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Abstract

The subject of this article is to study the asymptotic velocity of a tracer particle in a mean zero asymmetric simple e
system inZd (a diffusive, non-reversible particle system), slightly perturbed from equilibrium. The perturbation can be t
of to be induced by a small uniform external fieldE. The leading linear order term inE of the velocity is called the mobility o
the particle and the Einstein relation states that it coincides with the self-diffusion matrix of the tracer particle in equi
We compute the mobility whend � 3, and we show that such a relation fails to hold for all mean-zero asymmetric s
exclusion systems. The method we use to compute the mobility is quite general and applicable to a wide range of mo
 2005 Elsevier SAS. All rights reserved.

Résumé

On s’intéresse à la vitesse asymptotique d’une particule marquée dans un processus d’exclusion simple centré as
soumise à un champ de force externeE. La mobilité de la particule marquée, estimation au premier ordre de la vitesse p
petites valeurs deE, coincide avec la matrice d’auto-diffusion, relation dite d’Einstein. Dans cet article, on calcule la m
pour d � 3 et l’on montre que la relation d’Einstein cesse d’ être valide pour tous les processus d’exclusion simple
asymétriques. La méthode utilisée pour calculer la mobilité est très génerale et peut s’appliquer à une grande classe d
 2005 Elsevier SAS. All rights reserved.

1. Introduction

Consider a diffusive particle system in equilibrium, tag a particle and letD be its self-diffusion coefficient
Suppose now the system is perturbed by a small field that affects the dynamics of the tagged particle bu
of its environment. More precisely, the type of perturbation we consider is the following: ifP

0 is the process in
equilibrium with infinitesimal generatorL andXt denotes the position of the tagged particle at timet , then the

E-mail address:michail@statslab.cam.ac.uk (M. Loulakis).
0246-0203/$ – see front matter 2005 Elsevier SAS. All rights reserved.
doi:10.1016/j.anihpb.2004.07.001
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perturbed processPV is a measure absolutely continuous toP
0 when we only consider paths up to a finite timet ,

with a Radon–Nikodym derivative of the form

exp

(
V (Xt) − V (X0) −

t∫
0

e−V (Xs)LeV (Xs) ds

)
.

In physical terms,V (Xt) represents the work done on the system by the external field up to timet .
If under the new dynamics the tagged particle has a preferred direction of motion, for instance in the c

uniform external field (V (Xt ) = α · Xt ), it is of interest to examine whether it moves with a ballistic velocityv(α).
In that case linear response theory predicts that the mobility of the tagged particle defined asMij = ∂vi (α)

∂αj
|α=0

coincides with the self-diffusion matrixD. Such a relation is usually referred to as the Einstein relation and
believed to be generally valid, at least for reversible particle systems.

A natural class of models for which one would like to establish the validity of such a relation is simple exc
processes onZd . The motion (in the scaling limit) of a tracer particle when these models are in equilibrium
now well understood. Saada [15] proved a law of large numbers for the position of a tracer particle and Kip
Varadhan [4], Varadhan [18] and Sethuraman, Varadhan and Yau [16] have proved an invariance princip
fluctuations in the symmetric, mean-zero asymmetric, and general asymmetric ind � 3 case, respectively.

In computing the mobility of the tagged particle we are faced with the difficulty that the particle syst
the presence of the field evolves out of equilibrium, and there is not much explicit information available
invariant states of the system under the new dynamics. Consequently, the physically proper order of limits,
scaling limit to compute the drift, thenα → 0 to compute the mobility presents a hard problem.

Ferrari, Goldstein and Lebowitz [1] proposed rescaling the external field simultaneously with space a
as an alternative. This ‘weak asymmetry’ approach was successfully carried out by Lebowitz and Rost
Landim, Olla and Volchan [9] studied the motion of an asymmetric tracer particle for the 1-dimensional n
neighbor symmetric simple exclusion process. This is the only case where invariant measures for the pro
seen from the particle’ are explicitly known [1]. Relating the motion of the particle to the diffusion of a pa
system with zero range interaction they obtained results for a wide class of non-equilibrium initial configur
including the validity of the Einstein relation. In both these articles, the symmetry under time reversal is s
tially used.

The validity of the Einstein relation was proved in [13] for all symmetric simple exclusion processes in
or more dimensions. However, the reversibility of the system is very mildly used there, and the method o
allows for applications to different particle systems including non-reversible ones.

In this article we apply this method to compute the mobility of a tagged particle for the mean-zero asym
simple exclusion process ind � 3, a diffusive non-reversible particle system. It turns out, even though it req
some work to prove so, that at least at sufficiently low particle densities the Einstein relation is always v
which hints to the fundamental role of reversibility in the validity of such a relation. As corollaries to our r
we also show that the self-diffusion coefficient of a tagged particle in mean-zero asymmetric simple excl
alwaysstrictly greater than the one in its symmetric counterpart, and that as a function of the particle densρ it
is of classC∞ at zero as well, slightly extending the main result in [7] to the mean-zero asymmetric case. F
we discuss briefly the applicability of the method to other particle systems and give examples where it
successfully used.

2. Notation and results

Let us fix a finite range probability measurep(·) onZ
d , with p(0) = 0. Consider now an initial configuration o

particles onZd , such that each site is occupied by at most one particle. The simple exclusion process desc
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evolution where particles perform random walks onZ
d with transition probabilityp(x, y) = p(y − x) and interact

through hard-core exclusion, i.e. jumps on sites that are already occupied are suppressed.
A natural state space for the process isX = {0,1}Z

d
. If ξ ∈ X andx ∈ Z

d , thenξ(x) is 1 or 0 according to
whether the sitex is occupied or not. The generatorL of this Markov process onX acts on local functions (i.e
functions depending onξ through only a finite number of coordinates) as:

Lf (ξ) =
∑
x,y

p(y − x)ξ(x)
(
1− ξ(y)

)(
f (ξx,y) − f (ξ)

)
,

where:

ξx,y(z) =



ξ(z) if z �= x, y,

ξ(x) if z = y,

ξ(y) if z = x.

In order to avoid degeneracies we will assume that the random walk inZ
d with one step transition probabilitie

p(y − x) is irreducible, i.e.{x: p(x) > 0} generates the groupZd . We will also assume thatp(·) has zero average
i.e.

∑
x p(x) = 0. The symmetric and the anti-symmetric part ofp(·) will be denoted bya(·) andb(·) respectively:

a(x) = p(x) + p(−x)

2
, b(x) = p(x) − p(−x)

2
.

