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Abstract

Motivated by classical and quantum stochastic flows, particularly the distinction between inner and outer flows in the quantum
case, we develop analogous notions which live in the 1té Hopf algebra, which is got by replacing the shuffle product in a shuffle

Hopf algebra by a noncommutative multiplication which abstracts the product rule for iterated quantum stochastic integrals.
— <«

Inner flows got by conjugation by ordered double product integrg]s (1 + dr[4]) are used to quantise Lie bialgebras.
0 2005 Elsevier SAS. All rights reserved.

Résumé
Nous sommes motivés par les flots classiques et quantiques, notamment par la distinction entre les flots intérieurs et les
flots extérieurs dans le cas quantique. Nous développons les notions analogues dans 'algébre de Hopf-It6, qui est obtenue e

remplacgant le produit dans 'algébre de battage par un produit non commutatif qui imite la multiplication des intégrales sto-
chastiques quantiques itérées. Les flots intérieurs obtenus par conjugaison par les intégrales multiplicatives doubles ordonnée

— <
[T (1+dr[k]) sont utilisés pour la quantification des bialgébres de Lie.
0 2005 Elsevier SAS. All rights reserved.

MSC:81S25; 17B62

1. Introduction

P.A. Meyer [10] emphasized that an algebraic viewpoint on stochastic flows is necessary to obtain a satisfactory
guantum generalisation. This follows the viewpoint of Accardi, Frigerio and Lewis [1] that a quantum random
variable is a homomorphism of associative algebras. Thus, for a stochastic flow, instead of a description by a
stochastic differential equation which directly describes the evolution of a time dependent randok [stémting
at a generic point of a state space, one considers a suitable algebfanctions on the state space and describes
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the flow by means of the time dependent family of homomorphigmshereJ; (f) = f(X;), which takeA into a
larger algebrad of functions on the Cartesian product of the state space with the underlying probabilitys@pace
Corresponding to the stochastic differential equationXpr one obtains a stochastic differential equation for
which, for example in the case of a flow driven byraximensional Brownian motiotB1, By, ..., By,), takes the
form

n
dsy =Y JopYVdB;+Jordr, Jo(f) = f®idg.
j=1
Herep®, @ . . g™ andr are linear maps from to itself called structure maps, which, corresponding to the
multiplicativity of J; and the Itd product rulesR} dB; = §; ; dr, must satisfy the socalled structure relations

n
B () =BV (Ne+ BV,  t(fo)=t(Hg+fr@+ Y BY(NHBY (2.
j=1

The quantum generalisation is twofold. First, there is in general no longer any state space so thatsnow
a noncommutative algebra, typically the alget®é) of all bounded operators on a system Hilbert spate
Secondly thdt6 algebra which in the classical situation above is the complex associative algebra spanned by the
It6 differentials 8D, dB®@, ..., dB™ dr equipped with the Ité product rules, is replaced by a noncommutative
associative algebr4, typically spanned by differentialsztiﬂ*, a,8=0,1,2,...,n, with the multiplication rule
dAg dAY = (1 - 55)8% dAg. These correspond to operator-valued proces%m, B8=0,12...,n,lving in
the Fock spaceF over the Hilbert spacd.?(R+; C") for which there is a corresponding theory of stochastic
integration [5]. The case of flows driven by Brownian motion can be recovered by restriction to the mutually
commuting, self-adjoint process8s = A} + A? and the time = AJ.

There is a canonicalplitting of Fock space at each times RY into the Hilbert space tensor produgt=
F: ® F' of the Fock spaces witR™ replaced by the interval®, :[ and[z, oo[ respectively, with respect to which
each operaton% (1) is the ampliation taF by the identity operator in the future sectdt of an operator in the past
sectorF; and similarly each incremem% (s) — A%(l) with s > t is the ampliation to% of an operator in the future
sector. Splitting gives a natural notion of adaptedness and allows an interpretation in which all the basic processes
A% have independent increments.

In this context a quantum stochastic flow is described by a fatdily;cg+ of C*- or von Neumann algebra
homomorphisms fronB(H) to B(H ® F) satisfying

n
d/= )" Joxydaf, Jox) =x ® 1)
a, =0

where the structure map% : B(H) — B(H) satisfy the structure relations

% (xy) = A4y + 2250 + Y AL AL,
j=1

More concisely we may write
dJ = Jt2jt3, Jo=idpr) ® Lp(r),

where the superscripts are place notation indicating in which factors of the triple tensor produ@ & ¢ ) ®
L = B(H) ® B(F) ® L the relevant map lives, and tigenerator; of the flow is the mang’ﬂ:0 %(~) ® dAg
from B(H) to B(H) ® L, and satisfies the structure relation

JEY) =j@)y+xj(y) +jx)jQ).
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A flow J is calledinner if its generatorj takes the form

J(x) =ux +xv+uxv

whereu andv are elements oB(H) ® £ which are mutually quasiinverse in the sense that
u+v+uv=v+u+ovu=0.

Correspondingly takes the form
J(x)=Ux®1prF)V

whereU, andV are the mutually inverse operator valued processes solving the stochastic differential equations
du =023, Uo=1pw ® 1ar), dV =v3Vv12 Vo=1pm) ® 1per). @)

Note that the concept of an inner flow has no classical counterpart. For comparison with what follows, it is useful
to introduce the product integral notations

J=]]dd+d, U=ﬁ(1+du), v:ﬁ(1+dv)

for the flow J generated by and the operator-valued processes solving (1).

