) of ∆(n)α in
n⊗

T (L) =
∞⊕

m1,m2,...,mn=0

( m1⊗
L

)
⊗

( m2⊗
L

)
⊗ · · · ⊗

( mn⊗
L

)
,

αn = (∆(n)α)
(1,1,...,

(n)

1)
.

(6)

The subspaceS(L) of T (L) consisting of symmetric tensors is a sub-Hopf algebra of the Itô Hopf alg
isomorphic as a Hopf algebra to the universal enveloping algebraU of the Lie algebra got by equippingL with the
commutator Lie bracket, under the universal extension of the Lie algebra homoorphismL � L 
→ (0,L,0,0, . . .) ∈
S(L) [4].
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3. Calculus

We defineright andleft differential maps
−→
d from T (L) to T (L) ⊗ L and

←−
d from T (L) to L⊗ T (L) by linear

extension of
−→
d (L1 ⊗ L2 ⊗ · · · ⊗ Lm) = (L1 ⊗ L2 ⊗ · · · ⊗ Lm−1) ⊗ Lm,
←−
d (L1 ⊗ L2 ⊗ · · · ⊗ Lm) = L1 ⊗ (L2 ⊗ L3 ⊗ · · · ⊗ Lm).

Equivalently, for arbitraryα ∈ T (L),
−→
d (α) = (idT (L) ⊗Φ)(∆(α) − α ⊗ 1T (L)), (7)
←−
d (α) = (Φ ⊗ idT (L))(∆(α) − 1T (L) ⊗ α) (8)

where theenabling mapΦ is the algebra homomorphism toL from the maximal ideal inT (L), consisting of
tensors with vanishing homogeneous component of rank 0, given by(0, α1, α2, . . .) 
→ α1.

−→
d and

←−
d satisfy the

Leibniz–Itô formulas
−→
d (αβ) = −→

d (α)β + α
−→
d (β) + −→

d (α)
−→
d (β),

←−
d (αβ) = ←−

d (α)β + α
←−
d (β) + ←−

d (α)
←−
d (β)

in which T (L) ⊗ L andL ⊗ T (L) are regarded asT (L)-bimodules using the natural tensorial extensions of
multiplicative biaction ofT (L) on itself, as well as associative algebras with the tensor product multiplicatio

Below we shall use the fact that if either
−→
d (α) = 0 or

←−
d (α) = 0 and alsoε(α) = 0 thenα = 0.

By comparing actions on homogeneous product tensors, the coproduct map∆, from T (L) to

T (L) ⊗ T (L) =
∞⊕

n=0

(
T (L) ⊗ (⊗nL)

) =
∞⊕

n=0

(
(⊗nL) ⊗ T (L)

)
,

is seen to be given by the Taylor expansions

∆ =
∞⊕

n=0

−→
d

(n) =
∞⊕

n=0

←−
d

(n)
(9)

where the iterates
−→
d

(n)
and

←−
d

(n)
are the maps fromT (L) toT (L)⊗ (⊗nL) and(⊗nL)⊗ T (L) respectively defined

by
−→
d

(0) = ←−
d

(0) = idT (L),
−→
d

(1) = −→
d ,

←−
d

(1) = ←−
d and forn > 1

−→
d

(n) = (
−→
d ⊗ id⊗n−1L)

−→
d

(n−1)
,

←−
d

(n) = (id⊗n−1L ⊗←−
d )

←−
d

(n−1)
.

We obtain the Taylor–Maclaurin expansions

idT (L) = (ε ⊗ idT (L))

∞⊕
n=0

−→
d

(n) = (idT (L) ⊗ε)

∞⊕
n=0

←−
d

(n)
(10)

using the counital properties

(ε ⊗ idT (L))∆ = (idT (L) ⊗ε)∆ = idT (L) . (11)

Because of (7) and (8), the restrictions of
−→
d and

←−
d to the symmetric subalgebraS(L) mapS(L) to S(L) ⊗ L

andL⊗ S(L) respectively. They are related by
−→
d �S(L)= τ(2,1)

←−
d �S(L) .

Thus in calculus in the enveloping algebraU it is unnecessary to introduce both right and left differential maps
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4. Simple product integrals

ForL ∈ L the right “initial value problem”
−→
d (X) = X ⊗ L, ε(X) = 1,

or its left equivalent, has a solution inT (L) only in the trivial caseL = 0. To get something nontrivial we mu
consider formal power series.

