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Abstract

A geometricp-rough path can be seen to be a genuine path of finitep-variation with values in a Lie group equipped with
natural distance. The group and its distance lift(Rd ,+,0) and its Euclidean distance.

This approach allows us to easily get a precise modulus of continuity for the Enhanced Brownian Motion (the Br
Motion and its Lévy Area).

As a first application, extending an idea due to Millet and Sanz-Solé, we characterize the support of the Enhance
ian Motion (without relying on correlation inequalities). Secondly, we prove Schilder’s theorem for this Enhanced Br
Motion. As all results apply in Hölder (and stronger) topologies, this extends recent work by Ledoux, Qian, Zhang [St
Process. Appl. 102 (2) (2002) 265–283]. Lyons’ fine estimates in terms of control functions [Rev. Mat. Iberoamerican
(1998) 215–310] allow us to show that the Itô map is still continuous in the topologies we introduced. This provides n
simplified proofs of the Stroock–Varadhan support theorem and the Freidlin–Wentzell theory. It also provides a short
modulus of continuity for diffusion processes along old results by Baldi.
 2004 Elsevier SAS. All rights reserved.

Résumé

Un p-rough path est un chemin dep-variation finie à valeurs dans un groupe de Lie muni d’une distance sous-riemann
Le groupe et sa distance géneralisent(Rd ,+,0) et la distance euclidienne.

Cette approche nous permet d’obtenir un module de continuité tres précis pour le rough path brownien (le mo
brownien et son aire de Lévy). Pour ce dernier, nous prouvons un théorème du support (adaptant une idée de Mille
Solé) et un théorème de Schilder. Comme tous les résultats sont prouvés en utilisant des topologies de type Hölder ou
cela géneralise le papier de Ledoux, Qian, Zhang [Stochastic Process. Appl. 102 (2) (2002) 265–283]. Les résultats d
[Rev. Mat. Iberoamericana 14 (2) (1998) 215–310] permettent de prouver rapidement que l’application d’Itô est contin
les topologies que nous avons introduites. Cela nous donne de nouvelles preuves du théorème du support de Stroock
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0246-0203/$ – see front matter 2004 Elsevier SAS. All rights reserved.
doi:10.1016/j.anihpb.2004.05.003
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et de la théorie de Freidlin–Wentzell. Nous obtenons au passage une preuve simple du module de continuité pour les
de diffusions, obtenu précédemment par Baldi.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Starting with [20], Terry Lyons developed a general theory of integration and differential equations of th

dyt = f (yt ) dxt . (1)

To include the important example of stochastic differential equations,x is allowed to be “rough” in some sens
Standard Hölder regularity of Brownian motion, for instance, implies finitep-variation only forp > 2. Another is-
sue was to explain (deterministically) the difference between stochastic differential equations based on Stra
versus Itô integration. Last but not least, motivated from examples like Fractional Brownian motion, driving
much rougher than Brownian motion should be included.

All this has been accomplished in a beautiful way and the reader can nowadays find the general theory
in [21,23,24].

Loosely speaking, for generalp � 1, one needs to “enhance” the driving signalx, with values in some Banac
spaceV , to X ∈ V ⊕ V ⊗2 · · · ⊕ V ⊗[p] such that the resulting objectX satisfies certain algebraic1 and analytic
conditions. Forx of finite variation, this enhancement will simply consist of all the iterated integrals ofx,

Xk
s,t :=

∫
s<u1<···<uk<t

dxu1 ⊗ · · · ⊗ dxuk
, k = 1, . . . , [p].

These are theSmooth Rough Paths.Consider a time horizon of[0,1] (valid for the rest of the paper) and introdu
thep-variation metric, defined as

d(X,Y ) = max
k=1,...,[p]

(
sup
D

∑
l

|Xk
tl−1,tl

− Y k
tl−1,tl

|p/k

)k/p

,

where supD runs over all finite divisions of[0,1]. Here| · | denotes (compatible) tensor norms inV ⊗k . Closure of
Smooth Rough Paths with respect to this metric yields the class ofGeometric Rough Paths, denoted byGΩp(V ).
The solution map, also calledItô map, to (1) is then a continuous map fromGΩp(V ) → GΩp(W), provided
f :W → L(V,W) satisfies mild regularity conditions. This is Lyons’ celebratedUniversal Limit Theorem. In par-
ticular, smooth approximationsX(n) which converge inp-variation toX ∈ GΩp(V ) will cause the correspondin
solutionsY(n) to converge toY in p-variation. Hence, one deals with some kind of generalized Stratono
theory.

However, the so important case ofp ∈ (2,3), on which this paper will focus, allows for more. For the sake
concreteness, we will setV = R

d from here on. Following [24, p. 149] and also [23] the driving signal only ne
to be aMultiplicative functional of finitep-variation. By definition, this is a continuous map

(s, t) → (X1
s,t ,X

2
s,t ) ∈ R

d ⊕ (Rd)⊗2 =: T 2,

where 0� s � t � 1, satisfying the algebraicChen condition

Xs,u = Xs,t ⊗ Xt,u ⇔ X1
s,u = X1

s,t + X1
t,u, X2

s,u = X2
s,t + X2

t,u + X1
s,t ⊗ X1

t,u, (2)

1 For algebraicconvenienceX is often enhanced toR ⊕ V ⊕ V ⊗2 · · · ⊕ V ⊗[p] with scalar component constant 1.
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sup
(0�t0<...<tn�1)

∑
l

|Xk
tl−1,tl

|p/k < ∞, k = 1,2. (3)

(Often k = 1,2 are referred to asfirst resp.second level.) The class of such rough paths is denotedΩp(Rd).
Condition (2) is known asChen relationand expresses simple additive properties wheneverX2 is obtained assome
iterated integral including the cases of Stratonovich resp. Itô Enhanced Brownian Motion. Whenever a fir
calculus underlies this integration (which is the case for Stratonovich integration), one has

Symm(X2) = 1

2
X1 ⊗ X1. (4)

Geometricp-Rough Paths satisfy this condition, but paths satisfying this condition and which satisfy the co
dp-var(X,0) forms a set slightly bigger thanGΩp(V ) [13]. Clearly,

{Smooth Rough Paths} ⊂ GΩp(Rd) ⊂ Ωp(Rd).

One can indeed choose in which space to work with and the Lyons theory will provide meaning, existe
uniqueness to the purely deterministicrough differential equation

dY = V (y0 + Y 1
0t ) dX,

whereV = (V1, . . . , Vd) are, in general non-commuting, vector fields with mild regularity conditions. As be
the Itô mapX 	→ Y is, continuous underp-variation topology. This rough differential equation indeed genera
ordinary and stochastic (Stratonovich and Itô) differential equations. For instance, it is known (and also
from the results in this paper) that a.s. the Stratonovich Enhanced Brownian Motion (EBM)B ∈ GΩp(Rd) for all
p ∈ (2,3). ChoosingX = B the projection of the rough pathY to its first level will solve the associated Stratonov
stochastic differential equation. That is

y0 + Y 1
0t solves dy =

∑
i

Vi(y) ◦ dβi.