As the number of particles is conserved by the dynamics, there is a family of invariant measures:Pρ (0� ρ� 1),

defined as Bernoulli products of parameterρ over the sites ofZd are invariant and ergodic for the evolution of t
processes (cf. [12], Chapter VIII for a proof).

In order to study the motion of the tagged particle, consider an initial configurationξ , chosen according toPρ

conditioned to have a particle at the origin. Tag this particle and denote byXt its position at timet . Even thoughXt

is not Markov due to the presence of the environment,(Xt , ξt ) clearly is. It is useful to consider the process of ‘t
environment as seen from the particle’ηt : ηt (x) = ξt (Xt + x). This is itself a Markov process, whose infinitesim
generator is given byL= Lex +Lsh, where:

Lexf (η) =
∑

x,y �=0

p(y − x)η(x)
(
1− η(y)

)(
f (ηx,y) − f (η)

)
,

Lshf (η) =
∑

z

p(z)
(
1− η(z)

)(
f (τzη) − f (η)

)
.

(Hereτzη stands for the configuration obtained fromη by moving the tagged particle toz, then shifting the entire
configuration by−z.) Lex corresponds to jumps of the environment, andLsh takes into account the jumps
the tagged particle. A simple computation shows thatµρ := Pρ( · |ξ(0) = 1) is invariant for the processηt , and
Saada [15] proved thatµρ is ergodic.

Local functions form a core of the generatorL (cf, [12], I.2-3), and it is also simple to check that the adjo
of L in L2(µρ) is the generatorL∗ of the ‘environment as seen from the particle’ process associated to th
p∗(x) = p(−x). Hence, if the transition law of the underlying walk isa(·), then the corresponding genera
S (= 1

2(L+L∗) on local functions) extends to a self-adjoint operator inL2(µρ).
For local functionsf we can define the Dirichlet formDρ(f ) = 〈f, (−L)f 〉ρ. It is easy to verify thatDρ(f ) =

〈f, (−S)f 〉ρ = Dex
ρ (f ) +Dsh

ρ (f ), where

Dex
ρ (f ) = 1

4

∫ ∑
x,y �=0

a(y − x)
(
f (ηxy) − f (η)

)2 dµρ, and

Dsh
ρ (f ) = 1

2

∫ ∑
a(z)

(
1− η(z)

)(
f (τzη) − f (η)

)2 dµρ.
z
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We can also define the seminorm‖ · ‖1,ρ by: ‖f ‖2
1,ρ = Dρ(f ), and the equivalence relationf ∼ g ⇔ ‖f − g‖1,ρ

= 0. It is immediate from the definition that‖ · ‖1,ρ satisfies the parallelogram identity. Therefore, by comple
the quotient space with respect to‖ · ‖1,ρ we obtain a Hilbert space, which will be denoted byH1,ρ . The dual
of H1,ρ with respect to the standard inner product inL2(µρ), is another Hilbert space which will be denoted
H−1,ρ . In particular ifψ ∈ L2(µρ) ∩ H−1,ρ ,

‖ψ‖2−1,ρ = sup
f local

{
2〈f,ψ〉ρ − ‖f ‖2

1,ρ

}
. (1)

A similar Sobolev spaceH1,0,ρ can be defined by completing with respect to the seminorm‖ · ‖1,0,ρ , defined by:
‖f ‖2

1,0,ρ = Dex
ρ (f ). The dual of this space will be denoted byH−1,0,ρ .

Let Nz
t be the process that counts the jumps of the tagged particle byz. Nz

t is a Poisson process with variable ra
λ(z, t) = p(z)(1 − ηt (z)). If J z

t is the compensated Poisson process associated toNz
t then it follows immediately

that for any vector	 in R
d :

Xt · 	 =
∑

(	 · z)Nz
t =

∑
z

(	 · z)J z
t +

t∫
0

ω	(ηs)ds, (2)

where

ω	(η) =
∑

z

p(z)(z · 	)(1− η(z)
)
. (3)

Varadhan [18] showed that the rightmost term in (2) can be approximated by a martingale and he estab
invariance principle for the position of a tagged particle, i.e. the convergence in the Skorokhod space ofεXtε−2, as
ε → 0 to a diffusion.

The varianceD(ρ) of the limiting diffusion can be explicitly described in terms of the inner product inH−1,ρ :
Let us denote the reflection operator onX by

Rη(z) = η(−z).

The action ofR is naturally extended to functions and measures onX. Clearly,µρ is R-invariant andR2 = Id.
Thus,R preserves the norm and is self-adjoint inL2(µρ). Furthermore, the following commutation relation can
readily verified:

RL = L∗R. (4)

In particular,R commutes withS . Hence,R also preserves the norms‖ · ‖1,ρ and‖ · ‖−1,ρ . Similarly,R preserves
‖ · ‖1,0,ρ , and‖ · ‖−1,0,ρ , because it commutes with the part ofS that takes into account only the jumps of t
environment. The varianceD(ρ) can now be described as the symmetricd × d matrix such that∀	 ∈ R

d (cf. [8]):

	 · D(ρ)	 = (1− ρ)
∑

z

p(z)(z · 	)2 + 2 lim
λ↓0

〈
(λ −L)−1ω	,Rω	

〉
. (5)

We next want to study the motion of the tagged particle under the dynamics that is generated byLα = Lex +Lsh
α ,

where:

Lsh
α =

∑
z

p(z)eα·z(1− η(z)
)(

f (τzη) − f (η)
)
.

In the notation of the introduction this perturbation of the original dynamics corresponds to workV (Xt) = α · Xt

(e.g. a homogeneous fieldα acting on a particle of unit charge). We will denote byP
α,η the measure on the spa

of càdlàg paths onX that corresponds to this process started from the configurationη, and we definePα,ρ =∫
P

α,η dµρ(η). E
α,η andE

α,ρ will be respectively used to denote expectations under these measures.
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The rate ofNz
t underPα,η is λα(z, t) = p(z)eα·z(1− ηt (z)). Therefore:

Xt · 	 =
∑

(z · 	)Nz
t =

∑
z

(	 · z)Mz
t +

t∫
0

ωα
	 (ηs)ds, (6)

where now

ωα
	 (η) =

∑
z

p(z)eα·z(z · 	)(1− η(z)
)

(7)

and theP
α,η-martingalesMz

t are the compensated Poisson processes associated toNz
t . Note that jumps in the

direction ofα are now favoured, so we expect the tagged particle to pick up a velocity rather than diffuse
suggests a hyperbolic scaling (z �→ εz, t �→ εt) in order to yield nontrivial results. After rescaling, the marting
term in (6) converges to zeroPα,η-a.s., so essentially we need to study the time averages ofωα

	 (ηt ). The difficulty
arises by the fact that the initial stateµρ is not invariant under the new dynamics so the system evolves o
equilibrium. However, as in [13] we can prove that the limiting behavior of these time averages is determine
the first order of the magnitude ofα, so the mobility of the tagged particle can be defined. But before we can
the precise statement of the results in this paper we need to introduce some notation.