Given an associative algebraA, the spaceA�h� of formal power series with coefficients inA becomes an
associative algebra using the convolution product

∞∑
N=0

hNAN

∞∑
N=0

hNBN =
∞∑

N=0

hN

N∑
j=1

AN−jBj

which is unital ifA is unital. Below we shall use the well known fact thatA[h] ∈ hA�h� is a formal power serie
with vanishing zero order term thenA[h] has a unique two sided quasiinverse of the same form, that is an ele
A′[h] ∈ hA�h� such that

A[h] + A′[h] + A[h]A′[h] = A′[h] + A[h] + A′[h]A[h] = 0.

(For a proof, see [6] for example.)
We regardT (L)�h� as an associative algebra with the convolution product derived from the Itô shuffle pr

We extend the coproduct and counit maps ofT (L) to T (L)�h� by action on coefficents, retaining the same no
tions∆ andε for the extended maps. Similarly we extend the differential maps

−→
d and

←−
d to T (L)�h� by action on

coefficients; then the Leibniz–Itô formulas continue to hold,

−→
d
(
α[h]β[h]) = −→

d
(
α[h])β[h] + α[h]−→d (

β[h]) + −→
d
(
α[h])−→

d
(
β[h]), (12)

←−
d
(
α[h]β[h]) = ←−

d
(
α[h])β[h] + α[h]←−d (

β[h]) + ←−
d
(
α[h])←−

d
(
β[h]) (13)

where the actions ofT (L)�h� on (T (L) ⊗L)�h� and(L⊗ T (L))�h� are defined by combining convolution wi
the previously defined actions ofT (L) on (T (L) ⊗L) and(L⊗ T (L)).

In the theorem which follows tensor products of formal power series are formal power series with coef
formed by tensor product convolution, for example forX[h] = ∑∞

N=0 hNXN , X[h] ⊗ X[h] = ∑∞
N=0 hNXN−j ⊗

Xj . For an elementL[h] ∈ hL�h�, that is, a formal power series with coefficients inL whose zero order term
vanishes, evidently⊗nL[h] ∈ hn(⊗nL)�h�, so that

⊕∞
n=0 ⊗nL[h] is a well defined element ofT (L)�h�.

Theorem 1.For an elementX[h] of T (L)�h� of the form1T (L) + o(h), the following conditions are equivalent;

(a): ∆X[h] = X[h] ⊗ X[h], εX[h] = 1.

(b): X[h] =
∞⊕

n=0

⊗nL[h] for someL[h] ∈ hL�h�.

Proof. If (a) holds then, iterating, forn � 1, ∆(n)X[h] = ⊗nX[h], and hence, using (6), forn > 0, (X[h])n =
⊗nL[h] whereL[h] = (X[h])1 ∈ hL�h�. Also (X[h])0 = εX[h] = 1. Hence (b) holds. Conversely if (b) holds th

∆X[h] =
∞⊕

n=0

n∑
j=0

(⊗n−jL[h]) ⊗ (⊗jL[h]) =
( ∞⊕

n=0

⊗nL[h]
)

⊗
( ∞⊕

n=0

⊗nL[h]
)

= X[h] ⊗ X[h];

alsoεX[h] = ⊗0(L[h]) = 1. Hence (a) holds. �
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For X[h] satisfying the conditions of Theorem 1 we writeX[h] = ∏
(1+ dL[h]) and call it thesimple product

integralgenerated byL[h].
Another useful description of the simple product integralX[h] = ∏

(1+ dL[h]) is that it is the unique solutio
of the differential equation

−→
dX[h] = X[h] ⊗ L[h], εX[h] = 1. (14)

Indeed it is clear from the expansion (b) of the theorem and from the second part of condition (a) thatX[h] = ∏
(1+

dL[h]) satisfies (14). But ifX′[h] is a second solution then the differenceZ[h] = X[h]−X′[h] satisfies
−→
dZ[h] = 0,

εZ[h] = 0. HenceZ[h] = 0 and we have uniqueness. We use this characterisation to prove the following.

Proposition 2.
∏

(1+ dL[h]) is invertible, with inverse
∏

(1+ dL′[h]) whereL′[h] is the quasiinverse ofL[h] ∈
hL�h�.

Proof. Let us prove that, for arbitraryL[h],K[h] ∈ hL�h�,∏(
1+ dL[h])∏(

1+ K[h]) =
∏(

1+ d
(
L[h] + K[h] + L[h]K[h])) (15)

from which the proposition follows by takingL[h] andK[h] to be mutual quasiinverses and using the fact that w
L[h] = 0,

∏
(1 + dL[h]) = 1T (L). Using the differential characterisation of product integrals and the Leibniz

formula (12), we have, forX[h] = ∏
(1+ dL[h]), Y [h] = ∏

(1+ dK[h]),
−→
d
(
X[h]Y [h]) = (

X[h] ⊗ L[h])Y [h] + X[h](Y [h] ⊗ L[h]) + (
X[h] ⊗ L[h])(Y [h] ⊗ L[h])

= X[h]Y [h] ⊗ (
L[h] + K[h] + L[h]K[h]).

