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Abstract

For a nice Markov process such as Brownian motion on a bounded domain, we introduce a non-linear potential
defined in terms of running suprema, and we prove a non-linear Riesz representation of a given function as the
harmonic function and a non-linear potential. The proof involves a family of optimal stopping problems in analogy
general construction of Bank and El Karoui [Ann. Probab. 32 (1B) (2004) 1030–1067], but here the analysis is carrie
terms of probabilistic potential theory.
 2005 Elsevier SAS. All rights reserved.

Résumé

Pour un processus de Markov régulier, comme le mouvement Brownien dans un domaine borné, nous introduison
rateur potentiel non-linéaire défini à l’aide du maximum courant d’un processus et prouvons une représentation de R
linéaire d’une fonction donnée, comme somme d’une fonction harmonique et d’un potentiel non linéaire. La preuve re
une famille de problèmes d’arrêt optimal, analogue à la construction qu’on peut trouver dans Bank et El Karoui [Ann.
32 (1B) (2004) 1030–1067], mais ici l’analyse est faite en termes de théorie du potentiel probabiliste.
 2005 Elsevier SAS. All rights reserved.

MSC:60J45; 60G40

1. Introduction

In the context of potential theory it is well known that a functionu satisfying some strong regularity conditio
admits aRiesz representation

u = Gf + h
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0246-0203/$ – see front matter 2005 Elsevier SAS. All rights reserved.
doi:10.1016/j.anihpb.2004.07.004
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as the sum of a harmonic functionh and the potential of some functionf . The harmonic function is determined b
the boundary behavior ofu, and the functionf can be reconstructed from the induced potentialGf or from u by
a differentiation procedure:

f = DGf = Du.

In probabilistic terms,D can be described as the characteristic operator of the underlying Markov process,
potential operatorG takes the form

Gf (x) = Ex

[ ζ∫
0

f (Xt )dt

]
.

In view of this probabilistic interpretation, let us now introduce thenon-linear potential operator�G defined by

�Gf (x) := Ex

[ ζ∫
0

sup
0�s�t

f (Xs)dt

]
.

Our purpose is to study the interplay between the subadditive operator�G and a corresponding superadditive o
eratorD which is aderivator in the sense of the non-linear potential theory developed by Dellacherie [7
also Mokobodzki [13]. In particular we are going to show that any functionu satisfying some very mild regularit
conditions admits anon-linear Riesz decompositionof the form

u = �Gf + h, (1)

whereh is harmonic, and wheref can be reconstructed from the induced non-linear potential�Gf or from u in
terms of the derivatorD:

f = D�Gf = Du. (2)

The non-linear Riesz representation will follow as a corollary from a careful analysis of a family of optimal sto
problems. In potential-theoretic terms, we study the dependence of the functions

Vcu = cG1+ R(u − cG1)

on the parameterc ∈ R, whereRv denotes theréduiteof the functionv, i.e., the smallest excessive function larg
thanv. Each functionVcu is characterized as the smallest functionv such thatv � u andv � cG1 in the strong
order defined by the cone of excessive functions. In terms of the non-linear derivatorD, the functionVcu can
also be identified as the smallest functionv such thatv � u andDv � c. We show that the solution of these tw
equivalent minimization problems is given by the sum of a harmonic function induced by the boundary b
of u and the non-linear potential

�G(Du ∨ c)(x) = Ex

[ ζ∫
0

sup
0�s�t

Du(Xs) ∨ c dt

]
. (3)

In the limit c ↓ −∞ we obtain the non-linear Riesz representation (1) of the functionu.
As a further consequence of the probabilistic representation (3), we can use the functionsVcu as building blocks

for the construction of a concave envelope of the processU defined byUt = u(Xt ). In fact, the processC defined
by

Ct := VΓt u(Xt )

with

Γt := sup Du(Xs)

0�s�t
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dominates the processU , has concave paths up to a martingale, and the derivatives of the concave part only i
at times whenC = U . Recall that the Snell envelope ofU can be viewed as the stochastic version of a decrea
envelope since it has decreasing paths up to a martingale and a point of decrease only occurs at times wheC = U .
In an analogous way, we may view the processC as the stochastic version of a concave envelope.