For the rest of the paper,p denotes a fixed real in(2,3). The contributions of this paper may be summarized
follows:

(a) We look at geometricp-rough paths from a new angle. Observe thatG := {X ∈ T 2: (4) holds} is the free
nilpotent Lie group of step 2 [23,31], a simply connected Lie group which lifts(Rd ,+,0). Chen’s condition is
equivalent to the fact thatxt = X0,t is aG-valued path such thatXs,t = x−1

s ⊗ xt = xs,t . We put a homogenous
sub-additive norm on(G,⊗). Geometricp-rough paths are then easily seen to be the closure of “smooth”G-valued
paths under thep-variation metric. Standard proofs for Kolmogorov’s criterion or the Garsia, Rumsey, Rode
inequality adapt with no changes from(Rd,+)-valued to(G,⊗)-valued processes. With this observation, regula
results for the EBMB, as Hölder continuity and Lévy modulus of continuity, follow after simple moment estim
Sometimes, it will be convenient to work in the associated Lie algebra of the groupG. For instance, the EBM
viewed through this chart is nothing else than the well studied Gaveau diffusion [14]. Its importance in the
of limit theorems was already highlighted in Malliavin’s book, [26].

(b) We introduce a number of different topologies onGΩp(Rd), effectively reducing this space to geomet
rough paths for which the associated norms are finite. For instance, we are able to deal with Hölder and “
type” norms. Exploiting fine estimates in Lyons’ Limit Theorem we have continuity of the Itô map in all
topologies. In former applications of rough path theory to stochastic analysis result were always obtainep-
variation topology, leaving open a gap between (usually well known) results in Hölder and stronger topolo

(c) Lyons’ Universal Limit Theorem implies a Lévy modulus of continuity for diffusions, along the resul
Baldi [2].

(d) We establish convergence of several different approximations to the EBM. The EBM is usually defi
the limit of a sequence of smooth rough paths, which is shown to be Cauchy [24]. Here, we define dire
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EBM, and its regularity allows us to prove convergence of some sequences of smooth rough paths to the E
first idea, common to works in [22,26,17,12], is that approximations are obtained by conditioning with res
dyadic filtrations. After establishing uniform regularity of approximations, easily obtained by Doob’s ineq
we can use an interpolation argument to show convergence in interesting topologies of some sequences
rough paths to the EBM.

(e) If W is the Wiener measure on the Wiener space equipped with the, say,α-Hölder topology,α < 1/2 ,
the supportW is the closure of smooth path under theα-Hölder metric. One proof, as noticed in [28], reduc
to some convergence results of adapted linear approximationωn, which we take to be the dyadic approximati
of ω time shifted of−2−n (to make it adapted). Thenωn converges toω in theα-Hölder topology, which show
that the support ofW is contained in the closure of smooth path under theα-Hölder metric. Reciprocally, given
smooth pathg, g +ω−ωn converges tog, which shows the inverse inclusion, using the Cameron–Martin theo
We extend this proof to the “Wiener measure” on the free nilpotent group of step 2, i.e. the law of the En
Brownian motion. The main difficulty is to introduce a translation operatorT , to make sense ofg + ω − ωn for
group valued paths. By means of continuity of the Itô map, from (b), this immediately implies the support th
for diffusions. In the context of rough paths this improves work by Ledoux, Qian, Zhang (support theo
p-variation topology, [25]) and by the first cited author (Hölder topology, [12]).

As for the history of the support theorem, it was originally obtained by Stroock, Varadhan [37] in sup-top
then by Ben Arous, Gruadinaru, Ledoux [7] and Millet, Sanz-Solé [28] in Hölder norm of exponent less tha/2.

Probably the more abstract proof of this result can be found in [1]. Extension to modulus space has been
[16] and to Orlicz–Besov space in [27]. We limit ourselves to “modulus norm”, in the spirit of [16], and we
not recover fully the results in [16,27]. On the other hand, we have a description of the support of the Strat
enhanced diffusion the goes beyond the last quoted results.

(f) Schilder’s theorem for EBM is obtained. As before, continuity of the Itô map will give the Freidlin–Wen
large deviation result in the topologies mentioned in (b). Strassen’s law is obtained as corollary. Again, we i
[25] and recover well known large deviations results in Hölder and modulus norm [5]. Once again though
not deal with Orlicz–Besov metrics (see [10]).

Constants in this paper may vary from line to line.

2. Rough paths

2.1. Free nilpotent Lie group of step 2

We fix the dimensiond (d � 2 to avoid trivialities) and we denote byL(Rd) = R
d ⊕ so(d), whereso(d) �

R
d(d−1)/2 is the space of real antisymmetricd × d matrices. With the bracket

[, ] :L(Rd) ×L(Rd) → L(Rd),(
(a1, a2), (b1, b2)

) → [a, b] = (0, a1 ⊗ b1 − b1 ⊗ a1),

L(Rd) becomes a (step 2 nilpotent) Lie algebra. The group multiplication in the associated simply connec
GroupG(Rd) = exp(L(Rd)),[31,39,41], is given by the Baker–Campbell–Hausdorff formula.2

⊗ :G(Rd) × G(Rd) → G(Rd),

exp(a) ⊗ exp(b) → exp

(
a + b + 1

2
[a, b]

)
.

2 Due to step 2 nilpotency, only the first bracket appears.
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Its neutral element is exp(0), and the inverse of exp(a) is exp(−a). We can identifyG(Rd) with the nonlinear
submanifold ofRd ⊕ R

d×d given by{
g = (g1, g2) ∈ R

d ⊕ (Rd)⊗2: symmetric part ofg2 equals
1

2
g1 ⊗ g1

}
with usual (truncated) tensor multiplication, that is,

g ⊗ h = (g1 + h1, g2 + g1 ⊗ h1 + h2).

(G(Rd),⊗,exp(0)) is the free nilpotent group of step 2 overR
d , [23,31]. Note thatG(Rd) is invariant under

the dilation operatorδt , for t ∈ R, δt being defined by

G(Rd) → G(Rd),

exp(a1, a2) → exp(ta1, t2a2).

We define on the group

‖g‖ = inf
x1,...,xn∈Rd⊗n
i=1 exp(xi )=g

n∑
i=1

|xi |Rd , (5)

where|.|Rd is the Euclidean norm onRd . For all g, ‖g‖ is finite by Chow theorem [15,29], although it can
seen quite directly here with the use of the Baker–Campbell–Hausdorff formula.‖.‖ is a sub-additive, symmetri
homogeneous norm [11] onG(Rd), that is

(i) ‖g‖ if and only if g = exp(0),
(ii) for all g ∈ G(Rd) andt ∈ R, ‖δtg‖ = |t |‖g‖,
(iii) for all g,h ∈ G(Rd), ‖g ⊗ h‖ � ‖g‖ + ‖h‖,
(iv) for all g, ‖g‖ = ‖g−1‖.

From this sub-additive, symmetric homogeneous norm, we construct a left invariant distance onG(Rd) (which
is a Carnot–Caratheodory distance [15,29]) by defining

d(g,h) = ‖h−1 ⊗ g‖.
If | · |Rd⊗Rd denotes a norm onRd ⊗ R

d , then∣∣∣∣∣∣exp(a1, a2)
∣∣∣∣∣∣ = |a1|Rd +

√
|a2|Rd⊗Rd

defines another homogeneous norm onG(Rd) (that is a norm satisfying (i) and (ii)), and as all homogeneous no
are equivalent [18], one can find some positive constantsc1, c2 such that for allg ∈ G(Rd)

c1|||g||| � ‖g‖ � c2|||g|||. (6)

This implies the following:

Corollary 2. For some constantC,

‖h−1 ⊗ g ⊗ h‖ � C
(‖g‖ +√‖h‖‖g‖ ), (7)

and for anyk � 2,

d

(
k⊗

i=1

gi,

k⊗
i=1

hi

)
� C

k∑
i=1

(
d(gi, hi) +

√√√√√d(gi, hi)

∥∥∥∥ k⊗
j=i+1

hj

∥∥∥∥
)

. (8)
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Proof. If g = eb,h = ea , h−1 ⊗ g ⊗ h = eb ⊗ e−[a,b], hence

|||h−1 ⊗ g ⊗ h||| � |||g||| + |||e−[a,b]||| � |||g||| +√|||g||| · |||h|||.
The inequality is then proved using inequality (6). The second inequality is a consequence of the first one. W
it for k = 2, the general case follows in exactly the same way, by induction.

d(g1 ⊗ g2, h1 ⊗ h2) = ‖h−1
2 ⊗ h−1

1 ⊗ g1 ⊗ g2‖
= ‖h−1

2 ⊗ h−1
1 ⊗ g1 ⊗ h2 ⊗ h−1

2 ⊗ g2‖
� ‖h−1

2 ⊗ h−1
1 ⊗ g1 ⊗ h2‖ + ‖h−1

2 ⊗ g2‖
� C

(
d(g1, h1) +√

d(g1, h1)‖h2‖
)+ d(g2, h2). �

(G(Rd),⊗,exp(0)) equipped with a homogeneous norm is a simple generalization of(Rd ,+,0) equipped with
a norm.