Let C be the space of real-valued continuous functions onX, andM be the space of probability measures onX

equipped with the topology of weak convergence of measures. Forf ∈ C andµ ∈M we will denote
∫

f (η)dµ(η)

either by〈f,µ〉 or by Eµ[f ]. λ∗
ρ(f ) will stand for the principal eigenvalue of the self-adjoint operatorS + f in

L2(µρ). Let alsohα ∈ C be:

hα(η) =
∑

z

p(z)
(
(α · z)eα·z − eα·z + 1

)(
1− η(z)

)
. (8)

Note thathα is nonnegative and has a quadratic behavior for small values ofα. Let nowIα = {µ ∈ M: (Lα)∗µ =
0} be the set of invariant states of the process, and

Aα,ρ = {
µ ∈ Iα: 〈f,µ〉 � 〈hα,µ〉 + λ∗

ρ(f ), ∀f ∈ C
}
.

By Theorem 2 in [13] the setsAα,ρ are non-empty, and their elements assign probability 1 to configurations
average particle densityρ whend � 3.

The first theorem provides estimates for the displacement of the tagged particle:

Theorem 1. In any dimensiond , for every	 ∈ R
d, t � 0 we havePα,ρ -a.s.

t inf
µ∈Aα,ρ

Eµ[ωα
	 ] � lim inf

ε→0
ε(Xtε−1 · 	) � lim sup

ε→0
ε(Xtε−1 · 	) � t sup

µ∈Aα,ρ

Eµ[ωα
	 ].

The next result concerns the asymptotic behavior ofEµ[ωα
	 ] for µ ∈Aα,ρ , asα → 0.

Theorem 2. If d � 3, then for any	 ∈ R
d we have:

1

|α| sup
µ∈Aα,ρ

∣∣∣∣Eµ[ωα
	 ] − (1− ρ)

∑
z

p(z)(	 · z)(α · z) + lim
λ↓0

〈
(λ −L)−1ω	, (1− R)ωα

〉
ρ

∣∣∣∣ −→ 0,

asα → 0.

In view of Theorems 1 and 2 the first order term inα of the drift in the direction	 is:

v(α) · 	 = (1− ρ)
∑

p(z)(	 · z)(α · z) − lim
λ↓0

〈
(λ −L)−1ω	, (1− R)ωα

〉
ρ
,

z
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so the mobility matrixM is given by:

Mij (ρ) = (1− ρ)
∑

z

p(z)zizj − lim
λ↓0

〈
(λ −L)−1ωei

, (1− R)ωej

〉
ρ
.

Let us recall formula (5) for the self-diffusivity now, and define:

∆	(ρ) = 	
(
D(ρ) − M(ρ)

)
	 = lim

λ↓0

〈
(λ −L)−1ω	, (1+ R)ω	

〉
ρ
. (9)

Let us also define the odd and even parts ofω	 underR:

ψ	(η) = 1− R

2
ω	 =

∑
x

a(x)(x · 	)(1− η(x)
)
,

φ	(η) = 1+ R

2
ω	(η) =

∑
x

b(x)(x · 	)(1− η(x)
)
.

It is easy to see that if	 ∈ R
d is such that the support ofb(·) is not included in the hyperplanex ·	 = 0, thenφ	 �= 0.

It is not clear at this point that∆	(ρ) is not identically zero. After all,ω	(η) is the image of the function
F(x,η) = x under the generator of the process(Xt , ηt ), and so isψ	(η) in the symmetric case. It could be possib
that asλ approaches zero,(λ − L)−1ω	 − (λ − S)−1ψ	 weakly converges to zero inH1,ρ , in which case∆	(ρ)

would be zero since(λ − S)−1ψ	 is antisymmetric underR. Theorem 3 shows that this is not the case.

Theorem 3.

∆	(ρ) = 4ρ(1− ρ)‖φ	‖2
−1,0, 1

2
+ o(ρ), asρ → 0.

Hence, for all mean zero asymmetric simple exclusion processes the self diffusivity is different from the mo
sufficiently small densitiesρ, and the Einstein relation does not hold.

The rest of this article is organized as follows: In Section 3 we prove Theorems 1 and 2. Some estimate
generator which are needed there, as well as for the proof of Theorem 3 are proved in Section 4. Section 5
the proof of Theorem 3. In Section 6 we make some remarks on properties of the self-diffusion matrixD(ρ) in the
mean zero asymmetric case that can be concluded from the results of this paper. We also discuss the gen
of this method for computing the mobility in other systems.

3. Computation of the mobility matrix

As we mentioned in the introduction, reversibility is very mildly used in [13] for the computation of the mob
It is not surprising thus that the proofs of Theorems 1 and 2 almost go through verbatim in the non-reversi
as well. We will only give their outline here.

Proof of Theorem 1. The processesPα,η andP
0,η can be written as a Girsanov type transform of each othe

Ft := σ(ηs; s � t) and we define:

Ψt(α)
def= exp

(∑
z

(α · z)Nz
t −

t∫
0

∑
z

λ(z, s)(eα·z − 1)ds

)
,

thenΨt(α) is aP
0,η-martingale adapted toFt , andP

α,η is given by:

dP
α,η

dP0,η

∣∣∣∣ = Ψt(α).