The purpose of this paper can now be explained. We first equip the space of térigorever an arbitrary
finite-dimensional associative algeltavith operations which make it a Hopf algebra, called the 1td Hopf algebra,
which is a noncommutative generalisation of the Hopf algebra based on the shuffle pro@id)insed in [2],
to which it reduces in the case when the multiplicationdris the trivial one for which all products vanish.
When/ is either the quantum or classical algebras of It6 differentials spanneg®,dB®@ ... dB™, dr or by
dAg, a,=0,1,2,...,n,the multiplication in the 1td Hopf algebra corresponds to the multiplication formula for
iterated stochastic integrals. The coproduct is similarly related to the property of independent increments in these
cases. It is convenient to introdudght andleft differential maps?f and d in 7T (L) corresponding to both the
usual forward derivative and its backward counterpart in the stochastic case. Then we casiohgfi@groduct
integralsandproduct flows

[J@+dLiry),  [](d+djlnl).

The first of these is an element of the sp&cel)[1] of formal power series with coefficients i (£) which
is generated by an elemehfh] of hL[k]. The second is a linear map frof(£) to 7 (£)[~] and is generated
by a linear mapj[4] from £ to L[k]. Both are defined as solutions of differential equations, but they can also be
characterised by algebraic properties. The inver§d@HdL[4]) is[[(1+dL'[k]) whereL’[h] is the quasiinverse
of L[h] in hL[h]; conjugation by [(1+ drL[A]) is then arinner product flow which is multiplicative.
Of more use for applications to quantisation is the theomganfble product integrals

[]@+drin)), [ (2+d”1n)

which are elements af7 (£) ® T (L))[#] with generators[#] andr’[h] in k(L ® L£)[h]. Unlike simple product
integrals, their definitions incorporate directional senses. From the point of view of stochastic calculus in Fock

—

space, regarded through splitting as a continuous tensor product [11}1 + dr[k]) may be regarded as a
continuous analog, living in the double Fock sp&te F, of a discrete double product of the form

— < — <« <« —
I n{n}n{n}
(J,k)eN,, xN, jeN,, LkeN, keN, UjeN,

in which x is an element of a tensor product algebt@® A and the place notatior/’* indicates thak occupies
the tensor product of the-th copy of A within ®”.4 and thek-th copy of A within ®".4 so that the two iterated
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products (which are indeed equal [9]) are elemenisdf.A) ® (®".A). However such a Fock space interpretation
is inhibited by severe divergence difficulties when the formal parametereplaced by a complex variable [9].
Though once again they can be defined as solutions of stochastic differential equations, forward—backward

double product integral#] = [[ (1+ dr[h]) can be characterised algebraically [7] by the socalled quasitri-
angularity relations which form the starting point of Enriquez’s approach to the quantisation problem for Lie
bialgebras [2]. The second stage of his approach is to requireR{thidtsatisfy the quantum Yang—Baxter equa-
tion and there is a necessary and sufficient condition on the geneiatofor this [8]. Using the fact that

[T (A+dr[h]) and [] (14 dr’[k]) are mutual inverses ifix] andr’[k] are mutually quasiinverse one may then
construct a deformation coproduct by composing the coprodud€t &) with conjugation by the invertible element

[T @+ dr[h]) of (T(£) ® T(L))[k]. In this way we obtain a simple and general procedure for quantising Lie
bialgebras of quasitriangular type in which the Lie bracket is got by taking commutators in an associative algebra.

It is natural to regard the map got by conjugation By (1 + dr[k]) as an inner double flow and to seek a
more general notion of double flow with the expectation that these will similarly quantise Lie bialgebras of a more
general type.

We use the following notation®N denotes the set of natural numbers and,/ferm belonging toN, Nﬁn and
N,, denote its subsefg+ 1,1+ 2,...,m} and{1, 2, ..., m}.

2. The It6 Hopf algebra

Let £ be a not necessarily unital complex associative algebra. We may thiflasthe 1td algebra of differen-
tials in a classical or quantum stochastic calculus.

Let 7(£) = B, o(Q" £) denote the space of all tensors over Thus elements of are sequences =
(g, a1, a2, ...) Where eachy, is a homogeneous tensor of ramkin which only finitely manyw, are nonzero.
Generalising the well known shuffle product, which is obtained whdmas the trivial multiplication where all
products vanish, we equip(L) with the product defined by bilinear extension of the rule

L1®L2®@ - QL) L1 @ Lint2® -+ @ Lypgn) = Z (Lp,®Lp,®---®Lp,) (2
PEP})I,H

whereP,, , is the set oltd shuffleqor sticky shufflesin which a card from the first pack may stick to a card from
the second), that is, ordered partitioRs= (P, P», ..., Py) of {1,2,...,m + n} into subsets?; which are either
singletons(s}, in which casel p; = Ly, or pairs(s, 1) with s € {1,2,...,m}andt € {m +1,m+2,...,m +n}, in
which casel p; = LsL;, and in which the subsefs, 2, ..., m} and{m + 1,m + 2,..., m + n} retain their natural
relative orders in the ordered set got by deleting internal bracke®inP,, ..., Py).

