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Abstract

A geometricp-rough path can be seen to be a genuine path of finitariation with values in a Lie group equipped with a
natural distance. The group and its distance(, +, 0) and its Euclidean distance.

This approach allows us to easily get a precise modulus of continuity for the Enhanced Brownian Motion (the Brownian
Motion and its Lévy Area).

As a first application, extending an idea due to Millet and Sanz-Solé, we characterize the support of the Enhanced Brown-
ian Motion (without relying on correlation inequalities). Secondly, we prove Schilder’s theorem for this Enhanced Brownian
Motion. As all results apply in Holder (and stronger) topologies, this extends recent work by Ledoux, Qian, Zhang [Stochastic
Process. Appl. 102 (2) (2002) 265—-283]. Lyons'’ fine estimates in terms of control functions [Rev. Mat. Iberoamericana 14 (2)
(1998) 215-310] allow us to show that the It map is still continuous in the topologies we introduced. This provides new and
simplified proofs of the Stroock—Varadhan support theorem and the Freidlin—~Wentzell theory. It also provides a short proof of
modulus of continuity for diffusion processes along old results by Baldi.

0 2004 Elsevier SAS. All rights reserved.

Résumé

Un p-rough path est un chemin gevariation finie a valeurs dans un groupe de Lie muni d'une distance sous-riemannienne.
Le groupe et sa distance géneralisgkft, +, 0) et la distance euclidienne.

Cette approche nous permet d’obtenir un module de continuité tres précis pour le rough path brownien (le mouvement
brownien et son aire de Lévy). Pour ce dernier, nous prouvons un théoreme du support (adaptant une idée de Millet et Sans-
Solé) et un théoreme de Schilder. Comme tous les résultats sont prouvés en utilisant des topologies de type Hélder ou plus fines
cela géneralise le papier de Ledoux, Qian, Zhang [Stochastic Process. Appl. 102 (2) (2002) 265-283]. Les résultats de T. Lyons
[Rev. Mat. Iberoamericana 14 (2) (1998) 215-310] permettent de prouver rapidement que I'application d’ltd est continue pour
les topologies que nous avons introduites. Cela nous donne de nouvelles preuves du théoréme du support de Stroock—Varadha
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et de la théorie de Freidlin-Wentzell. Nous obtenons au passage une preuve simple du module de continuité pour les processu
de diffusions, obtenu précédemment par Baldi.
0 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Starting with [20], Terry Lyons developed a general theory of integration and differential equations of the form

dyr = f(y)dx;. (1)

To include the important example of stochastic differential equations.allowed to be “rough” in some sense.
Standard Hélder regularity of Brownian motion, for instance, implies fipiariation only forp > 2. Another is-
sue was to explain (deterministically) the difference between stochastic differential equations based on Stratonovich
versus It6 integration. Last but not least, motivated from examples like Fractional Brownian motion, driving signals
much rougher than Brownian motion should be included.

All this has been accomplished in a beautiful way and the reader can nowadays find the general theory exposed
in [21,23,24].

Loosely speaking, for general> 1, one needs to “enhance” the driving sigmalvith values in some Banach
spaceV, to X € V @ V®2... g v®Irl syuch that the resulting objedt satisfies certain algebrdi@and analytic
conditions. For of finite variation, this enhancement will simply consist of all the iterated integrats of

X.]S‘(,t = / dxu1®"'®quk, k=1,...,[p].

S<up<--<up<t

These are th&mooth Rough Path€onsider a time horizon 4, 1] (valid for the rest of the paper) and introduce
the p-variation metric, defined as

k/p
d(X,Y)= max [su xk _yk plk
( ) k=1.,.-.,[p]( Dp;| f-1,1 11,1,tl|

where sup, runs over all finite divisions off0, 1]. Here| - | denotes (compatible) tensor normsWif#*. Closure of
Smooth Rough Paths with respect to this metric yields the claGgofmetric Rough Pathdenoted byG 2, (V).
The solution map, also calldt® map to (1) is then a continuous map froGs2,(V) — G£2,(W), provided
f:W — L(V, W) satisfies mild regularity conditions. This is Lyons’ celebratiuversal Limit Theoremin par-
ticular, smooth approximatior’s () which converge irp-variation toX € G$2,(V) will cause the corresponding
solutionsY (n) to converge toY in p-variation. Hence, one deals with some kind of generalized Stratonovich
theory.