The crucial idea of studying the dependence of réduites on a parameter goes back to G. Mokobodzk
Heath as explained in [12]. It has also appeared in Whittle’s construction [15] of Gittins indices for the multi-
bandit problem. In both versions it has been a source of inspiration for the theory of Gittins indices in con
time as developed by El Karoui and Karatzas [9–11]. Conversely, the methods developed in that conte
us to give a probabilistic interpretation of the results in [12], and they provide the key to the non-linear
representation (1). Independently, a stochastic representation problem with a similar structure has app
the work of Bank [1] and Bank and Riedel [5] on singular optimization problems in intertemporal consum
choice, where it was solved explicitly for a class of Lévy processes. Combining these two development
and El Karoui [3] solved the representation problem and explored the idea of a concave envelope in a
semimartingale setting; see also [4] for a survey of the general theory and some of its applications.

In this paper, our purpose is to go “back to the roots” and to illustrate these recent developments in th
cal setting of probabilistic potential theory. In particular we would like to point out the connection to non-
potential theory, since we hope that it should be possible to go further in that direction.

2. A non-linear potential operator

Let (Xt )t�0 denote a strong Markov process with topological state spaceS and life timeζ , defined on a sto
chastic base(Ω,F , (Ft )t�0, (Px)x∈S) which satisfies the usual conditions. We use the notation

PT f (x) := Ex

[
f (XT ); T < ζ

]
for any stopping timeT . Let G denote the classicalpotential operatorof the process, defined by

Gf (x) :=
∞∫

0

Ptf (x)dt = Ex

[ ζ∫
0

f (Xt )dt

]
,

and recall that thecharacteristic operatorD of the process is defined by

Du(x) := lim
u(x) − PT u(x)

Ex[T ]
for functionsu such that the limit exists. Here the limit is taken along decreasing neighborhoods ofx, andT

denotes the exit time from such a neighborhood.
Let us now consider the subadditive potential operator�G defined by

�Gf (x) := Ex

[ ζ∫
0

sup
0�s�t

f (Xs)dt

]
. (4)

The corresponding superadditive operatorD is given by

Du(x) := inf
u(x) − PT u(x)

Ex[T ] , (5)

where the infimum is taken over exit times from open neighborhoods ofx. Note thatD is a “derivator” in the sens
of Dellacherie [7], i.e.,

u � v �⇒ Du � Dv on {u = v}. (6)
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Our aim is to prove existence and uniqueness of the non-linear Riesz representation (1) in terms of the n
operators�G andD.

For the ease of exposition, we do not insist on proving our results in the most general setting; this would
some technical refinements such as the fine topology of the process, in analogy to the general construction
and El Karoui [3]. Instead, we introduce the following assumptions:

(A1) S is a locally compact metric space, and we denote byS = S ∪ {∆} the Alexandrov compactification ofS.
Functionsf onS will also be viewed as functions onS with f (∆) := 0.

(A2) The process(Xt )t�0 is a Hunt process in the sense of [6] XVI.11 such that limt↑ζ Xt = ∆. In particular it is
quasi-leftcontinuous.

(A3) The excessive functions of the process are lower-semicontinuous, and the functiong defined by

g(x) := Ex[ζ ] = G1(x) (7)

is continuous and bounded.

Recall that a measurable functionf � 0 onS is excessiveif

Ptf � f and lim
t↓0

Ptf = f,

and that any excessive function is lower-semicontinuous if, for example, the process has the strong Feller
In particular, our assumptions are satisfied for Brownian motion on a bounded domain, and in the sequel th
could simply consider this special case.

Let us now be more precise as to the definition and the properties of the non-linear potential�Gf .

Lemma 2.1.Letf be an upper-semicontinuous function onS. Then the functionu = �Gf defined by

u(x) = �Gf (x) := Ex

[ ζ∫
0

sup
0�u�s

f (Xu)ds

]
,

satisfies

u � f · g,

and for anyx ∈ S such that�Gf (x) ∈ R we have

lim
t↑ζ

u(Xt ) = 0 Px-a.s. and inL1(Px). (8)

Moreover, the function�Gf is excessive iff � 0, and it is lower-semicontinuous on{f � c} for anyc ∈ R.

