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Abstract

We obtain precise information about the stochastic flows of bridges that are associated with the so-calledΛ-coalescents. Whe
the measureΛ gives no mass to 0, we prove that the flow of bridges is generated by a stochastic differential equatio
by a Poisson point process. On the other hand, the caseΛ = δ0 of the Kingman coalescent gives rise to a flow of coalesc
diffusions on the interval[0,1]. We also discuss a remarkable Brownian flow on the circle which has close connections w
Kingman coalescent.
 2005 Elsevier SAS. All rights reserved.

Résumé

Nous étudions les flots de ponts associés aux processus de coagulation appelésΛ-coalescents. Quand la mesureΛ ne charge
pas 0, nous montrons que le flot de ponts est engendré par une équation différentielle stochastique conduite par un
de Poisson ponctuel. Au contraire, le casΛ = δ0 du coalescent de Kingman fait apparaître un flot de diffusions coalesc
sur l’intervalle[0,1]. Nous étudions aussi un flot brownien remarquable sur le cercle, qui est étroitement lié au coale
Kingman.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

In a previous work [1], we obtained a surprising connection between the class of exchangeable coalesc
certain remarkable stochastic flows on the interval[0,1]. The main purpose of the present paper is to derive m
explicit information about these flows, and in particular to represent them as solutions of stochastic diff
equations.

Exchangeable coalescents, also called coalescents with simultaneous multiple collisions by Schweinsb
are processes taking values in the setP of all partitions ofN, which appear as asymptotic models for phenom
of coagulation that occur when studying the genealogy of large populations. They have been studied rec
Möhle, Sagitov, Pitman and Schweinsberg [11–14]. Roughly speaking, an exchangeable coalescent is a
processΠ = (Πt , t � 0) in P , which satisfies the following two conditions. Firstly, for everys � t , the partition
Πs is finer thanΠt (blocks coagulate as time increases). Secondly, the semigroup ofΠ satisfies a natural exchang
ability property saying that in the coagulation phenomenon all blocks play the same role. See [1] for a more
definition.

The main result of [1] gives a one-to-one correspondence between exchangeable coalescents and
bridges on[0,1]. By definition, abridge is a real-valued random process(B(r), r ∈ [0,1]) with B(0) = 0 and
B(1) = 1, which has right-continuous nondecreasing sample paths and exchangeable increments. Aflow of bridges
is then a collection(Bs,t , −∞ < s � t < ∞) of bridges, satisfying the flow propertyBs,u = Bs,t ◦ Bt,u for every
s � t � u, and the usual stationarity and independence of “increments” property (see Section 2.1 below
precise definition). These flows, or more precisely the dual flowsB̂s,t = B−t,−s , fit in the general framework o
Le Jan and Raimond [9].

Let us briefly describe the basic connection between exchangeable coalescents and flows of bridges [
may be viewed as an infinite-dimensional version of Kingman’s famous theorem on the structure of excha
partitions ofN. Start with a flow of bridges(Bs,t , −∞ < s � t < ∞) and consider an independent seque
(Vj )j∈N of i.i.d. uniform [0,1] variables. WriteR(Bs,t ) for the closed range ofBs,t . For everyt � 0 define a
random partitionΠt of N by declaring that two distinct integersi andj belong to the same block ofΠt if and only
if Vi andVj belong to the same connected component of[0,1] \ R(B0,t ). Then,(Πt , t � 0) is an exchangeabl
coalescent and conversely any exchangeable coalescent can be obtained in this way from a (unique in law
bridges.

In the present paper, we focus on the flows associated with an important subclass of exchangeable co
namely theΛ-coalescents. Roughly speaking,Λ-coalescents are those exchangeable coalescents where on
subcollection of blocks can coagulate at a time. The law of such a process is characterized by a finite meΛ

on [0,1] (see Section 2.2 for more details). Important special cases are the Kingman coalescent (Λ = δ0) and the
Bolthausen–Sznitman coalescent (Λ is Lebesgue measure on[0,1]). The class ofΛ-coalescents was introduce
and studied by Pitman [12], under the name of coalescents with multiple collisions.

Let us now outline the main contributions of the present work. We letB = (Bs,t )−∞<s�t<∞ be the flow of
bridges associated with aΛ-coalescent in the sense of [1]. Sections 3 and 4 below are devoted to the study
Markov process

Ft = (
B−t,0(x), x ∈ [0,1]),

and particularly of thep-point motion(Ft (r1), . . . ,Ft (rp)), wherer1 < · · · < rp arep fixed points in[0,1]. As-
suming thatΛ({0}) = 0 we prove in Section 3 that(

Ft (r1), . . . ,Ft (rp)
)
t�0

(d)= (X1
t , . . . ,X

p
t )t�0,

where(X1, . . . ,Xp) is the (unique in law) solution of the stochastic differential equation

Xi
t = ri +

∫
M(ds,du,dx)x(1{u�Xi

s−} − Xi
s−), i = 1, . . . , p,
[0,t]×]0,1[×]0,1]
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which is driven by a Poisson point measureM on R+×]0,1[×]0,1] with intensity ds dux−2Λ(dx). The integral
with respect toM should be understood as a stochastic integral with respect to a compensated Poisson
A key intermediate step towards this representation is to obtain a martingale problem characterizing the la
p-point motion(Ft (r1), . . . ,Ft (rp)).

In Section 4 we consider the case of the celebrated Kingman coalescent [8] (i.e. whenΛ is the Dirac point mas
at 0). Then thep-point motion(Ft (r1), . . . ,Ft (rp)) is a diffusion process in

Dp := {
x = (x1, . . . , xp): 0� x1 � x2 � · · · � xp � 1

}
with generator

Ag(x) = 1

2

p∑
i,j=1

xi∧j (1− xi∨j )
∂2g

∂xi∂xj

(x),

for g ∈ C2(Dp). Note that the components of this diffusion process coalesce when they meet, and are also a
at 0 and 1.

The results of Sections 3 and 4 give insight in the behavior of the bridgesBs,t whens decreases (recall tha
Ft = B−t,0). What can be said aboutBs,t whent increases? To answer this question it is convenient to intro
the flow of inverses

Γs,t (r) = inf
{
u ∈ [0,1]: Bs,t (u) > r

}
, r ∈ [0,1[,

andΓs,t (1) = Γs,t (1−). Section 5 studies the corresponding (Markovian)p-point motions(Γt (r1), . . . ,Γt (rp)),
whereΓt = Γ0,t . For a general measureΛ such thatΛ({0}) = 0, we show that the law of thep-point motion
satisfies a martingale problem analogous to the one obtained in Section 3 forFt . In the Kingman case, we prov
that(Γt (r1), . . . ,Γt (rp)) is a diffusion process inDp with generator

Ãg(x) = 1

2

p∑
i,j=1

xi∧j (1− xi∨j )
∂2g

∂xi∂xj

(x) +
p∑

i=1

(
1

2
− xi

)
∂g

∂xi

.

Again components of this diffusion process coalesce when they meet, but in contrast to the diffusion with
tor A they never reach 0 or 1.

Together with Section 4, this gives a fairly complete picture of the flow associated with the Kingman coal
For everys < t , Bs,t is a step function, that is a nondecreasing function taking only finitely many values. Wt
increases, the vector of jump times evolves like a diffusion process with generatorÃ, but the sizes of the jump
remain constant until the first moment when two jump times coalesce (yielding a “coagulation” of the corre
ing jumps). Conversely, whens decreases, the vector of values taken byBs,t evolves like a diffusion process wit
generatorA, but the vector of jump times remains constant, until the moment when two among the value
by Bs,t coalesce (or one of them hits 0 or 1) thus provoking the disappearance of one jump.

Finally, Section 6 discusses closely related flows on the circleT = R/Z rather than on[0,1]. In the easy cas
where

∫
x−2Λ(dx) < ∞, corresponding to the simple flows in [1], we briefly explain how the Poissonian

struction of [1] can be adapted to give flows onT which are associated withΛ-coalescents. A suitable limitin
procedure then leads to a flowΘ = (Θt , t � 0) which is associated with the Kingman coalescent. Precisely,Θ is
a Brownian flow (in the sense of Harris [4]) onT, with covariance function

b(y, y′) = 1

12
− 1

2
d(y, y′)

(
1− d(y, y′)

)
,

whered is the distance onT. The connection with the Kingman coalescent can then be stated as follows. Fo
t > 0, the rangeSt of Θt is finite. For everyy ∈ St we can define the mass ofy at timet as the Lebesgue measu
of {x ∈ T: Θt(x) = y}. Then, as a process in the variablet , the vector of masses of elements ofSt is distributed as
the frequencies of blocks in the Kingman coalescent. Alternative formulations and more precise results a
flow Θ can be found in Section 6.



310 J. Bertoin, J.-F. Le Gall / Ann. I. H. Poincaré – PR 41 (2005) 307–333

ns

ce

nt to
endent
nition.

f

f

ponents

s
e

able

pound
n
ow of
2. Preliminaries

2.1. Flows of bridges and exchangeable coalescents

To start with, we recall the basic correspondence between bridges on[0,1] and exchangeable random partitio
of N := {1,2, . . .}, which is a slight variation of a fundamental theorem of Kingman.

A mass-partition is a sequenceβ = (βi, i ∈ N) with

β1 � β2 � · · · � 0 and
∞∑
i=1

βi � 1.

Following Kallenberg [6], given a random mass partitionβ and an independent sequence(Ui, i ∈ N) of i.i.d.
variables with uniform distribution over[0,1], we may define a stochastic processB = (B(r), r ∈ [0,1]) with
exchangeable increments by

B(r) =
(

1−
∞∑
i=1

βi

)
r +

∞∑
i=1

βi1{Ui�r}, r ∈ [0,1]. (1)

Observe thatB has right-continuous increasing paths withB(0) = 0 andB(1−) = 1, and that the ranked sequen
of the jump sizes ofB is given by the mass partitionβ.