However the so important case gf € (2, 3), on which this paper will focus, allows for more. For the sake of
concreteness, we will s&t = R from here on. Following [24, p. 149] and also [23] the driving signal only needs

to be aMultiplicative functional of finitep-variation. By definition, this is a continuous map
(s.0) > (Xt X2) e R @ (R)®? =: T2,
where 0< s <t < 1, satisfying the algebraiChen condition
Xpu=Xsi ® X1 & Xi,=Xi, +X} X2, =X2, + X2, + X, ®X} )

tau’ t,u t,u’

1 ForalgebraicconvenienceX is often enhanced tBR @ V & Vv®2... g velLrl with scalar component constant 1.



P. Friz, N. Victoir / Ann. |. H. Poincaré — PR 41 (2005) 703-724 705

whenever <t < u, and the analytic conditiod,-var(X, 0) < co i.e.

sup Y IXp 1P M <00, k=12 €)

1,4
0<Lp<...<t;, <) |

(Often k = 1, 2 are referred to afirst resp.second leve) The class of such rough paths is denoreg(Rd).
Condition (2) is known a€hen relatiorand expresses simple additive properties whenk¥és obtained asome
iterated integral including the cases of Stratonovich resp. 1t6 Enhanced Brownian Motion. Whenever a first order
calculus underlies this integration (which is the case for Stratonovich integration), one has

1
Symnix?) = EXl ® XL 4)

Geometricp-Rough Paths satisfy this condition, but paths satisfying this condition and which satisfy the condition
dp-var(X, 0) forms a set slightly bigger tha@i$2, (V) [13]. Clearly,

{Smooth Rough Pathg G£2,(RY) C 2,(RY).

One can indeed choose in which space to work with and the Lyons theory will provide meaning, existence and
uniqueness to the purely deterministieigh differential equation

dY =V (yo + Y3)dX,

whereV = (V1, ..., V) are, in general non-commuting, vector fields with mild regularity conditions. As before,
the Itd mapX > Y is, continuous undep-variation topology. This rough differential equation indeed generalizes
ordinary and stochastic (Stratonovich and It6) differential equations. For instance, it is known (and also follows
from the results in this paper) that a.s. the Stratonovich Enhanced Brownian Motion (EBM)S2,, R4) for all

p € (2,3). ChoosingX = B the projection of the rough pathto its first level will solve the associated Stratonovich
stochastic differential equation. That is

Yo+ Yg solves dy=) Vi(y)odp'.
L

For the rest of the papep, denotes a fixed real i(2, 3). The contributions of this paper may be summarized as
follows:

(a) We look at geometrip-rough paths from a new angle. Observe that= {X € T2: (4) holdg is the free
nilpotent Lie group of step 2 [23,31], a simply connected Lie group which (i&%, 4, 0). Chen’s condition is
equivalent to the fact that, = X, is a G-valued path such thaX; , = x;l ® X; = Xs.r- We put a homogenous,
sub-additive norm oG, ®). Geometricp-rough paths are then easily seen to be the closure of “smontrdlued
paths under the-variation metric. Standard proofs for Kolmogorov’s criterion or the Garsia, Rumsey, Rodemich
inequality adapt with no changes frai?, +)-valued to(G, ®)-valued processes. With this observation, regularity
results for the EBMB, as Holder continuity and Lévy modulus of continuity, follow after simple moment estimates.
Sometimes, it will be convenient to work in the associated Lie algebra of the grolor instance, the EBM
viewed through this chart is nothing else than the well studied Gaveau diffusion [14]. Its importance in the context
of limit theorems was already highlighted in Malliavin's book, [26].

(b) We introduce a number of different topologies G2, (R?), effectively reducing this space to geometric
rough paths for which the associated norms are finite. For instance, we are able to deal with Holder and “modulus
type” norms. Exploiting fine estimates in Lyons’ Limit Theorem we have continuity of the It6 map in all these
topologies. In former applications of rough path theory to stochastic analysis result were always obtained in
variation topology, leaving open a gap between (usually well known) results in Hélder and stronger topologies.

(c) Lyons’ Universal Limit Theorem implies a Lévy modulus of continuity for diffusions, along the results by
Baldi [2].

(d) We establish convergence of several different approximations to the EBM. The EBM is usually defined as
the limit of a sequence of smooth rough paths, which is shown to be Cauchy [24]. Here, we define directly the
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EBM, and its regularity allows us to prove convergence of some sequences of smooth rough paths to the EBM. The
first idea, common to works in [22,26,17,12], is that approximations are obtained by conditioning with respect to
dyadic filtrations. After establishing uniform regularity of approximations, easily obtained by Doob’s inequality,
we can use an interpolation argument to show convergence in interesting topologies of some sequences of smoott
rough paths to the EBM.