Also by multiplicativity of ε,

ε
(
X[h]Y [h]) = ε

(
X[h])ε(Y [h]) = 1.

HenceZ[h] = X[h]Y [h] is the unique solution of
−→
dZ[h] = Z[h] ⊗ (

L[h] + K[h] + L[h]K[h]), εZ[h] = 1,

that is
∏

(1+ d(L[h] + K[h] + L[h]K[h])) as claimed. �
Corollary 3. For mutually quasiinverseL[h],L′[h] ∈ hL�h� the map

J [h] :T (L) −→ T (L)�h�; α 
−→
∏(

1+ dL[h])α ∏(
1+ L′[h]) (16)

is unital and multiplicative.

Note that
∏

(1+ dL[h]) ∈ S(L)�h� and thatJ [h] mapsS(L) to S(L)�h�.

5. Simple flows

We say that a mapJ [h] :T (L) = ⊕∞
n=0(⊗nL) −→ T (L)�h� = (

⊕∞
n=0(⊗nL))�h� is graded if it maps each

homogeneous component space⊗nL to (⊗nL)�h�.

Theorem 4.For a linear map

J [h] :T (L) −→ T (L)�h� =
( ∞⊕

n=0

(⊗nL)

)
�h�

of the formid +o(h), the following conditions are equivalent.
T (L)
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isation
(a) J [h] is graded and∆J [h] = (J [h] ⊗ J [h])∆, εJ [h] = ε;
(b) For n = 0,1,2, . . . and L1,L2, . . . ,Ln ∈ L, [h](⊗nLj ) = ⊗n((idL +j [h])(Lj )) for some linear map

j [h] :L→ hL�h�.

Proof. Suppose (a) holds. Definej [h] by J [h](0,L,0,0, . . .) = (0, (idL +j [h])L,0,0, . . .). Thenj [h] inherits
linearity fromJ [h] and, sinceJ [h] = idT (L) +o(h), j [h] mapsL to hL�h�. By (6), forn > 0 andL1,L2, . . . ,Ln ∈
L, sinceJ [h] is graded,

J [h](⊗nLj ) = (
J [h](⊗nLj )

)
n

= (
∆(n)J [h](⊗nLj )

)
(1,1,...,

(n)

1 )

((⊗nJ [h])(∆(n)(⊗nLj )
))

(1,1,...,
(n)

1 )

= (⊗nJ [h])(∆(n)(⊗nLj )
)
(1,1,...,

(n)

1 )
= (⊗nJ [h])(⊗nLj ) = ⊗n

((
idL +j [h])(Lj )

)
.

Also, again becauseJ [h] is graded,

J [h](1T (L)) = (
ε
(
J [h](1T (L))

)
,0,0, . . .

) = (
ε(1T (L)),0,0, . . .

) = 1T (L).

Hence (b) holds.
Conversely suppose that (b) holds. Then for each homogeneous product tensorL1 ⊗ L2 ⊗ · · · ⊗ Lm = ⊗mLj

J [h](⊗mLj ) = ⊗m
((

idL +j [h])(Lj )
)

and so sinceJ [h] is unital,

∆J [h](⊗mLj ) = ∆
(⊗m

((
idL +j [h])(Lj )

)) =
m∑

k=0

⊗k
((

idL +j [h])(Lj )
) ⊗ (⊗m

l=k+1

((
idL +j [h])(Lj )

))
= (

J [h] ⊗ J [h])∆(L1 ⊗ L2 ⊗ · · · ⊗ Lm).

Also εJ [h] = ε. So (a) holds as required.�
For J [h] satisfying the conditions of Theorem 4 we writeJ [h] = ∏

(id + dj [h]) and call it thesimple flow
generated byj [h].