In the sequel, we shall callbridge any process which can be expressed in the form (1). This is equivale
the definition given in [1] or in the introduction above. It is easy to check that the composition of two indep
bridges is again a bridge (this is essentially Bochner’s subordination), which motivates the following defi
A flow of bridgesis a collection(Bs,t , −∞ < s � t < ∞) of bridges such that:

(i) For everys < t < u, Bs,u = Bs,t ◦ Bt,u a.s.
(ii) The law ofBs,t only depends ont −s. Furthermore, ifs1 < s2 < · · · < sn, the bridgesBs1,s2,Bs2,s3, . . . ,Bsn−1,sn

are independent.
(iii) B0,0 = Id andB0,t → Id in probability ast ↓ 0, in the sense of Skorokhod’s topology.

Recall thatP denotes the set of all partitions ofN. We also denote byPn the (finite) set of all partitions o
{1, . . . , n}. The setP is equipped with the smallest topology for which the restriction maps fromP ontoPn are
continuous, whenPn is equipped with the discrete topology. A random partition (ofN) is a random variable with
values inP . It is saidexchangeableif its distribution is invariant under the natural action of the permutations oN

onP .
There is a simple procedure to construct a random exchangeable partition from a bridgeB, which is a variant

of Kingman’s paintbox process. LetR = {B(r), r ∈ [0,1]}cl be the closed range ofB, soRc = [0,1] \ R is a
random open set which has a canonical decomposition into disjoint open intervals, called the interval com
of Rc. Introduce a sequence of i.i.d. uniform variables on[0,1], (Vi, i ∈ N), which is independent of the bridgeB.
We define a random partitionπ(B) of N by declaring that the indicesi ∈ N such thatVi ∈ R are the singleton
of π(B), and two indicesi 
= j belong to the same block ofπ(B) if and only if Vi andVj belong to the sam
interval component ofRc. By the strong law of large numbers, the sizesβk of the jumps ofB correspond to the
asymptotic frequencies of the blocks ofπ(B). Obviouslyπ(B) is exchangeable, and conversely, any exchange
random partitionπ is distributed asπ(B) for a certain bridgeB.

The basic result in [1] stems from the observation that, informally, the sequence of jump sizes of a com
bridgeB = B1 ◦ B2 can be expressed as a certain coagulation of the jump sizes ofB1, where the coagulatio
mechanism is encoded byB2. This entails that when one applies the above paintbox construction to a fl
bridges, one obtains a Markov process with values inP , which starts from the partition ofN into singletons,
and is such that blocks of partitions coagulate as time passes. To be specific, let(B ) be a flow of
s,t −∞<s�t<∞
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bridges, and suppose that the sequence(Vi, i ∈ N) introduced above is independent of the flow. Then, the pro
(π(B0,t ), t � 0) is aP-valued Markov process belonging to the class ofexchangeable coalescents(see Definition 1
in [1] for a precise definition). Conversely, any exchangeable coalescent can be obtained by this proced
Theorem 1 in [1]).

2.2. Λ-coalescents and generalized Fleming–Viot processes

Pitman [12] and Sagitov [13] have pointed at an important class of exchangeable coalescents whose
be characterized by an arbitrary finite measureΛ on [0,1]. Specifically, aΛ-coalescent is a Markov processΠ =
(Πt , t � 0) on P started from the partition into singletons, whose evolution can be described as follow
Theorem 1 in [12]).

First, one introduces the rates

βp,k =
∫

Λ(dx)xk−2(1− x)p−k, (2)

for every integers 2� k � p. Next, for every integern and every timet � 0, denote byΠn
t the restriction of

the partitionΠt to {1, . . . , n}. Then each process(Πn
t , t � 0) is a continuous time Markov chain with values

the (finite) setPn. The law of this Markov chain is characterized by its transition rates: Starting from a pa
in Pn with p nonempty blocks, for eachk = 2, . . . , p, every possible merging ofk blocks (the otherp − k blocks
remaining unchanged) occurs at rateβp,k , and no other transition is possible. This description of the restri
processesΠn determines the law of theΛ-coalescentΠ .

In this work, we shall be interested in the flow of bridges(Bs,t , −∞ < s � t < ∞) corresponding to
aΛ-coalescent in the sense explained above. In Sections 3 and 4 below, we will study the process

Ft := B−t,0, t � 0, (3)

which takes values in the set of all right-continuous nondecreasing functions from[0,1] into [0,1]. This process
will be called theΛ-process. From properties (i) and (ii) of a flow, it is immediate to see that for every integerp � 1
and every(x1, . . . , xp) ∈ [0,1]p, thep-point motion(Ft (x1), . . . ,Ft (xp)) is Markovian with a Feller semigrou
(see also the discussion in Section 5.1 of [1]).

For eacht � 0, the functionFt : [0,1] → [0,1] can be viewed as the distribution function of a random probab
measureρt on [0,1]:

Ft (x) = ρt

([0, x]), x ∈ [0,1].
Note thatρ0 = λ is Lebesgue measure on[0,1]. The measure-valued process(ρt , t � 0), which can be interprete
as a generalized Fleming–Viot process (see e.g. Chapter 1 of Etheridge [2] for an introduction to Flemi
measure-valued processes), is studied in Section 5 of [1]. In the next subsection, we recall some basic pro
this process that play a crucial role in the present work.

2.3. Martingales for the generalized Fleming–Viot process

We first present a characterization of the law of the measure-valued process(ρt , t � 0) as the solution to a
martingale problem which is expressed in terms of the rates (2). In this direction, we first need to introduc
notation.

For every probability measureµ on [0,1] and every bounded measurable functiong : [0,1] → R, we write

µ(g) :=
∫

µ(dx)g(x).
[0,1]
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Let p � 1 be an integer. For everyi = 1, . . . , p, let hi : [0,1] → R be a bounded measurable function. We cons
the functionh : [0,1]p → R defined by

h(x) :=
p∏

i=1

hi(xi), x = (x1, . . . , xp). (4)

Next, for every subset of indicesI ⊆ {1, . . . , p} with |I | � 2, we writehI : [0,1]p → R for the function defined by

hI (x) :=
∏
i∈I

hi(x�) ×
∏
j /∈I

hj (xj ), x = (x1, . . . , xp),

where� = minI . Finally we set

Gh(µ) :=
∫

hdµ⊗p =
p∏

i=1

µ(hi); (5)

observe that

GhI
(µ) = µ

(∏
i∈I

hi

)∏
j /∈I

µ(hj ).

Recall thatΛ is a finite measure on[0,1] and that the numbersβp,k defined in (2) are the transition rates of t
Λ-coalescent. We introduce an operatorL acting on functions of the typeGh:

LGh(µ) :=
∑

I⊆{1,...,p}, |I |�2

βp,|I |
(
GhI

(µ) − Gh(µ)
)
. (6)

The following statement essentially rephrases Theorem 3(i) in [1]. The functions considered in [1] are supp
be continuous rather than bounded and measurable. However the general case follows from a standard
(see e.g. Proposition 4.2, page 111 of [3]).

Theorem 1.The law of the process(ρt , t � 0) is characterized by the following martingale problem. We h
ρ0 = λ and, for every integerp � 1 and every bounded measurable functionshi : [0,1] → R, i = 1, . . . , p, the
process

Gh(ρt ) −
t∫

0

dsLGh(ρs)

is a martingale, whereh is defined by(4), Gh by (5), andLGh by (6).

Uniqueness for the martingale problem of Theorem 1 follows from a duality argument. To be speci
process(ρt , t � 0) can be interpreted as a measure-valued dual to theΛ-coalescent(Πp

t , t � 0) in Pp, and we
have the explicit formula

E
[
Gh(ρt )

] = E

[ ∏
A block of Π

p
t

λ

(∏
i∈A

hi

)]
(7)

(see formula (18) in [1]). Specializing to the casehi = 1[0,x], we see that

E
[
Ft (x)p

] = E
[
x#Π

p
t
]
, (8)

where #Πp denotes the number of blocks inΠp.
t t
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3. A Poissonian SDE forΛ-processes

In this section, we assume thatΛ is a finite measure on[0,1] which has no atom at 0, i.e.Λ({0}) = 0. Our goal
is to get a representation of theΛ-processF as the solution to a stochastic differential equation driven by a Poi
point process.

As a first step, we shall see that in the easy case when the measureΛ fulfils the condition∫
[0,1]

x−2Λ(dx) < ∞, (9)

the Λ-process solves a simple Poissonian SDE which derives directly from an explicit construction ofF given
in [1]. In the general case, this Poissonian SDE still makes sense thanks to the notion of stochastic inte
respect to a compensated point measure (see e.g. Jacod [5]). We prove that theΛ-process is a weak solution o
the Poissonian SDE, and that weak uniqueness holds for this SDE. As a key tool, we establish that the la
p-point motion is characterized by a martingale problem.

3.1. The simple case

We start by recalling the Poissonian construction of theΛ-process in the special case when (9) holds (see
Section 4). We denote bym(du,dx) the measure on]0,1[× ]0,1] defined bym(du,dx) = du ⊗ x−2Λ(dx). Con-
sider a Poisson random measure onR+×]0,1[× ]0,1],

M =
∞∑
i=1

δ(ti ,ui ,xi ),

with intensity dt ⊗ m(du,dx). Here the atoms(t1, u1, x1), (t2, u2, x2), . . . of M are listed in the increasing ord
of their first coordinate, which is possible since the measurem is finite by our assumption (9). Next, for eve
u ∈]0,1[ andx ∈]0,1], we introduce the elementary function

bu,x(r) = (1− x)r + x1{u�r}, r ∈ [0,1].
TheΛ-process(Ft , t � 0) can then be obtained by composing to the left the elementary functionsbui ,xi

as atoms
(ti , ui, xi) are found in the Poisson measureM . Specifically, we setFt = Id[0,1] whent ∈ [0, t1[, and then for every
integerk � 1 andt ∈ [tk, tk+1[

Ft = buk,xk
◦ · · · ◦ bu1,x1. (10)

It is straightforward to check from (10) that for everyy ∈ [0,1], the process(Ft (y), t � 0) can also be describe
as the unique solution to the following Poissonian stochastic differential equation

Ft (y) = y +
∫

[0,t]×]0,1[×]0,1]
M(ds,du,dx)xΨ

(
u,Fs−(y)

)
, (11)

where for everyu ∈]0,1[ andr ∈ [0,1],
Ψ (u, r) = 1{u�r} − r. (12)

3.2. A martingale problem for thep-point motion

From now on, we come back to the general case whereΛ is a finite measure on[0,1] which does not charge 0
Our purpose here is to characterize the law of thep-point motion of theΛ-process as the unique solution to
martingale problem. In this direction, we first introduce some notation.
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Fix an integerp � 1. For everyy = (y1, . . . , yp) ∈ [0,1]p and every functiong : [0,1]p → R of classC2, we
write, for u ∈]0,1[ andx ∈]0,1],

y + xΨ (u, y) := (
y1 + xΨ (u, y1), . . . , yp + xΨ (u, yp)

)
,

and then

∆u,xg(y) := g
(
y + xΨ (u, y)

) − g(y) − xΨ (u, y) · ∇g(y),

where

Ψ (u,y) · ∇g(y) :=
p∑

i=1

Ψ (u,yi)∂ig(y1, . . . , yp).