Proof. (1) Since{
sup

0�s�t

f (Xs) � c, t < ζ
}

= {Dc � t < ζ } ∈Ft ,

whereDc denotes the first entrance time into the closed set{f � c}, the process

sup
0�s�t

f (Xs)I{t<ζ } (t � 0)

is adapted. Thus,

�Gf (x) =
∞∫

Ex

[
sup

0�s�t

f (Xs)I{t<ζ }
]

dt
0
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is well defined on{f > −∞} and satisfies

�Gf (x) � f (x)g(x).

On {f = −∞} we use the definition

�Gf (x) := lim
c↓−∞Ex

[ ζ∫
0

sup
0�u�s

f (Xu) ∨ c ds

]
,

and by monotone convergence we can write

�Gf (x) = Ex

[ ζ∫
0

sup
0�s�t

f (Xs)dt

]

on {�Gf > −∞}.
(2) Since

Ptu(x) = Ex

[ ζ∫
t

sup
t�u�s

f (Xu)ds

]

satisfiesPtu � u and limt↓0 Ptu = u for f � 0, the functionu = �Gf is excessive as soon as the functionf is
non-negative.

(3) If f is bounded from below byc ∈ R then�Gf = �G(f − c) + cg is the sum of an excessive function and
a continuous function, hence lower-semicontinuous due to our assumption (A3).

(4) If u(x) = �Gf (x) is finite then, by dominated convergence,

u(Xt ) = EXt

[ ζ∫
0

sup
0�u�s

f (Xu)ds

]
= Ex

[ ζ∫
t

sup
t�u�s

f (Xu)ds

∣∣∣∣Ft

]

converges to 0, bothPx -a.s. and inL1(Px), ast ↑ ζ . �
Our aim is to show that, conversely, any functionu satisfying some mild regularity conditions admits a uniq

representation in terms of the non-linear potential operator�G.

3. Uniqueness of the non-linear Riesz representation

In this section, we show that a non-linear Riesz representation of the form (1) is in fact unique.

Definition 3.1.Let us say that a measurable functionu onS hasnice boundary behaviorif

∃ lim
t↑ζ

u(Xt ) Px-a.s. and inL1(Px)

for anyx ∈ S. In this case we define

P̃T u(x) := Ex

[
u(XT );T < ζ

] + Ex

[
lim
t↑ζ

u(Xt );T = ζ
]

for any stopping timeT � ζ .
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Let T (x) denote the class of all exit times from relatively compact open neighborhoods ofx, and letT̃ (x) ⊇
T (x) denote the class corresponding to all open neighborhoods ofx; in particular, we haveζ ∈ T̃ (x). Recall that
a continuous functionh onS is harmonicif

h(x) = PT h(x) ∀T ∈ T (x)

and that it is said to beof class(D) if, for any x ∈ S, the family{h(XT ) | T ∈ T (x)} is uniformly integrable with
respect toPx . A harmonic functionh of class (D) has nice boundary behavior, and it is in fact determined b
boundary behavior:

h(x) = Ex

[
lim
t↑ζ

h(Xt )
]
.

Moreover,

h(x) = P̃T h(x) ∀T ∈ T̃ (x). (9)

Theorem 3.1.Suppose thatu is a real-valued function onS which admits a non-linear Riesz representation

u = �Gf + h, (10)

whereh is a harmonic function of class(D) andf is upper-semicontinuous. Such a decomposition(10) is unique.
More precisely,u has nice boundary behavior,

h(x) = Ex

[
lim
t↑ζ

u(Xt )
]
,

and

f (x) = Du(x) := inf
T ∈T (x)

u(x) − PT u(x)

Ex[T ] = inf
T ∈T̃ (x)

u(x) − P̃T u(x)

Ex[T ] (11)

for anyx ∈ S. In particular, the functionDu is upper-semicontinuous. Iff is bounded from below byc ∈ R thenu

is lower-semicontinuous and satisfiesu � cg + h.

Proof. (1) Sinceu(x) andh(x) are finite by assumption, we have�Gf (x) < ∞ for anyx ∈ S. By Lemma 2.1,

lim
t↑ζ

(
u(Xt) − h(Xt )

) = 0, Px-a.s. and inL1(Px).