Corresponding to the differential description of simple product integrals we have the following character
of the flow generated byj ; it is the unique solution of the differential equation

−→
d J [h] = (

J [h] ⊗ (
idL +j [h]))−→

d , εJ [h] = ε. (17)

Indeed it is clear from the expansion (b) of the theorem and from the second part of condition (a) thatJ [h] =∏
(idL + dj [h]) satisfies (17). But ifJ ′[h] is a second solution then the differenceK[h] = J [h] − J ′[h] satisfies

−→
dK[h] = (

K[h] ⊗ (
idL +j [h]))−→

d , εK[h] = 0. (18)

Using the Taylor–Maclaurin expansion, we have

K[h] = idT (L) K[h] = (ε ⊗ idT (L))

∞⊕
n=0

−→
d

(n)
K[h]

= (ε ⊗ idT (L))

(
K[h] ⊗

∞⊕
n=0

⊗n
(
idL +j [h])−→

d
(n)

)

= εK[h] ⊗
∞⊕

n=0

⊗n
(
idL +j [h])−→

d
(n) = 0.

Hence we have uniqueness.
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(16) defines a flow of which the generator is given by

j [h](K) = L[h]K + KL′[h] + L[h]KL′[h]. (19)

We call such a flowinner. Provided thatL[h] andL′[h] are mutually quasiinverse, the flow (16) is multiplicative
may be verified directly that the generatorj [h] given by (19) is quasimultiplicative, that is, for arbitraryK1,K2 ∈ L,

j [h](K1K2) = j [h](K1)K2 + K1j [h](K2) + j [h](K1)j [h](K2).

More generally we have the following.

Theorem 5.For the simple flowJ [h] generated byj [h] to be multiplicative it is necessary and sufficient thatj [h]
be quasimultiplicative fromL to L�h�.

Proof. Suppose thatJ [h] is multiplicative. Comparing the homogeneous components of rank 1, of

J [h](0,L,0,0, . . .)J [h](0,K,0,0, . . .) = J [h]((0,L,0,0, . . .)(0,K,0,0, . . .)
)

using (2) we find that, for arbitraryL,K ∈ L, (idL +j [h])(LK) = (idL +j [h])(L)(idL +j [h])(K), that isj [h] is
quasimultiplicative.

Suppose now thatj [h] is quasimultiplicative. Thenσ [h] = idL +j [h] is multiplicative and so, using (2), w
find that, for arbitraryL1,L2, . . . ,Lm+n ∈ L,

J [h](L1 ⊗ L2 ⊗ · · · ⊗ Lm)J [h](Lm+1 ⊗ Lm+2 ⊗ · · · ⊗ Lm+n)

= (
σ [h]L1 ⊗ σ [h]L2 ⊗ · · · ⊗ σ [h]Lm

)(
σ [h]Lm+1 ⊗ σ [h]Lm+2 ⊗ · · · ⊗ σ [h]Lm

)
=

∑
P∈Pm,n

(
σ [h]LP1 ⊗ σ [h]LP2 ⊗ · · · ⊗ σ [h]LPk

)

= J [h]
∑

P∈Pm,n

(LP1 ⊗ LP2 ⊗ · · · ⊗ LPk
)

= J [h]((L1 ⊗ L2 ⊗ · · · ⊗ Lm)(Lm+1 ⊗ Lm+2 ⊗ · · · ⊗ Lm+n)
)
.

HenceJ [h] is multiplicative. �

6. Double product integrals

To understand the definition of double product integrals which follows, let us first consider a discrete
product of elementsxj ;k of elements of a unital associative algebra indexed by a Cartesian product of ordere
which areweakly commutingin the sense thatxj,k commutes withxj ′k′ whenever bothj �= j ′ andk �= k′. Then [9]
we have equality between the iterated ordered simple products

←−−∏
k

{−−→∏
j

xj ;k
}

=
−−→∏
j

{←−−∏
k

xj ;k
}

(20)

for examplex1;2x2;2x1;1x1;2 = x1;2x1;1x2;2x1;2 becausex2;2 commutes withx1;1. We denote the common value

this iterated product by
→←∏

j,k xj ;k .
Now let Mm,n be the set ofm × n incidence matrices having the property that every row and every co

contains at least one entry 1. There are one-one correspondences between the elementsM of Mm,n and, on the
one hand, the set of orderedm-tuples(A1,A2, . . . ,Am) of nonempty subsets whose union isNn, and, on the othe
hand, the set of orderedn-tuples(B1,B2, . . . ,Bn) of nonempty subsets whose union isNm given by

M = 1⇐⇒ k ∈ A ⇐⇒ j ∈ B . (21)
j,k j k
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Now let r[h] ∈ h(L⊗L)�h� and letm,n ∈ N andM ∈ Mm,n. Then we can form the double product