When/ is an Itd algebra, the multiplication (1) can be understood as follows. We fix a finite subirfier#gl
of the real half-lineR*, and map each homogeneous product tensor to a corresponding iterated stochastic integral

Iab(Ll®L2® - ®Ly) = / dLl(tl) dLZ(IZ)"'dLm(tm)-

a<ti<ty<--<ty<b

Then (1) gives the multiplication rule for such integrals:

IPL1®Ly® @ L)l (L1 ® Lys2® - ® Lugn)= Y I2(Lp ®Lp,® - ®Lp,).
PePpyn
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Alternatively we may describe the multiplication (L) by ¢ = y where the homogeneous components of
the tensory are given in terms of those afandg by

m= ., elubly ®)
AUB=N,,
Here and subsequently we use the place notation that, for exarmlmdicates that théA |-th rank homogeneous

componenty 4| € ®'A' L of a is placed in the tensor product of those copieg efithin then-fold tensor product
X" L labelled by the elements of. SinceA U B = {1, 2,...,n} all copies of£ in &" L are occupied in the
combinatiom’jxlﬁf ; whenA N B # ¢ double occupancies df are resolved using the multiplication ih

It is well known that the shuffle product algebra becomes a Hopf algebra when equipped with the cogroduct
defined by linear extension of the rule

m
A(L1®L2®"'®Lm)=Z(Ll®L2®'“®Lj)®(Lj+1®Lj+2®"'®Lm)~ (4)
j=0
The counite is given by
e(ap, 01,02, ...) =g
and the antipode by linear extension of the map
Li®L®  ®Ly+— (1" (Ln @ Lp-1® - ® Ly). )

It can be shown [7] that\ remains a coproduct, with the same counitvhen the shuffle product is replaced by
the 1t6 shuffle product (1), and makes the 1t6 shuffle algéhié) into a Hopf algebra, th#d Hopf algebra when
equipped with an antipodg which is a deformation of (5) in the sense that

SL1Q®Ly®-- QL) =-D"Luy @ Lu_1Q---Q L1) +terms of rank< m.

When . is an It6 algebra, the coproduct can be given a simple interpretation in Fock space quantum stochastic
calculus as follows. Let < b < ¢ € R*. Then, corresponding to the canonical splitting of Fock space at#jme
we have

E=teIHa
where the ranges af’ and I are identified with their preampliations in the past and future Fock spaces of the
splitting at timeb.

We shall find the following observation useful. Denoted, n = 1, 2, .. ., the iterated coproducts mapping
T(L) to ®" T (L), defined byA® =id7(r), A® = A, and forn > 2,

(n) — i (n—1)
A" = (AQidgn-27,)A" Y.
Then then-th rank homogeneous componente K" £ of an elementr = (ag, @1, a2, ...) of T (L) is equal to

(n)
the component of jointrankl, 1, ..., 1) of A®q in

éT(ﬁ): é (éﬁ) ® (éﬁ) ® - ® ((mgm)

Mmy,m,...,My= (6)

The subspacé& (L) of 7 (L) consisting of symmetric tensors is a sub-Hopf algebra of the It6 Hopf algebra,
isomorphic as a Hopf algebra to the universal enveloping algélmfathe Lie algebra got by equipping with the
commutator Lie bracket, under the universal extension of the Lie algebra homoomphigm— (0, L,0,0,...) €
S(L) [4].
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3. Calculus

We defineright andleft differential mapsff from7T(L)to7T(L)RL andd from T(L)to LR T (L) by linear
extension of

d(L1®L2® @ Lm)=(L1®L2® ++ ® Ln_1) ® Ly,
d(L1®L2®  ®Ly)=L1® (L2®L3® - ® Ly).
Equivalently, for arbitraryx € 7 (L),

d (@) = (id7 ) ®P)(A@) — @ ® 17(r)), ™
d (@) = (P ®id7(£)(AW@) — 17(0) @ @) ®)
where theenabling map® is the algebra homomorphism 1 from the maximal ideal ir7 (£), consisting of

tensors with vanishing homogeneous component of rank 0, givel,lay, a2, ...) — a1. d andd satisfy the
Leibniz—It6 formulas

d@p)=d@p+ad(B)+d@dp),

d(ap)=d(@)B+ad(B)+ d@)d(B)
in which 7 (£) ® £L and £ ® 7 (L) are regarded & (£)-bimodules using the natural tensorial extensions of the
multiplicative biaction of7 (£) on itself, as well as associative algebras with the tensor product multiplication.

Below we shall use the fact that if eithgr(a) =0or 27(04) =0 and als@(«) = 0 thena = 0.
By comparing actions on homogeneous product tensors, the coproduet nfrapn 7 (L) to

oo oo

T(L)RTWL) =P(TL) & @"L) =P ((®"L) T(L)).

n=0 n=0
is seen to be given by the Taylor expansions
o o
A=Pa" =-Pa” ©)
n=0 n=0
where the iterateg " andﬁw are the maps frorf (£) to 7 (£) ® ()" L) and(®" L)® 7T (L) respectively defined

byd® =79 =idr(), dV =d, @ =T and forn > 1

d" =@ @idgiipd" ", " =(dg0Dd" .