Sinceh is a harmonic function of class(D), we obtain the existence of limt↑ζ u(Xt ) and the identity

h(x) = Ex

[
lim
t↑ζ

h(Xt )
]

= Ex

[
lim
t↑ζ

u(Xt )
]
.

(2) For any stopping timeT ∈ T̃ (x) we haveh(x) = P̃T h(x), hence

u(x) − P̃T u(x) = �Gf (x) − P̃T
�Gf (x)

= Ex

[ T∫
0

sup
0�s�t

f (Xs)dt

]
+ Ex

[ ζ∫
T

(
sup

0�s�t

f (Xs) − sup
T �s�t

f (Xs)
)

dt;T < ζ

]

� Ex

[ T∫
0

sup
0�s�t

f (Xs)dt

]
. (12)

In particular,

u(x) − P̃ u(x) � f (x)E [T ],
T x
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Du(x) � f (x).

(3) In order to prove the converse inequalityDu(x) � f (x), we fix α > f (x) and defineTα ∈ T̃ (x) as the exit
time from the open neighborhood{f < α} of x. Since

sup
Tα�s�t

f (Xs) = sup
0�s�t

f (Xs)

for t ∈ [Tα, ζ ), the general inequality in (12) becomes an equality forT := Tα . Thus

u(x) − P̃Tαu(x) = Ex

[ Tα∫
0

sup
0�s�t

f (Xs)dt

]
� αEx[Tα],

and this implies

inf
T ∈T̃ (x)

u(x) − P̃T u(x)

Ex[T ] � f (x). (13)

(4) We have to show that the left-hand side of (13) coincides withDu(x). Let (Un)n�1 be a sequence o
relatively compact open sets increasing toS, and denote bySn the exit time fromUn. ForT ∈ T̃ (x), the stopping
timesTn := T ∧ Sn ∈ T (x) increase toT , and so we haveEx[Tn] ↑ Ex[T ]. Moreover, since the process is qua
left-continuous andu has nice boundary behavior,

lim
n

PTnu(x) = Ex

[
lim
n

u(XTn)
]

= Ex

[
u(XT );T < ζ

] + Ex

[
lim
t↑ζ

u(Xt );T = ζ
]

= P̃T u(x).

Thus,

u(x) − P̃T u(x)

Ex[T ] = lim
n

u(x) − PTnu(x)

Ex[Tn] � Du(x)

for anyT ∈ T̃ (x), and this shows that both expressions forDu(x) in (11) coincide. �

4. A family of optimal stopping problems

Let u be acontinuousfunction onS. We assume thatu is of class (D), that it has nice boundary behavior, a
that the functionh defined by

h(x) := Ex

[
lim
t↑ζ

u(Xt )
]

is continuous onS. Our aim is to prove the existence of a non-linear Riesz representation foru. Subtracting the
harmonic functionh of class(D), we may assume without loss of generality

lim
t↑ζ

u(Xt ) = 0 Px-a.s. (14)

for x ∈ S. Note that (14) and our conventionu(∆) := 0 allow us to write

P̃T u(x) = Ex

[
u(XT )

] = Ex

[
u(XT );T < ζ

]
for any stopping timeT � ζ .
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As a first step in our construction, we study the following family of optimal stopping problems and the va
of the correspondingréduites. For eachc ∈ R we define

Vcu(x) := sup
T ∈T (x)

Ex

[
u(XT ) + cT

]
. (15)

In other words,Vcu denotes the value function of the optimal stopping problem with parameterc which is defined
by the right-hand side of (15). Note thatVcu(x) < ∞, due to our assumption (A3). Sinceζ = T + ζ ◦ θT for any
stopping timeT � ζ , we have

g(x) = Ex[T ] + Ex

[
g(XT );T < ζ

]
, (16)

hence

Vcu(x) = cg(x) + sup
T ∈T (x)

Ex

[
(u − cg)(XT )

]
. (17)

But the value function of the optimal stopping problem introduced on the right-hand side of (17) coincides w
réduiteRuc of the continuous functionuc := u− cg, defined as the smallest excessive functionv such thatv � uc;
see, e.g., [14], Theorem III.1. Moreover, the supremum in (17) is attained by the first entrance time

Dc := inf{t � 0 | Xt ∈ Ac} � ζ

into the set

Ac := {Ruc = uc} = {Vcu = u}.
Note thatAc is closed sinceRuc is excessive, hence lower-semicontinuous due to our assumption (A3).
properties of the réduite are well known on various levels of generality; see, e.g., [8], Theorem 2.76.
convenience of the reader we include a short proof in our present setting.