→←∏
(j,k)∈Nm×Nn

(
r[h]Mj,k

)j ;k =
−−→
m∏

j=1

{←−−
n∏

k=1

(
r[h]Mj,k

)j ;k
}

=
←−−
n∏

k=1

{−−→
m∏

j=1

(
r[h]Mj,k

)j ;k
}

, (22)

in which, if Mj,k = 1, (r[h]Mj,k )j ;k is a copy of the formal power seriesr[h] whose coefficients occupy the tens
product of thej th copy ofL in ⊗mL with thekth copy ofL in ⊗nL, while, if Mj,k = 0, (r[h]Mj,k )j ;k is absent
from the double product (or formally 1). Since the elementsxj,k = (r[h]Mj,k )j ;k are formally weakly commuting
and since every row and every column ofM contains a 1, this is a well defined element of((⊗mL) ⊗ (⊗nL))�h�.

The backward–forward product
←→∏

(j,k)∈Nm×Nn
(r[h]Mj,k )j ;k is defined similarly.

Using the one-one correspondences (21) we have

∑
M∈Mm,n

→←∏
(j,k)∈Nm×Nn

(
r[h]Mj,k

)j ;k =
∑

A1∪A2∪···∪Am=Nn

→∏
j∈Nm

r[h]j ;Aj (23)

=
∑

B1∪B2∪···∪Bn=Nm

←∏
k∈Nn

r[h]Bk;k (24)

where forAj = {a1 > a2 > · · · > a|Aj |} andBk = {b1 < b2 < · · · < b|Bk |}

r[h]j ;Aj = r[h]j ;a1r[h]j ;a2 · · · r[h]j ;a|Aj | , r[h]Bk;k = r[h]b1;kr[h]b2;k · · · [h]b|Bk |;k.

Now we can state our third characterisation theorem.

Theorem 6.For an elementX[h] of (T (L) ⊗ T (L))�h� of the form1T (L)⊗T (L) + o(h), the following conditions
are equivalent;

(a): (∆ ⊗ idT (L))X[h] = X[h]1,3X[h]2,3, (ε ⊗ idT (L))X[h] = 1,

(idT (L) ⊗∆)X[h] = X[h]1,3X[h]1,2, (idT (L) ⊗ε)X[h] = 1;

(b): X[h] = 1⊕
∞⊕

m,n=1

∑
M∈Mm,n

→←∏
(j,k)∈Nm×Nn

(
r[h]Mj,k

)j ;k
for somer[h] ∈ h(L⊗L)�h�.

Proof. If (a) holds then by the counital conditions the component of rank(0;0) of X[h] is 1∈ C = C ⊗ C, while
those of ranks(m;0) and(0;n) for m,n > 0 vanish. Also, by iteration of the coproduct conditions we obtain,
m,n � 1,

(∆(m) ⊗ ∆(n))X[h] =
→←∏

(j,k)∈Nm×Nn

X[h]j ;k

where now the ordered discrete double product is an element of((⊗mT (L))⊗(⊗nT (L)))�h�. Using (6) we deduce
that the componentXm;n[h] of joint rank(m;n) of X[h] in (T (L) ⊗ T (L)�h� = ⊕∞

m,n=0((⊗mL) ⊗ (⊗nL))�h� is

(
(∆(m) ⊗ ∆(n))X[h])

(1,1,...,
(m)

1) ;
.
(1,1,...,

(n)

1)
=

( →←∏
X[h]j ;k

)
(m) (n)

.

(j,k)∈Nm×Nn
(1,1,..., 1) ;(1,1,...,1)
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Only components of joint ranks(0;0), (1;0), (0;1) and(1;1) of X[h] can contribute to this. The first of thes
components is 1 and the second and third vanish, as proved above; we denote the third byr[h]. SinceX[h] =
1T (L)⊗T (L) + o(h), r[h] ∈ h(L⊗L)�h� and we have

Xm;n[h] =
( →←∏

(j,k)∈Nm×Nn

(
1+ r[h]j ;k))

(1,1,...,
(m)

1) ;(1,1,...,
(n)

1)

=
∑

M∈Mm,n

→←∏
(j,k)∈Nm×Nn

(
r[h]Mj,k

)j ;k
.