Ft
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Using elementary inequalities and Lemma 7.2 in Appendix 1 of [3] one can prove (cf. [13]) the following
deviations upper bounds:

1. For everyε > 0 there exists a strictly positive constantC(ε) such that:

P
α,η

(∑
z

(	 · z)Mz
t > tε

)
� e−C(ε)t . (10)

2. Letf be a local function onX. Then, for everyε > 0 there exist strictly positive constantsC(ε),A such that:

P
α,η

( t∫
0

Lαf (ηs)ds > tε

)
� Ae−C(ε)t . (11)

3. Letf ∈ C. For everyε > 0 there exists a strictly positive constantC(ε) such that:

P
α,ρ

(
1

t

t∫
0

f (ηs) − hα(ηs)ds > λ∗
ρ(f ) + ε

)
� e−C(ε)t . (12)

Recall Eq. (2) for the position of the tagged particle. After rescaling we have:

ε(Xtε−1 · 	) = ε
∑

z

(	 · z)Mz

tε−1 + ε

tε−1∫
0

ωα
	 (ηs)ds.

Clearly, the martingale term on the right-hand side goes to zero by (10). On the other hand, if we define the
measures

νt := 1

t

t∫
0

δηs ds ∈ M
(

so forf ∈ C:
1

t

t∫
0

f (ηs)ds = 〈f, νt 〉
)

,

it follows from (11), (12) and the compactness ofX that withP
α,ρ -probability 1, any weak limit ofνt is in Aα,ρ .

Thus, for any continuous functionf (and in particular forωα
	 ) with P

α,ρ -probability 1 we have:

t inf
µ∈Aα,ρ

Eµ[f ] � lim inf
ε→0

ε

tε−1∫
0

f (ηs)ds � lim sup
ε→0

ε

tε−1∫
0

f (ηs)ds � t sup
µ∈Aα,ρ

Eµ[f ]. �

Proof of Theorem 2. We can rewriteωα
	 as:

ωα
	 = ω	 + (1− ρ)

∑
z

p(z)(α · z)(	 · z) + R1 − R2(η), (13)

where

R1 = (1− ρ)
∑

z

p(z)(	 · z)(eα·z − (α · z) − 1
)
,

R2(η) =
∑

z

p(z)(eα·z − 1)(	 · z)(η(z) − ρ
)
.

Clearly,‖R1‖ � C|α|2, and by formula (37) in [13] we have:

sup
ν∈A

∣∣〈R2, ν〉∣∣ � C|α|2.

α,ρ
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the
Hence, we need to show that:

1

|α| sup
ν∈Aα,ρ

∣∣∣Eν[ω	] + lim
λ↓0

〈
(λ −L)−1ω	, (1− R)ωα

〉
ρ

∣∣∣ −→ 0.

Instead of studying the asymptotics ofEν[ω	] for ν ∈ Aα,ρ asα → 0 directly, it is easier to look atEν[Lg], where
g is a local function, and approximateω	 by a function in the range of the generator.

〈Lg, ν〉 = 〈
(L−Lα)g, ν

〉
(ν ∈ Iα)

= 〈
(L−Lα)g,µρ

〉 + 〈
(L−Lα)g − Eµρ

[
(L−Lα)g

]
, ν

〉
. (14)

The expectation underµρ of (L−Lα)g can easily be computed with a change of variablesη �→ τzη, that changes
the measure(1− η(z))dµρ to (1− η(−z))dµρ :

Eµρ
[
(L−Lα)g

] =
∑

z

p(z)(1− eα·z)
∫

g(η)
[(

1− η(−z)
) − (

1− η(z)
)]

dµρ

=
〈
g, (1− R)

∑
z

p(z)(eα·z − 1)
(
1− η(z)

)〉
ρ

. (15)

As far as the last term in relation (14) is concerned, notice that it is of the form:Rα(η) = ∑
z p(z)cz(α)wz(η),

wherecz(α) = 1− eα·z (= O(|α|)) andwz areµρ -mean zero local functions. We have:

sup
ν∈Aα,ρ

〈Rα, ν〉 � ‖hα‖∞ + λ∗
ρ

(∑
z

p(z)cz(α)wz(η)

)
� ‖hα‖∞ +

∑
z

p(z)λ∗
ρ(cz(α)wz). (16)

By Lemma 2 in [13], ifd � 3 andf ∈ C(X) then

lim
γ→0

γ −1λ∗
ρ(γf ) = 〈f,µρ〉. (17)

Hence, by (14)–(17), ifd � 3 andg is a local function, we have:

lim
α→0

1

|α| sup
ν∈Aα,ρ

∣∣〈Lg, ν〉 − 〈
g, (1− R)ωα

〉
µρ

∣∣ = 0.

The rest of the proof consists of approximatingω	 by a function in the range of the generator and controlling
error. This is done respectively, in the Lemmata 1 and 2 that follow.

Let Λ be a finite subset inZd∗ , denote byµΛ
ρ the restriction ofµρ to configurations inΛ, and consider the

canonical measures:

νΛ,K := µΛ
ρ

(
·
∣∣∣∣ ∑
x∈Λ

η(x) = K

)
.

Let alsoC0 denote the space of local functionsψ whose expectation under any canonical measureνΛ,K , such that
Λ contains the support ofψ , is zero. Examples of such functions are theω	, as well as functions of the formLg,
whereg is a local function.

Lemma 1. If ψ is a local function inC0, then for everyε > 0 there exist local functions,gε, rε such that

ψ = Lgε + rε, and ‖rε‖−1,0,ρ < ε.

Lemma 2. If ψ is a local function inC0, then:

lim sup
α→0

1

|α| sup
ν∈Aα,ρ

∣∣〈ψ,ν〉∣∣ � C‖ψ‖−1,0,ρ . (18)
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Lemma 1 is proved in [6] (cf. Theorem 4.2 there) for the symmetric simple exclusion. The proof in the mea
asymmetric case, which follows closely the original one, is postponed until the next chapter, where the e
ingredients are stated and verified in our case. Lemma 2 relies upon (17), and is the content of (35) in [13

4. Estimates on the generator

For n � 0 we denote byEn the subsets ofZd∗ with cardinalityn, and defineE = ⋃
n En. We also setχ(ρ) =

ρ(1− ρ), and define for everyA ∈ E :

ξA(η) =
∏
x∈A

η(x) − ρ√
χ(ρ)

.

By conventionξ∅ = 0. It is not hard to see that the family of local functions:{ξA; A ∈ E} form an orthonorma
basis forL2(µρ) and provide the orthogonal decomposition:

L2(µρ) =
⊕
n�0

Gn, whereGn = span{ξA; A ∈ En}.

If we denote byπn the orthogonal projection onGn then for a local functionf on X we have:

f =
∑
n

πnf =
∑
n

∑
A∈En

f(A)ξA.