Next, observing that|∆u,xg(y)| � Cx2 for some constantC > 0 depending only ong, we set

Lg(y) :=
∫

]0,1]
Λ(dx)x−2

1∫
0

du∆u,xg(y).

Recall that

Dp := {
x = (x1, . . . , xp): 0� x1 � x2 � · · · � xp � 1

}
. (13)

By construction, ify = (y1, . . . , yp) ∈Dp, thep-point motion(Ft (y1), . . . ,Ft (yp)) lives inDp. We already noticed
that it has a Feller semigroup, so that we can assume that it has càdlàg sample paths.

We will now characterize the distribution of thep-point motion by a martingale problem, which is clearly rela
to Theorem 1 above.

Lemma 1. Let p � 1 and (y1, . . . , yp) ∈ Dp. The law of the process((Ft (y1), . . . ,Ft (yp)), t � 0) is character-
ized by the following martingale problem. We have(F0(y1), . . . ,F0(yp)) = (y1, . . . , yp) and, for every function
g :Dp → R of classC2, the process

g
(
Ft (y1), . . . ,Ft (yp)

) −
t∫

0

dsLg
(
Fs(y1), . . . ,Fs(yp)

)
, t � 0,

is a martingale.

Proof. We start by proving that thep-point motion does solve the martingale problem of the lemma. Letk1, . . . , kp

be nonnegative integers and setk = k1 + · · ·+ kp. Setj (i) = 1 if and only if 1� i � k1 and, forj ∈ {2, . . . , p}, set
j (i) = j if and only if k1 + · · · + kj−1 < i � k1 + · · · + kj . If A is a nonempty subset of{1, . . . , k}, we also set

j (A) = inf
i∈A

j (i).

Define a functiong onDp by

g(z1, . . . , zp) =
p∏

j=1

(zj )
kj . (14)

We start by calculatingLg. Noting that
∫ 1 duΨ (u,y) = 0 for everyy ∈ [0,1], we have
0
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Lg(z1, . . . , zp) =
∫

]0,1]
Λ(dx)x−2

( 1∫
0

du

(
p∏

j=1

(
(1− x)zj + x1{u�zj }

)kj −
p∏

j=1

(zj )
kj

))

=
∑

I⊂{1,...,k}, |I |�2

βk,|I |

((
p∏

j=1

(zj )
kj −kI

j

)
zj (I) −

p∏
j=1

(zj )
kj

)
, (15)

wherekI
j = |{i ∈ I : j (i) = j}| for every nonempty subsetI of {1, . . . , k} and everyj ∈ {1, . . . , p}. The last equality

is obtained by expanding the first product in the preceding line, in a way very similar to [1], p. 281.
Now define a functionh on [0,1]k by

h(x1, . . . , xk) =
k∏

i=1

1[0,yj (i)](xi).

In the notation of Section 2.3 we have, for everys � 0,

Gh(ρs) =
p∏

j=1

ρs

([0, yj ]
)kj = g

(
Fs(y1), . . . ,Fs(yp)

)
. (16)

We can also computeLGh(µ) from formula (6):

LGh(µ) =
∑

I⊂{1,...,k}, |I |�2

βk,|I |
(
GhI

(µ) − Gh(µ)
)

(17)

and

hI (x1, . . . , xk) =
(∏

i /∈I

1[0,yj (i)](xi)

)
× 1[0,yj (I )](x�) (18)

with � = minI .
By comparing (17) and (18) with (15), we get for everys � 0

LGh(ρs) = Lg
(
Fs(y1), . . . ,Fs(yp)

)
. (19)

From (16), (19) and Theorem 1 we obtain the martingale problem of the lemma in the special case wherg is of
the type (14). The general case follows by a standard density argument.

It remains to prove uniqueness. To this end we use a duality argument analogous to the one presente
tion 5.2 of [1]. Recall thatPk denotes the space of all partitions of{1, . . . , k} and(Πk

t , t � 0) is theΛ-coalescen
in Pk . For every partitionπ ∈ Pk , and every(z1, . . . , zp) ∈Dp we set

P
(
(z1, . . . , zp),π

) =
∏

A block of π

zj (A).

If L∗ denotes the generator of(Πk
t ), viewingP((z1, . . . , zp),π) as a function ofπ , we have

L∗P
(
(z1, . . . , zp),π

) =
∑

I⊂{1,...,#π}, |I |�2

βk,|I |
( ∏

A block of cI (π)

zj (A) −
∏

A block of π

zj (A)

)
,

where if A1,A2, . . . are the blocks ofπ , cI (π) is the new partition obtained by coagulating the blocksAi

for i ∈ I . On the other hand, viewingP((z1, . . . , zp),π) as a function of(z1, . . . , zp) we can also evaluat
LP((z1, . . . , zp),π) from formula (15), and we easily obtain

L∗P
(
(z , . . . , z ),π

) = LP
(
(z , . . . , z ),π

)
. (20)
1 p 1 p
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1,
Now suppose that(Z1
t , . . . ,Z

p
t ) is aDp-valued càdlàg process that solves the martingale problem of the le

with initial value (y1, . . . , yp), and letπ0 be the partition of{1, . . . , k} in singletons. By standard arguments (s
Section 4.4 in [3]) we deduce from (20) that

E

[
p∏

j=1

(Z
j
t )kj

]
= E

[
P

(
(Z1

t , . . . ,Z
p
t ),π0

)] = E
[
P

(
(y1, . . . , yp),Πk

t

)]
. (21)

This is enough to show that the law of(Z1
t , . . . ,Z

p
t ) is uniquely determined. �

Remark. In the case where(Z1
t , . . . ,Z

p
t ) = (Ft (y1), . . . ,Ft (yp)), the identity (21) is of course a special case of (

3.3. Weak existence and uniqueness for a Poissonian SDE

The identity (11) in the simple case treated in Subsection 3.1 incites us to construct on a suitable filtere
bility space(Ω,F , (Ft ),P):

• an(Ft )-Poisson point processM onR+×]0,1[× ]0,1] with intensity dt ⊗m(du,dx) := dt ⊗du⊗x−2Λ(dx),
• a collection(Xt (r), t � 0), r ∈ [0,1] of adapted càdlàg processes with values in[0,1], in such a way that fo

everyr ∈ [0,1], a.s.

Xt(r) = r +
∫

[0,t]×]0,1[×]0,1]
M(ds,du,dx)xΨ

(
u,Xs−(r)

)
. (22)

The Poissonian stochastic integral in the right-hand side should be understood with respect to the com
Poisson measureM (see e.g. Chapter 3 of [5]). This makes sense as|Ψ | � 1 and

∫
x2m(du,dx) < ∞. Recall also

that
∫ 1

0 duΨ (u, r) = 0 for all r ∈ [0,1], so that roughly speaking, the compensation plays no role.
A pair (M, (X·(r), r ∈ [0,1])) satisfying the above conditions will be called aweak solutionof (22). The main

result of this section is the following.

Theorem 2. There exists a weak solution of(22), which satisfies the additional property thatXt(r1) � Xt(r2)

for everyt � 0, a.s. whenever0 � r1 � r2 � 1. Moreover, for every such solution(M,X), every integerp � 1 and
everyp-tuple(r1, . . . , rp) ∈Dp, the process((Xt (r1), . . . ,Xt (rp)), t � 0) has the same distribution as thep-point
motion of theΛ-process started at(r1, . . . , rp).

Proof. The second part of the theorem (weak uniqueness) is an easy consequence of Lemma 1. Recall th
m(du,dx) = du ⊗ x−2Λ(dx). Suppose that((Z1

t , . . . ,Z
p
t ), t � 0) is aDp-valued adapted process which satisfi

the SDE

Zi
t = ri +

∫
[0,t]×]0,1[×]0,1]

M(ds,du,dx)xΨ (u,Zi
s−), i = 1, . . . , p.

Recall the notation�Zi
s = Zi

s − Zi
s− for the jumps ofZi . From the very definition of the stochastic integral,Zi is

a purely discontinuous martingale and the compensator of its jump measure∑
�Zi

s 
=0

δ(s,�Zi
s)

is the image of ds ⊗ m(du,dx) under the mapping(s, u, x) → xΨ (u,Zi
s−). By applying Itô’s formula in the

discontinuous case (see e.g. Meyer [10]), we see that(Z1, . . . ,Zp) solves the martingale problem of Lemma
and hence is distributed as thep-point motion of theΛ-process.
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It remains to establish the existence of a weak solution. We fix a sequence(r1, r2, . . .) of real numbers which is
everywhere dense in[0,1]. In the first part of the proof, we also fix an integerp � 1.

Set

Yt = (Y 1
t , . . . , Y

p
t ) whereY i

t := Ft (ri) for i = 1, . . . , p,

and recall Lemma 1. By comparison with Itô’s formula, we see that for every functiong : [0,1]p → R of classC2,
the predictable projection (in the filtration generated by theΛ-process) of the finite variation process∑

s�t, �Ys 
=0

(
g(Ys) − g(Ys−) − �Ys · ∇g(Ys−)

)
is

t∫
0

ds

∫
m(du,dx)

(
g
(
Ys− + xΨ (u,Ys−)

) − g(Ys−) − xΨ (u,Ys−) · ∇g(Ys−)
)
.