Lemma 4.1.The réduiteRuc of the functionuc is given by

Ruc(x) = Ex

[
uc(XDc)

]
, (18)

and it coincides with the value function of the optimal stopping problem in(17).

Proof. DefineAc,n := {Ruc � (1+ 1/n)uc} and denote byDc,n the first entrance time into the closed setAc,n. By
Mokobodzki’s theorem as explained in [12] or in [7], No. 16,

Ruc = R
(
(Ruc)IAc,n

)
.

Applying Hunt’s balayage theorem as stated in [6], XIV.97 to the excessive functionRuc on the right-hand side
we obtain

Ruc(x) = Ex

[
Ruc(XDc,n)

]
.

Using quasi-left-continuity of the process and our assumptions onu we obtain

lim
n

Ruc(XDc,n) = uc(XDc) in L1(Px),

and this implies Eq. (18). In order to identifyRuc(x) as the value of the optimal stopping problem in (17), n
first that the excessive functionv = Ruc satisfiesv � PT v � PT u for any stopping timeT ∈ T (x). On the other
hand, we have just seen that for anyx /∈ Ac the valueRuc(x) is approximated by stopping timesDc,n ∈ T̃ (x),
and this remains true if we replace eachDc,n by a suitableTn ∈ T (x). For x ∈ Ac we can approximate the valu
Ru (x) = u (x) by any sequence of stopping timesT ∈ T (x) decreasing to 0. �
c c n
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Combining the predecing lemma with Eq. (16), we see that the functionVcu is given by

Vcu(x) = cg(x) + Ruc(x) = Ex

[
u(XDc) + cDc

]
. (19)

In particular,Vcu is lower-semicontinuous since it is the sum of a continuous and an excessive function. C
Vcu dominates the functionu ∨ cg, and it is excessive forc � 0 since the functionsRuc andg are excessive
This impliesVcu � R(u ∨ cg) for c � 0, but in general there is no equality. The following lemma provide
characterization ofVcu in terms of thestrong orderinduced by the cone of excessive functions, i.e.,

v � w :�⇒ v − w is excessive.

Lemma 4.2.Vcu is the smallest functionv such thatv � u andv � cg.

Proof. The functionv := Vcu dominatesu, and it satisfiesv � cg sincev − cg = Ruc is excessive. Conversel
consider any functioñv such thatṽ � u and ṽ � cg. Then ṽ = cg + w for some excessive functionw, andw

satisfies

w = ṽ − cg � u − cg = uc

hencew � Ruc. Thus,

ṽ = cg + w � cg + Ruc = Vcu. �
We are now going to study the dependence ofVcu(x) resp.Ruc(x) on the parameterc ∈ R. This idea goes

back to G. Mokobodzki and D. Heath, and for the rest of this section we follow their approach, as expla
Heath [12] in the special case where the functionu is excessive. The next section will provide a new probabili
interpretation of the potential theoretic results in [12]. It should be seen as a special case of the general d
in Bank and El Karoui [3], and it will provide the key to our existence proof for the non-linear Riesz represen
of the functionu.

Lemma 4.3.For eachx ∈ S, Vcu(x) is increasing and convex inc.

Proof. Monotonicity is clear from the definition. Convexity follows from the representation (17), since the
hand side may be viewed as the supremum of functions which are affine inc. �

Since the functionc �→ Vcu(x) is convex, it is almost everywhere differentiable. We denote by∂+Vcu(x) and
∂−Vcu(x) the derivatives from the right and the left, respectively, and by∂Vcu(x) the derivative if it exists. The
notation∂Rcu(x) will be used in the same way. Let us now analyze these derivatives in more detail. SinceVcu is
increasing inc andVcu � u, the setsAc = {Vcu = u} are decreasing inc. Thus, the first entrance timesDc are
increasing inc, and we write

Dc− := lim
a↑c

Da, Dc+ := lim
b↓c

Db.