The Fourier coefficientsf(·) in this expansion depend of course onρ.
Let us consider now an abstract (real) Hilbert spaceH, with a complete orthonormal basis{eA}, indexed byE .

We will denote byGn the linear span of the basis elements indexed byEn.
The mappingf �→ f = ∑

f(A)eA maps elements ofGn to elements inGn and clearly:

〈f,g〉ρ = 〈f,g〉H =
∑
A∈E

f(A)g(A).

In other wordsf �→ f induces a unitary isomorphism betweenL2(µρ) andH. The generatorL as well as the
associated Dirichlet form can also be represented through this isomorphism. This approach offers two im
advantages: first, the dependence on the densityρ of inner products inL2(µρ) is incorporated in the Fourie
coefficients, and second, the Fourier coefficientsf(·) of a functionf ∈ Gn, being functions fromEn to R, are
not significantly different from symmetric functions ofn Z

d -valued variables. Hence standard Fourier anal
techniques can be applied. This approach, originally presented in [10], has also led to quite fruitful appl
in [16,6–8].

If A is a subset ofZd∗ andx, y ∈ Z
d∗ , we denote byAx,y the set:

Ax,y =



A\{x} ∪ {y} if x ∈ A, y /∈ A,

A\{y} ∪ {x} if y ∈ A, x /∈ A,

A otherwise.
We also denote byτzA the set:

τzA =
{

A − z if z /∈ A,

(A − z)0,−z if z ∈ A.

Therefore, in order to obtainτzA whenz ∈ A we first translateA by −z (getting a set that contains the origin), th
remove the origin and add{−z}.

For a local functionf it is a matter of a simple computation to express the Fourier coefficients ofLf . If we
define:
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L0f(A) =
∑

x∈A, y /∈A

a(y − x)
(
f(Ax,y) − f(A)

)
,

Lb
0f(A) =

∑
y /∈A, y �=0

x∈A

b(y − x)
(
f(Ax,y) − f(A)

)
,

L
−
0 f(A) =

∑
x,y /∈A
x,y �=0

b(y − x)
(
f
(
A ∪ {y}) − f

(
A ∪ {x})),

L
+
0 f(A) =

∑
x,y∈A

b(y − x)
(
f
(
A\{y}) − f

(
A\{x})),

thenLex is represented onH by:

Lex(ρ) = L0 + (1− 2ρ)Lb
0 + √

χ(ρ)(L−
0 + L

+
0 ).

Similarly,Lsh is represented onH by:

Lsh(ρ) = (1− ρ)L1
τ + ρL2

τ + √
χ(ρ)(L−

τ + L+
τ ),

where:

L1
τ f(A) =

∑
z/∈A

p(z)
(
f(τzA) − f(A)

)
,

L2
τ f(A) =

∑
z∈A

p(z)
(
f(τzA) − f(A)

)
,

L+
τ f(A) =

∑
z∈A

p(z)
(
f
(
A\{z}) − f

(
τz

(
A\{z}))),

L−
τ f(A) =

∑
z/∈A

p(z)
(
f
(
A ∪ {z}) − f

(
τz

(
A ∪ {z}))).

Functions inGn are said to be of degreen. It is worth noticing thatL0,L
b
0,L

1
τ ,L

2
τ all preserve the degree of

function, whileL
+
0 ,L+

τ increase the degree by 1, andL
−
0 ,L−

τ decrease the degree by 1.
A Dirichlet form associated toL can be defined for the linear span of the basis elements ofH. The resulting

semi-norm will be denoted by‖f‖1,ρ , and clearly ifg(·) are the Fourier coefficients of a local functiong, then
‖g‖1,ρ = ‖g‖1,ρ . The Sobolev spacesH1,ρ andH−1,ρ can be defined in the same fashion asH1,ρ andH−1,ρ .

Similar Sobolev spaces can be induced by the symmetric positive operatorL0 and the corresponding norms w
be denoted by‖ · ‖1,envand‖ · ‖−1,env. It is worth observing that unlike‖f‖±1,ρ , the norms‖f‖±1,envdo not depend
onρ (provided of coursef(·) do not), and asL0 is degree preserving, we have:

‖f‖2
1,env=

∑
n�0

‖πnf‖2
1,env, and ‖f‖2−1,env=

∑
n�0

‖πnf‖2−1,env.

Hereafter,C will be used to denote a constant that only depends on the lawp(·) of the random walk. In particula
it is independent of the densityρ or the degree of a function.

Theorem 4. If d � 3 we have:

(i) Let L+ = L
+
0 + L+

τ (resp.L− = L
−
0 + L−

τ ) be the piece of the generator that increases(resp. decreases) the
degree of a function by1. Then forf ∈ Gn, g ∈ Gn+1 (resp.g ∈ Gn−1) we have:∣∣〈g,L±f〉H

∣∣ � C
√

n‖f‖1,env‖g‖1,env. (19)
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(ii) If f,g ∈ Gn, then:∣∣〈g,Lb
0f〉H

∣∣ � Cn‖f‖1,env‖g‖1,env, (20)∣∣〈g,L1
τ f〉H

∣∣ � Cn‖f‖1,env‖g‖1,env, (21)∣∣〈g,L2
τ f〉H

∣∣ � C
√

n‖f‖1,env‖g‖1,env. (22)

Note 1. If ‖ · ‖1,env is replaced by‖ · ‖1 in the right-hand side of (19)–(22) the estimates hold in any dimension
bounds that do not depend onn, as one expects from the sector condition for the generator that holds with a
uniform inρ. A proof of this fact can be found in [17].