Conversely, assuming (b) holds, then, using (23)

(∆ ⊗ idT (L))X[h]

= (∆ ⊗ idT (L))

(
1⊕

∞⊕
m,n=1

∑
M∈Mm,n

→←∏
(j,k)∈Nm×Nn

(
r[h]Mj,k

)j ;k
)

= (∆ ⊗ idT (L))

(
1⊕

∞⊕
m,n=1

∑
A1∪A2∪···∪Am=Nn

−−→∏
j∈Nm

r[h]j ;Aj

)

= 1⊕
∞⊕

m,n=1

∑
A1∪A2∪···∪Am=Nn

m∑
k=0

( −−→∏
j∈Nk

r[h]j ;Aj

)( −−→∏
j∈Nk

m

r[h]j ;Aj

)

= 1⊕
∞⊕

m,n=1

m∑
k=0

∑
C∪D=Nn

∑
A1∪A2∪···∪Ak=C

( −−→∏
j∈Nk

r[h]j ;Aj

) ∑
Ak+1∪Ak+2∪···∪Am=D

( −−→∏
j∈Nk

m

r[h]j ;Aj

)

= 1⊕
∞⊕

m,n=1

∑
C∪D=Nn

m∑
k=0

(
X[h]k;|C|

){1,2,...,k};C(
X[h]m−k;|D|

){k+1,k+2,...,m};D

= X[h]1,3X[h]2,3.

Also, since(X[h])0;0 = 1 and(X[h])0;n = 0 for n > 0,

(ε ⊗ idT (L))X[h] = 1.

A similar argument starting with the alternative expression (24) for the double product shows that

(idT (L) ⊗∆)X[h] = X[h]1,3X[h]1,2, (idT (L) ⊗ε)X[h] = 1.

Hence (a) holds as required.�
For X[h] satisfying the conditions of Theorem 6 we writeX[h] =

→←∏
(1 + dr[h]) and call it theforward–

backward directed product integralgenerated byr[h]. The backward–forward directed product integr
←→∏

(1+ dr[h]) is defined analogously.
Except in the case whenL is commutative, there is no analog for double product integrals of the rule (15

multiplying simple product integrals used to prove Proposition 2. Despite this an analogous proposition ho

Proposition 7.
→←∏

(1 + dr[h]) is invertible, with inverse
←→∏

(1 + dr ′[h]) wherer ′[h] is the quasiinverse o
r[h] ∈ h(L⊗L)�h�.

Proof. Let us prove that
→←∏

(1 + dr[h])
←→∏

(1 + dr ′[h]) = 1T (L)⊗T (L); the proof that
←→∏

(1 + dr ′[h])
→←∏

(1+ dr[h]) = 1 is similar. We have
T (L)⊗T (L)



R.L. Hudson / Ann. I. H. Poincaré – PR 41 (2005) 375–390 387
(
−→
d ⊗ idT (L))

→←∏ (
1+ dr[h])

= (
−→
d ⊗ idT (L))

(
1⊕

∞⊕
m,n=1

∑
A1∪A2∪···∪Am=Nn

→∏
j∈Nm

r[h]j ;Aj

)

=
∞⊕

m,n=1

∑
A1∪A2∪···∪Am=Nn

( →∏
j∈Nm−1

r[h]j ;Aj

)1,3

r[h]m;Am

=
∞⊕

m,n=1

( ∑
A1∪A2∪···∪Am−1=Nn−1

→∏
j∈Nm−1

r[h]j ;Aj

)1,3( ∞⊕
n=1

(
r[h]2;nr[h]2;n−1 · · · r[h]2;1))2,3

using the multiplication rule (3). Thus

(
−→
d ⊗ idT (L))

→←∏ (
1+ dr[h]) =

(→←∏
(1+ dr[h])

)1,3

P [h]2,3

whereP [h] = ⊕∞
n=1{

←−∏
n
k=1r[h]1;k}. A similar argument shows that

(
−→
d ⊗ idT (L))

←→∏ (
1+ dr ′[h]) = Q[h]2,3

(←→∏ (
1+ dr ′[h]))

whereQ[h] = ⊕∞
n=1{

−→∏
n
k=1r

′[h]1;k}. Hence by the Leibniz–Itô formula, we have

(
−→
d ⊗ idT (L))

{→←∏ (
1+ dr[h]) ←→∏ (

1+ dr ′[h])}

=
(→←∏ (

1+ dr[h]))1,3(
P [h] + Q[h] + P [h]Q[h])2,3

(←→∏ (
1+ dr ′[h]))1,3

. (25)

But from the definitions ofP [h] andQ[h],
(idL ⊗←−

d )P [h] = (
13 + P [h]2,3)r[h]1,2,

(idL ⊗←−
d )Q[h] = r ′[h]1,2(13 + Q[h]2,3)

and hence, again using the Leibniz–Itô formula,

(idL ⊗←−
d )

(
P [h] + Q[h] + P [h]Q[h])

= (
13
T (L) + P [h]2,3)r[h]1,2 + r ′[h]1,2(13

T (L) + Q[h]2,3)
+ (

13
T (L) + P [h]2,3)r[h]1,2r ′[h]1,2(13

T (L) + Q[h]2,3)
= 13

T (L)r[h]1,2 + r ′[h]1,213
T (L) + 13

T (L)r[h]1,2r ′[h]1,213
T (L)

+ P [h]2,3(r[h]1,2 + r ′[h]1,2 + r[h]1,2r ′[h]1,2)
+ (

r[h]1,2 + r ′[h]1,2 + r[h]1,2r ′[h]1,2)Q[h]2,3 + P [h]2,3(r[h]1,2 + r ′[h]1,2 + r[h]1,2r ′[h]1,2)Q[h]2,3.