We letC0([0,1],G(Rd)) to be the space of continuous function from[0,1] to G(Rd) such that their value a
time 0 is exp(0). With a slight abuse, we will call such elementsG(Rd)-valued paths. Ifx ∈ C0([0,1],G(Rd)) and
s < t , we will denote byxs,t the elementx−1

s ⊗ xt .

Remark 3.Let |.|Rd⊗Rd be a compatible tensor norm,3 invariant under matrix-transposition. Then an explicit no
satisfying (i)–(iv) is given by

max

{
|a1|Rd ,

√∣∣∣∣a2 + 1

2
a1 ⊗ a1

∣∣∣∣
Rd⊗Rd

}
,

where(a1, a2) ∈ L(Rd).

2.2. p-variation

Let (G,⊗, e) be a group equipped with a homogeneous norm‖.‖. Here, we think ofG being either(Rd ,+,0)

or (G(Rd),⊗,exp(0)). A pathx : [0,1] → G is said to have finitep-variation if

sup
(0�t0<···<tn�1)

∑
i

‖xti ,ti+1‖p < ∞.

Note that a pathx is continuous and of finitep-variation if and only if (see [24])

‖xs,t‖p � ω(s, t) for all s � t

for some control functionω. By definition, this means

(i) ω : {(s, t),0� s � t � 1} → R
+ is continuous near the diagonal.

(ii) ω is super-additive, i.e.

∀s < t < u, ω(s, t) + ω(t, u) � ω(t, u). (9)

(iii) ω(t, t) = 0 for all t ∈ [0,1].

We will say in such case thatx has finitep-variation controlled byω. We will construct control functions in th
following way,

3 That is|a ⊗ b| � |a| |b| .

Rd⊗Rd Rd Rd
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Proposition 4.Consider a continuous mapf :R+ → R
+, increasing, convex,f (0) = 0. Then(s, t) 	→ f (t − s) is

a control function.

Example 5. f (t − s) = c(t − s) for some constantc > 0. This is equivalent to 1/p-Hölder continuity for the
controlled path.

We define ap-variation distance between twoG-valued pathsx andy:

dp-var(x, y) = sup
(0�t0<···<tn�1)

∑
i

d(xti ,ti+1, yti ,ti+1)
p.

2.3. Definition of a geometricp-rough path

We will denote byπ1 resp.π2 the natural injection fromG(Rd) ontoR
d resp. ontoso(d). If x is aG(Rd)-valued

path of finitep-variation, then clearly,π1(x) : t → π1(xt ) is aR
d -valued path of finitep-variation. We will say that

x lies aboveπ1(x). Conversely, assumex is aR
d -valued path of finitep-variation. Ifp < 2, then

S(x) : t → exp

(
xt + 1

2

t∫
0

(xu ⊗ dxu − dxu ⊗ xu)

)
(10)

is the uniqueG(Rd)-valued path of finitep-variation lying abovex (π2(S(x))t is the Lévy area ofx between time
0 andt ; such integrals are well defined Young integrals [42]). The patht → S(x)t is called the signature of th
pathx.

If p ∈ (2,3), then there exists aG(Rd)-valued pathx lying abovex [40], but uniqueness is not true anymo
[23,40].

Definition 6. For p ∈ [2,3), the set of geometricp-rough path is the closure of{S(x), x of finite 1-variation}
under thep-variation metricdp-var. Such class is denoted byGΩp(Rd).

We see in particular that anyG(Rd)-valued path of finiteq-variation, for q > p, is a p-rough path [13].
Once again, the set ofG(Rd)-valued path of finitep-variation, that we denoteGΩp+(Rd) is strictly bigger than
GΩp(Rd).

Note that ifx is a G(Rd)-valued path, then(s, t) → x−1
s ⊗ xt is a geometric multiplicative functional, in th

sense of [23]. Reciprocally, ifys,t is a multiplicative functional, thenxt = y0,t is aG(Rd) path starting at exp(0)

andys,t = x−1
s ⊗ xt . Geometric multiplicative functionals andG(Rd)-valued path are the same objects. The m

theorem in rough path theory is the continuity of the Itô map.

2.4. The Itô map

Theorem 7.Letx ∈ GΩp+(Rd), ε > 0 andV be a linear map fromR
d into the Lip[p + ε,R

n] vector fields.4 There
exists a solutiony ∈ GΩp+(Rn) to the rough differential equation

dyt = V
(
π1(yt )

)
dxt , y1

0 = a, (11)

i.e. there exists an extension ofx to z∈ GΩp+(Rd ⊕ R
n) such thatz projects onto

zt = (xt ,yt ),

4 A function f which is (k + ε)-Lipschitz onR
d , for k ∈ N is ak times differentiable function whosekth derivative isε-Hölder, using the

classical definition of Hölder functions with parameter in[0,1). See [23,34].
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andz satisfiesz= ∫
h(π1(z)) dz, with

h :Rd ⊕ R
n → Hom(Rd ⊕ R

n,R
d ⊕ R

n),

(x, y) → (
(dX,dY ) → (dX,f (y)dY )

)
.

If the p-variation of x is controlled byω, then thep-variation of z (and hencey) is controlled byCω, whereC

depends onp,ε, the(p + ε)-Lipschitz norm ofV and the supremum ofω on the consider interval. Moreover, fo
all s < t such thatω(s, t) < 1,

‖zs,t‖p � Kp,ε,f ω(s, t),

whereKp,ε,V is a constant which only depends onp,ε, and the(p + ε)-Lipschitz norm ofV .

If x and x̃ are two elements ofGΩp+(Rd) such that‖x−1
s,t ⊗ x̃s,t‖p � εω(s, t), then the corresponding solutio

of Eq.(11)z andz̃ satisfy‖z−1
s,t ⊗ z̃s,t‖p � η(ε)ω(s, t) whereη is a continuous function such thatη(0) = 0 (i.e. the

mapx → z is continuous, and hence the Itô mapx → y is continuous).

Proof. A simple translation of the first and second level estimates in [23] or [24] to our norm||| · ||| or ‖ · ‖. �
A simple corollary of it, observed in [12], is the continuity of the Itô map in “Hölder type” norm. The s

simple argument gives the continuity of the Itô map in “modulus topologies”. First, we let

Ξp = {
ϕ : [0,1] → R

+, with ϕ(0) = 0 andϕp is strictly increasing and convex
}
.

Such set is obviously not empty,t → t1/p being one example of an element ofΞp. Let us look at some mor
complicated one.