Proof. The first estimate follows immediately by Lemma (4.1) and formula (3.14) in [16] and Lemma (5.1) o
Recall that sinceg, f ∈ Gn:

〈g,Lb
0f〉H =

∑
|A|=n

g(A)
∑

y /∈A,y �=0
x∈A

b(y − x)
(
f(Ax,y) − f(A)

)
. (23)

The functionsg(·) andf(·) are defined onEn, but can be viewed as symmetric functions ofn Z
d -valued variables

As such they are only defined on

Xn = {
(x1, . . . , xn) ∈ (Zd)n: xi �= 0, xi �= xj , ∀i, j ∈ {1, . . . , n} with i �= j

}
,

but they can be extended to(Zd)n by defining them to be zero outsideXn. Using the convention:

f (x1, . . . , xn) =
{

f({x1, . . . , xn}) if (x1, . . . , xn) ∈Xn,

0 otherwise,
(24)

the right-hand side of (23) becomes:

1

n!
∑

x1,...,xn

g(x1, . . . , xn)

n∑
j=1

∑
y �=0, x1,...,xn

b(y − xj )
(
f (x1, . . . , y, . . . , xn) − f (x1, . . . , xj , . . . , xn)

)

= 1

n!
∑

x1,...,xn

g(x1, . . . , xn)

n∑
j=1

∑
y

b(y − xj )f (x1, . . . , y, . . . , xn)

+ 1

n!
∑

x1,...,xn

g(x1, . . . , xn)f (x1, . . . , xn)

n∑
j=1

∑
y

b(y − xj )

= 1

n!
∑

x1,...,xn

g(x1, . . . , xn)

n∑
j=1

∑
y

b(y − xj )f (x1, . . . , y, . . . , xn) −
∑

|A|=n

g(A)f(A)

(∑
x∈A

b(x)

)
. (25)

In these steps we made use of the antisymmetry ofb, as well as its consequence
∑

x b(x) = 0 and of the fact tha
f vanishes outsideXn.

The last term in (25) is easy to estimate. If we defineW1(A) = ∑
x∈A a(x), then by Lemma (3.7) in [16] we ca

find a constantC, such that for everyu ∈ Gn:∑
|A|=n

W1(A)u2(A) � C‖u‖2
1,env.

Using the fact that|b(x)| � a(x), the Cauchy–Schwarz inequality and the preceding estimate:∣∣∣∣ ∑
g(A)f(A)

(∑
b(x)

)∣∣∣∣ � C‖g‖1,env‖f‖1,env. (26)

|A|=n x∈A
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If we define the Fourier transform of a functionψ on (Zd)n by:

ψ̂(θ1, . . . , θn) = 1√
n!

∑
(x1,...,xn)∈(Zd )n

ψ(x1, . . . , xn)ei(θ1·x1+···+θn·xn),

then the first term in (25) can be written as:

1

(2π)nd

∫
(Td )n

¯̂g(θ1, . . . , θn)f̂ (θ1, . . . , θn)

(
n∑

j=1

b̂(θj )

)
dθ1 · · ·dθn. (27)

In order to conclude the proof of (20) we will need the following lemma:

Lemma 3. There exists a constantC such that:∣∣b̂(θ)
∣∣ � C

(
1− â(θ)

) = C
∑
x∈Zd

a(x)
(
1− cos(θ · x)

)
.

Proof (of the lemma). We have:

b̂(θ) =
∑
x∈Zd

b(x)eiθ ·x = i
∑
x∈Zd

b(x)sin(θ · x).

Since|b(x)| � a(x), |b̂| is bounded by 1.
The right-hand side of the inequality in question is a smooth function onT

d . It only vanishes if cos(θ · x) = 1
for all x such thata(x) �= 0. But since the walk is assumed to be irreducible this can only happen if(θ1, . . . , θd) =
(2σ1π, . . . ,2σdπ), with σj ∈ {0,1}. We need to check that̂b vanishes faster at these points, and clearly, it suffi
to do so at zero. Indeed, this is true because of the zero mean property of the walk which implies

∑
xb(x) = 0. �

In view of the preceding lemma the expression in (27) can be estimated by:

C

(2π)nd

( ∫
(Td )n

∣∣ĝ(θ)
∣∣2H(θ)dθ

)1/2( ∫
(Td )n

∣∣f̂ (θ)
∣∣2H(θ)dθ

)1/2

,

where forθ = (θ1, . . . , θn) ∈ (Td)n,H(θ) is defined by:

H(θ) =
n∑

j=1

∑
x∈Zd

a(x)
(
1− cos(θj · x)

)
.

It is easy to check that ifDn
free is the Dirichlet form corresponding ton free random walks onZd :

Dn
free(u) = 1

2

n∑
j=1

∑
x1,...,xn,x′

j

a(x′
j − xj )

(
u(x1, . . . , x

′
j , . . . , xn) − u(x1, . . . , xj , . . . , xn)

)2
,

then:
1

n!D
n
free(u) = 1

(2π)nd

∫
(Td )n

∣∣û(θ)
∣∣2H(θ)dθ.

Hence,

∣∣〈g,Lb
0f〉H

∣∣ � C

[(
1

Dn
free(f )

)1/2( 1
Dn

free(g)

)1/2

+ ‖f‖1,env‖g‖1,env

]
. (28)
n! n!
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We need to compare nowDn
free(u) with Dex(u) = ‖u‖2

1,env for u ∈ Gn andu(x1, . . . , xn) defined byu(A) as in
(24).

Dex(u) = 1

2n!
n∑

j=1

∑
(x1,...,xj ,...,xn)∈Xn

(x1,...,x
′
j ,...,xn)∈Xn

a(x′
j − xj )

(
u(x1, . . . , x

′
j , . . . , xn) − u(x1, . . . , xj , . . . , xn)

)2
,

from which one easily checks that:

1

n!D
n
free(u) = Dex(u) +

∑
|A|=n

(
W1(A) + W2(A)

)
u2(A), (29)

whereW1(A) is defined after (25), andW2(A) = ∑
x,y∈A a(x − y). Using Lemma (3.7) in [16] again:∑

|A|=n

(
W1(A) + W2(A)

)
u2(A) � Cn‖u‖2

1,env.

Thus, (20) follows by formulae (28) and (29).
We turn now to the proof of inequality (21):

〈g,L1
τ f〉H =

∑
|A|=n

g(A)
∑
z/∈A

p(z)
(
f(τzA) − f(A)

)

= −1

2

∑
|A|=n

∑
z/∈A

a(z)
(
f(τzA) − f(A)

)(
g(τzA) − g(A)

) +
∑

|A|=n

g(A)
∑
z/∈A

b(z)
(
f(τzA) − f(A)

)

= −1

2

∑
|A|=n

∑
z/∈A

a(z)
(
f(τzA) − f(A)

)(
g(τzA) − g(A)

)

+
∑

|A|=n

g(A)
∑
z/∈A

b(z)f(τzA) +
∑

|A|=n

g(A)f(A)

(∑
z∈A

b(z)

)
. (30)

The first term in (30) can be estimated by
√

Dn
τ (f)D

n
τ (g), where using the conventionf(A) = 0, if 0 ∈ A:

Dn
τ (f) = 1

2

∑
z

∑
|A|=n

a(z)
(
f(A − z) − f(A)

)2
.