(In order to apply Lemma 1, we first need to reorderr1, . . . , rp; still the preceding assertion holds without reord
ing.) By standard arguments, this entails that the dual predictable projection of the measure∑

s�0, �Ys 
=0

δ(s,�Ys)

is ν(ω,ds,dy) defined as the image of ds ⊗ m(du,dx) under the mapping

(s, u, x) → (
s, xΨ (u,Ys−)

)
.

Finally, we see thatY is a vector-valued semimartingale with characteristics(0,0, ν).
We may now apply Theorem 14.80 of [5] (witȟw(ω, s, z) = xΨ (u,ω(s−)) for z = (u, x) ∈ D := ]0,1[× ]0,1]

andω ∈ D([0,∞[,Rp)) to see that we can define on a filtered probability space(Ω,F , (Ft ),P ) an (Ft )-Poisson
point processM(dt,du,dx) with intensity dt ⊗ m(du,dx) and a càdlàg adapted processXt = (X1

t , . . . ,X
p
t ) such

that(X1, . . . ,Xp)
L= (Y 1, . . . , Y p) and

Xi
t = ri +

∫
[0,t]×]0,1[×]0,1]

M(ds,du,dx)xΨ (u,Xi
s−) (23)

for everyi ∈ {1, . . . , p}.
Now write Qp for the distribution of (M,X1, . . . ,Xp,0,0, . . .) on the product spaceMr (R+ × D) ×

D(R+, [0,1])N (hereMr (R+ × D) is the space of Radon measures onR+ × D equipped with the usual wea
topology). Notice that this product space is Polish, and that the sequence(Qp) is tight (the one-dimensional ma
ginals of Qp do not depend onp wheneverp is large enough). Hence we can find a subsequence(Qpn) that
converges weakly toQ∞.

We abuse the notation by writingM,X1,X2, . . . for the coordinate process onMr (R+ ×D)× D(R+, [0,1])N,
and let(Gt )t�0 be the canonical filtration on this space. Plainly, underQ∞, M is a (Gt )-Poisson random measu
with intensity dt m(du,dx). Moreover a careful passage to the limit shows that Eq. (23) still holdsQ∞-a.s. for
everyi = 1,2, . . . .

Recall that for everyp � 1, (X1
t , . . . ,X

p
t )t�0 has the same distribution underQ∞ as thep-point motion

(Ft (r1), . . . ,Ft (rp))t�0. If r ∈ [0,1] is fixed, we can therefore set

Xt(r) := lim ↓ Xi
t ,
ri↓r
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and the process(Xt (r), t � 0) has the same distribution as(Ft (r), t � 0) so that in particular it has a càdlà
modification. A second moment calculation shows that

lim
ri↓r

t∫
0

∫
D

M(ds,du,dx)xΨ (u,Xi
s−) =

t∫
0

∫
D

M(ds,du,dx)xΨ
(
u,Xs−(r)

)
in L2(Q∞). From (23) we now infer that (22) holds for everyr ∈ [0,1]. This completes the proof.�

4. The Kingman flow

Throughout this section we supposeΛ = δ0. Then theΛ-coalescent is Kingman’s coalescent [8]. Indeed,
rates (2) are simply

βp,k =
{

1 if k = 2,

0 if k > 2.

Proposition 1.For everyx ∈ [0,1], the process(Ft (x), t � 0) has a continuous version which is distributed as
unique strong solution to the SDE

Xt = x +
t∫

0

√
Xs(1− Xs)dWs, (24)

where(Ws, s � 0) is a standard one-dimensional Brownian motion.

Proof. By applying Theorem 1 withhi = 1[0,y] for everyi, we obtain that

Ft (y)p − p(p − 1)

2

t∫
0

ds
(
Fs(y)p−1 − Fs(y)p

)
is a martingale (25

for every integerp � 1. Hence (or as a consequence of (8)), we have

E
[
Ft (y)p

] = yp + p(p − 1)

2
(yp−1 − yp)t + o(t), (26)

where the remainder o(t) is uniform iny ast → 0. Next, writing(
Ft (y) − y

)4 = Ft(y)4 − 4yFt (y)3 + 6y2Ft (y)2 − 4y3Ft(y) + y4,

and applying again (25), we get

E
[(

Ft(y) − y
)4] =

t∫
0

ds E
[
6
(
Fs(y)3 − Fs(y)4) − 12y

(
Fs(y)2 − Fs(y)3) + 6y2(Fs(y) − Fs(y)2)].

Invoking (26), we deduce that there is some finite constantc (which does not depend ofy) such that

E
[∣∣Ft (y) − y

∣∣4] � ct2.

By the Markov property of the one-point motionFt(x), we see that Kolmogorov’s criterion is fulfilled, whic
ensures the existence of a continuous version. That the latter can be expressed as a solution to (24) is now
consequence of (25) forp = 1,2, see for instance Proposition 4.6 in Chapter 5 of [7].
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The dispersion coefficientx → √
x − x2 is Hölder continuous with exponent 1/2 on the interval[0,1], so that

we can apply the well-known Yamada–Watanabe criterion which gives pathwise uniqueness for (24). W
that 0 and 1 are absorbing points forX. �

We now turn our attention to thep-point motion of the flow. Recall the notation (13) and forx = (x1, . . . , xp)

∈ Dp introduce the dispersion matrixσ(x) = (σi,j (x): 1� i � p, 1� j � p + 1) defined by

σi,j (x) =
{

(1− xi)
√

xj − xj−1 if i � j,

−xi
√

xj − xj−1 if i < j,
(27)

wherex0 = 0, xp+1 = 1 by convention. It is easily checked that for everyx = (x1, . . . , xp) ∈ Dp, the coefficients
(ai,j (x))1�i,j�p of the matrixσ(x)σ ∗(x) are given forx ∈ Dp by

ai,j (x) = xi∧j (1− xi∨j ). (28)

We also introduce the operator

Ag(x) = 1

2

p∑
i,j=1

xi∧j (1− xi∨j )
∂2g

∂xi∂xj

(x), (29)

for g ∈ C2(Dp).

Theorem 3.For every integerp � 1 andx = (x1, . . . , xp) ∈ Dp, thep-point motion(
Ft (x1), . . . ,Ft (xp)

)
, t � 0,

has a continuous version which solves the martingale problem: For everyg ∈ C2(Dp),

g
(
Ft (x1), . . . ,Ft (xp)

) −
t∫

0

Ag
(
Fs(x1), . . . ,Fs(xp)

)
ds

is a martingale. Furthermore the process(Ft (x1), . . . ,Ft (xp)) is distributed as the unique strong solution to t
SDE

Xt = x +
t∫

0

σ(Xs)dWs, (30)

where(Ws, s � 0) is a standard(p + 1)-dimensional Brownian motion andσ is defined by(27).

Proof. The existence of a continuous version of thep-point motion follows from Proposition 1. Next, fix tw
integers 1� k � � � p and seth1 = 1[0,xk], h2 = 1[0,x�], so thatρt (h1) = Ft (xk) andρt (h2) = Ft (x�). Note also
thath1h2 = h1. Just as in the proof of Proposition 1, we deduce from Theorem 1 that

Ft (xk)Ft (x�) −
t∫

0

Fs(xk)
(
1− Fs(x�)

)
ds, t � 0,

is a martingale. We conclude using Proposition 4.6 in Chapter 5 of [7] that (the continuous version of) the
(Ft (x1), . . . ,Ft (xp)) can be expressed as a solution to (30), and the martingale problem of the theorem
readily.
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It remains to prove pathwise uniqueness for (30). LetX = (Xt , t � 0) be a solution to (30). It is convenient
introduce thep-dimensional simplex

∆p =
{
y = (y1, . . . , yp+1): 0� yi � 1 for i = 1, . . . , p + 1 and

p+1∑
i=1

yi = 1

}
and the increments

Yt = (Y 1
t , . . . , Y

p+1
t ) whereY i

t = Xi
t − Xi−1

t , i = 1, . . . , p + 1,

with the conventionX0
t ≡ 0 andX

p+1
t ≡ 1. ThenY is a continuous process which lives in∆p and solves the SDE

Yt = y +
t∫

0

τ(Ys)dWs, (31)

wherey = (x1, x2 − x1, . . . , xp − xp−1,1 − xp) and the dispersion matrixτ(y) = (τi,j (y): 1 � i, j � p + 1) is
defined fory ∈ ∆p by

τi,j (y) =
{−yi

√
yj if i 
= j,

(1− yi)
√

yi if i = j.

We shall establish by induction onp that (31) has a unique solution, where by a solution we mean a∆p-valued
continuous adapted process such that (31) holds. Forp = 1, this is easy, so we assume from now on thatp � 2 and
that uniqueness of the solution of (31) has been established at orderp − 1. The following argument is related t
the proof of Lemma 3.2 in [4].

Suppose first that the starting pointy = (y1, . . . , yp+1) lies on the boundary of the simplex

∂∆p = {
y ∈ ∆p: yi = 0 for somei ∈ {1, . . . , p + 1}}.

So there is some indexi such that the martingaleY i
t starts from 0, and since it takes values in[0,1], we haveY i

t = 0
for all t � 0. Consider the process̃Y (respectively,W̃ ) obtained fromY (respectively,W ) by suppressing thei-th
coordinate, viz.

Ỹt = (Y 1
t , . . . , Y i−1

t , Y i+1
y , . . . , Y

p+1
t ), W̃t = (W1

t , . . . ,W i−1
t ,W i+1

y , . . . ,W
p+1
t ).

It is immediate that

Ỹt = ỹ +
t∫

0

τ̃ (Ỹs)dW̃s,

where the dispersion matrix̃τ is obtained fromτ by removing thei-th column andi-th row. SinceW̃ is a standard
p-dimensional Brownian motion, this SDE is that corresponding to (31) for the(p − 1)-point motion and we
conclude that uniqueness holds in that case.