Rearranging the first three terms as(r[h]1,2 + r ′[h]1,2 + r[h]1,2r ′[h]1,2)13
T (L)

and using the fact thatr[h] andr ′[h]
are mutually quasiinverse we obtain

(idL ⊗←−
d )

(
P [h] + Q[h] + P [h]Q[h]) = 0. (26)

Also, by multiplicativity ofε and from the definitions ofP [h] andQ[h]
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,

n. Using
(idL ⊗ε)
(
P [h] + Q[h] + P [h]Q[h])

= (idL ⊗ε)P [h] + (idL ⊗ε)Q[h] + (idL ⊗ε)P [h](idL ⊗ε)Q[h] = 0. (27)

From (26) and (27) it follows thatP [h] + Q[h] + P [h]Q[h] = 0. Hence, from (25),

(
−→
d ⊗ idT (L))

{→←∏ (
1+ dr[h]) ←→∏ (

1+ dr ′[h])} = 0.

But by multiplicativity of ε,

(ε ⊗ idT (L))

{→←∏ (
1+ dr[h]) ←→∏ (

1+ dr ′[h])}

= (ε ⊗ idT (L))

{→←∏ (
1+ dr[h])}(ε ⊗ idT (L))

{←→∏ (
1+ dr ′[h])} = 1T (L).

Hence
→←∏

(1+ dr[h])
←→∏

(1+ dr ′[h]) = 1T (L)⊗T (L) as required. �
Corollary 8. For mutually quasiinverser[h], r ′[h] ∈ h(L⊗L)�h� the map

J [h] :T (L) ⊗ T (L) −→ (
T (L) ⊗ T (L)

)
�h�; ξ 
−→

→←∏ (
1+ dr[h])ξ ←→∏ (

1+ dr ′[h]) (28)

is multiplicative.

7. The quantisation problem for Lie bialgebras

Let us consider further the multiplicative “inner double flow”J [h] defined by Corollary 8. We use the notatio

R[h] =
→←∏ (

1+ dr[h]), R′[h] =
←→∏ (

1+ dr ′[h]) = (
R[h])−1

.

The map∆[h] from T (L) to (T (L) ⊗ T (L))�h� given by∆[h] = J [h]∆ is a composition of multiplicative maps
hence multiplicative. Let us investigate when∆[h] satisfies the coassociativity condition(

∆[h] ⊗ idT (L)

)
∆[h] = (

idT (L) ⊗∆[h])∆[h]
where as usual compositions of formal power series whose coefficients are maps are formed by convolutio
the definition of∆[h] and the multiplicativity of∆, for arbitraryξ ∈ T (L) ⊗ T (L),(

∆[h] ⊗ idT (L)

)
∆[h](ξ) = R[h]1,2((∆ ⊗ idT (L))∆[h](ξ)

)
R′[h]1,2

= R[h]1,2((∆ ⊗ idT (L))
(
R[h]∆(ξ)R′[h]))R′[h]1,2

= R[h]1,2((∆ ⊗ idT (L))
(
R[h])((∆ ⊗ idT (L))∆(ξ)

)
(∆ ⊗ idT (L))

(
R′[h]))R′[h]1,2

= R[h]1,2R[h]1,3R[h]2,3((∆ ⊗ idT (L))∆(ξ)
)
R′[h]2,3R′[h]1,3R′[h]1,2

where we use the characterisation (a) of Theorem 6 of the forward–backward double product integralR[h] together
with the analogous characterisation of the backward–forward double product integralR′[h].

A similar argument shows that(
idT (L) ⊗∆[h])∆[h](ξ) = R[h]2,3R[h]1,3R[h]1,2((idT (L) ⊗∆)∆(ξ)

)
R′[h]1,2R′[h]1,3R′[h]2,3.