We can now describe the derivatives ofc �→ Vcu(x) andc �→ Ruc(x) in terms of the stopping timesDc.

Lemma 4.4.For anyc ∈ R,

Ex[Dc−] � ∂−Vcu(x) � ∂+Vcu(x) � Ex[Dc+], (20)

and for almost allc ∈ R we have

∂Vcu(x) = Ex[Dc] (21)

and

∂Ruc(x) = Ex[Dc] − g(x) = −Ex

[
g(XDc)

]
. (22)



278 N. El Karoui, H. Föllmer / Ann. I. H. Poincaré – PR 41 (2005) 269–283

-

.

Proof. Applying Eq. (18) with parameterb, we obtain

Vbu(x) − Vcu(x) � (b − c)g(x) + Ex

[
ub(XDb

)
] − Ex

[
uc(XDb

)
]

= (b − c)(g − PDb
g)(x)

= (b − c)Ex[Db]
for b > c, and in the same way we obtain

Vcu(x) − Vau(x) � (c − a)Ex[Da]
for a < c. This implies the inequalities in (20). But sinceEx[Dc−] andEx[Dc+] are the limits from the left and
from the right of the increasing functionc → Ex[Dc], we haveEx[Dc−] = Ex[Dc] = Ex[Dc+] for almost allc.
Thus the derivative∂Vcu(x) exists for almost allc and can be identified withEx[Dc]. �

5. Existence of the non-linear Riesz representation

As in the previous section we assume thatu is a continuous function onS of class (D) with boundary behav
ior (14). In view of Lemma 4.4,

Vbu(x) − Vau(x) =
b∫

a

Ex[Dc]dc (23)

and

Rua(x) − Rub(x) =
b∫

a

Ex

[
g(XDc)

]
dc. (24)

In order to analyze these expressions in more detail, we introduce the functionγ defined by

γ (x) := sup{c | x ∈ Ac} (25)

and the increasing adapted process

Γt := sup
0�s�t

γ (Xs) (t � 0). (26)

Note thatγ is upper-semicontinuous since the setsAc are closed, and that the paths of(Γt )t�0 are right-continuous

Proposition 5.1.For a < b,

Rua(x) − Rub(x) = �G(γ ∧ b)(x) − �G(γ ∧ a)(x).

Proof. Due to (24) we have

Rua(x) − Rub(x) =
b∫

a

Ex[ζ − Dc]dc = Ex

[ b∫
a

(ζ − Dc)dc

]
.

Now note that

{t < D < ζ } = {
V u(X ) > u (X ) ∀s � t, t < ζ

} = {
γ (X ) < c ∀s � t, t < ζ

} = {Γ < c, t < ζ }. (27)
c c s c s s t
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Thus,

b∫
a

(ζ − Dc)dc =
b∫

a

ζ∫
0

I{Dc�s} ds dc =
b∫

a

ζ∫
0

I{Γs�c} ds dc =
ζ∫

0

(Γs ∧ b − Γs ∧ a)ds,

and so we get

Rua(x) − Rub(x) = Ex

[ ζ∫
0

Γs ∧ b ds

]
− Ex

[ ζ∫
0

Γs ∧ a ds

]
= �G(γ ∧ b)(x) − �G(γ ∧ a)(x). �

Lemma 5.1.limc↑∞ Ruc(x) = 0.

Proof. Let (Un)n�1 be a sequence of relatively compact open setsUn increasing toS, and defineTn as the exit
time fromUn. Construct an increasing sequence(cn) such that 0� cn ↑ ∞ anducn � 0 onUn. Then

Rucn(x) = Ex

[
ucn(XDcn

)
]
� Ex

[
ucn(XDcn

);Dcn > Tn

]
� Ex

[
u+(XDcn∨Tn)

]
,

and the right-hand side converges to 0 due to our assumption (14) on the boundary behavior ofu. �
Theorem 5.1.For anya ∈ R, the functionsRua andVau can be represented as follows:

Rua(x) = Ex

[ ζ∫
0

(Γt − a)+ dt

]
= �G(γ − a)+(x), (28)

and

Vau(x) = Ex

[ ζ∫
0

Γt ∨ a dt

]
= �G(γ ∨ a)(x). (29)