We obtain the Taylor—-Maclaurin expansions

o0 o0
. . = <)
idr(c) = (e @idrc)@d " = (idr)@e)Pd (10)
n=0 n=0
using the counital properties
(8®id’]‘(£))A= (id']'(ﬁ) ®8)A=id’]‘(£). (11)

Because of (7) and (8), the restrictionsadfand d to the symmetric subalgeb&(£) mapS(L) to S(L) ® L
and£ ® S(L) respectively. They are related by

—

d 1s)=T121d Isw) -
Thus in calculus in the enveloping algeBfat is unnecessary to introduce both right and left differential maps [4].
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4. Simple product integrals

For L € L the right “initial value problem”
dX)=X®L, &X)=

or its left equivalent, has a solution h(£) only in the trivial casel. = 0. To get something nontrivial we must
consider formal power series.

Given an associative algebr4, the spaceA[h] of formal power series with coefficients id becomes an
associative algebra using the convolution product

[ee] [ee] o0 N
> hNAN Y hVNBy=Y"hVY " Ay ;B;
N=0 N=0 N=0 j=1

which is unital if A is unital. Below we shall use the well known fact thit:] € h.A[h] is a formal power series
with vanishing zero order term thet{x] has a unique two sided quasiinverse of the same form, that is an element
A'[h] € h A[h] such that

Alh]+ A'Th]1+ Alh1A'[h] = A'[h] + A[h] + A'[R]A[R] =

(For a proof, see [6] for example.)

We regardZ (£)[#] as an associative algebra with the convolution product derived from the 1té shuffle product.
We extend the coproduct and counit mapgaf’) to 7 (£)[A] by action on coefflcents retaining the same nota-
tions A ande for the extended maps. Similarly we extend the differential miapmdd to 7 (£)[[k] by action on
coefficients; then the Leibniz—Itd formulas continue to hold,

d («lh1BIh1) = d («lh])Blh) + alhld (BIh]) + d (alhl)d (BLA]), (12)
d (a[h1Blh]) = d (a[h]) BLA] + alh)d (BIA]) + d («lh])d (BlA]) (13)

where the actions of (£)[A] on (7 (£) ® £)[k] and(L ® T (£))[#] are defined by combining convolution with
the previously defined actions @f(£) on (7 (£) ® £) and(L ® 7 (L)).

In the theorem which follows tensor products of formal power series are formal power series with coefficients
formed by tensor product convolution, for example 1] = Y 5%_o 2" X, X[h]1 ® X[h] =Y "S_ohY Xn_; ®
X ;. For an elemenL[k] € hL[h], that is, a formal power series with coefficientsdnwhose zero order term
vanishes, evidentl®" L[A] € h"(®" L)[h], so thatd, -, ®" L[h] is a well defined element &F (£)[A].

Theorem 1.For an elemenX [A] of 7 (£)[k] of the formlz ) + o(h), the following conditions are equivalent
(@) AX[h]=X[h]® X[h], eX[h]=1

(b): X[h]=ED®"LIh] for someLh] € hL[h].
n=0

Proof. If (a) holds then, iterating, for > 1, A®™ X[h] = ®" X[h], and hence, using (6), for > 0, (X[h]), =
®"L[h] whereL[h] = (X[h])1 € hL[R]. Also (X[h])o = ¢X[h] = 1. Hence (b) holds. Conversely if (b) holds then

AXI=@D) (&"/Lh]) ® (®/LIA]) = (EB@ L[h] ) ® (@ ®”L[h]) = X[h] ® X[h];
n=0

n=0 j=0

alsoeX[h] = ®°(L[h]) = 1. Hence (a) holds. O
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For X[h] satisfying the conditions of Theorem 1 we writ¢h] = [[(1+ dL[k]) and call it thesimple product
integral generated by.[A].

Another useful description of the simple product integtdh] = [ [(1 + dL[A]) is that it is the unique solution
of the differential equation

dX[h]=X[h®L[k],  eX[h]=1. (14)

Indeed itis clear from the expansion (b) of the theorem and from the second part of conditionXE[}ighat]—[(lJr
dL[h]) satisfies (14). ButiX'[k] is a second solution then the differeri€g:] = X[h] — X'[h] satisfiesd Z[h] =0,
¢Z[h] = 0. HenceZ[h] = 0 and we have uniqueness. We use this characterisation to prove the following.

Proposition 2. [[(1+ dL[k]) is invertible, with inversd [(1 4+ dL[A]) whereL'[h] is the quasiinverse dt[h] €
hL[h].

Proof. Let us prove that, for arbitrari[k], K [h] € hL[h],
[[@+deir) [ J(1+ K(h]) =] [(1+d(LIR] + K[h]+ LIRIK [A])) (15)

from which the proposition follows by taking[.] andK [/] to be mutual quasiinverses and using the fact that when
L[h] =0, [[@A+dL[h]) = 17(c). Using the differential characterisation of product integrals and the Leibniz—It6
formula (12), we have, foK[h] =[](1+ dL[A]), Y[h] =][[(1 +dK[h]),

3(X[h]Y[h]) = (X[h1® L[Ah])Y[h] + X[h](Y[h] ® L[h]) + (X[h] ® L[h])(Y[h] ® L[A])
= X[h]Y[h] ® (L[h]+ K[h] + L[h]K[h]).
Also by multiplicativity of ,
e(X[hY[h]) = e(X[h])e(Y[h]) = 1.
HenceZ[h] = X[h]Y[h] is the unique solution of
dZIh = Z[h] ® (LIh] + K[h]+ L[RIK[h]), eZ[h]l=1,
thatis[[(1+ d(L[h]+ K[h]+ L[h]K[h])) as claimed. O
Corollary 3. For mutually quasiinversé.[h], L'[h] € hL[h] the map
JIh:T (L) — T[] ar— [[(1+dLirl)a [ [(1+ L'TR) (16)

is unital and multiplicative.