Example 8.Let α > 0. Then, the functionx → (x(− lnx)a)p/2 is strictly increasing and convex in a neighborho

of 0 (it can be checked by differentiating it twice). Letχa,p = infx>0
d2(x(− lnx)a)p/2

dx2 < 0. Then define

φa,p(x) =
{√

x(− lnx)a if x ∈ [0, χa,p],(
φ

p
a,p(χa,p) + (φ

p
a,p)′(χa,p)(x − χa,p)

)1/p if x ∈ [χa,p,1].
In other words,φp

a,p(x) is the smallest convex function dominating(x(− lnx)a)p/2. Remark that fora > 1,

lim
x→0

φ1,p(x)

φa,p(x)
= 0.

For a functionϕ ∈ Ξp, we define a distance between twoG(Rd)-valued pathsx andx̃

dϕ(x, x̃) = sup
0�s<t�1

‖x−1
s,t ⊗ x̃s,t‖
ϕ(t − s)

.

For a singleG(Rd)-valued pathx, we let

‖x‖ϕ = sup
0�s<t�1

‖xs,t‖
ϕ(t − s)

.

We also letd∞(x, x̃) = sup0�s<t�1 ‖x−1
s,t ⊗ x̃s,t‖ and‖x‖∞ = sup0�s<t�1 ‖xs,t‖.

It is straightforward to check thatd andd are distances on the spaceC (G(Rd)).
ϕ ∞ 0
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Corollary 9. Let x,x̃ ∈ GΩp+(Rd), ε > 0 andV be a linear map fromR
d into the Lip[p + ε,R

n] vector fields,
andz, z̃∈ GΩp+(Rd ⊕ R

n) the corresponding solution of Eq.(11). There exists a continuous functionδ satisfying
δ(0) = 0, such that

dϕ(x, x̃) � ε ⇒ dϕ(z, z̃) � δ(ε).

Remark 10. The requirement thatϕ ∈ Ξp to definedϕ is only for convenience (so that(s, t) → ϕp(t − s) is a
control). Indeed, ifϕ̃ is another increasing function such thatϕ̃ is equivalent toϕ at 0, then the topologies o
G(Rd)-valued paths space induced bydϕ anddϕ̃ are identical.

2.5. The translation operator on rough path space

We define the translation operator, first introduced in a more general situation in [23]. Letq be real such tha
1/q + 1/p > 1.

The following definition is motivated by replacingx by x + f in (10).

Definition 11. Let x ∈ GΩp+(Rd) andf be aR
d -valued path of finiteq-variation. We letxt = π1(xt ). Then we

defineTf (x) by

π1
(
Tf (x)

)
s,t

= fs,t + xs,t

and

π2
(
Tf (x)s,t

) = π2(xs,t ) + 1

2
π2

( t∫
s

fs,u ⊗ dfu

)
+ 1

2

t∫
s

fs,u ⊗ dxu

+ 1

2

( t∫
s

xs,u ⊗ dfu −
t∫

s

dfu ⊗ xs,u −
t∫

s

dxu ⊗ fs,u

)
,

where the integrals are well defined Young integrals.

Remark that it is easily checked thatTf (x)s,t = Tf (x)−1
0,s ⊗ Tf (x)0,t .

Theorem 12.Let x be aG(Rd)-valued path of finitep-variation controlled byεpω(s, t), andf be aR
d -valued

path of finiteq-variation controlled by
(s, t). Assume moreover that
(s, t)1/q � Cω(s, t)1/p . Then for alls < t

andε < 1,

d
(
Tf (x)s,t , S(f )s,t

)
� C

√
εω(s, t)1/p.

Proof. For all s < t , we have

S(f )−1
s,t ⊗ Tf (x)s,t = exp

(
xs,t − 1

2
[fs,t , xs,t ] + π2(xs,t )

)
⊗ exp

(
1

2

t∫
s

fs,u ⊗ dxu + 1

2

t∫
s

xs,u ⊗ dfu

)

⊗ exp

(
−1

2

t∫
s

dfs,u ⊗ xu − 1

2

t∫
s

dxs,u ⊗ fu

)
.

Hence, by inequality (6) and Young inequality [42] (which says that for alls < t , | ∫ t

s
fs,u ⊗ dxu| � Cε
(s, t)1/q ×

ω(s, t)1/p and similar inequalities for the other Young integrals), we get that∥∥S(f )−1 ⊗ T (x)
∥∥ � εω1/p(s, t) +

√
ε2ω2/p(s, t) + Cε
(s, t)1/qω(s, t)1/p � C

√
εω(s, t)1/p. �
s,t f s,t
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3. The enhanced Brownian motion

In what follows we will lift Brownian motion as(Rd ,+)-valued to a(G(Rd),⊗)-valued process. Early wor
by Gaveau [14] and in particular the presentation in [26] use related algebraic ideas. See also [30].

3.1. Two classical properties of the Brownian motion

Let (C0(R
d),F , (Ft )t ,P) be the Wiener space. The evaluation operatorB is then underP a Brownian motion

starting at 0.
Applying Garsia, Rodemich and Rumsey inequality, it is not too difficult to see [36,38] that for alls < t ,

‖Bs,t‖ � 4√
α

t−s∫
0

√
log(1+ 4F

u2 )

u
du,

whereF is aL1-random variable and a constantα > 0, sufficiently small.
We denote byW1,2 the Cameron–Martin space{

h : [0,1] → R
d , h(t) =

t∫
0

h′(t) dt with h′ ∈ L2([0,1])
}

.

Cameron–Martin theorem, e.g. [19,32], states that iff ∈ W1,2 is (Ft )t -adapted, then the law of(Bt )0�t�1 (i.e. the
Wiener probabilityP) and the law of(Bt + f (t))0�t�1 (that we will denotePf ) are equivalent.

We will now extendB to a G(Rd)-valued path of finitep-variation, for allp > 2 (and hence a geometr
p-rough path), and show that our “enhanced” Brownian motion has a similar modulus of continuity and
Cameron–Martin theorem to our enhanced Brownian motion.

3.2. Their extensions to the enhanced Brownian motion

3.2.1. Definition of the enhanced Brownian motion
The enhanced Brownian motion was first defined in [33]. See also [24].
Forn ∈ N andx aR

d -valued path, we denote byxn the path which agrees withx at the pointsk
2n , k = 0, . . . ,2n,

and which is linear in the intervals[ k
2n , k+1

2n ], k = 0, . . . ,2n − 1. As xn has finite 1-variation, we can definexn =
S(xn), that is the naturalG(Rd)-valued path lying abovexn.

We denote byΓ the almost surely defined map

B → (
t → lim

n→∞S(Bn)t
)
,

and we let(Bt )0�t�1 be theG(Rd)-valued pathΓ (B). Note that [24]

Bt =a.s. exp

(
Bt + 1

2

t∫
s

(Bu ⊗ ◦dBu − ◦dBu ⊗ Bu)

)
,

where we have used Stratonovich integration. We will call(Bt )t�0 the enhanced Brownian motion.

Remark 13.Almost surely,Γ ◦ π1(B) = B andπ1 ◦ Γ (B) = B.

Remark 14. The inverse of exp, denoted by log, provides a global chart forG(Rd). Gaveau’s diffusion, [26], is
exactly our EBM seen through this chart.
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3.2.2. Modulus of continuity for the enhanced Brownian motion
We now cite Garsia, Rodemich and Rumsey inequality, but with the functionf below beingG(Rd)-valued

(while usually,f takes values in a normed vector space). Using the properties‖ · ‖ on G(Rd), the proofs of the
following theorem is the same proof than the classical Garsia, Rodemich and Rumsey theorem.

