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Abstract

For a nice Markov process such as Brownian motion on a bounded domain, we introduce a non-linear potential operator
defined in terms of running suprema, and we prove a non-linear Riesz representation of a given function as the sum of a
harmonic function and a non-linear potential. The proof involves a family of optimal stopping problems in analogy to the
general construction of Bank and El Karoui [Ann. Probab. 32 (1B) (2004) 1030-1067], but here the analysis is carried out in
terms of probabilistic potential theory.

0 2005 Elsevier SAS. All rights reserved.

Résumé

Pour un processus de Markov régulier, comme le mouvement Brownien dans un domaine borné, nous introduisons un opé-
rateur potentiel non-linéaire défini & I'aide du maximum courant d’un processus et prouvons une représentation de Riesz non
linéaire d'une fonction donnée, comme somme d’une fonction harmonique et d’un potentiel non linéaire. La preuve repose sur
une famille de problemes d'arrét optimal, analogue a la construction qu’on peut trouver dans Bank et El Karoui [Ann. Probab.
32 (1B) (2004) 1030-1067], mais ici I'analyse est faite en termes de théorie du potentiel probabiliste.
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1. Introduction
In the context of potential theory it is well known that a functipsatisfying some strong regularity conditions
admits aRiesz representation

u=Gf+nh
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as the sum of a harmonic functiarand the potential of some functigh The harmonic function is determined by
the boundary behavior of, and the functionf can be reconstructed from the induced poter@iglor fromu by
a differentiation procedure:

f =DGf = Du.

In probabilistic termspD can be described as the characteristic operator of the underlying Markov process, and the
potential operato6 takes the form

¢
<ﬁuw=a[/fa»w]
0

In view of this probabilistic interpretation, let us now introduce tios-linear potential operato6 defined by

¢
Gf(x):= Ex|:/ sup f(XS)dt}.
0<s <t
0
Our purpose is to study the interplay between the subadditive opeFaamd a corresponding superadditive op-
erator D which is aderivator in the sense of the non-linear potential theory developed by Dellacherie [7]; see
also Mokobodzki [13]. In particular we are going to show that any funatisatisfying some very mild regularity

conditions admits aon-linear Riesz decompositiofthe form
u=Gf+h, @)

wheren is harmonic, and wherg can be reconstructed from the induced non-linear pote6tjalor from u in
terms of the derivatoD:

f=DGf =Du. )

The non-linear Riesz representation will follow as a corollary from a careful analysis of a family of optimal stopping
problems. In potential-theoretic terms, we study the dependence of the functions

Veu=cGl+ R(u — cG1)

on the parameter € R, whereRv denotes theéduiteof the function, i.e., the smallest excessive function larger
thanv. Each functionV,.u is characterized as the smallest functiosuch thatv > « andv > ¢G1 in the strong

order defined by the cone of excessive functions. In terms of the non-linear derfyatbe functionV.u can

also be identified as the smallest functiosuch thatv > u and Dv > ¢. We show that the solution of these two
equivalent minimization problems is given by the sum of a harmonic function induced by the boundary behavior
of u and the non-linear potential

¢
(_;(Qu\/c)(x)zEx[/ sup Qu(XS)\/cdt:|. 3
o<s <t
0

In the limit ¢ | —oo we obtain the non-linear Riesz representation (1) of the funetion

As a further consequence of the probabilistic representation (3), we can use the furgtiassbuilding blocks
for the construction of a concave envelope of the pro¢esdefined byU; = u(X;). In fact, the proces§' defined
by

C[ = V]'}M(X[)

with

I = sup Du(X;)
0<s <t
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dominates the procesgs, has concave paths up to a martingale, and the derivatives of the concave part only increase
at times wherC = U. Recall that the Snell envelope bf can be viewed as the stochastic version of a decreasing
envelope since it has decreasing paths up to a martingale and a point of decrease only occurs at tidies When

In an analogous way, we may view the proc€sas the stochastic version of a concave envelope.