We now suppose that the starting pointy belongs to the interior∆p \ ∂∆p of the simplex. Since the dispersio
matrix τ is smooth in∆p \ ∂∆p , the solution exists and is clearly unique up to the first hitting time of∂∆p by Y .
By the strong Markov property ofW at this first hitting time, we are reduced to the case when the starting
lies on the boundary∂∆p , for which we already know that uniqueness holds.

We have thus shown the existence of a unique solution for (31), and pathwise uniqueness for (30) readily
This completes the proof.�
Corollary 1. The family of rescaled processes

t−1/2(Ft (x) − x
)
, x ∈ [0,1],

converges in the sense of finite-dimensional distributions to a Brownian bridge whent → 0+.
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Proof. One easily deduces from Theorem 3 that for every integerp � 1 andx = (x1, . . . , xp) ∈ Dp, thep-tuple

1√
t

(
Ft (x1) − x1, . . . ,Ft (xp) − xp

)
converges in distribution to a centered Gaussian variable(G(x1), . . . ,G(xp)) with covariance matrixσ(x)σ ∗(x).
From (28), we recognize thep-marginal of a standard Brownian bridge.�
Remark. In the terminology of Harris [4], Section 11, we may say that the Brownian bridge is the generatin
of the flow(Ft ).

5. The flow of inverses

In this section, we consider a finite measureΛ on [0,1] and the flow of bridges(Bs,t )−∞<s�t<∞ associated
with the Λ-coalescent. The dual flow iŝBs,t = B−t,−s . Recall that theΛ-coalescent(Πt , t � 0) in P may be
constructed by the formulaΠt = π(B0,t ) (cf. Section 2).

For everys � t , we set

Γs,t (u) = inf
{
r � 0: Bs,t (r) > u

}
, if u ∈ [0,1[,

and Γs,t (1) = Γs,t (1−). The function u → Γs,t (u) is then nondecreasing and right-continuous from[0,1]
into [0,1]. Note that in contrast to bridges we may haveΓs,t (0) > 0 or Γs,t (1) < 1. If r � s � t , the identity
Br,t = Br,s ◦ Bs,t implies

Γr,t = Γs,t ◦ Γr,s, a.s. (32)

To simplify notation, we setΓt = Γ0,t .

Theorem 4.Let p � 1. For every(x1, . . . , xp) ∈ Dp, the process(Γt (x1), . . . ,Γt (xp)) is a Markov process takin
values inDp with a Feller semigroup.

Proof. If follows from (32) that for every 0� s � t we haveΓt = Γ̃t−s ◦ Γs , whereΓ̃t−s is independent ofΓs and
distributed asΓt−s . This entails that the process(Γt (x1), . . . ,Γt (xp)) is Markov with semigroupQt characterized
as follows: For(y1, . . . , yp) ∈ Dp, Qt((y1, . . . , yp), ·) is the distribution of(Γt (y1), . . . ,Γt (yp)). We know that
B0,s converges in probability to the identity mapping Id ass → 0, in the sense of the Skorokhod topology.
follows that the same property holds forΓs as s → 0. ThereforeQt((y1, . . . , yp), ·) converges weakly to th
Dirac measureδ(y1,...,yp) ast → 0. To complete the proof of the Feller property, we need to verify that the map
(y1, . . . , yp) → Qt((y1, . . . , yp), ·) is continuous for the weak topology. To this end, it is enough to prove thatΓt (y)

tends toΓt (x) a.s. asy → x, or equivalently thatΓt (x−) = Γt (x) a.s., for every fixedx ∈]0,1[ (whenx = 1 we
just use the definition ofΓt (1)).

We argue by contradiction, supposing that there existst > 0 andx ∈]0,1[ such thatP[Γt (x−) < Γt (x)] > 0.
Equivalently, with positive probability there is a nonempty open interval]a, b[⊂ ]0,1[ such thatB0,t (r) = x for
every x ∈]a, b[. Obviously this is possible only if the bridgeB0,t has zero drift (equivalently the partitionΠt

has no singletons) and finitely many jumps (equivalentlyΠt has finitely many blocks). By known facts about t
Λ-coalescent (see Sections 3.6 and 3.7 of [12]), the previous two properties then hold a.s. forB0,r andΠr , for
everyr > 0.

From the connection between bridges and coalescents, we see that on the event{Γt(x−) < Γt (x)}, there is a
subcollection of blocks ofΠt whose union has asymptotic frequencyx. Using the Markov property at timet , we
get that with positive probability the partitionΠt+1 consists of two blocks with respective frequenciesx and 1− x.
Replacingt by t + 1 andx by 1− x (if necessary) we obtain that
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[|Πt | = (x,1− x,0,0, . . .)

]
> 0, (33)

where|π | denotes the ranked sequence of frequencies of the partitionπ .
To get a contradiction, letε > 0 and recall that

Πt+ε
(d)= cΠ̃t

(Πε), (34)

whereΠ̃t is a copy ofΠt which is independent of(Πr, r � 0) andcΠ̃t
(Πε) denotes the coagulation ofΠε by Π̃t

(see [1], Section 2.2). We will verify that

P
[∣∣cΠ̃t

(Πε)
∣∣ = (x,1− x,0,0, . . .)

]−→
ε→0

0. (35)

Together with (34) this clearly gives a contradiction with (33). Write #π for the number of blocks of the partitionπ .
Since #Πε converges to∞ in probability asε → 0, it is immediate to see that

P
[
#
(
cΠ̃t

(Πε)
) = 2 and #̃Πt 
= 2

]−→
ε→0

0.

Therefore we can concentrate on the case #Π̃t = 2 and we denote byP∗ the conditional probabilityP[· | #Π̃t = 2].
SinceΠ̃t is an exchangeable partition, the distribution ofΠ̃t underP∗ must be of the following type: There is
random variableq with values in]0,1[ such that, under the probability measureP∗,

Π̃t
(d)= ({i � 1: Xi = 1}, {i � 1: Xi = 0}),

where conditionally givenq the variablesXi are independent Bernoulli variables with parameterq (and we may
also assume that theXi ’s are independent of(Πr, r � 0)). Write |Πε| = (aε

1, a
ε
2, . . . , a

ε
nε

,0,0, . . .) for the ranked
sequence of frequencies ofΠε. Then the ranked frequencies ofcΠ̃t

(Πε) are distributed underP∗ as the decreasin
rearrangement of(Yε,1− Yε,0,0, . . .), where

Yε =
nε∑
i=1

aε
i Xi.

Note that
∑nε

i=1 aε
nε

= 1 and that supi�1 aε
i converges a.s. to 0 asε → 0. Also denote by

Vε =
(

q(1− q)

nε∑
i=1

(aε
i )

2

)1/2

the square root of the conditional variance ofYε knowingq and(Πr, r � 0). By well-known limit theorems for
triangular arrays, the conditional distribution givenq and(Πr, r � 0) of

Zε := Yε − q

Vε

converges asε → 0 to the standard normal distribution on the line. It follows that

P∗[∣∣cΠ̃t
(Πε)

∣∣ = (x,1− x,0,0, . . .)
] = P∗[Yε = x or Yε = 1− x]
= P∗

[
Zε = x − q

Vε

or Zε = 1− x − q

Vε

]
= E∗

[
P∗

[
Zε = x − q

Vε

or Zε = 1− x − q

Vε

∣∣∣∣q, (Πr)r�0

]]
which tends to 0 asε → 0. This completes the proof of (35) and gives the desired contradiction.�

In a way analogous to Lemma 1, we will now discuss the martingale problem satisfied by the p
(Γ (x ), . . . ,Γ (x )).
t 1 t p
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Theorem 5.Suppose thatΛ(0) = 0. For every functionF ∈ C2(Dp) and every(y1, . . . , yp) ∈ Dp, set

L̃F(y1, . . . , yp) =
∫

Λ(dz)z−2

( 1∫
0

dv
(
F

(
ψz,v(y1), . . . ,ψz,v(yp)

) − F(y1, . . . , yp)
))

,

where

ψz,v(y) = 1{v>y}
((

y

1− z

)
∧ v

)
+ 1{v�y}

((
y − z

1− z

)
∨ v

)
if 0< z < 1, andψ1,v(y) = v. Then, for every(u1, . . . , up) ∈Dp,

F
(
Γt (u1), . . . ,Γt (up)

) −
t∫

0

L̃F
(
Γs(u1), . . . ,Γs(up)

)
ds

is a martingale.

Remark. By using the Taylor expansion forF in the neighborhood of(y1, . . . , yp), it is not hard to verify that the
integral with respect toΛ(dz) in the definition ofL̃F is absolutely convergent, and moreover the functionL̃F is
bounded over[0,1]p .

Proof. First observe that for everys � 0 andu,x ∈ [0,1[,{
Γs(u) < x

} = {
B0,s(x) > u

}
, a.s. (36)

The inclusion{Γs(u) < x} ⊂ {B0,s(x) > u} is obvious by definition. Conversely, sinceB0,s is continuous atx, a.s.,
the conditionB0,s(x) > u also implies thatΓs(u) < x a.s.

Let g be a polynomial function on[0,1]p and letf ∈ C∞([0,1]p). Also set

G(t1, . . . , tp) =
t1∫

0

du1

t2∫
0

du2 · · ·
tp∫

0

dup g(u1, . . . , up),

F (t1, . . . , tp) =
1∫

t1

dx1

1∫
t2

dx2 · · ·
1∫

tp

dxp f (x1, . . . , xp).

From (36), we get that for everyu1, . . . , up, x1, . . . , xp ∈ [0,1[,
P
[
Γs(u1) < x1, . . . ,Γs(up) < xp

] = P
[
B0,s (x1) > u1, . . . ,B0,s (xp) > up

]
= P

[
B̂0,s (x1) > u1, . . . , B̂0,s (xp) > up

]
.