Note that] [(1+ dL[A]) € S(£)[A] and that/[2] mapsS(L) to S(L)[A].

5. Simple flows

We say that a mag[h]: 7 (L) = @, o(®"L) — T(L)[h] = (B2 o(®"L))[h] is gradedif it maps each
homogeneous component spareL to ()" L)[A].

Theorem 4.For a linear map
Jh):T (L) — T(L)[h] = <€B(®"£)) [A]
n=0

of the formidz () +-0(h), the following conditions are equivalent.
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(@) J[h]isgraded andAJ[h] = (J[h] ® J[h] A, eJ[h] =¢;
(b) For n =0,1,2,... and L1,Lp,...,L, € L, [hI(®"L;) = @"((idz+j[h])(L;)) for some linear map
jhl: £ — hL[h].

Proof. Suppose (a) holds. Defindgh] by J[k](O, L,0,0,...) = (O, (ids +j[h])L,0,0,...). Then j[k] inherits
linearity fromJ[A] and, since/ [h] = id7 () +0(h), j[h] mapsL to hL[h]. By (6), forn >0andLy, Ly, ..., L, €
L, sinceJ[h] is graded,

JUNGL)) = (JIH@" L)), = (A TH@" L)) | (@A @'L)) |
=@ VINEATE" L)) | o = (@)@ L) =" ((dc+il) L))
Also, again becausé[/] is graded,

J[/’l](lT(L)) = (8(][/1](1’]’(5))), 0, 0, .. ) = (8(1T(£)), 0, 0, . ) = 1T(£).

Hence (b) holds.
Conversely suppose that (b) holds. Then for each homogeneous productte®sds ® --- @ L, = @™ L;

JIRN(Q™ L) =®" ((idz +j[h])(L)))

and so since [4] is unital,

m

AJ[RI(@™ L) = A(@™ ((idz +j[RI)(L)))) Z ((idz+ /1) (L)) ® (&Lira((idg +jlRI)(L))))

=(J[M @ J[h)AL1®L2® -+ ® L.
Also e J[h] = ¢. So (a) holds as required.c

For J[h] satisfying the conditions of Theorem 4 we wrif¢x] = [[(id + dj[4]) and call it thesimple flow
generated by[A].

Corresponding to the differential description of simple product integrals we have the following characterisation
of the flow generated by; it is the unique solution of the differential equation

dJhl = (Jh® (idz+jlh))d, ellh]=e. (17)

Indeed it is clear from the expansion (b) of the theorem and from the second part of condition (&)ithat
[1(dz + dj[h]) satisfies (17). But if/’[2] is a second solution then the differenk@h] = J[h] — J'[1] satisfies

K[hl= (K[h]® (idz +jlh1))d, eK[h]=0. (18)
Using the Taylor—Maclaurin expansion, we have

KTh =idzc) Kh] = (e @ id7c) @) d" Kih]
n=0

= (e ®idr(r)) (K[h] ® @ ®"(id +j[h])d (")>

n=0
T ()
. —n
=eK[h @ P &"(idz +jh))d " =0.
n=0
Hence we have uniqueness.



384 R.L. Hudson / Ann. I. H. Poincaré — PR 41 (2005) 375-390

(16) defines a flow of which the generator is given by
jlhl(K) = L[h]K + K L'[h] + L[h]K L'[h]. (29)

We call such a flovinner. Provided thaf.[z] andL'[k] are mutually quasiinverse, the flow (16) is multiplicative. It
may be verified directly that the generajohk] given by (19) is quasimultiplicative, that is, for arbitraky, Ko € £,

Jh1(K1K2) = j[h](K1) K2 + K1j[h](K2) + j[h](K1) j[A](K2).
More generally we have the following.

Theorem 5.For the simple flow/[/#] generated byi[#] to be multiplicative it is necessary and sufficient thgt]
be quasimultiplicative fronf to L[h].

Proof. Suppose thai[4] is multiplicative. Comparing the homogeneous components of rank 1, of
JIh1(0,L,0,0,...)J[h](0,K,0,0,...)= J[h]((0, L,0,0,...)(0, K, 0,0,...))

using (2) we find that, for arbitrarl, K € £, (idg +j[h]) (LK) = (idz +j[A])(L)(idz +j[h])(K), that isj[h] is
guasimultiplicative.