The crucial idea of studying the dependence of réduites on a parameter goes back to G. Mokobodzki and D.
Heath as explained in [12]. It has also appeared in Whittle’s construction [15] of Gittins indices for the multi-armed
bandit problem. In both versions it has been a source of inspiration for the theory of Gittins indices in continuous
time as developed by El Karoui and Karatzas [9-11]. Conversely, the methods developed in that context allow
us to give a probabilistic interpretation of the results in [12], and they provide the key to the non-linear Riesz
representation (1). Independently, a stochastic representation problem with a similar structure has appeared in
the work of Bank [1] and Bank and Riedel [5] on singular optimization problems in intertemporal consumption
choice, where it was solved explicitly for a class of Lévy processes. Combining these two developments, Bank
and El Karoui [3] solved the representation problem and explored the idea of a concave envelope in a general
semimartingale setting; see also [4] for a survey of the general theory and some of its applications.

In this paper, our purpose is to go “back to the roots” and to illustrate these recent developments in the classi-
cal setting of probabilistic potential theory. In particular we would like to point out the connection to non-linear
potential theory, since we hope that it should be possible to go further in that direction.

2. A non-linear potential operator

Let (X;);>0 denote a strong Markov process with topological state sgaaed life time¢, defined on a sto-
chastic bas€s2, F, (F:):>0, (Px)xes) Which satisfies the usual conditions. We use the notation

Prf(x):=Ex[f(X1); T <¢]
for any stopping tim&'. Let G denote the classicabtential operatorof the process, defined by

00 ¢
Gf(x) 3=/sz(x)dl=Ex|:/f(Xz)dl:|,
0 0

and recall that theharacteristic operatoD of the process is defined by
u(x) — Pru(x)
Ey[T]
for functionsu such that the limit exists. Here the limit is taken along decreasing neighborhoodsaofi T

denotes the exit time from such a neighborhood. _
Let us now consider the subadditive potential operétatefined by

Du(x) :==lim

¢
Gfx):= E[ / sup f(Xs)dt}- @)

5 o<s <t

The corresponding superadditive operalois given by
u(x) — PT”(X)’ ()
Ex[T]

where the infimum is taken over exit times from open neighborhoodsNbte thatD is a “derivator” in the sense
of Dellacherie [7], i.e.,

Du(x) :=inf

u<v=—= Du<Dv on{u=uv} (6)
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Our aim is to prove existence and unigueness of the non-linear Riesz representation (1) in terms of the non-linear
operatorsG andD.

For the ease of exposition, we do not insist on proving our results in the most general setting; this would involve
some technical refinements such as the fine topology of the process, in analogy to the general constructions in Bank
and El Karoui [3]. Instead, we introduce the following assumptions:

(A1) S is a locally compact metric space, and we denoteSky S U {A} the Alexandrov compactification of.
Functionsf on S will also be viewed as functions agfiwith f(A) := 0.

(A2) The processX;);>o is a Hunt process in the sense of [6] XVI.11 such that{inX; = A. In particular it is
quasi-leftcontinuous.

(A3) The excessive functions of the process are lower-semicontinuous, and the fyundétined by

g(x):=Ex[¢]=Gl(x) (7
is continuous and bounded.

Recall that a measurable functigh>> 0 on S is excessivé
P f<f and Iir(thf =/,
1

and that any excessive function is lower-semicontinuous if, for example, the process has the strong Feller property.
In particular, our assumptions are satisfied for Brownian motion on a bounded domain, and in the sequel the reader
could simply consider this special case.

Let us now be more precise as to the definition and the properties of the non-linear paightial

Lemma 2.1.Let f be an upper-semicontinuous function $riThen the functiom = G f defined by

¢
u(x) =G f(x) = E[ / sup f(xu)ds},

) O<u<s
satisfies
uzf-g,
and for anyx € S such thatG £ (x) € R we have
m u(X;)=0 P,-a.s.andinC(P,). (8)

Moreover, the functiois f is excessive if > 0, and it is lower-semicontinuous dif > ¢} for anyc € R.