Theorem 15. Let Ψ and p be continuous strictly increasing functions on[0,∞) with p(0) = Ψ (0) = 0 and
Ψ (x) → ∞ asx → ∞. Givenf ∈ C0([0,1],G(Rd)), if

1∫
0

1∫
0

Ψ

(
f (s)−1 ⊗ f (t)

p(|t − s|)
)

ds dt � F, (12)

then for0� s < t � 1,

∥∥f (s)−1 ⊗ f (t)
∥∥ � 8

t−s∫
0

Ψ −1
(

4F

u2

)
dp(u).

Applying the Garsia, Rodemich and Rumsey inequality, we obtain a modulus of continuity for the enh
Brownian motion

Theorem 16.Define

ζ(x) = 1

2
√

2

x∫
0

√
log(1+ 1/u2)

u
du.

Then there exists a random variableZ � 1 a.s. and inL1, and a constantC > 0 such that for alls < t ,

‖Bs,t‖ � CZ1/4ζ

(
t − s√

Z

)
. (13)

Proof. As in the proof of Lévy’s modulus of continuity in [36,38] we use the Garsia, Rodemich and Ru
inequality withf (t) = Bt , p(x) = √

x andΨ (x) = exp(αx2) − 1. We obtain

‖Bs,t‖ � C

t−s∫
0

√
log(1+ 4F

u2 )

u
du,

whereF is the (now random) left-hand side of (12). Since‖Bs,t‖ law= √
t − s‖B0,1‖ the expectation ofF is estimated

by

E
(
exp

(
α‖B0,1‖2)). (14)

We claim that this last expression is finite for a small enoughα > 0. Remark thatπ1(B), resp.π2(B) are some
elements of the first (resp. second) Wiener–Itô Chaos. By general integrability properties of the Wiener–It
[32, p. 207], there exists̃α > 0

E
(
exp

(
α̃
∣∣π1(B0,1)

∣∣2
Rd

))
< ∞,

E
(
exp

(
α̃
∣∣π (B )

∣∣ ))
< ∞.
2 0,1 Rd⊗Rd
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By inequality (6), the finiteness of the expectation of exp(α‖B0,1‖2) is easily obtain.5 It remains just to define
Z = max{4F,1} (we wantZ � 1 for technical convenience later on), and do a change of variable to obtain ine
ity (13). �
Remark 17.As ζ(x) ∼x→0 C

√−x lnx,

lim
δ→0

sup
0�s<t�1
|t−s|�δ

‖Bs,t‖√−δ ln δ
� C. (15)

On the other hand we can trivially get a deterministic lower bound by noting|Bs,t |Rd � ‖Bs,t‖ and using Lévy’s re-
sult. All this is known (with an equality) for hypoelliptic diffusions on Nilpotent group in [2] and elliptic diffusi
in [3].

Lemma 18.There exists a constantC such that for allx, y ∈ [0,1],
ζ(xy) � Cζ(x)ζ(y).

Proof. Fora small enough, there exists constantsK1 andK2 such that ifx ∈ (0, a]
K1

√−x lnx � ζ(x) � K2
√−x lnx.

Hence, from the inequality∀x, y ∈ (0, a], − ln(xy) � −2 lna

ln2 a
ln(x) ln(y), we obtain that for allx, y ∈ [0, a], ζ(xy) �

Cζ(x)ζ(y) for a constantC.
For a fixedb, it is easily seen that 0< infx∈(0,1/b)

ζ(xb)
ζ(x)

< supx∈(0,1/b)
ζ(xb)
ζ(x)

< ∞. Hence, ifx, y ∈ [0,1],

ζ(xy) = ζ

(
axay

a2

)
� sup

z∈(0,a2)

ζ(z/a2)

ζ(z)
ζ(axay)

� C sup
z∈(0,a2)

ζ(z/a2)

ζ(z)
ζ(ay)ζ(ay)

� C
supz∈(0,a2)

ζ(z/a2)
ζ(z)

(infz∈(0,1/a)
ζ(za)
ζ(z)

)2
ζ(x)ζ(y). �

Proposition 19.

‖Bs,t‖ � Mζ(t − s), (16)

whereM is a random variable for which there exists a constantλ > 0 such thatE(exp(λM2)) < ∞.

Proof. From the previous lemma, we can set

M = CZ1/4ζ

(
1√
Z

)
= 2C

1∫
0

√
ln

(
1+ Z

v4

)
dv.

Hence, by Jensen inequality,

5 One could prove this directly as we know the density ofB [22].
0,1



P. Friz, N. Victoir / Ann. I. H. Poincaré – PR 41 (2005) 703–724 715

. For

aws
E
(
exp(λM2)

)
� E

( 1∫
0

exp

(
4λC2 ln

(
1+ Z

v4

))
dv

)
� E

( 1∫
0

(
1+ Z

v4

)4λC2

dv

)

� E

( 1∫
0

(
2Z

v4

)4λC2

dv

)
< ∞

for λ small enough. �
The last estimate looks like a control butζp is not convex on the entire interval[0,1]. We defineφp to bepth-

root of the smallest convex function dominatingx → ζ(x)p (remark thatφp is very similar toφ1,p of Example 8,
as ζ(x)√−x lnx

→x→0 1).

Corollary 20. Thep-variation ofB is controlled by(s, t) → CpZp/4φ
p
p( t−s√

Z
) and also by(s, t) → Mpφ

p
p(t − s).

3.2.3. A Cameron–Martin theorem on the group
This section, despite being short and quite trivial, will be crucial in the proof of the support theorem

f ∈ W1,2, the translation ofB by f is Tf (B), and it is well defined asf has finite 1-variation andB has almost
surely finitep-variation, 2< p < 3.

Theorem 21.Letf ∈ W1,2 be an(Ft )-adapted path. Then the law ofB is equivalent to the law ofTf (B).

Proof. By the Definition 11 and properties of Young and Stratonovich integral,Tf (B) = Γ (f + B). Hence, the
law of B is P ◦ Γ −1 while the law ofTf (B) is P

f ◦ Γ −1. Hence, by the Cameron–Martin theorem, these two l
are equivalent. �

4. Modulus of continuity for solution of SDEs

Theorem 22.Letyt be the solution of the Stratonovich differential equation

dyt = f0(yt ) dt + f (yt ) ◦ dBt ,

wheref0 is (1 + ε)-Lipschitz andf is (2 + ε)-Lipschitz. Forh ∈ W1,2, we denote byF(h) the solution of the
ordinary differential equation6

dF(h)t = f0
(
F(h)t

)
dt + f

(
F(h)t

)
dht .

We also denote byF the extension of the Itô mapF to the set ofG(Rd)-valued path of finitep-variation. There
exists a constantC such that

lim
h→0

sup
0�s<t�1
|t−s|�δ

‖F(B)s,t‖√−δ ln δ
� C a.s.

In particular,

lim
h→0

sup
0�s<t�1
|t−s|�δ

|yt − ys |Rd√−δ ln δ
� C a.s.

6 For h ∈ W1,2 but not piecewiseC1 this ODE still makes sense as rough differential equation with driving signal of finitep = 1 variation,

see [21].
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Proof. Assume first thatf0 = 0. By Theorem 7 and Corollary 20, fors < t such thatCpZp/4φ
p
p( t−s√

Z
) < 1,∥∥F(B)s,t

∥∥ � Kε,V CZ1/4φp

(
t − s√

Z

)
,

and we obtain our theorem by remarking once again thatφp(x) ∼x→0
√−x ln(x). The second inequality is obviou

from the fact thatπ1(F(B)s,t ) = yt − ys .
For the general case, one just need to consider(t,Bt ) as a path of mixed(1,p)-variation and use the continuit

of F, as proved in [22]. �
There is a good hope that thanks to forthcoming paper of A.M. Davie, one will be able to consider the o

case wheref0 is 1-Lipschitz andf is 2-Lipschitz. One should also be able to extend the rough path theory s
these functions could depend continuously on time. This is out of the scope of this paper.