By the proof of Lemma (5.1) in [6], for everyf ∈ Gn we have:

Dn
τ (f) � Cn‖f‖2

1,env. (31)

Using Fourier transforms we can write:∑
|A|=n

g(A)
∑
z/∈A

b(z)f(τzA) = 1

(2π)nd

∫
(Td )n

¯̂g(θ)f̂ (θ)b̂(θ1 + · · · + θn)dθ,

Dn
τ (f) = 1

(2π)nd

∫
(Td )n

∣∣f̂ (θ)
∣∣2(1− â(θ1 + · · · + θn)

)
dθ.

Since by Lemma 3 we have|b̂(θ)| � C(1− â(θ)), it follows that:∣∣∣∣ ∑
g(A)

∑
b(z)f(τzA)

∣∣∣∣ � CD1/2
τ (f)D1/2

τ (g). (32)

|A|=n z/∈A
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process

ow
Hence, the estimate (21) follows by formulae (26) and (30)–(32).
On the other hand:∣∣〈g,L2

τ f〉H
∣∣ =

∣∣∣∣ ∑
|A|=n

g(A)
∑
z∈A

p(z)
(
f(τzA) − f(A)

)∣∣∣∣
�

( ∑
|A|=n

g2(A)

(∑
z∈A

p(z)

))1/2( ∑
|A|=n

∑
z∈A

p(z)
(
f(τzA) − f(A)

)2
)1/2

�
(

2
∑

|A|=n

g2(A)W1(A)

)1/2( ∑
|A|=n

∑
z∈A

p(z)
(
f(τzA) − f(A)

)2
)1/2

.

Therefore using (31) and Lemma (3.7) in [16] once more:∣∣〈g,L2
τ f〉H

∣∣ � C
√

n‖f‖1,env‖g‖1,env,

which concludes the proof of the theorem.�
We can proceed now with the proof of Lemma 1. The original proof in [6] relies on the following facts:

• If uλ is the solution to the resolvent equation:λuλ −Luλ = −ψ then:

lim
λ↓0

‖Luλ − ψ‖−1,ρ = 0.

This follows by the sector condition of the generator for the mean zero asymmetric simple exclusion
and it is proved in [18].

• The convergence takes place inH−1,0,ρ as well, so that for anyε > 0 we can find aλ0 such that:

‖Luλ0 − ψ‖−1,0,ρ � ε/2.

As

‖Luλ − ψ‖2−1,0,ρ =
∑
n�n0

∥∥πn(Luλ − ψ)
∥∥2

−1,0,ρ
+

∑
n>n0

‖πnLuλ‖2−1,0,ρ,

this consists of showing the following facts:
(i) For anyu ∈ L2(µρ) ∩ H−1,0,ρ we have:

‖πnu‖−1,0,ρ � C(n)‖u‖−1,ρ; (33)

hence, finite sums converge to zero. This follows by (31) withC(n) = C
√

n.
(ii) The tail of the sum can be controlled, i.e.

‖πnLu‖−1,0,ρ � Cn

+1∑
j=−1

‖πn+j u‖1,0,ρ, (34)

and‖πnuλ‖1,0,ρ decay rapidly withn. The estimate (34) that was established by reversibility in [6] n
follows from Theorem 4 withCn = Cn. On the other hand, if we define:

‖|u‖|2±1,k =
∑
n�0

n2k‖πnu‖2±1,0,ρ,

it is shown in [8] that from the estimates proved in Theorem 4 it follows that:

‖|uλ‖|1,k � C(k)‖|ψ‖|−1,k, (35)

for any positive integerk. Hence, sinceψ is local the components of high degrees ofuλ exhibit a faster
than polynomial decay.
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ce the
• We can find alocal g such that:∥∥L(uλ0 − g)
∥∥−1,0,ρ

� ε/2.

This follows again from the fast decay of‖πnLuλ‖−1,0,ρ , which reduces the problem to approximating
finite degrees (cf. [6] for a detailed proof).�

5. Proof of Theorem 3

Using duality we can express∆	(ρ) as:

∆	(ρ) = ρ(1− ρ) lim
λ↓0

〈(
λ − L(ρ)

)−1
w	, (1+ R)w	

〉
H

,

where

w	 =
∑
x

p(x)(x · 	)e{x},

andRf(A) = f(−A).
If we defineΦ	 = 1+R

2 w, it is immediate thatφ	 �→ √
χ(ρ)Φ	, and thus:

‖φ	‖2−1,0,ρ = ρ(1− ρ)‖Φ	‖2−1,env. (36)

The proof of Theorem 3 consists of the following two lemmata:

Lemma 4.

lim
λ↓0

〈(
λ − L(0)

)−1
w	, (1+ R)w	

〉
H

= ‖Φ	‖2−1,env.

Lemma 5.

lim
ρ↓0

sup
λ>0

〈[(
λ − L(ρ)

)−1 − (
λ − L(0)

)−1]
w	, (1+ R)w	

〉
H

= 0.

Proof (of Lemma 4). Notice that whenρ = 0 the part of the generator that changes the degree vanishes, hen
equation:

λuλ − L(0)uλ = w	

can be solved inG1. Note thatL(0) = L0 + Lb
0 + L1

τ , and that if we use the conventionf(x) = f({x}) on G1, we
have:

Lb
0f(x) =

∑
y �=0,x

b(y − x)
(
f(y) − f(x)

)
,

while

L1
τ f(x) =

∑
y �=0,x

p(y)
(
f(x − y) − f(x)

) =
∑

y �=x,0

p(x − y)
(
f(y) − f(x)

)
.

Hence, we can combineLb
0 andL1

τ to get:

Lb
0 + L1

τ = L0 ⇒ L(0) = 2L0, onG1.