Proof. (1) Since
[ sup fx0ze t<¢)=p.<i<crem,
0<s <t

where D, denotes the first entrance time into the closed get c}, the process

sup f(Xs)I{t<§} (l P O)
o<s <t

is adapted. Thus,

[e.e]

Ef(x) =/Ex[OSUp f(Xs)I{l<§}] dr
0

<<t
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is well defined or{ f > —oo} and satisfies

Gf(x)= f(x)g).
On{f = —oo} we use the definition

¢
Gf(x) ::CljinooEx[/ sup f(Xu)VCds],

5 o<u<s

and by monotone convergence we can write

¢
Gf(x)= E[ f sup f(Xs>dt]

J 0Ss<

on{G f > —o0}.
(2) Since

¢
Piu(x) = Ey [/ sup f(Xu)dSi|

f t<us
satisfiesP,u < u and lim o Piu = u for f > 0, the functionu = G f is excessive as soon as the functipris
non-negative.
(3) If f is bounded from below by € R thenG f = G(f — ¢) + cg is the sum of an excessive function and of
a continuous function, hence lower-semicontinuous due to our assumption (A3).
(4) If u(x) = G f(x) is finite then, by dominated convergence,

¢ ¢
M(Xz)=EX,[/ sup f(Xu)ds:| =Ex [[ sup f(X,)ds fz}

5 ou<s t<u<s

t

converges to 0, botl?,-a.s. and incl(py),ast1¢. O

Our aim is to show that, conversely, any functiosatisfying some mild regularity conditions admits a unique
representation in terms of the non-linear potential oper@tor
3. Uniqueness of the non-linear Riesz representation

In this section, we show that a non-linear Riesz representation of the form (1) is in fact unique.

Definition 3.1. Let us say that a measurable functioon S hasnice boundary behaviaf

Sli?{] u(X;) Py-a.s.andinci(py)
t
foranyx € S. In this case we define
Pru(x) = Ex[u(X7); T < ¢]+ Ex [lllpg u(Xe); T = K]

for any stopping tim&" < ¢.
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Let 7 (x) denote the class of all exit times from relatively compact open neighborhoodsanid Iet7~'(x) 2
7T (x) denote the class corresponding to all open neighborhoodsiofparticular, we have € 7 (x). Recall that
a continuous functioh on S is harmonicif

h(x) = Prh(x) YT eT(x)

and that it is said to bef class(D) if, for any x € §, the family{h(X7) | T € 7 (x)} is uniformly integrable with
respect toP,. A harmonic functiom: of class (0) has nice boundary behavior, and it is in fact determined by its
boundary behavior:

h(x) = E, [nm h(x,)].
¢
Moreover,

h(x)= Prh(x) VT €T (x). (9)

Theorem 3.1.Suppose thai is a real-valued function o§ which admits a non-linear Riesz representation
u=Gf+h, (10)

whereh is a harmonic function of clas®) and f is upper-semicontinuous. Such a decompositi@)is unique.
More preciselyy has nice boundary behavior,

h(x) = E, [Iim u(Xt)],
y;
and

F() = Du(x) = inf u(x) — Pru(x) _ u(x) — Fru(x)

) in (11)
TeT (x) EL[T] TeT (x) Ex[T]

foranyx € S. In particular, the functionDu is upper-semicontinuous. ff is bounded from below hye R thenu
is lower-semicontinuous and satisfies cg + k.

Proof. (1) Sinceu(x) andi(x) are finite by assumption, we hagef (x) < oo for anyx € S. By Lemma 2.1,
Ii?; (u(X)) —h(X)) =0, Py-a.s.andinct(P,).
t

Sincer is a harmonic function of clag®), we obtain the existence of lim u(X;) and the identity
h(x) = E, [m h(x,)] — Ex[m u(x,)].
(2) For any stopping tim& e 7 (x) we haveh(x) = Prh(x), hence
u(x) = Pru(x) = G f (x) — PrG f (x)

- T - ¢
=Ex / sup f(Xy)dt +Ex|:/< sup f(Xs) — sup f(Xs))dt;T<§j|
0<s <t 0<s <t T<s<t
-0 - T
T -
>E, / sup f(X,)dt |. (12)
0<s <t

L) i
In particular,
u(x) — Pru(x) > f(x)Ex[T],
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and this implies
Du(x) = f(x).
(3) In order to prove the converse inequalidy:(x) < f(x), we fixa > f(x) and definel,, € %(x) as the exit
time from the open neighborhodd < «} of x. Since

sup f(Xs) = Sup f(Xs)

Toa<s<t 0<s<t
fort € [Ty, ¢), the general inequality in (12) becomes an equalityffoe T,,. Thus
Ty
u(x) — Pru(x) = E{/ sup f(Xs)dtj| S aEx[Ty],
9 0<s <t

and this implies

. u(x) — ﬁru(x)
f— TR < ). 13
1w ET] fx) (13)