Suppose now thaf[#] is quasimultiplicative. Thewr[2] = id + j[4] is multiplicative and so, using (2), we
find that, for arbitraryL1, Lo, ..., Lyy4n € L,

J[h](Ll ® L2 ®---Q® Lm)J[h](Lm+l ® Lm+2 ®---Q Lm+n)
=(o[hL1Q®o[h]L2® - @ c[h]Ly)(o[h]Lms1 @ o [h]Lt2® -+ @ o' [h]Ly)
= Y (olhlLp, ®c[hlLp,® - ®0c[h]Lp,)

PEPm,n
=Jlh Y (Lp®Lp® - ®Lp)
Pepm,n
= J[h]((Ll QL2® @ L) (Ln+1®@Lin12®@ -+ ® Lm+n))-
HenceJ[k] is multiplicative. O

6. Double product integrals

To understand the definition of double product integrals which follows, let us first consider a discrete double
product of elements;.; of elements of a unital associative algebra indexed by a Cartesian product of ordered sets,
which areweakly commuting the sense that; , commutes withx ;.- whenever botly # ;" andk # k". Then [9]
we have equality between the iterated ordered simple products

[1{Tise) =TT 0

for examplexq.ox2.0x1.1x1.2 = x1.2x1.1x2.2x1.2 because,» commutes withx1.1. We denote the common value of

— <
this iterated product by[ [ ; ; x;:«-

Now let M,, , be the set oin x n incidence matrices having the property that every row and every column
contains at least one entry 1. There are one-one correspondences between the dfeofeis, , and, on the
one hand, the set of orderedtuples(A1, Ao, ..., A,;) of nonempty subsets whose uniorNg, and, on the other
hand, the set of orderedtuples(B1, Bo, ..., B;) of nonempty subsets whose uniorNg given by

Mj’k=1<=>k€Ajﬁ>j€Bk. (22)
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Now letr[h] € h(L ® £)[h] and letm,n € N andM € M,, ,. Then we can form the double product

[T i) =]] { H(r[th“V“k} =11 [ [Tetrey™ } 22

(J,k) €Ny xNp, J=1lk=1 k=11j=1

in which, if M; ; =1, (r[hMik)J:k is a copy of the formal power serieg:] whose coefficients occupy the tensor
product of thejth copy of £ in ®” L with the kth copy of £ in ®" L, while, if M, ; = 0, (r[h]Mi*)/** is absent
from the double product (or formally 1). Since the elements = (r[1]¥i+)/* are formally weakly commuting
and since every row and every columnMfcontains a 1, this is a well defined elemen{@” £) ® (®"L))[A].

The backward—forward producf] (; i e, xn, ("[11"7#)7* is defined similarly.
Using the one-one correspondences (21) we have

> [T (o= > [] rtny# (23)

MEM'"JI (j’k)EmeNn A1UA2U‘”UAm:Nn jeNm

= Z ]_[ r[h]Brik (24)

B1UBU---UB, =N, keN,

where fordA; ={a1 >az > - -- > aja;} andBy = {b1 <bs < --- < b}

r[R)345 = r[R) 9 [h))5%2 . .. r[h]j;a“‘j', P T L 1) LS /3 L A LR

Now we can state our third characterisation theorem.

Theorem 6.For an elemen® [A] of (7 (£) ® 7 (£))[h] of the formly o7 (c) + O(h), the following conditions
are equivalent

@): (AQ®idrc)X[hl=X[A"3X[h1%3, (e ®idr(c)X[h]l=1,
(id7 ) @A) X[h] = X[RY3X[h1Y2,  (id7 (o) ®@e)X[h]=1;

b): Xxh=1e P Y I (r[h1Mi%)7 for somer[h] € h(L ® L)[h].

m,n=1 MEan,n (j,k)EN;; x Ny,

Proof. If (a) holds then by the counital conditions the component of r@k) of X[#]is 1e C=C® C, while
those of rankgm; 0) and(0; n) for m, n > 0 vanish. Also, by iteration of the coproduct conditions we obtain, for
m,n>1,
@m@aMxin= [ xwm/*
(jsk)ENm xN,

where now the ordered discrete double product is an elemé®8f7 (L)) ® (R 7 (£)))[#]. Using (6) we deduce
that the componerX ., [2] of joint rank (m; n) of X[h]in (7 (L) @ T (L)[h] = @;’,ﬁnzo((@mﬁ) ® (®"L))[h] is

>

((A"™ @ A™)X[h]) ) - = ( H X[h]j;k> ) -

11..D: ALL..1 . ;
@1 D5 ML)\ 1 EN, N, L1... D311 1)
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Only components of joint rankg; 0), (1; 0), (0; 1) and (1; 1) of X[k] can contribute to this. The first of these
components is 1 and the second and third vanish, as proved above; we denote the it Bynce X[h] =
17()yeT(c) +0O(h), r[h] € h(L ® £)[h] and we have

>

Xm;n[h]=< I1 (1+r[h]/?’<)) = Y 1—[ (r[n1M0) 7%,

(J, k)N, xN, @1, 1) @L. MeMyp (j,k)ENL XN,

Conversely, assuming (b) holds, then, using (23)

(AQidr(c)) X[h]

=(A®id7<c))<1€BEB > I1 (r[h]Mj,k)j2k>

mn=1MeM,, , (jk)eNy, xN,

:(A@id’]’(ﬁ))(l@ @ Z ﬁ r[h]jiAj>

m,n=1A1UA2U---UA,,=N,, jEN,,
= )
| | r[h]]’Af)

e @y (T

m,n=1A1UAU---UA,, =N, k=0 “jeN; jeNk
0o m . —
e @Y Y Y (wwy)  x ()
m,n=1k=0CUD=N,, AJUAU---UA;=C “jeNy Ap+1UAg42U-UA,=D “jeNk