5. On the support theorem

We are going to show a support theorem for the enhanced Brownian motion. Using the continuity of the I
we will recover the classical support theorem (and even more). First, we need to look carefully at the conver
piecewise linear approximation of our Brownian motion to the enhanced Brownian motion, in various topo

5.1. Convergence of some smooth paths to the enhanced Brownian motion

Proposition 23.Let ϕ,φp ∈ Ξp, such thatlimx→0
φp(x)

ϕ(x)
= 0. Letx,y be twoG(Rd)-valued paths. Then, for allA

big enough, withA in any case greater thandφp(x,y),

dϕ(x,y) � A

(
ϕ−1

φ−1
p

(
d∞(x,y)

A

))1/p

.

Remark that the functionsϕ = φa,p , a > 1 of example 8 satisfy the condition limx→0
φp(x)

ϕ(x)
= 0.

Proof. First note that asϕ ∈ Ξp, limx→∞ ϕ(x) = +∞, henceϕ−1 is an increasing concave function fromR+ onto

R
+. Idem forφp. With our assumption, one can seeϕ−1

φ−1
p

is increasing and bounded by 1 on a neighborhood(0, τ )

of 0. Let us choose aA � Cϕ,φpdφp(x,y), whereCϕ,φp is a constant greater than 1 such thatd∞(x,y)
A

� τ . Then,
for all s < t ,

ϕ−1
(‖x−1

s,t ⊗ ys,t‖
A

)
= ϕ−1

φ−1
p

(‖x−1
s,t ⊗ ys,t‖

A

)
φ−1

p

(‖x−1
s,t ⊗ ys,t‖

A

)
�

(
ϕ−1

φ−1
p

(
d∞(x,y)

A

))
φ−1

p

(
dφp(x,y)

A
φp(t − s)

)
�

(
ϕ−1

φ−1
p

(
d∞(x,y)

A

))
(t − s).

So far, we have used the fact thatϕ−1

φ−1
p

andφ−1
p are increasing, and that

dφp (x,y)

A
� 1. For alls < t ,

‖x−1
s,t ⊗ ys,t‖ � ϕ

((
ϕ−1

−1

(
d∞(x,y)

))
(t − s)

)
�

(
ϕ−1

−1

(
d∞(x,y)

))1/p

ϕ(t − s),

A φp A φp A



P. Friz, N. Victoir / Ann. I. H. Poincaré – PR 41 (2005) 703–724 717

nverge
asϕp is convex andϕ
−1

φ−1
p

(
d∞(x,y)

A
) � 1. Hence,

dϕ(x,y) � A

(
ϕ−1

φ−1
p

(
d∞(x,y)

A

))1/p

. �

Corollary 24. Let ϕ ∈ Ξp, such thatlimx→0
φp(x)

ϕ(x)
= limx→0

√−x lnx
ϕ(x)

= 0. Let xn be a sequence ofG(Rd)-valued

paths, which converges pointwise to anotherG(Rd)-valued pathx. Assume thatsupn ‖xn‖φp < ∞. Thenxn con-
verges tox in the topology induced bydϕ .

Proof. First notice that by Arzela–Ascoli theorem,

d̃∞(xn,x) := sup
t∈[0,1]

‖x−1
n,t ⊗ xt‖ →n→∞ 0.

But inequality (7) gives

d̃∞(xn,x) � d∞(xn,x) � C
(
d̃∞(xn,x) +

√
d̃∞(xn,x)‖x‖∞

)
, (17)

henced∞(xn,x) →n→∞ 0. Using Proposition 23 and its notations, we see thatdϕ(xn,x) is bounded by

2Cϕ,φp sup
n

‖xn‖φp

(
ϕ−1

φ−1
p

(
d∞(xn,x)

2Cϕ,φp supn ‖xn‖φp

))1/p

which goes to 0 whenn tends to infinity. �
This corollary is going to allow us to prove that various approximations of enhanced Brownian motion co

in the topology induced bydϕ , whereϕ ∈ Ξp is such thatφp(x) = o(ϕ(x)) asx → 0. To obtain an accurate uniform
control of‖Bn‖φp , we first need the following result, in the spirit of Doob’s martingale inequality.

Lemma 25. Let X a random variable such thatE(expλX2) < ∞, and Gn a sequence ofσ -algebras. Define
Xn = E(X/Gn). Then

E
(
sup
n

expλX2
n

)
< ∞.

Proof. Using Fubini and Doob’sLp inequality, we obtain

E
(
sup
n

expλX2
n

)
= 1+

∞∑
k=1

λk

k! E
(
sup
n

X2k
n

)
� 1+

∞∑
k=1

λk

k!
(

2k

2k − 1

)2k

E(X2k)

� 2eE(expλX2). �
Proposition 26. t → Bt and t → Bn

t are almost surely of finitep-variation uniformly controlled by(s, t) →
Kpφ

p
p(t − s), whereK is a random variable such that forλ small enoughE(exp(λK2)) < ∞.

Proof. B is controlled inp-variation byCpMpφ
p
p(t − s), where, forλ small enoughE(exp(λM2)) < ∞. By

inequality (6), we see that for alls < t

|||Bs,t ||| � M
φp(t − s).
c1
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Now defineGn theσ -algebra generated by the random variablesB k
2n

. Then, logBn
s,t = E(logBs,t /Gn) [26]. Hence,

|||Bn
s,t ||| = |||expE(logBs,t /Gn)|||

= ∣∣E(
π1(Bs,t )/Gn

)∣∣
Rd +

√∣∣E(
π2(Bs,t )/Gn

)∣∣
Rd⊗Rd

�
√

E
(∣∣π1(Bs,t )

∣∣2
Rd /Gn

)+
√

E
(∣∣π2(Bs,t )

∣∣
Rd⊗Rd /Gn

)
� C

√
E
(|||Bs,t |||2/Gn

)
� C

c1
φp(t − s)

√
E(M2/Gn).

DefineK̃2 = supn E(M2/Gn). For all n ands < t , |||Bn
s,t ||| � CK̃

c1
φp(t − s). By the previous lemma, forλ small

enoughE(exp(λK̃2)) < ∞. A last use of (6) gives us the proposition.�
As a consequence of Proposition 26 and Corollary 24, we obtain the following corollaries.

Corollary 27. Let ϕ ∈ Ξp, such thatlimx→0

√−x ln(x)
ϕ(x)

= 0. Then,Bn converges almost surely toB in the topology
induced bydϕ .

Corollary 28. Letϕ ∈ Ξp, such thatlimx→0

√−x ln(x)
ϕ(x)

= 0. We defineB(n) to be the(Ft )-adapted path such that

B
(n)
t = B [2nt]

2n
+

(
t − [2nt]

2n

)(
B [2nt]

2n
− B [2nt]−1

2n ∨0

)
.

Then,B(n) = S(B(n)) converges almost surely toB in the topology induced bydϕ .

Proof. We have seen in Proposition 26 that, almost surely, supn ‖Bn‖φp < ∞ a.s. Observe thatB(n) is essentially
Bn shifted byε = 1/2n. More precisely,

‖B(n)
s,t ‖ = ‖Bn

(s−ε)∧0,(t−ε)∧0‖ � sup
n

‖Bn‖φpφp(t − s).

By Corollary 24 it suffices to show that, almost surely,B(n)
t → Bt for fixed t . But this simply follows from

‖B−1
t ⊗ B(n)

t ‖ � ‖B−1
t ⊗ Bn

t ‖︸ ︷︷ ︸
→0

+∥∥(Bn
t )

−1 ⊗ Bn
(t−ε)∧0

∥∥︸ ︷︷ ︸
�Cφp(ε)→0 with n→∞.