(4) We have to show that the left-hand side of (13) coincides Wth(x). Let (Uy).>1 be a sequence of
relatively compact open sets increasingstand denote by, the exit time fromU,,. ForT € 7 (x), the stopping
timesT, :=T A S, € 7T (x) increase td', and so we havé&,[T,] * E([T]. Moreover, since the process is quasi-
left-continuous and has nice boundary behavior,

lim Pr,u(x) = Ey [Iim u(XTn)] = E[u(Xr): T <¢]+E, [lip; w(X)): T = g] = Pru(x).
n n t

Thus,

u(x) — Pru(x) o u(x) = Pru(x)
E(T]  n Ex[T,]

= Du(x)

foranyT e T (x), and this shows that both expressionsfor(x) in (11) coincide. O

4. A family of optimal stopping problems

Let u be acontinuoudunction onS. We assume that is of class D), that it has nice boundary behavior, and
that the functior: defined by

h(x) = Ey ['f{? u(X)]

is continuous orfs. Our aim is to prove the existence of a non-linear Riesz representation fubtracting the
harmonic functior: of class(D), we may assume without loss of generality

limu(X,)=0 P,-a.s. (14)
¢

for x € S. Note that (14) and our conventiatiA) := 0 allow us to write
Pru(x) = Ei[u(X7)] = Ex[u(X7); T <¢]

for any stopping tim&" < ¢.
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As a first step in our construction, we study the following family of optimal stopping problems and the variation
of the correspondinggduites For eachr € R we define

Veu(x) = sup Ex[u(Xr)+cT]. (15)
TeT (x)
In other wordsV.u denotes the value function of the optimal stopping problem with paramethich is defined
by the right-hand side of (15). Note th¥tu(x) < oo, due to our assumption (A3). Singe=T + ¢ o 67 for any
stopping timer” < ¢, we have

g(x)=Ex[T]+Ex[g(XT);T<§], (16)
hence
Veu(x) =cg(x) + sup Ex[(u—cg)(X7)]. (17)
TeT (x)

But the value function of the optimal stopping problem introduced on the right-hand side of (17) coincides with the
réduite Ru. of the continuous function,. := u — cg, defined as the smallest excessive functi@uch thav > u,;
see, e.g., [14], Theorem IIl.1. Moreover, the supremum in (17) is attained by the first entrance time

D.:=inf{r>0]| X, e A} <¢
into the set

Ac:={Ruc=uc}={Veu =uj.
Note thatA. is closed sinceRu,. is excessive, hence lower-semicontinuous due to our assumption (A3). These
properties of the réduite are well known on various levels of generality; see, e.g., [8], Theorem 2.76. For the
convenience of the reader we include a short proof in our present setting.
Lemma 4.1.The réduiteRu,. of the functionu, is given by

Ruc(x) = Ex[uc(Xp,)], (18)
and it coincides with the value function of the optimal stopping probleth
Proof. DefineA. , :={Ru. < (14+1/n)u.} and denote by, , the first entrance time into the closed gdet,. By
Mokobodzki’'s theorem as explained in [12] or in [7], No. 16,

Ruc = R((Ruc)lya,,)-

Applying Hunt’s balayage theorem as stated in [6], XIV.97 to the excessive funRiigron the right-hand side,
we obtain

Ruc(x) = Ex[Ruc(Xp,,)]-
Using quasi-left-continuity of the process and our assumptionswe obtain

lim Ruc(Xp,,) =uc(Xp,) in LYP),
and this implies Eq. (18). In order to identi§u.(x) as the value of the optimal stopping problem in (17), note
first that the excessive functian= Ru,. satisfiesv > Prv > Pru for any stopping time’ € 7 (x). On the other
hand, we have just seen that for ang A. the valueRu.(x) is approximated by stopping time3, , € 7 (x),

and this remains true if we replace eabh, by a suitable7;, € 7 (x). Forx € A, we can approximate the value
Ru.(x) = u.(x) by any sequence of stopping timEse 7 (x) decreasing to 0. O
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Combining the predecing lemma with Eq. (16), we see that the fundtinns given by
Veu(x) = cg(x) + Ruc(x) = Ex [u(XDE) + ch]. (19)

In particular,V.u is lower-semicontinuous since it is the sum of a continuous and an excessive function. Clearly,
V.u dominates the function v cg, and it is excessive for > 0 since the function®u,. and g are excessive.