00 m
=1 @ Z Z(X[h]k:|C\){l'2""’k};c(X[h]m—k;|D|){k+1’k+2’“"m};D

m,n=1CUD=N, k=0
= X123 X [h)23
Also, since(X[h])o.0 =1 and(X[h])o., =0 forn > 0,
(e®id7 ) X[h] =
A similar argument starting with the alternative expression (24) for the double product shows that
(id7(c) ® ) X[h] = X[RIV3X (M2, (id7 () ®e) X[h] =
Hence (a) holds as requiredO

—

For X[h] satisfying the conditions of Theorem 6 we wri¥f#] = [] (1 + dr[k]) and call it theforward—
backward directed product integrafjenerated byr[k]. The backward—forward directed product integral

[T (14 dr[h]) is defined analogously.
Except in the case whefl is commutative, there is no analog for double product integrals of the rule (15) for
multiplying simple product integrals used to prove Proposition 2. Despite this an analogous proposition holds.

Proposition 7. [] (1+ dr[h]) is invertible, with inverse[] (1+ dr’[h]) wherer/[h] is the quasiinverse of
rlh] € h(L ® L)[A].

Proof. Let us prove that[] (1+ dr[k]) ]_[ 1+ dr'[h]) = L1 (c)eT(c); the proof that ]_[ A+ ar'[h]) ]
A+ dr[h]) = 17 oyeT () IS Similar. We have
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(d ®idr(c) [[ (1+dr(n)

o0 —
=<3®id7<z:>><1® & > Il r[h]f*f‘f)
m,n=1A1UA2U---UA,;, =N, JENy,

—

13
> ( [1 r[h]’“‘f') r[h]"iAn

oo
m,n=1A1UAU---UA,, =N, “jeN,,_1
o0

- 1,3 , © 23
= @ ( Z 1_[ r[h]/?A_i) (@(V[h]z;nr[h]z;n_l~-~r[h]2?1))

m,n=1 “A1UAQU---UA,,_1=N,_1 jeN,,_1 n=1

using the multiplication rule (3). Thus

—

S 13
(d ®@idrc) [] (1+dr(h) = ( []a+ dr[h])) P[h)?®

whereP[h] = @fj‘;l{ﬁzzlr[h]lik}. A similar argument shows that

<«——

[] @+ d/[h]))

whereQl[h] = @;ﬁl{ﬁzzlr’[h]“}. Hence by the Leibniz—Ité formula, we have

(d ®idrcy [] @+ dr'ln]) = Q[h]2’3(

(Z@idm;)){ [T @+arn) [ (1+dr’[h])}

=<1—[

But from the definitions of?[k] and O[],

«~——

1,3 1,3
(1+ dr[h])) (PLA1+ Q[h]+ P[h]Q[h])2’3< [T+ dr’[h])> . (25)

(idz ®d) P[h] = (13 + P[h1>®)r[h]*2,
(idz @d) Q1h1 = r'[h“2(13 + Q1h1*3)
and hence, again using the Leibniz—It6 formula,
(idz @d)(PLh] + QLA+ P[h1Q[h1)
= (L) + PIIP)rInl™2 4 r Th1H2 (15, ) + QLRIZ)
+ (L) + PLAIP)rInl 2 ()2 (15 ) + QLAI)
=15 o) (Y2 + P Y20 )+ By [RTV2P TR0 )
+ P*3(r(n]M2 + ¢ [R]2 + r[n] M2 [h]12)
R G20 e U e S 1 e 1 e Y A e V) e (0 ) e Rl ) e U e U e TVl

Rearranging the first three terms(@gh>2 + r'[h]12 + r[h]l*zr’[h]l’z)lg.(ﬁ) and using the fact tha{x] andr'[4]
are mutually quasiinverse we obtain

(idg ®27)(P[h] + Q[h] + P[h]Q[h]) =0. (26)
Also, by multiplicativity ofe and from the definitions oP[k] and QO[]
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(idz ®¢)(P[h] + Q[h] + P[h]Q[h])

= (id; ®&) P[h] + (id, ®e)Q[h] + (id, ®e) P[h](id, ®¢)Q[h] = 0. (27)
From (26) and (27) it follows thaP k] + Q[h] + P[k]Q[k] = 0. Hence, from (25),

(Zl)®id,]-(£)){ l_[ (1—|—dr[h]) 1_[ (1+dr’[h])} =0.

But by multiplicativity of ¢,

(8®id7(5)){ [T @+drin) ] (1+dr/[h])}

— <« «——>

= (8 ® id’]’(ﬁ)){ 1_[ (1+dr[h])}(€ ® idT(ﬁ)){ l_[ (1+dr’[h])} = 1’]’(£).

Hence [ (1+dr[r]) [] (1+dr'[h]) =17)e7(c) @s required. O
Corollary 8. For mutually quasiinverse[i], r'[h] € h(L ® L)[k] the map

JIN:TL)RTL) — (TL)RTW)[A): &+ [] @+drial)e [ (1+dr'n)) (28)

is multiplicative.