(e) If W is the Wiener measure on the Wiener space equipped with theg d4§lder topology,e < 1/2 ,
the supportW is the closure of smooth path under #aeHdlder metric. One proof, as noticed in [28], reduces
to some convergence results of adapted linear approximatipmhich we take to be the dyadic approximation
of w time shifted of—27" (to make it adapted). Then" converges ta in the «-Hblder topology, which shows
that the support oW is contained in the closure of smooth path underdatiédlder metric. Reciprocally, given a
smooth patly, g + »w — »" converges tg, which shows the inverse inclusion, using the Cameron—Martin theorem.
We extend this proof to the “Wiener measure” on the free nilpotent group of step 2, i.e. the law of the Enhanced
Brownian motion. The main difficulty is to introduce a translation operd@toro make sense of + w — " for
group valued paths. By means of continuity of the 1td6 map, from (b), this immediately implies the support theorem
for diffusions. In the context of rough paths this improves work by Ledoux, Qian, Zhang (support theorem in
p-variation topology, [25]) and by the first cited author (Holder topology, [12]).

As for the history of the support theorem, it was originally obtained by Stroock, Varadhan [37] in sup-topology,
then by Ben Arous, Gruadinaru, Ledoux [7] and Millet, Sanz-Solé [28] in Holder norm of exponent lesg#han 1
Probably the more abstract proof of this result can be found in [1]. Extension to modulus space has been obtain in
[16] and to Orlicz—Besov space in [27]. We limit ourselves to “modulus norm”, in the spirit of [16], and we will
not recover fully the results in [16,27]. On the other hand, we have a description of the support of the Stratonovich
enhanced diffusion the goes beyond the last quoted results.

(f) Schilder’s theorem for EBM is obtained. As before, continuity of the 1td map will give the Freidlin—~Wentzell
large deviation result in the topologies mentioned in (b). Strassen’s law is obtained as corollary. Again, we improve
[25] and recover well known large deviations results in Hélder and modulus norm [5]. Once again though, we do
not deal with Orlicz—Besov metrics (see [10]).

Constants in this paper may vary from line to line.

2. Rough paths
2.1. Free nilpotent Lie group of step 2

We fix the dimensioni (4 > 2 to avoid trivialities) and we denote b§(R?) = R? @ so(d), wheresa(d) ~
R4@=D/2 is the space of real antisymmetrick d matrices. With the bracket

L1: LRY) x LRY) — LERY),
((a*, a®), b, b)) — [a,b] = (0,a' @ b* — ' ® ab),

L([R4) becomes a (step 2 nilpotent) Lie algebra. The group multiplication in the associated simply connected Lie
GroupG (R?%) = exp(£L(R?)),[31,39,41], is given by the Baker—Campbell-Hausdorff fornfula.

®:GRY) x G(RY) = G(RY),

expla) ® expb) — exp(a +b+ %[a, b]).

2 Dueto step 2 nilpotency, only the first bracket appears.
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Its neutral element is exf), and the inverse of exp) is exp(—a). We can identifyG (R¢) with the nonlinear
submanifold ofR? @ R?*¢ given by

. 1
{g = (g, g% e RY @ (RY)®%: symmetric part og? equalségl ® gl}

with usual (truncated) tensor multiplication, that is,
g®h=(g"+h* ?+ g @ht + 1.
(G(RY), ®, exp(0)) is the free nilpotent group of step 2 ovRf, [23,31]. Note thaiG (R¢) is invariant under
the dilation operatoé,, for r € R, §; being defined by
GRY) — G(RY),
exp(al, a2) — exp(tal, tzaz).
We define on the group

n

gl = inf i |ga s S)
& x1,... x"eRd IZ:; R ()

&g expixi)=¢

where|.|gs is the Euclidean norm oR?. For all g, |Ig|| is finite by Chow theorem [15,29], although it can be
seen quite directly here with the use of the Baker—Campbell-Hausdorff forin{liles. a sub-additive, symmetric
homogeneous norm [11] a&(R?), that is

() gl if and only if g = exp(0),

(i) forall g € G(R!) andr € R, 15,¢]l = Ir]lglI.
(iii) forall g,h e GRY), llg @l <llgl+ lIAll,
(iv) forall g, llgl =g "I

From this sub-additive, symmetric homogeneous norm, we construct a left invariant distaBi¢&@n(which
is a Carnot—Caratheodory distance [15,29]) by defining
dg.h)=Ih""®egl.
If | - |pagra denotes a norm oR¢ ® R?, then