This impliesV.u > R(u Vv cg) for ¢ > 0, but in general there is no equality. The following lemma provides a
characterization o¥,.u in terms of thestrong orderinduced by the cone of excessive functions, i.e.,

V>w:i=>v—w IS excessive
Lemma 4.2.V.u is the smallest function such thatv > u andv > cg.

Proof. The functionv := V.u dominates:, and it satisfiew > cg sincev — cg = Ru. is excessive. Conversely,
consider any functio such thatv > u andv > ¢g. Thenv = cg + w for some excessive functiom, and w
satisfies

W=U—cg>U—cg=Uc
hencew > Ru.. Thus,
v=cg+w=cg+ Ru. =V.u. O

We are now going to study the dependencé/af(x) resp.Ru.(x) on the parameter € R. This idea goes
back to G. Mokobodzki and D. Heath, and for the rest of this section we follow their approach, as explained in
Heath [12] in the special case where the functiois excessive. The next section will provide a new probabilistic
interpretation of the potential theoretic results in [12]. It should be seen as a special case of the general discussion
in Bank and El Karoui [3], and it will provide the key to our existence proof for the non-linear Riesz representation
of the functionu.

Lemma 4.3.For eachx € S, V.u(x) is increasing and convex i

Proof. Monotonicity is clear from the definition. Convexity follows from the representation (17), since the right-
hand side may be viewed as the supremum of functions which are affine in

Since the functior — V.u(x) is convex, it is almost everywhere differentiable. We denot@by,u(x) and
9~ V.u(x) the derivatives from the right and the left, respectively, and Byu (x) the derivative if it exists. The
notationd R.u(x) will be used in the same way. Let us now analyze these derivatives in more detail.Vainise
increasing inc and V.u > u, the setsA. = {V.u = u} are decreasing in. Thus, the first entrance timds, are
increasing inc, and we write

D._ :=limD D.y :=1lim Dy,
c ate as c+ bl b
We can now describe the derivativescof> V.u(x) andc — Ru.(x) in terms of the stopping timeB,..

Lemma 4.4.For anyc € R,

Ex[De—]1< 8™ Veu(x) <3 Veu(x) < Ex[Deyl, (20)
and for almost alk € R we have
oVeu(x)=E,[D.] (22)

and
dRuc(x) = Ex[Dc] — g(x) = —Ex[g(Xp.)]. (22)
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Proof. Applying Eq. (18) with parametédr, we obtain

Vpu(x) — Veu(x) < (b — ©)g(x) + Ex[up(Xp,)| — Ex[uc(Xp,)]
=(b—c)(g— Pp,gx)
= (b —c)Ex[Dp]
for b > ¢, and in the same way we obtain
Veu(x) — Vau(x) = (¢ — a) Ex[Dq]

for a < ¢. This implies the inequalities in (20). But sinég [D._] and E,[ D] are the limits from the left and
from the right of the increasing functian— E.[D.], we haveE,[D._] = E.[D.] = Ex[D.4] for almost allc.
Thus the derivative V,.u(x) exists for almost alt and can be identified witk,[D.]. O

5. Existence of the non-linear Riesz representation

As in the previous section we assume thas a continuous function of of class (0) with boundary behav-
ior (14). In view of Lemma 4.4,

b
Vpu(x) — Vou(x) = f Ex[D.]dc (23)
and
b

Rua(x)—Rub(x)z/Ex[g(XDC)]dc. (24)

a

In order to analyze these expressions in more detail, we introduce the fupatiefined by
y(x):=supc|x e A} (25)
and the increasing adapted process

= sup y(X,) (=0 (26)
0<s<r

Note thaty is upper-semicontinuous since the sétsare closed, and that the pathg 6f), > are right-continuous.

Proposition 5.1.For a < b,
Rug(x) — Rup(x) =G(y Ab)(x) — G(y Aa)(x).