7. The quantisation problem for Lie bialgebras

Let us consider further the multiplicative “inner double floi{z] defined by Corollary 8. We use the notations

R =[] @+drnl),  RUI=]] @+d'1h]) = (RIA])

The mapA[k] from 7 (L) to (7 (£) ® 7 (L£))[h] given by A[h] = J[h]A is a composition of multiplicative maps,
hence multiplicative. Let us investigate whatz] satisfies the coassociativity condition

(Alh]l @ id(c)) Alh] = (idT(c) ®Alh]) Alh]

where as usual compositions of formal power series whose coefficients are maps are formed by convolution. Using
the definition ofA[k] and the multiplicativity ofA, for arbitraryé € 7 (£) ® 7 (L),

(Al ® id7 () AlR1(E) = RIMTM?((A ® id7 () ALR](E)) R [h]H2
= R[hM?((A ® id7(z)) (RIMAE)R'[1])) R ]2
= R[hM2((A @ id7(£)) (RIA]) ((A ® id7(£) AE)) (A ®id7(z) (R'[h])) R [h1H2
= R[h1M?R[AIV3RIMZ3((A @ id7 () AE))R'[11*3R'[h]3R [h]H2

where we use the characterisation (a) of Theorem 6 of the forward—backward double product Ritelgadether
with the analogous characterisation of the backward—forward double product inkegral
A similar argument shows that

(id7(c) ®AIR]) A[R1(E) = RIRIZ2RIMMPRIMNS2((d7 () @A) AE)) R'[MY2R W3R [h1%3.

SinceA is coassociative(A ® id7 () A(§) = (id7 () ®A)A(E) and it follows thatA[#] is coassociative iR[4]
satisfies thguantum Yang—Baxter equation

RIR-2RIAIMPR(A1?® = R(A1**RIAT-P R0 (29)
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in (7(£) ®T(L)®7T(L))[h] (in which case |ts invers®’[h] satisfies the same equation). In [8] it is shown that
a necessary and sufficient condition ®fz] = ]'[ (1+ dr[h]) to satisfy (29) is that

rh)Y2r (R34 r (Y2 (0123 + [0 3r0)23 4 r RS2 ()3 ()23
= r[) 3 [1Y2 + r (0123 (0152 + (0123 RS2 4 r[R2 3 ()3 ()2 (30)

as elements of£ ® £ ® £)[A]. This equation also occurs in [2]. In a footnote to [9] it was claimed erroneously

to be a necessary and sufficient condition forglimmetrisedlouble product integral generated Hy:] to satisfy

the quantum Yang—Baxter equation. It can be verified directly thdhif satisfies (30) then its quasiinvers§h]

satisfies the same equation. The argument of [8] can be modified to show that this is necessary and sufficient for

R'[h]1= ] (1+ dr'[A]) to satisfy the quantum Yang—Baxter equation.
The condition (30) can be analysed by comparing coefficients of powérfo?]; for the lowest poweh? it is
found that the first order coefficient of r[#] must satisfy thelassical Yang—Baxter equation

12 13 12 23 13 23

[rl ry ]+[r1 » Iy ]+[r1 s 1=0
while higher powers give a hierarchy of inhomogeneous linear equations for the successive cosefficignts,
namely

r22e 3 4 22 r 23 2 23 4 2B 4 U2 28+ 13, 28

12 13 12 23 13 23 1,2 13 2,3 2313 12
=— > U+t 1+ [r] D= Y (rFEER 2.
s,t>1,s+t=n+1 s+t+u=n+1

Assuming that solutions of this hierarchy can be found we have thus constructed a deformation coproduct
A[h] in the algebraAd of formal power series with coefficients in the It6—Hopf algeliré) whose zero-order
coefficients are elements of the symmetric sub-Hopf algélofy which is isomorphic to the universal enveloping
algebra of the commutator Lie algebra®f The Lie bialgebra of which this is the quantisation is determined by
the Lie cobracket for:

s(L)= hfl(A[h](L) — A[h]°PP(L)) 4 o(h)
“Y(RIMAL)R'[h] - t2,1) (RIMAL)R'[h])) + 0o(h)
=h" (14 r[h]) ALY (1= rlhl) — 12,0 (1 + r[A1) A(L) (1 — r[A1)) + o(h)
=[r1— e pry L'+ L?]
where A[h]°PP is the opposite coproduct ta[i] got by replacing1 by t(2,1)r1 wherez( 1 |s the flip map from

L ® L toitself which exchanges the components of product tensors. Here we use the exp}éhs{br} dr(h]) =
1+r[h]+0(h?). Thus, modulo the existence of solutions to the hierarchy, we have a general method of quantisation
of so called quasitriangular Lie bialgebras, for which the cobracket is of this kindryihtisfying the classical
Yang—Baxter equation. It is natural to speculate that a more general theory of not necessarily inner double flows
may similarly quantise more general Lie bialgebras.

In fact it follows from an argument of Enriquez that, as conjectured in [9], the hierarchy always has solutions.
But Enriquez’s argument uses the general existence theorem for a quantisation of a Lie bialgebra [3]. Thus the
method of quantisation by double product integrals does not yet provide an alternative to the method of Etingof
and Kazhdan which is based on constructing an associator from the monodromy properties of the Knizhnik—
Zamolodchikov system of holomorphic differential equations. It seems unsatisfactory that a purely algebraic result,
the existence of a quantisation of a general Lie bialgebra, depends on such an analytic mechanism.
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