In particularL(0) commutes withR onG1 and thus:
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tric
rator
equal

s

〈(
λ − L(0)

)−1
w	, (1+ R)w	

〉
H

= 2
〈(
λ − L(0)

)−1
Φ	,Φ	

〉
H

=
〈(

λ

2
− L0

)−1

Φ	,Φ	

〉
H

→ ‖Φ	‖2−1,env, asλ → 0. �
Proof (of Lemma 5). SinceR is a unitary isomorphism inH that commutes withL0 it preserves the norms‖·‖1,env

and‖ · ‖−1,env. Therefore,∥∥∥∥1+ R

2
w	

∥∥∥∥
2

−1,env
+

∥∥∥∥1− R

2
w	

∥∥∥∥
2

−1,env
= ‖w	‖2−1,env,

which by [8] (cf. discussion before Lemma 4.4) is finite.
Let us now consider the resolvent equation:

λUλ,ρ − L(ρ)Uλ,ρ = V. (37)

If we multiply both sides byUλ,ρ and integrate we get:‖(λ − L(ρ))−1V ‖1,ρ � ‖V ‖−1,ρ . On the other hand if we
subtract (37) forρ = 0 from (37) for the generalρ > 0 we have:(

λ − L(ρ)
)
(Uλ,ρ − Uλ,0) = (

L(0) − L(ρ)
)
Uλ,0.

It is easy to check that:

L(0) − L(ρ) = ρ(2Lb
0 + L1

τ − L2
τ ) + √

χ(ρ)(L+ + L−). (38)

Let us take nowV = w	. As we mentioned in the proof of Lemma 4Uλ,0 ∈ G1. Therefore, it follows immediately
by Theorem 4 that:∥∥(

L(0) − L(ρ)
)
Uλ,0

∥∥−1,ρ
� C

√
ρ‖Uλ,0‖1,env� C

√
ρ‖w	‖−1,env.

Hence, using (38) and the preceding estimate we have:∣∣〈Uλ,ρ − Uλ,0, (1+ R)w	

〉
H

∣∣ � ‖Uλ,ρ − Uλ,0‖1,ρ

∥∥(1+ R)w	

∥∥−1,ρ

� 2
∥∥(

L(0) − L(ρ)
)
Uλ,0

∥∥−1,ρ

∥∥w	

∥∥−1,env

� C
√

ρ‖w	‖2−1,env,

which tends to zero uniformly inλ, asρ → 0. �

6. Remarks

It is interesting to compare the self-diffusion coefficientD(ρ) of a tagged particle in mean zero asymme
simple exclusion process toDs(ρ), the one in its symmetrized version, i.e. the simple exclusion with gene
S = 1/2(L + L∗). As pointed out in [16] using a variational argument the former is always greater than or
the latter. We obtain the following corollary to Theorem 3:

Corollary 1. For any	 ∈ R
d :

	 · (D(ρ) − Ds(ρ)
)
	 = 2 lim

λ↓0

∥∥(λ −L)−1ω	 − (λ − S)−1ψ	

∥∥2
1,ρ

.

Hence, unless	 is orthogonal to the support ofb(·) we have	 · (D(ρ) − Ds(ρ))	 > 0 for sufficiently small value
of ρ.
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By (5), for every	 ∈ R
d we have:

	 · (D(ρ) − Ds(ρ)
)
	 = 2 lim

λ↓0

〈(
λ −L

)−1
ω	,Rω	

〉
ρ

− 〈
(λ − S)−1ψ	,Rψ	

〉
ρ
.

If we setuλ = (λ −L)−1ω	 andvλ = (λ − S)−1ψ	 then:

‖uλ − vλ‖2
1,ρ = ‖uλ‖2

1,ρ + ‖vλ‖2
1,ρ − 2

〈
uλ, (−S)vλ

〉
ρ

= 〈ω	,uλ〉ρ + 〈ψ	, vλ〉ρ − 2〈ψ	,uλ〉ρ − λ‖uλ − vλ‖2
L2(µρ)

= 〈uλ,Rω	〉ρ − 〈vλ,Rψ	〉ρ − λ‖uλ − vλ‖2
L2(µρ)

→ 1

2
	 · (D(ρ) − Ds(ρ)

)
	, asλ ↓ 0.

Notice now that sinceR commutes withS , v	 inherits the antisymmetry underR from ψ	. On the other hand
φ	 is symmetric underR and thus orthogonal tov	. Hence, we obtain from (9) that:

∆	(ρ) = lim
λ↓0

〈uλ,φ	〉ρ = lim
λ↓0

〈uλ − vλ,φ	〉ρ,

and the corollary follows from Theorem 3.
It is also interesting to recall some regularity properties of the self-diffusivity as a function ofρ. SinceD(ρ)

appears as a coefficient in parabolic equations governing the non-equilibrium evolution of the density in
where the number of particles is preserved under the dynamics (cf. for instance [14]), it is important to e
first its regularity inρ in order to conclude the existence and regularity of the solutions to these equations. L
Olla and Varadhan have proved (cf. [8]) that the estimates (19)–(22) guaranteeD(ρ) to be of classC∞ on [0,1].
We remind the reader that the proof of smoothness can be carried out by reparametrising asρ = sin2 t , then using
the estimates (19)–(22) to prove the smoothness ofD as a function oft . This immediately implies smoothness f
ρ ∈ (0,1), while the observation that the odd derivatives ofD vanish at the boundary takes care of the smooth
there. The authors prove these estimates in the symmetric case (cf. [7]) and they also prove thatD(ρ) is of class
C∞ on (0,1] in the asymmetric case whend � 3 (cf. [8]). Hence the following immediate corollary to their resu
and Theorem 19, extends, in the mean zero asymmetric case, the smoothness ofD to zero as well:

Corollary 2. If d � 3 the self-diffusion coefficientD(ρ) of a tagged particle in a mean zero asymmetric sim
exclusion process is of classC∞ in ρ on [0,1].

The technique we employ here to compute the mobility is fairly general. It is essentially in the spirit
entropy method introduced in [2], only the process in question here has different dynamics from the re
stationary process, rather than different initial state. The only ad hoc for the simple exclusion proof is
Eq. (17):

lim
γ→0

γ −1λ∗
ρ(γf ) = 〈f,µρ〉,

and in principle, the same arguments can go through for any system satisfying this eigenvalue estimate. M
which the generator of the dynamics satisfies a spectral gap property provide examples for which (17) is alw
(cf. Appendix 3.1 in [3]); It is worth noting at this point that in the context of this further assumption (spectra
Komorowski and Olla prove in a recent article ([5]) the existence of an asymptotic velocity for the tagged pa
the perturbed dynamics and check the validity of the Einstein relation for the symmetric simple exclusion
with absorption-desorption. By generalising their argument, they conclude the validity of the Einstein relat
quite general set-up of models with reversible dynamics satisfying the spectral gap property, and they also
an example of a non-reversible system for which the Einstein relationis satisfied.
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