Integrating with respect to the measureg(u1, . . . , up)f (x1, . . . , xp)du1 · · ·dupdx1 · · ·dxp, we arrive at∫
[0,1[p

du1 · · ·dup g(u1, . . . , up)E
[
F

(
Γs(u1), . . . ,Γs(up)

) − F(u1, . . . , up)
]

=
∫

[0,1[p
dx1 · · ·dxp f (x1, . . . , xp)E

[
G

(
B̂0,s (x1), . . . , B̂0,s(xp)

) − G(x1, . . . , xp)
]
. (37)

Denote byAF,G the right-hand side of (37). We can evaluateAF,G from the knowledge of the generatorL for the
process(F (x ), . . . ,F (x )) = (B̂ (x ), . . . , B̂ (x )) (strictly speaking we should reorderx , . . . , x since the
s 1 s p 0,s 1 0,s p 1 p
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process(Fs(x1), . . . ,Fs(xp)) and its generator were discussed above in the case when(x1, . . . , xp) ∈ Dp; we will
leave this trivial reduction to the reader). Denoting byPt the semigroup of this process, we have

E
[
G

(
Fs(x1), . . . ,Fs(xp)

) − G(x1, . . . , xp)
] =

s∫
0

dt LPtG(x1, . . . , xp).

To simplify notation, setx = (x1, . . . , xp) andΨ (v, x) = (Ψ (v, x1), . . . ,Ψ (v, xp)) as in Section 3.2. From th
formula forL (Section 3.2), the last displayed quantity is equal to

s∫
0

dt

∫
Λ(dz)z−2

1∫
0

dv
(
PtG

(
x + zΨ (v, x)

) − PtG(x)
)
.

From the explicit formula forPtG whenG is a polynomial function (see (21)), we see thatPtG is again a polyno-
mial function and moreover we can get a uniform bound on the second derivatives ofPtG. Using Taylor’s formula,
and the fact that

∫ 1
0 dv Ψ (v, x) = 0, we get∣∣∣∣∣

1∫
0

dv
(
PtG

(
x + zΨ (v, x)

) − PtG(x)
)∣∣∣∣∣ � Cz2

with a constantC independent oft, x, z. This allows us to apply Fubini’s theorem in order to get

AF,G =
∫

[0,1[p
dx f (x)

s∫
0

dt

∫
Λ(dz)z−2

1∫
0

dv
(
PtG

(
x + zΨ (v, x)

) − PtG(x)
)

=
s∫

0

dt

∫
Λ(dz)z−2

∫
[0,1[p

dx f (x)

1∫
0

dv
(
PtG

(
x + zΨ (v, x)

) − PtG(x)
)
.

Then, from the definition ofG and the fact that̂B0,t
(d)= B0,t ,

PtG
(
x + zΨ (v, x)

) − PtG(x)

= E
[
G

(
B̂0,t

(
x1 + zΨ (v, x1)

)
, . . . , B̂0,t

(
xp + zΨ (v, xp)

)) − G
(
B̂0,t (x1), . . . , B̂0,t (xp)

)]
= E

[ ∫
[0,1[p

du1 · · ·dup g(u1, . . . , up)

(
p∏

i=1

1{ui<B0,t (xi+zΨ (v,xi ))} −
p∏

i=1

1{ui<B0,t (xi )}

)]
.

At this point we use (36) withu replaced byui andx replaced byxi , or by xi + zΨ (v, xi). We also observe tha
the conditionxi + zΨ (v, xi) > Γt (ui) holds if and only ifxi > ψz,v(Γt (ui)), or possiblyxi = v in the case when
ψz,v(Γt (ui)) = v. Since the casexi = v obviously gives no contribution when we integrate with respect to dv, we
get

1∫
0

dv
(
PtG

(
x + zΨ (v, x)

) − PtG(x)
) =

1∫
0

dv

∫
[0,1[p

dug(u)E

[
p∏

i=1

1{xi>ψz,v(Γt (ui ))} −
p∏

i=1

1{xi>Γt (ui )}

]
.

By substituting this in the preceding formula forA , we arrive at
F,G
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1). This
escent,
d

. Let
AF,G =
s∫

0

dt

∫
Λ(dz)z−2

1∫
0

dv

∫
[0,1[p

dug(u)E
[
F

(
ψz,v

(
Γt (u1)

)
, . . .

) − F
(
Γt (u1), . . .

)]

=
∫

[0,1[p
dug(u)

s∫
0

dt

∫
Λ(dz)z−2

1∫
0

dv E
[
F

(
ψz,v

(
Γt (u1)

)
, . . .

) − F
(
Γt(u1), . . .

)]
,

where the last application of Fubini’s theorem is easily justified by observing that there exists a constantC such
that for everyz ∈]0,1] andy1, . . . , yp ∈ [0,1],∣∣∣∣∣

1∫
0

dv
(
F

(
ψz,v(y1), . . . ,ψz,v(yp)

) − F(y1, . . . , yp)
)∣∣∣∣∣ � Cz2.

From the Feller property of the process(Γt (u1), . . . ,Γt (up)) and the previous bound, we get that the mapping

(u1, . . . , up) −→
s∫

0

dt

∫
Λ(dz)z−2

1∫
0

dv E
[
F

(
ψz,v

(
Γt (u1)

)
, . . .

) − F
(
Γt (u1), . . .

)]
is continuous. By comparing with (37), we conclude that

E
[
F

(
Γs(u1), . . . ,Γs(up)

) − F(u1, . . . , up)
] =

s∫
0

dt E
[
L̃F

(
Γt(u1), . . . ,Γt (up)

)]
.

This gives the martingale problem stated in the theorem, at least for functionsF of the type considered above. Th
general case follows from an easy induction onp together with a density argument to go fromC∞ functions toC2

functions. �
A natural question is uniqueness for the martingale problem stated in Theorem 5 (compare with Lemma

does not seem to follow directly from our approach. Instead we will turn to the case of the Kingman coal
where the law of the flow of inverses can be made more explicit. Recall that the domainDp has been define
in (13).

Theorem 6. Suppose thatΛ = δ0. Let (u1, . . . , up) ∈ Dp. Then the process(Γt (u1), . . . ,Γt (up)) is a diffusion
process inDp with generator

Ãg(x) = 1

2

p∑
i,j=1

xi∧j (1− xi∨j )
∂2g

∂xi∂xj

(x) +
p∑

i=1

(
1

2
− xi

)
∂g

∂xi

(x),

for g ∈ C2(Dp).

Proof. This can be deduced from the martingale problem for the process(Ft (x1), . . . ,Ft (xp)) in a way similar
to the proof of Theorem 5. We will treat the casep = 1 and leave details of the general case to the reader
f ∈ C2([0,1]) and letg be a polynomial function on[0,1]. As in the proof of Theorem 5, we set

F(x) =
1∫
f (y)dy, G(x) =

x∫
g(u)du.
x 0
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As in (37), we have

1∫
0

dug(u)E
[
F

(
Γs(u)

) − F(u)
] =

1∫
0

dx f (x)E
[
G

(
B̂0,s (x)

) − G(x)
]
, (38)

and

E
[
G

(
B̂0,s(x)

) − G(x)
] =

s∫
0

dt APtG(x). (39)

Fix t > 0 and seth = PtG. Recall from (29) thatAh(x) = 1
2x(1− x)h′′(x). Note thath(0) = 0 andh(1) = G(1) =∫ 1

0 g(u)du. Also setφ(x) = 1
2x(1− x)f ′(x) + (1

2 − x)f (x). Using two integrations by parts, we get

1∫
0

dx f (x)Ah(x) = −
1∫

0

dx φ(x)h′(x) = −φ(1)h(1) +
1∫

0

dx φ′(x)h(x)

= −φ(1)h(1) +
1∫

0

dx φ′(x)E

[ B̂0,t (x)∫
0

dug(u)

]

= −φ(1)h(1) +
1∫

0

dug(u)

1∫
0

dx φ′(x)P
[
Γt(u) < x

] = −
1∫

0

dug(u)E
[
φ
(
Γt (u)

)]
.

By combining this with (38) and (39) we arrive at

E
[
F

(
Γs(u)

) − F(u)
] = −

s∫
0

dt E
[
φ
(
Γs(u)

)]
.

The casep = 1 of the theorem easily follows.�
Remark. By arguments similar to the proof of Theorem 3, it is easy to verify that uniqueness holds for th
tingale problem associated with the generatorÃ. Moreover the process(Γs(x1), . . . ,Γs(xp)) can be obtained a
the unique strong solution of a stochastic differential equation analogous to (30). In the casep = 1 in particular,
(Γt (x), t � 0) has the same law as the process(Xt , t � 0) solving the equation

Xt = x +
t∫

0

√
Xs(1− Xs)dWs +

t∫
0

(
1

2
− Xs

)
ds,

whereW is a standard linear Brownian motion. Ifx /∈ {0,1}, thenXt never hits 0 or 1. This property, which is
contrast with the diffusion process of Theorem 3, can be seen as follows. IfT0 := inf{t � 0: Xt = 0}, an application
of Itô’s formula shows that, fort ∈ [0, T0[,

logXt = logx +
t∫

0

√
1− Xs

Xs

dWs − t

2
.

Hence t
2 + logXt is a local martingale on the stochastic interval[0, T0[, and cannot converge to−∞ ast → T0.

This proves thatT0 = ∞ a.s., and a similar argument applies to the hitting time of 1.
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5.1. More about the Kingman flow

Let us summarize the various results we have obtained for the flow associated with the Kingman coales
s, t ∈ R with s < t . Then, we know that the numberNs,t of jumps of the bridgeBs,t is distributed as the number o
blocks in the Kingman coalescent at timet − s. Furthermore, conditionally on{Ns,t = p}, we may write

Bs,t (r) =
p−1∑
i=1

Y i
s,t1[Zi

s,t ,Z
i+1
s,t [(r) + 1[Zp

s,t ,1](r), (40)

where the random vectors(Z1
s,t , . . . ,Z

p
s,t ) and(Y 1

s,t , . . . , Y
p−1
s,t ) are independent,(Z1

s,t , . . . ,Z
p
s,t ) is distributed as

the ordered statistics ofp independent uniform variables on[0,1] and(Y 1
s,t , . . . , Y

p−1
s,t ) is distributed as the ordere

statistics ofp − 1 independent uniform variables on[0,1] (this last property is needed only ifp > 1). The first
two properties follow from general facts about bridges. The last one follows from the known distribution of
frequencies in the Kingman coalescent (see [8]).