Since∆ is coassociative,(∆ ⊗ idT (L))∆(ξ) = (idT (L) ⊗∆)∆(ξ) and it follows that∆[h] is coassociative ifR[h]
satisfies thequantum Yang–Baxter equation

R[h]1,2R[h]1,3R[h]2,3 = R[h]2,3R[h]1,3R[h]1,2 (29)
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in (T (L) ⊗ T (L) ⊗ T (L))�h� (in which case its inverseR′[h] satisfies the same equation). In [8] it is shown t

a necessary and sufficient condition forR[h] =
→←∏

(1+ dr[h]) to satisfy (29) is that

r[h]1,2r[h]1,3 + r[h]1,2r[h]2,3 + r[h]1,3r[h]2,3 + r[h]1,2r[h]1,3r[h]2,3

= r[h]1,3r[h]1,2 + r[h]2,3r[h]1,2 + r[h]2,3r[h]1,3 + r[h]2,3r[h]1,3r[h]1,2 (30)

as elements of(L ⊗ L ⊗ L)�h�. This equation also occurs in [2]. In a footnote to [9] it was claimed erroneo
to be a necessary and sufficient condition for thesymmetriseddouble product integral generated byr[h] to satisfy
the quantum Yang–Baxter equation. It can be verified directly that ifr[h] satisfies (30) then its quasiinverser ′[h]
satisfies the same equation. The argument of [8] can be modified to show that this is necessary and suffi

R′[h] =
←→∏

(1+ dr ′[h]) to satisfy the quantum Yang–Baxter equation.
The condition (30) can be analysed by comparing coefficients of powers ofh [9,2]; for the lowest powerh2 it is

found that the first order coefficientr1 of r[h] must satisfy theclassical Yang–Baxter equation

[r1,2
1 r

1,3
1 ] + [r1,2

1 , r
2,3
1 ] + [r1,3

1 , r
2,3
1 ] = 0

while higher powers give a hierarchy of inhomogeneous linear equations for the successive coefficientsr2, r3, . . . ,
namely

[r1,2
n r

1,3
1 ] + [r1,2

n , r
2,3
1 ] + [r1,3

n , r
2,3
1 ] + [r1,2

1 r1,3
n ] + [r1,2

1 , r2,3
n ] + [r1,3

1 , r2,3
n ]

= −
∑

s,t>1,s+t=n+1

([r1,2
s r

1,3
t ] + [r1,2

s , r
2,3
t ] + [r1,3

s , r
2,3
t ]) −

∑
s+t+u=n+1

(
r1,2
s r

1,3
t r2,3

u − r2,3
s r

1,3
t r1,2

u

)
.

Assuming that solutions of this hierarchy can be found we have thus constructed a deformation co
∆[h] in the algebraA of formal power series with coefficients in the Itô–Hopf algebraT (L) whose zero-orde
coefficients are elements of the symmetric sub-Hopf algebraS(L) which is isomorphic to the universal envelopi
algebra of the commutator Lie algebra ofL̇. The Lie bialgebra of which this is the quantisation is determined
the Lie cobracket forL̇

δ(L) = h−1(∆[h](L) − ∆[h]opp(L)
) + o(h)

= h−1(R[h]∆(L)R′[h] − τ(2,1)

(
R[h]∆(L)R′[h])) + o(h)

= h−1((1+ r[h])∆(L)
(
1− r[h]) − τ(2,1)

(
1+ r[h])∆(L)

(
1− r[h])) + o(h)

= [r1 − τ(2,1)r1,L
1 + L2]

where∆[h]opp is the opposite coproduct to∆[h] got by replacingr1 by τ(2,1)r1 whereτ(2,1) is the flip map from

L⊗L to itself which exchanges the components of product tensors. Here we use the expansion
→←∏

(1+ dr[h]) =
1+r[h]+o(h2). Thus, modulo the existence of solutions to the hierarchy, we have a general method of quan
of so called quasitriangular Lie bialgebras, for which the cobracket is of this kind withr1 satisfying the classica
Yang–Baxter equation. It is natural to speculate that a more general theory of not necessarily inner doub
may similarly quantise more general Lie bialgebras.

In fact it follows from an argument of Enriquez that, as conjectured in [9], the hierarchy always has sol
But Enriquez’s argument uses the general existence theorem for a quantisation of a Lie bialgebra [3]. T
method of quantisation by double product integrals does not yet provide an alternative to the method of
and Kazhdan which is based on constructing an associator from the monodromy properties of the Kn
Zamolodchikov system of holomorphic differential equations. It seems unsatisfactory that a purely algebrai
the existence of a quantisation of a general Lie bialgebra, depends on such an analytic mechanism.
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