Proof. By Lemma 5.1,

Rua(x) = lim
b↑∞Ex

[ ζ∫
0

(Γt ∧ b − Γt ∧ a)dt

]
= Ex

[ ζ∫
0

(Γt − Γt ∧ a)dt

]
= Ex

[ ζ∫
0

(Γt − a)+ dt

]

and

Vau(x) = ag(x) + Rua(x) = Ex

[ ζ∫
0

(
(Γt − a)+ + a

)
dt

]
= Ex

[ ζ∫
0

Γt ∨ a dt

]
. �

The representation (29) allows us to identify the functionVcu as the solution of a minimization problem defined
terms of the non-linear derivatorD.

Corollary 5.2. LetV denote the class of all functionsv admittinga non-linear Riesz representation. ThenVcu can
be characterized as the smallest functionv ∈ V such that

(i) v � u;
(ii) Dv � c.
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Proof. The functionv := Vcu belongs toV and satisfiesv � u andv = �G(γ ∨ c), henceDv = γ ∨ c � c due to
Theorem 2.1. In order to show thatVcu is minimal, consider a functioñv ∈ V such thatṽ � u andDṽ � c. Thus,
ṽ = �GDṽ + h̃, whereh̃ is a non-negative harmonic function andDṽ = c + f for some lower-semicontinuou
functionf � 0. Thus,

ṽ = �Gc + �Gf + h̃ = c · g + w

wherew := �Gf + h̃ is excessive, sincew � 0 andDw = f � 0. This impliesṽ � cg, and the inequalitỹv � v = Vc

now follows from Lemma 4.2. �
We will now derive the non-linear Riesz representation of the functionu from the representation (29) of th

functionsVcu, combined with the observation thatγ = Du.

Theorem 5.2.Letu be a continuous function of class(D) onS such that

lim
t↑ζ

u(Xt ) = 0 Px-a.s.

Then, for anyx ∈ S,

u(x) = Ex

[ ζ∫
0

sup
0�s�t

Du(Xs)dt

]
= �GDu(x). (30)

Proof. (1) For anyc ∈ R we haveγ (x) � c if and only if Vcu(x) = u(x). But this translates into the condition th

u(x) − Ex

[
u(XT )

]
� cEx[T ]

for any stopping timeT ∈ T (x), which is equivalent toDu(x) � c. This shows that the two functionsγ andDu

are in fact identical.
(2) Forc � γ (x) we have

u(x) = Vcu(x) = Ex

[ ζ∫
0

Γt dt

]
= �Gγ (x) = �GDu(x),

due to (29) and part (1). Thus, the representation (30) holds for anyx ∈ S such thatγ (x) > −∞.
(3) Suppose thatγ (x) = −∞. Since

−∞ < u(x) � v(x) := lim
c↓−∞Vcu(x) = Ex

[ ζ∫
0

sup
0�s�t

γ (Xs)dt

]
,

the entrance time into the set{γ > −∞} is Px -a.s. equal to 0, and this implies

lim
c↓−∞Dc = 0 Px-a.s. (31)

Comparing Eq. (19) with the representation (29) ofVcu(x), we see that

Ex

[
u(XDc) + cDc

] = Ex

[ ζ∫
0

Γt ∨ c dt

]
.

This implies

Ex

[
u(XDc)

] = Ex

[ ζ∫
Γt dt

]
, (32)
Dc



N. El Karoui, H. Föllmer / Ann. I. H. Poincaré – PR 41 (2005) 269–283 281

e

l
of the
tting.

t

th
since
Dc∫
0

Γt ∨ c dt = cDc.

In view of (31) and sinceu is of class (D), the left-hand side of (32) converges tou(x), and we can use monoton
convergence on the right-hand side to concludeu(x) = v(x), as desired. �

Let us now return to the optimal stopping problem in (15), and let us replace the classT (x) by the class of al
stopping timesT � ζ . The following characterization of the value and of the optimal stopping times in terms
non-linear operatorD is a special case of the results developed by Bank [2] in a general semimartingale se

Corollary 5.3. For anyc ∈ R, the optimal stopping problem

sup
T

Ex

[
u(XT ) + cT

]
,

where the supremum is taken over all stopping timesT � ζ , is solved by the entrance timeDc into the closed se
{Du � c}, and its value coincides with

Vcu(x) = �G(Du ∨ c)(x).