”| exp(al, a2)||| = |Cll|Rd + \/ |a2|Rd®Rd

defines another homogeneous norm&iR?) (that is a norm satisfying (i) and (i), and as all homogeneous norms
are equivalent [18], one can find some positive constanis such that for alg € G(R?)

callgll < llgll < czlligll- (6)
This implies the following:

Corollary 2. For some constant,

I t®g@nll < C(lgh+Inllgl), @)
and for anyk > 2,
). (8)

k k k
d<®gia®hi) < CZ(d(gi,hi) + |d(gi, hi)
=1 =1

i=1

k

& 4

j=i+l
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Proof. If g=el,h=¢*, "1 @ g@h =" @ ¢ 1*t] hence

=@ g @l < lgl + lle ™" < llgl + /gl - Al
The inequality is then proved using inequality (6). The second inequality is a consequence of the first one. We show
it for k = 2, the general case follows in exactly the same way, by induction.
d(g1® g2, h1®hp) =h;* @ h1* ® 21 ® g2
=|lht®ht® g1 ®h @hyt ® gl
<Ihyt @ hyt ® g1 ® holl + 1hy " ® gall
< C(d(g1. h1) + Vd(g1. ho)llh2ll) +d (g2, h2). i

(G(RY), ®, exp(0)) equipped with a homogeneous norm is a simple generalizatiG®f-, 0) equipped with
anorm.

We let Co([0, 1], G(R?)) to be the space of continuous function frgf 1] to G(R?) such that their value at
time 0 is exg0). With a slight abuse, we will call such elemexitgR?)-valued paths. Ik € Co([0, 1], G(R?)) and
s < t, we will denote byx;, ; the eIement(;1 ® X;.

Remark 3. Let|.|ragre be a compatible tensor norfipvariant under matrix-transposition. Then an explicit norm
satisfying (i)—(iv) is given by

max{|al|Rd,\/

where(al, a?) € L(R?).

1
a?+ Eal ®al

RIQRE },

2.2. p-variation

Let (G, ®, ¢) be a group equipped with a homogeneous nprinHere, we think ofG being eitherR9, +, 0)
or (G(RY), ®, exp(0)). A pathx : [0, 1] — G is said to have finite-variation if

SUp ) g, lI7 < 00

O<ro<<t <) 7
Note that a path is continuous and of finit@-variation if and only if (see [24])

lxs.cI” Sw(s,t) foralls <t
for some control functiom. By definition, this means

(i) w:{(s,1),0<s <t <1} — RT is continuous near the diagonal.
(i) w is super-additive, i.e.
Vs <t<u, w(,)+olu) <o, u). 9)

(i) w(t,r)=0forallz €[0,1].

We will say in such case thathas finitep-variation controlled by». We will construct control functions in the
following way,

3 Thatis|a ® blpdgpra < lalgalblgd-
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Proposition 4.Consider a continuous map: R™ — R*, increasing, convexf (0) = 0. Then(s, t) — f(t —s) is
a control function.

Example 5. f(t — s) = ¢(r — s) for some constant > 0. This is equivalent to Ap-Ho6lder continuity for the
controlled path.

We define gp-variation distance between tw@-valued paths andy:

dp-var(x,y) = sup Zd(xti,t,-+1a Yt,,ti+1)p~
(0<ro< <ty <) i

2.3. Definition of a geometrip-rough path

We will denote by resp.r the natural injection fronG (R¢) ontoR? resp. ontso(d). If x is aG (R¥)-valued
path of finitep-variation, then clearlyz1(x) 11 — m1(X,) is aR?-valued path of finitep-variation. We will say that
x lies abovers(x). Conversely, assumeis aR?-valued path of finitep-variation. If p < 2, then

t
1
Sx):t — eXp(xt + > /(xu Qdx, —dxy ®xu)> (10)
0

is the uniqueG (R?)-valued path of finitep-variation lying abover (2(S(x)); is the Lévy area of between time
0 andz; such integrals are well defined Young integrals [42]). The path S(x), is called the signature of the
pathx.

If p e (2, 3), then there exists & (R)-valued pathx lying abovex [40], but uniqueness is not true anymore
[23,40].

Definition 6. For p € [2, 3), the set of geometrig-rough path is the closure ¢f(x), x of finite 1-variation
under thep-variation metricd ,-var. Such class is denoted lgys2, (RY).