Proof. Due to (24) we have
b

b
Rugy(x) — Rup(x) =/Ex[§ — D ]dc= Ex|:/(§ - Dc)dc:|~

Now note that

{t<Dc<§}={ch(Xs)>uc(Xs)\7’sgt,t<§}={y(Xs)<ch<t,t<§}={Ft <c,t <} (27)
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Thus,

b b ¢ b ¢ ¢
/(C —DC)dCZ// I{chs}dstZ// I{[}}C} deCZ/(FS Ab—Ty Aa)ds,
a a0 a0 0

and so we get
¢ ¢
Rug(x) — Rup(x) = E{/ Ty /\bdsi| - E{f Ty /\ads:| =Gy Ab)(x)—G(y Aa)(x). O
0 0

Lemma 5.1.1im¢4o0 Ruc(x) =0.

Proof. Let (U,).>1 be a sequence of relatively compact open ggtsncreasing tas, ang defin€rl,, as the exit
time fromU,.. Construct an increasing sequericg) such that &< ¢, 1 oo andu,, <0onU,. Then

Ruc, (x) = Ex[uc,(Xp,,)] < Ex[uc,(Xp,,): D, > Tn] < Ex[u™ (Xp,,v1,)].
and the right-hand side converges to 0 due to our assumption (14) on the boundary behavianof

Theorem 5.1.For anya € R, the functionsku, and V,u can be represented as follows

¢
Rug(x) = Ex [/(Ft —a)" dt] =Gy —a)t(x), (28)
0
and
¢
Vau(x)zEx[/F, Vadt:| =G(y Va)(x). (29)

0

Proof. By Lemma 5.1,

3 ¢ - ¢
Rua(x)z}!iTToEx[f(n Ab—]",/\a)dti|:EX|:[(E—EAa)dt:|=Ex /(n—a)+dz]

0 0 -0

and
¢ e -

Vau(x)=ag(x)+Rua(x)=Ex|:/((ﬂ—a)++a)dti| =Ex|:/EVadt . O

0

0 n

The representation (29) allows us to identify the functi9n as the solution of a minimization problem defined in
terms of the non-linear derivatdp.

Corollary 5.2. LetV denote the class of all functiomsadmittinga non-linear Riesz representation. Th&mu: can
be characterized as the smallest functioa V such that

(i) v>u;
(i) Dv>c.
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Proof. The functionv := V.u belongs toV and satisfies > u andv = G(y Vv ¢), henceDv =y Vv ¢ > ¢ due to
Theorem 2.1. In order to show th¥tu is minimal, consider a functiofi € ¥V such thaty > u andDv > ¢. Thus,

# = GDV + h, whereh is a non-negative harmonic function afitb = ¢ + f for some lower-semicontinuous
function f > 0. Thus,

i=Gc+Gf+h=c-g+w
wherew := G f +h is excessive, since > 0 andDw = f > 0. This impliesi > cg, and the inequality > v =V,
now follows from Lemma 4.2. O

We will now derive the non-linear Riesz representation of the funatidrom the representation (29) of the
functionsV,.u, combined with the observation that= Du.

Theorem 5.2.Letu be a continuous function of clag®) on S such that
limu(X;)=0 P,-a.s.
¢

Then, for any € S,
¢

u(x) = Ex|:/ sup Qu(xs)dz} = GDu(x). (30)

S

Proof. (1) For anyc € R we havey (x) > ¢ if and only if V.u(x) = u(x). But this translates into the condition that
u(x) — Ex[u(X7)] = cE[T]

for any stopping time&" € 7 (x), which is equivalent tdu(x) > ¢. This shows that the two functionsand Du
are in fact identical.
(2) Fore < y(x) we have

¢
u(x) = Veu(x) = Ex [/ I dt] =Gy (x) = GDu(x),
0

due to (29) and part (1). Thus, the representation (30) holds fox any such that/ (x) > —oo.
(3) Suppose that (x) = —o0. Since

¢
—00 <u(x) <vlx):= il[n Veu(x) = Ex|:/ sup )/(Xs)dt:|,

5 0<s <t
the entrance time into the st > —oo} is Py-a.s. equal to 0, and this implies
lim D,=0 P,-a.s. (32)
cl—00

Comparing Eq. (19) with the representation (29Vpfi (x), we see that

¢
E[u(Xp,) +cD.] = E{/ v cdt:|.
0
This implies

¢
Ex[”(XDC)] =Ex|:/rtdt:|a (32)
D,

c
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since
D,

/F,\/cdt:cDC.
0

In view of (31) and since is of class D), the left-hand side of (32) convergesitox), and we can use monotone
convergence on the right-hand side to conclu@e = v(x), as desired. O