. �

In particular, we recover the convergence in the 1/p-Hölder distance (and hence in thep-variation topology) of
Bn andB(n) to B.

5.2. Some more convergence results

Lemma 29.Let ϕ ∈ Ξp, such thatlimx→0

√−x ln(x)
ϕ(x)

= 0 andf ∈ W1,2 be an(Ft )-adapted path. ThenP-almost
surely,Tf −B(n) (B) converges in the topology induced bydϕ to S(f ).

Proof. Note first thatf − B(n) ∈ W1,2 ⊂ W1,1, which is precisely the set of path of bounded variation, he
T (B) is well defined. Assume that we have shown thatT (B) converges to exp(0) in the topology induced
f −B(n) −B(n)
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e

g

proved

nction
by dϕ , i.e. that there exists a sequenceεn, which converges almost surely to exp(0), and such thatεp
n ϕp(t − s)

controls thep-variation ofT−B(n) (B). Then, as

t∫
s

|f ′
u|du �

√
t − s

√√√√√ 1∫
0

|f ′
u|2 du � C

√√√√√ 1∫
0

|f ′
u|2 duϕ(t − s),

we obtain from theorem 12 and the equalityTf −B(n) (B) = Tf [T−B(n) (B)] that dϕ(Tf −B(n) (B), S(f )) � C
√

εn.
Hence, we can assume thatf = 0.

Note that

T−B(n) (B)s,t = exp

(
Bs,u − B

(n)
s,t +

t∫
s

[
Bs,u − B(n)

s,u ,◦d(Bu − B(n)
u )

])
.

Conditioning partially, i.e. only with respect to the values of theith component of the Brownian motion at som
fixed time, we obtain, similarly as in the previous section (and as in [12]), that, almost surely,T−B(n) (B) converges
pointwise to exp(0), and that for alln,∥∥T−B(n) (B)s,t

∥∥ � K ′φp(t − s),

whereK ′ is a random variable such that forλ small enough,E(expλK ′2) < ∞. The proof is then finished usin
Corollary 24. �
5.3. Support theorem with refined norms

As observed in [12] we can combine the rough path approach of [25] with ideas from [28] and get an im
support theorem as a corollary.

Theorem 30.The support of the law ofB is the closure ofS(W1,2) in the topology induced bydϕ , whereϕ ∈ Ξp

is such thatlimx→0

√−x ln(x)
ϕ(x)

= 0.

Proof. Corollary 28 implies classically that the support of the law ofB is contained in the closure ofS(W1,2) in
thedϕ topology. Reciprocally, our Cameron–Martin Theorem 21 implies it is enough to show that for a fu
x ∈ W1,2, Tx−B(n) (B) converges in thedϕ topology toS(x). But this was proven in Lemma 29.�
Remark 31. As noted in [16], the previous theorem would not work in the topology induced bydφp . Indeed,
{x ∈ C0([0,1],G(Rd)),‖x‖φp < ∞} is not separable (but the set of continuousG(Rd)-valued pathx such that

‖x‖φp < ∞ and such that limδ→0 sup|t−s|�δ
‖xs,t‖
ϕ(δ)

= 0 is separable).

As in Section 4, we letyt be the solution of the Stratonovich differential equation

dyt = f0(yt ) dt + f (yt ) ◦ dBt ,

wheref0 is (1 + ε)-Lipschitz andf is (2 + ε)-Lipschitz. Forh ∈ W1,2, we denote byF(h) the solution of the
ordinary differential equation

dF(h)t = f0
(
F(h)t

)
dt + f

(
F(h)t

)
dht . (18)

We also denote byF the extension of the Itô mapF to the space ofG(Rd)-valued path of finitep-variation. From
the continuity ofF in thed topology (Corollary 9), we instantaneously obtain the following:
ϕ
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[28,6,
e one
Corollary 32. The support of the law ofΓ (y) (the Stratonovich extension ofy to ap-rough path) is the closure of

F(S(W1,2)) in the topology induced bydϕ , whereϕ ∈ Ξp is such thatlimx→0

√−x ln(x)
ϕ(x)

= 0.

Projecting on the first level, we improve Stroock–Varadhan’s result [37], its extension to Hölder norm
7,35] as well as thep-variation result [25]. Our approach allows us to use more refined topologies than th
induced by Hölder distances. Letd1,ϕ be the distance defined by the following formula:

d1,ϕ(x, y) = sup
0�s<t�1

|ys,t − xs,t |Rd

ϕ(t − s)
.

Corollary 33. The support of the law ofy is the closure ofF(W1,2) in the topology induced byd1,ϕ , whereϕ ∈ Ξp

is such thatlimx→0

√−x ln(x)
ϕ(x)

= 0.

6. Large deviations results

6.1. Some preliminary results

Forn ∈ N, we define the mapΥn :C0([0,1],G(Rd)) → C0([0,1],G(Rd)) whereΥn(x) is defined by:

(i) ∀k ∈ {0, . . . ,2n}, Υn(x) k
2n

= x k
2n

,

(ii) ∀k ∈ {0, . . . ,2n} and∀t ∈ [0,2−n], Υn(x) k
2n , k

2n +t
= δt2n(x k

2n , k+1
2n

).

Υn(x) is a piecewise linear approximation ofx to which we assign a non-canonical area!

Lemma 34.For all n ∈ N,∥∥Υn(x)
∥∥

φp
� C‖x‖φp .

Proof. One can show, with similar techniques than in Lemma 18, that for allα,y ∈ (0,1],
φp(αy) � C

√
αφp(y). (19)

Whenever 0� s � t � 2−n, Υn(x) k
2n +s, k

2n +t
is equal to

exp
(
2n(t − s)π1(x k

2n , k+1
2n

) + 22n(t2 − s2)π2(x k
2n , k+1

2n
)
)
.

Hence, by inequality (6),∥∥Υn(x) k
2n +s, k

2n +t

∥∥ � C‖x k
2n , k+1

2n
‖(2n(t − s) + 2n/2√t − s

)
� C‖x k

2n , k+1
2n

‖2n/2√t − s. (20)

Hence, for k
2n � s � t � k+1

2n ,∥∥Υn(x)s,t
∥∥ � C‖x‖φpφp(t − s)

φp(2−n)

φp(t − s)

√
t − s

2−n
� C‖x‖φpφp(t − s),

applying inequality (19) withα = t−s
2−n andy = 2−n.

For generals � j
2n � k

2n � t , as

Υn(x)s,t = Υn(x)
s,

j

2n
⊗ Υn(x) j

2n , k
2n

⊗ Υn(x) k
2n ,t

= Υ (x) j ⊗ x j k ⊗ Υ (x) k , (21)
n s, 2n 2n , 2n
n

2n ,t
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which
ve
t

e need
∥∥Υn(x)s,t
∥∥ � C‖x‖φp

(
φp

(
j

2n
− s

)
+ φp

(
k − j

2n

)
+ φp

(
t − k

2n

))
� C‖x‖φpφp(t − s). �

Lemma 35.For all n ∈ N,

d∞(x,Υn(x))

‖x‖φp

� C

√
φp(2−n).

Proof. For s � j
2n � k

2n � t , using Eq. (21), we see that the distance betweenxs,t andΥn(x)s,t is equal to

d
(
Υn(x)

s,
j

2n
⊗ x j

2n , k
2n

⊗ Υn(x) k
2n ,t

,x
s,

j

2n
⊗ x j

2n , k
2n

⊗ x k
2n ,t

)
.