More precisely, a stopping timeT is optimal if and only if it satisfies the two conditions

Dc � T � Dc+ (33)

and

sup
0�t�T

Du(Xt) = Du(XT ). (34)

Proof. For any stopping timeT � ζ ,

Vcu(x) = cg(x) + Ruc(x) � cg(x) + PT Ruc(x) � cg(x) + PT uc(x) = c
(
g(x) − PT g(x)

) + PT u(x)

= Ex

[
u(XT ) + cT

]
.

But Lemma 4.1 shows that the valueVcu(x) is attained by the stopping timeT = Dc, and soDc is optimal. On the
other hand,

Ex

[
u(XT ) + cT

] = cg(x) + Ex

[
uc(XT )

]
for any stopping timeT � ζ , and due to (30) we can write

Ex

[
uc(XT )

] = Ex

[ ζ∫
T

sup
T �s�t

(
γ (Xs) − c

)
dt

]
� Ex

[ ζ∫
T

sup
0�s�t

(
γ (Xs) − c

)+ dt

]

� Ex

[ ζ∫
Dc+

sup
0�s�t

(
γ (Xs) − c

)+ dt

]
= Ex

[
uc(XDc+)

]
sinceDc+ := limb↓c Db = inf{t � 0 | γ (Xt ) > c}. Clearly, optimality ofT is equivalent to the condition that bo
inequalities reduce to an equality. For the second inequality this is the case if and only ifT � Dc+ Px -a.s. The
first inequality becomes an equality if and only if

sup
(
γ (Xs) − c

) = sup
(
γ (Xs) − c

)+ ∀t ∈ [T , ζ )

T �s�t 0�s�t
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Px-a.s. By upper-semicontinuity ofγ , this is equivalent to

γ (XT ) = sup
0�s�T

γ (Xs) � c,

and thus to the two conditionsT � Dc and (34). �

6. A pathwise concave envelope

Let u be a continuous function onS satisfying the conditions of the last section. If we observe the réd
Ru = V0u of the functionu along the paths of the Markov processX then we obtain theSnell envelopeof the
processU := u(X). Recall that the Snell envelope is defined as the smallest supermartingale which domin
processU . As suggested by the trivial case whereX is a uniform motion to the right on the unit interval[0,1],
the Snell envelope may be viewed as a stochastic analogue of the decreasing envelope of a function on[0,1]. In
a similar way, one can think of introducing a stochastic analogue of the concave envelope. Such an appr
developed by Bank and El Karoui [3] in a general semimartingale context. Let us now illustrate their const
in our present Markovian setting, where it involves the family of functionsVcu.

Consider the processC defined by

Ct := VΓt u(Xt ) (t � 0).

Clearly,C � U , andC dominates the Snell enveloppePx -a.s. ifγ (x) � 0. Fort � ζ ,

Ct = EXt

[ ζ∫
0

sup
0�u�s

γ (Xu) ∨ Γt ds

]
= Ex

[ ζ∫
t

sup
t�u�s

γ (Xu) ∨ Γt ds
∣∣Ft

]
= Ex

[ ζ∫
t

Γs ds
∣∣Ft

]
= Mt − At,

where the processM defined by

Mt := Ex

[ ζ∫
0

Γs ds
∣∣Ft

]

is a martingale, and the processA defined by

At :=
t∫

0

Γs ds

has convex paths with increasing derivativesΓt . Thus, the processC has concave paths up to a martingale, a
may thus be viewed as the stochastic analogue of a concave majorant of the processU . Moreover, the process ha
the following minimality property:

Proposition 6.1.The processΓ only increases at times whereCt = Ut :

ζ∫
0

(Ct − Ut)dΓt = 0.

Proof. For any timet such thatCt(ω) > Ut(ω), the valuec := Γt(ω) satisfiesVcu(Xt (ω)) > u(Xt(ω)), hence
γ (Xt (ω)) < c. Thus,t is not a point of increase for the functiont �→ Γt (ω), and sot does not belong to the suppo
of the corresponding measure dΓt (ω). �
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