Let us now return to the optimal stopping problem in (15), and let us replace theZalagdy the class of all
stopping timed" < ¢. The following characterization of the value and of the optimal stopping times in terms of the
non-linear operatoDd is a special case of the results developed by Bank [2] in a general semimartingale setting.
Corollary 5.3. For anyc € R, the optimal stopping problem

SUPE,[u(XT1) +cT],
T
where the supremum is taken over all stopping tiffies ¢, is solved by the entrance tim2. into the closed set
{Du > ¢}, and its value coincides with
Veu(x) = G(Du Vv ¢)(x).
More precisely, a stopping timg is optimal if and only if it satisfies the two conditions

D.<T <D, (33)
and
sup Du(X;) = Du(Xr). (34)
o<t<T

Proof. For any stopping tim& < ¢,

Veu(x) = cg(x) + Rue(x) > cg(x) + PrRuc(x) > cg(x) + Pruc(x) = c(g(x) — Prg(x)) + Pru(x)
= E[u(Xr)+cT].

But Lemma 4.1 shows that the val¥feu (x) is attained by the stopping tinf®e= D., and saD,. is optimal. On the
other hand,

Ex[”(XT) + CT] =cg(x) + Ex[uc(XT)]
for any stopping tim&" < ¢, and due to (30) we can write
- ¢

¢
Ex[uc(XT)]Z /i V(X)_C) j|<Ex|:/ Sup(V(Xs)_C)+dtj|

L5 7 0<s <t

N

E, / sup (V(XS) - C)+ dt:| = E; [MC(XDH_)]
0<s <t

“De+
sinceD.,. :=limy . Dy =inf{r > 0] y(X;) > c}. Clearly, optimality ofT is equivalent to the condition that both
inequalities reduce to an equality. For the second inequality this is the case if and only ., P,-a.s. The
first inequality becomes an equality if and only if

sup (y(Xs) —c)= sup (y(X; )_c)+ vt e[T, )

T<s<t 0<s <t
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Py-a.s. By upper-semicontinuity of, this is equivalent to
y(Xr)= sup y(Xs)>c,
0<s<T

and thus to the two conditior’§ > D. and (34). O

6. A pathwise concave envelope

Let u be a continuous function of satisfying the conditions of the last section. If we observe the réduite
Ru = Vou of the functionu along the paths of the Markov proceksthen we obtain thé&nell envelopef the
procesd := u(X). Recall that the Snell envelope is defined as the smallest supermartingale which dominates the
processU. As suggested by the trivial case whe¥es a uniform motion to the right on the unit intenvd, 1],
the Snell envelope may be viewed as a stochastic analogue of the decreasing envelope of a fufi@tin lon
a similar way, one can think of introducing a stochastic analogue of the concave envelope. Such an approach was
developed by Bank and El Karoui [3] in a general semimartingale context. Let us now illustrate their construction
in our present Markovian setting, where it involves the family of functigns

Consider the process defined by

Clearly,C > U, andC dominates the Snell enveloppg-a.s. ify (x) > 0. Forr < ¢,

¢ ¢ ¢
C,:EX[|:/ sup y(Xu)\/F,dsi| =EX|:/ sup y(Xu)\/F,ds|}}i| =Ex|:/ Ty ds|]-",i| =M, — A,

5 ou<s t<u<s

t t

where the proces¥ defined by

¢
M; = Ex|:/ I ds‘]:l:|

0
is a martingale, and the processlefined by
t
A= / I';ds
0

has convex paths with increasing derivativgés Thus, the proces§ has concave paths up to a martingale, and
may thus be viewed as the stochastic analogue of a concave majorant of the probtsgover, the process has
the following minimality property:

Proposition 6.1.The procesd™ only increases at times whe = U;:
¢
/(Ct —Uydl; =0.
0

Proof. For any timer such thatC;(w) > U,(w), the valuec := I;(w) satisfiesV.u(X;(w)) > u(X,;(w)), hence
y (X;(w)) < c. Thus,t is not a point of increase for the function> I'; (w), and sa does not belong to the support
of the corresponding measuré&dw). O
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