We then use inequality (8):

d
(
xs,t ,Υn(x)s,t

)
� d

(
Υn(x)

s,
j

2n
,x

s,
j

2n

)+ d
(
Υn(x) k

2n ,t
,x k

2n ,t

)+
√

d
(
Υn(x)

s,
j

2n
,x

s,
j

2n

)‖x j

2n ,t
‖.

Then we simply boundd(Υn(x)
s,

j

2n
,x

s,
j

2n
) by ‖Υn(x)

s,
j

2n
‖ + ‖x

s,
j

2n
‖ � C‖x‖φpφp(2−n), and similarly for

d(Υn(x) k
2n ,t

,x k
2n ,t

). Hence,

d(xs,t ,Υn(x)s,t )

‖x‖φp

� Cφp(2−n) + C

√
φp(2−n)φp(1). �

Corollary 36. For all n ∈ N,

dϕ

(
x,Υn(x)

)
� C‖x‖φp

(
sup

0�x�C′√φp(2−n)

ϕ−1

φ−1
p

(x)

)1/p

.

In particular, if ‖x‖φp < ∞, dϕ(x,Υn(x)) converges to0 whenn tends to infinity.

Proof. We apply Proposition 23, withA = C‖x‖φp � dφp(Υn(x),x). It gives

dϕ

(
x,Υn(x)

)
� C‖x‖φp

(
ϕ−1

φ−1
p

(
d∞(x,Υn(x))

C‖x‖φp

))1/p

.

The result is then given by Lemma 35.�
Remark 37. A feature of this approximation is that it does not rely on dyadic (or nested) approximations
are fundamental for our earlier martingale approach. Indeed, the 2−n appearing on the right-hand side of abo
estimate is readily replaced by the mesh of any dissection upon whichΥn(x) is constructed. Introducing the righ
area in our approximation improves its convergence properties.

6.2. Schilder and Freidlin–Wentzell theorem with refined norms

We extend Schilder theorem [8,9,4] to the enhanced Brownian motion in our refined topology. First, w
the following lemma

Lemma 38.Letϕ ∈ Ξp, such thatlimx→0

√
x

ϕ(x)
= 0. The maps

Υn :
(
C0

([0,1],G(Rd)
)
, d∞

) → (
C0

([0,1],G(Rd)
)
, dϕ

)
are continuous.
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fore.

n

nc-

letting
Proof. The mapΥn from (C0([0,1],G(Rd)), d∞) into itself is clearly continuous as easily seen using (8) as be
Let x ∈ C0([0,1],G(Rd)) ands � j

2n � k
2n � t ,∥∥Υn(x)s,t

∥∥ �
∥∥Υn(x)

s,
j

2n

∥∥+ ‖x j

2n , k
2n

‖ + ∥∥Υn(x) k
2n ,t

∥∥
� C‖x j−1

2n ,
j

2n
‖2n/2

√
j

2n
− s + C‖x k−1

2n , k
2n

‖2n/2

√
t − k

2n
+ 1j<k2n/2‖x j

2n , k
2n

‖
√

k

2n
− j

2n

� C2n/2‖x‖∞
√

t − s.

When j
2n � s � t � j+1

2n , we also have∥∥Υn(x)s,t
∥∥ � C‖x k

2n , k+1
2n

‖2n/2√t − s,

as already notice in Eq. (20). Hence,

sup
s<t

‖Υn(x)s,t‖√
t − s

� Cn‖x‖∞.

The proof is then finished applying a slight modification (replacingφp by √
.) of Proposition 23. �

Theorem 39.Let ϕ ∈ Ξp, such thatlimx→0

√−x ln(x)
ϕ(x)

= 0. The random variablesδεB satisfies a large deviatio
principle in the topology induced bydϕ with good rate function

I (x) =
{

1
2

∫ 1
0 |x′

u|2 du, if S(x) = x for somex ∈ W1,2,

+∞ otherwise.

Proof. The large deviation result in [25] tells us thatδεB satisfies a large deviation principle with good rate fu
tion I using the topology induced byd∞. By Lemma 38, if we prove thatΥn(δεB) is an exponentially good
approximation ofδεB, i.e.

lim
n→∞ lim

ε→0
ε2 logP

(
dϕ

(
Υn(δεB), δεB

)
> δ

) = −∞ (22)

and that for allα,

lim
n→∞ sup

x,I (x)�α

dϕ

(
Υn(x),x

) = 0, (23)

we will have shown our theorem, by applying Theorem 4.2.23 in [9].
Let us first prove Eq. (23). First observe that ifI (x) � α, letting x ∈ W1,2 be such thatS(x) = x, we have,

by definition of our homogeneous norm and by Cauchy–Schwartz,‖xs,t‖ �
∫ t

s
|x′

u|du � 2
√

t − sI (x). Hence,

‖x‖φp � 2 sup0�s<t�1

√
t−s

φp(t−s)

√
α = C

√
α and hence by Corollary 36,

sup
x,I (x)�α

dϕ

(
Υn(x),x

)
� C

√
α

(
sup

0�x�C′√φp(2−n)

ϕ−1

φ−1
p

(x)

)1/p

→n→∞ 0.

To obtain inequality (22), we just need to apply Corollary 36 to the enhanced Brownian motion. Indeed,

αn = C(sup0�x�C′√φp(2−n)

ϕ−1

φ−1
p

(x))1/p , we see that

P
(
dϕ

(
δεΥn(B), δεB

)
> δ

) = P

(
dϕ

(
Υn(B),B

)
>

δ

ε

)
� P

(
C‖B‖φpαn >

δ

ε

)
� P

(
M >

δ

αnε

)
,

whereM is the random variable in Proposition 19. As

P

(
M >

δ
)

� E
(
exp(λM2)

)
exp

(
−λ

(
δ

)2)
,

αnε αnε
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.
, XXI, in:

Guíxols,
lim
ε→0

ε2 logP
(
dϕ

(
δεΥn(B), δεB

)
> δ

)
� lim

ε→0
ε2 logE

(
exp(λM2)

)− λ

(
δ

αn

)2

� −λ

(
δ

αn

)2

,

which gives inequality (22), sinceαn is a deterministic converging to 0.�
By the continuity of the Itô map in the topology induced bydϕ , we obtain the following extension of Freidlin

Wentzell theorem [8,9,5].

Corollary 40. Let ϕ ∈ Ξp, such thatlimx→0

√−x ln(x)
ϕ(x)

= 0. Let yε
t be the solution of the Stratonovich different

equation

dyε
t = f0(y

ε
t ) dt + εf (yε

t ) ◦ dBt ,

wheref0 is (1+α)-Lipschitz andf is (2+α)-Lipschitz,0< α < 1. The Stratonovich extension ofyε to a geometric
rough path, i.e.Γ (yε

t ) = F(δεB) (F has been defined in Eq.(18))satisfies a large deviation principle in the topolo
induced bydϕ with good rate function

J (x) = inf
F(y)=x

I (y).

Remark that if we only consider the first level of our pathsyε, we obtain the classical Freidlin–Wentzell theore
in the topology induced byd1,ϕ .

6.3. Strassen law

A classical corollary of Schilder is the law of the iterated logarithm [8,9,25]:

Corollary 41. LetK = {x = S(x), x ∈ W1,2 and
∫ 1

0 |x′
u|2 du � 1} and

ξn
t = δ(2n log logn)−1/2Bnt .

Then, ifϕ ∈ Ξp is such thatlimx→0

√−x ln(x)
ϕ(x)

= 0,

lim
n→∞dϕ(ξn,K) = 0,

and the set of limit points of inC0([0,1],G(Rd)) with the topology induced bydϕ is equal toK .
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