Next what happens in the representation (40) if we varys and t? First, if s is fixed, andt increases, the
vector (Y 1

s,t , . . . , Y
p−1
s,t ) will remain constant as long asNs,t = p. Meanwhile, Theorem 6 shows that the vec

(Z1
s,t , . . . ,Z

p
s,t ) evolves as a diffusion process with generatorÃ. Eventually, two successive coordinates of t

process will meet and coalesce, thus corresponding to a coalescence in the Kingman coalescent. At
timeNs,t jumps fromp to p − 1, and so on.

On the contrary, if we fixt and decreases, the vector(Z1
s,t , . . . ,Z

p
s,t ) will remain constant as long asNs,t = p.

Meanwhile, Theorem 3 shows that(Y 1
s,t , . . . , Y

p−1
s,t ) evolves as a diffusion process with generatorA. Eventually

two successive coordinates of this process will coalesce, or the first oneY 1
s,t will be absorbed at 0, or the la

oneY
p−1
s,t will be absorbed at 1 (in the genealogical interpretation of [1], each of these events correspond

extinction of a subpopulation consisting of descendants of one individual at the initial generation). At that m
Ns,t jumps fromp to p − 1, and so on.

6. Flows on the circle

6.1. A Poissonian construction

Our goal in this section is to investigate certain flows on the circle which are associated withΛ-coalescents in a
similar way to the flows on[0,1] considered in the previous sections. We will start with a Poissonian constru
which is analogous to the one in Section 4 of [1]. For this reason we will skip some details of the proofs.

We consider the one-dimensional torusT = R/Z. We denote byd(x, y) the distance onT and byσ Lebesgue
measure onT. If x, y ∈ T, we will denote by[x, y] the counterclockwise arc going fromx to y: If p is the canonica
projection fromR ontoT, and ifx1, resp.y1, is the representative ofx, resp.y, in [0,1[, then[x, y] = p([x1, y1])
if x1 � y1 and[x, y] = p([x1, y1 + 1]) if x1 > y1. We also setd∗(x, y) = σ([x, y]). Finally, for everyx ∈ T, we
setx̄ = x + 1

2 and ify ∈ T andy 
= x̄, we denote by[x, y] the shortest arc betweenx andy (that is the range of th
unique geodesic fromx to y).

Let z ∈ T anda ∈]0,1]. We denote byfa,z the unique continuous mapping fromT into T such that

fa,z(y) = z if d(y, z) � a

2

and ifd(y, z) > a
2 , fa,z(y) is the unique element ofT such that

d
(
z̄, fa,z(y)

) = 1
d(z̄, y)
1− a
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fa,z(y) ∈ [y, z]
(the latter condition makes sense only ify 
= z̄, which is the case where it is needed).

Note that the image of the restriction ofσ to {y: d(y, z) > a/2} under the mappingfa,z is (1− a)σ . This is the
key property needed for the subsequent developments.

Let ν be a finite measure on]0,1], and letN (dt dzda) be a Poisson point measure onR × T×]0,1] with
intensity dt σ (dz)ν(da). Then, for everys, t ∈ R with s � t , define

Φs,t = fak,zk
◦ fak−1,zk−1 ◦ · · · ◦ fa1,z1, (41)

where(t1, z1, a1), . . . , (tk, zk, ak) are the atoms ofN in ]s, t] × T×]0,1], ordered in such a way thatt1 < · · · < tk .
If k = 0, that is if there are no such atoms, we letΦs,t be the identity mapping ofT. By construction,

Φs,u = Φt,u ◦ Φs,t , if s � t � u.

Finally, let V1,V2, . . . be a sequence of i.i.d. random variables which are uniformly distributed onT. Also
assume that this sequence is independent of the Poisson measureN . For everys � t , define a random equivalenc
relationΠs,t on N by declaring thati andj are in the same block ofΠs,t if and only if Φs,t (Vi) = Φs,t (Vj ).

Proposition 2.The process(Π0,t , t � 0) is aΛ-coalescent, withΛ(dx) = x2ν(dx).

This is very similar to Lemma 4 in [1], so that we will skip the proof. The crucial observation is the follow
Let a ∈]0,1] and letZ be a random variable uniformly distributed overT, independent of the sequence(Vj ). For
n � 1, setKn = |{i � n: d(Z,Vi) � a

2}|. Then, conditionally onKn = k, the distinct values taken byfa,Z(Vi),
i � n, are distributed asn − k + 1 independent uniform variables onT (compare with Lemma 2 of [1]).

Note that our presentation is a bit different from the one in [1], because we consider the “flow of inverses
than the direct flow as in Section 4 of [1]. This explains the apparent difference between (41) and formu
of [1].

At this point it would be tempting to continue in the spirit of Theorem 2 of [1] and to consider a sequenc(νn)

such that the measuresx2νn(dx) converge weakly to a given finite measureΛ on [0,1]. Denoting byΦn the flow
associated withνn by the above construction, one expects that the sequenceΦn converges in a suitable sen
to a limiting flow associated with theΛ-coalescent. This convergence is indeed easy to obtain for the one
motions, and because of rotational invariance of our construction, we see that the limiting one-point mot
Lévy processes onT. However, proving the convergence of several points motions is harder because it d
seem easy to obtain a simple characterization of the limiting law. We will not address this general proble
but in the next subsection we will concentrate on the case of the Kingman coalescent (Λ = δ0), which leads to a
Brownian flow onT.

6.2. A remarkable Brownian flow

For everyε ∈]0,1], let νε = ε−2δε, and letΦε = (Φε
s,t )−∞<s�t<∞ be the Poissonian flow constructed in t

preceding subsection withν = νε.

Proposition 3.Let z1, . . . , zp ∈ T. Then the processes(
Φε

0,t (z1), . . . ,Φ
ε
0,t (zp)

)
t�0

converge in distribution asε ↓ 0, in the sense of weak convergence in the Skorokhod spaceD(R+,Tp), towards a
diffusion process with generator

Bg(y1, . . . , yp) = 1

2

p∑
b(yi, yj )

∂2g

∂yi∂yj

(y1, . . . , yp), g ∈ C2(Tp),
i,j=1
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where the functionb is defined onT2 by

b(y, y′) = 1

12
− 1

2
d(y, y′)

(
1− d(y, y′)

)
. (42)

As the proof will show, uniqueness holds for the martingale problem associated with the generatorB, so that
the limit in the proposition is well defined.

In the terminology of Harris [4], we can identify the limiting flow as the (coalescing) Brownian flow oT

with covariance functionb (note thatb is translation invariant). In particular the one-point motions are (sca
Brownian motions onT.

Proof. First consider the casep = 1, z1 = z. In that case, we observe thatΦε
0,t (z) is a continuous-time random

walk onT, with jump rateε2 and symmetric jump distributionπε given by∫
T

πε(dy)ϕ(y) =
ε/2∫

−ε/2

da ϕ(a) +
1−ε/2∫
ε/2

da ϕ

(
ε(a − 1/2)

1− ε

)
.

Notice thatπε is supported on[−ε/2, ε/2] and that we slightly abuse notation by identifying elements of[− ε
2, ε

2]
with their equivalent classes inT. Whenε → 0, the second moment ofπε behaves as

ε2

1∫
0

(
a − 1

2

)2

da = ε2

12
.

From well-known invariance principles, this is enough to conclude that the process(Φε
0,t (z))t�0 converges in

distribution, in the sense of weak convergence in the Skorokhod spaceD(R+,T), towards a Brownian motion onT

started atz (with generator1
24

d2

dx2 instead of the usual12
d2

dx2 ).
Let us come back to the general casep � 1. From the casep = 1, we already know that the family of th

distributions of the processes(Φε
0,t (z1), . . . ,Φ

ε
0,t (zp))t�0 is tight asε → 0. To prove the desired convergence

need to characterize the sequential limits of this family. By construction, the process(Φε
0,t (z1), . . . ,Φ

ε
0,t (zp)) is a

continuous-time Markov chain with generator

Bεg(y1, . . . , yp) = ε−2
∫

σ(dz)
(
g
(
fε,z(y1), . . . , fε,z(yp)

) − g(y1, . . . , yp)
)
.

Assume thatg ∈ C2(Tp). Then Taylor’s expansion shows that asε ↓ 0,

Bεg(y1, . . . , yp) = ε−2

2

p∑
i,j=1

∂2g

∂yi∂yj

(y1, . . . , yp)

∫ (
fε,z(yi) − yi

)(
fε,z(yj ) − yj

)
σ(dz) + o(1),

where we again abuse notation by writingfε,z(yi) − yi for the representative of this element ofT in the real
interval[−ε, ε]. Elementary calculations show that for everyy, y′ ∈ T,

lim
ε→0

ε−2
∫ (

fε,z(y) − y
)(

fε,z(y
′) − y′)σ(dz) = b(y, y′),

where the functionb(y, y′) is as in the statement of the theorem.
By a standard argument we obtain that any weak sequential limit(Γ 1

t , . . . , Γ
p
t ) of the family (Φε

0,t (z1), . . . ,

Φε
0,t (zp)) asε ↓ 0 solves the following martingale problem: For everyg ∈ C2(Tp),

g(Γ 1
t , . . . , Γ

p
t ) −

t∫
Bg(Γ 1

s , . . . ,Γ
p
s )ds
0
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is a martingale. It remains to verify that this martingale problem is well-posed. To this end, letΓt = (Γ 1
t , . . . ,Γ

p
t )

be any continuous process that solves the preceding martingale problem with initial value(z1, . . . , zp). Fix i, j ∈
{1, . . . , n} and let

Ti,j = inf{t � 0: Γ i
t = Γ

j
t }.

We first prove that

Γ i
t = Γ

j
t for everyt � Ti,j , a.s. (43)

Without loss of generality we may takei = 1 andj = 2. Letz0 ∈ T \ {z1, z2} and

T0 = inf{t � 0: Γ 1
t = z0 or Γ 2

t = z0}.
For everyt � 0, set

Xt = d∗(z0,Γ
1
t ) − d∗(z0,Γ

2
t )

(recall thatd∗(x, y) is the length of the counterclockwise arc fromx to y). From the martingale problem forΓ , we
easily deduce that for everyg ∈ C2(R) the process

g(Xt ) − 1

2
|Xt |

(
1− |Xt |

)
g′′(Xt )

is a local martingale on the stochastic interval[0, T0[ (the restriction to[0, T0[ is needed since the function(x, y) →
d∗(z0, x)−d∗(z0, y) is C2 only onT\ {z0}). Now notice that the diffusion process with generator1

2|x|(1−|x|) d2

dx2

(in the real interval[−1,1]) is absorbed at the origin. We conclude thatΓ 1
t = Γ 2

t for everyt ∈ [T1,2, T0[, a.s. on
{T1,2 < T0}. Our claim (43) follows by applying a similar argument to the shifted process(Xs+t )t�0 for anys � 0.

Since the covariance functionb is smooth outside the diagonal, the desired uniqueness property easily fo
from (43). See Lemma 3.2 in [4] for a similar argument.�

We now turn to a more detailed discussion of properties of the limiting flow. Note that the notion of a
continuous function onT makes sense with an obvious meaning. A functionϕ :T → T is said to be monotone
the conditiony ∈ [x, z] impliesϕ(y) ∈ [ϕ(x),ϕ(z)].

By adapting arguments of Harris [4] (Section 4), we may construct a collection(Θt (x))t�0 indexed byx ∈ T,
of continuous processes with values inT, in such a way that the following holds:

(i) For everyz1, . . . , zp , the process(Θt (z1), . . . ,Θt (zp)) is distributed as the solution of the martingale probl
associated withB started at(z1, . . . , zp).

(ii) For everyt � 0, the functionx → Θt(x) is right-continuous and monotone.
(iii) The mappingt → (Θt (x), x ∈ T) is continuous with respect to the uniform norm on Borel functions fromT

into T.
(iv) If x, y ∈ T and Sx,y = inf{t � 0: Θt(x) = Θt(y)} then Sx,y < ∞ and we haveΘt(x) = Θt(y) for every

t � Sx,y .

From now on we deal with a collection(Θt (x)) satisfying the above properties (i)–(iv).

Theorem 7.Let (V1,V2, . . .) be a sequence of independent uniform variables onT, which is also independent o
the collection(Θt (x)). For everyt � 0, let Πt be the random partition ofN constructed by saying thati andj are
in the same block ofΠt if and only ifΘt(Vi) = Θt(Vj ). Then(Πt )t�0 is a Kingman coalescent.

Proof. Recall the Poissonian flowΦε of the beginning of this subsection, and fixp � 1. As a consequence o
Proposition 3, we know that(

Φε (V ), . . . ,Φε (V )
) −→ (

Θ (V ), . . . ,Θ (V )
)

(44)
0,t 1 0,t p t�0 t 1 t p t�0
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in the sense of weak convergence in the Skorokhod space. By using the Skorokhod representation the
may and will assume that this convergence holds a.s. along a given subsequenceεk → 0. From now on we restric
our attention to values ofε belonging to this subsequence. Fori, j ∈ {1, . . . , p} with i 
= j , set

T ε
i,j = inf

{
t � 0: Φε

0,t (Vi) = Φε
0,t (Vj )

}
.

Lemma 2.We have

lim
ε→0

T ε
i,j = SVi,Vj

in probability

and the variableSVi,Vj
is exponentially distributed with mean1.

We postpone the proof of the lemma. For everyt � 0, letΠε
0,t be the random partition ofN associated withΦε

as explained before Proposition 2. By Proposition 2, we know that the process(Πε
0,t )t�0 is aΛ-coalescent with

Λ = δε, and thus converges in distribution to the Kingman coalescent asε → 0 (see Theorem 1 in [12]).
On the other hand, it immediately follows from Lemma 2 and our definitions that the restriction ofΠε

0,t to
{1, . . . , p} converges in probability to the restriction ofΠt . Hence we conclude that the restriction of(Πt )t�0 to
{1, . . . , p} is distributed as the Kingman coalescent. Since this holds for anyp the proof is complete. �
Proof of Lemma 2. It is clear from the a.s. convergence (44) that we have

SVi,Vj
� lim inf

ε→0
T ε

i,j , a.s.

To get the first part of the lemma, it is then enough to prove thatE[T ε
i,j ] converges toE[SVi,Vj

] asε → 0. From
Proposition 2 and the known properties of theΛ-coalescent (see e.g. [12], Example 19), or by a direct argume
is easily checked thatT ε

i,j has the same distribution asU1 + · · · + UNε , whereU1, . . . are independent exponenti

variables with meanε2, andNε is independent of the sequenceU1, . . . and such thatP[Nε = k] = ε2(1 − ε2)k−1

for everyk ∈ N. It immediately follows thatE[T ε
i,j ] = 1. Therefore the proof of the first assertion will be compl

if we verify the second assertion, that isSVi,Vj
is exponential with mean 1.

The following argument is related to Lemma 3.4 in Harris [4]. By using the martingale problem and argu
similar to the proof of Proposition 3, it is easy to check that the process(d∗(Θt (Vi),Θt (Vj )), 0 � t < SVi,Vj

) is

distributed as the diffusion with generator1
2x(1− x) d2

dx2 with initial value uniform over[0,1], up to its first hitting
time of {0,1} (notice that this is the same diffusion as in Corollary 1). Consequently, ifU is a random variable with
uniform distribution over[0,1], andW is a standard linear Brownian motion, thenSVi,Vj

has the same distributio
asT = inf{t � 0: Yt = 0 or 1}, whereY is the unique (strong) solution of the stochastic equation

Yt = U +
t∫

0

√
Ys(1− Ys)dWs.

Note thatY is absorbed at 0 and 1 and thatE[Yt ] = 1
2 for everyt � 0. From Itô’s formula, we get that for ever

integerk � 2,

E[Y k
t ] = 1

k + 1
+ k(k − 1)

2

t∫
0

(
E[Y k−1

s ] − E[Y k
s ])ds.

From this formula and an easy induction argument we get

E[Y k
t ] = 1 − k − 1

e−t .

2 2(k + 1)
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The distribution ofYt readily follows: By lettingk go to∞ and using symmetry, we have firstP[Yt = 0] = P[Yt =
1] = 1

2(1 − e−t ) and we also see that, conditionally on{Yt /∈ {0,1}}, Yt is uniform on]0,1[. This is more than
enough for our needs.�

We observed in the preceding proof that the process(d∗(Θt (Vi),Θt (Vj )), 0 � t < SVi,Vj
) is distributed as the

diffusion process in Corollary 1. This is generalized in the following proposition, which provides a conn
between the flow(Θt )t�0 and the Kingman flow on the interval[0,1], thus shedding light on Theorem 7.

Recall our notation(Ft )t�0 for theΛ-process and takeΛ = δ0. For everyx ∈ [0,1], we can view(Ft (x))t�0 as
a T-valued process: This simply means that we identify the values 0 and 1.

Proposition 4.Let 0� x1 < x2 < · · · < xp < 1. Then theTp-valued processes(
d∗(Θt(0),Θt (x1)

)
, d∗(Θt(0),Θt (x2)

)
, . . . , d∗(Θt(0),Θt (xp)

))
t�0

and (
Ft (x1),Ft (x2), . . . ,Ft (xp)

)
t�0

have the same distribution.

Proof. The generatorA of the Markov process(Ft (x1),Ft (x2), . . . ,Ft (xp)) is known from Theorem 3. From th
knowledge of the generatorB for the process(Θt (0),Θt (x1), . . . ,Θt (xp)) we can also identify the law of th
process(

d∗(Θt(0),Θt (x1)
)
, d∗(Θt(0),Θt (x2)

)
, . . . , d∗(Θt(0),Θt (xp)

))
t�0

(compare with Section 5 of Harris [4]). Precisely, we verify that the latter process solves the martingale p
associated withA, at least up to the stopping timeS0,xp , and we then use an induction argument. Details are le
the reader. �

As a consequence of Theorem 7 (or of the preceding proposition), we know that for everyt > 0 the rangeSt

of Θt is finite, and more preciselyNt = |St | is distributed as the number of blocks in the Kingman coalesce
time t . Set

St = {Ut
1, . . . ,U

t
Nt

},
whereU1

t is drawn uniformly at random fromSt , and then the pointsUt
1,U

t
2, . . . ,U

t
Nt

are listed in counterclockwis
order. The next corollary is a simple consequence of Proposition 4 and the discussion at the end of Sectio

Corollary 2. Fix t > 0. Let

Mt = (
σ
(
Θ−1

t (U t
1)

)
, σ

(
Θ−1

t (U t
2)

)
, . . . , σ

(
Θ−1

t (U t
Nt

)
))

be the vector of masses attached to the points inSt , and let

Dt = (
d∗(Ut

1,U
t
2), d

∗(Ut
2,U

t
3), . . . , d

∗(Ut
Nt

,U t
1)

)
be the vector of lengths of the adjacent intervals to the points inSt . Then conditionally on{Nt = k}, the vectorsMt

andDt are independent and both uniformly distributed on the simplex{(x1, . . . , xk) ∈ [0,1]k: x1 + · · · + xk = 1}.

Remark. (i) There is in a sense more symmetry in the flow(Θt ) than in the Kingman flow on the interval[0,1],
for which the end points 0 and 1 play a special role. The fact that the random vectorsMt andDt have the same
distribution is clearly related to Theorem 10.5 and Corollary 10.6 in Harris [4], who deals with Brownian flo
the real line.
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(ii) As a final observation, let us comment on the constant1
12 in formula (42) for the covariance functionb. Let

a > 0 and letβa be a Brownian motion onT started at 0 with generatora2
d2

dx2 . Assume thatβa is independent o
(Θt )t�0 and for everyt � 0 set

Θa
t (y) = Θt(y) + βa

t , y ∈ T.

Then(Θa
t )t�0 is a Brownian flow inT with covarianceba(y, y′) = b(y, y′) + a. Obviously, Theorem 7, Propos

tion 4 and Corollary 2 remain valid ifΘ is replaced byΘa .
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