We see in particular that ang (R?)-valued path of finiteg-variation, forg > p, is a p-rough path [13].
Once again, the set @ (R?)-valued path of finitep-variation, that we denot& $2 ,+ (RY) is strictly bigger than
GR2,[RY).

Note that ifx is a G(R?)-valued path, theis, r) — x;l ® X, is a geometric multiplicative functional, in the
sense of [23]. Reciprocally, ¥, is a multiplicative functional, ther, = yo; is a G (R?) path starting at ex@)
andy; ; = x;l ® X;. Geometric multiplicative functionals an@(R?)-valued path are the same objects. The main
theorem in rough path theory is the continuity of the 1t6 map.

2.4. The Itd map

Theorem 7.Letx € GR2,+(R?), ¢ > 0andV’ be a linear map froniR¢ into the Lif{p + ¢, R"] vector fields! There
exists a solutiory € G2+ (R") to the rough differential equation

dy, = V(ﬂl(yt)) dx;, y(l) =a, (11)
i.e. there exists an extensionofo z € G2 ,+ (R4 @ R™) such thatz projects onto
Z = (X, Y1)s

4 A function f which is (k + ¢)-Lipschitz onR?, for k € N is ak times differentiable function whoseth derivative ise-Hélder, using the
classical definition of Holder functions with parametef@l). See [23,34].
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andz satisfiesz = [ h(71(2)) dz, with
h:RY@R" — HomR?Y @ R”, R? @ RY),
(x,y) = ((dX.dY) — (@X, f(y)dY)).

If the p-variation ofx is controlled byw, then thep-variation of z (and hencey) is controlled byCw, whereC
depends om, ¢, the (p + ¢)-Lipschitz norm of’ and the supremum @ on the consider interval. Moreover, for
all s <t such thatw(s, 1) < 1,

”Zs,t”p < Kp,a,fa)(sa 1),

wherek , . y is a constant which only depends p, and the(p + ¢)-Lipschitz norm of).

If x andX are two elements ab 2 ,+ (R9) such that||x;,1 ® Xs.t|1P < ew(s, t), then the corresponding solution
of Eq.(11)zandz satisfy||z;,l ® Zs.+|1” < n(e)w(s, t) wheren is a continuous function such thaf0) =0 (i.e. the
mapx — z is continuous, and hence the I1td map- y is continuouk

Proof. A simple translation of the first and second level estimates in [23] or [24] to our fjedror || - ||. O

A simple corollary of it, observed in [12], is the continuity of the 1t map in “Holder type” norm. The same
simple argument gives the continuity of the It6 map in “modulus topologies”. First, we let

2, ={¢:10,1] > R", with ¢(0) = 0 andy?” is strictly increasing and convéx

Such set is obviously not empty,— /7 being one example of an element Bf,. Let us look at some more
complicated one.

Example 8.Leta > 0. Then, the functiom — (x(—Inx)%)?/2 s strictly increasing and convex in a heighborhood
of 0 (it can be checked by differentiating it twice). Lgt , = inf~o W < 0. Then define

Jx(—=Inx)e if x € [0, Xa,pl,

Ga,p(x) = p -
“r (62 pOtap) + @8 ) Kap) 6 = Xap))Y? i x € [xap. 1.
In other words¢{,’,p(x) is the smallest convex function dominatitg— In x)?)?/2. Remark that for > 1,

jim 2220 _ g
x—0 ¢a,p(x)

For a functiony € &=, we define a distance between twaoRY)-valued paths andx

1 oo
g [1Xs.7 & X1l
dw(x’ X) = sup s, 275,00
o<s<i<l P —s)

For a singleG (R?)-valued pathx, we let

(1.2l
IXllp, = sup .
0<s<t<1 9t —5)

We also letdos (X, X) = SURyc < <1 151 ® K[| aNd[[X[loo = SURcy ;<1 X5 .
Itis straightforward to check thal, andd.. are distances on the spaCe(G (RY)).
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Corollary 9. Letx,X € G§2+ (R9), ¢ > 0 andV be a linear map fronR? into the Lidp + ¢, R"] vector fields,

andz,z e GSZI,+(IR<" @ R") the corresponding solution of E¢L1). There exists a continuous functidisatisfying
§(0) =0, such that

dy(X,X) S € = dy(Z,2) <5(e).
Remark 10. The requirement thap € =, to defined, is only for convenience (so that, ) — ¢”(t —s) is a

control). Indeed, ifp is another increasing function such thais equivalent top at 0, then the topologies on
G (R%)-valued paths space induced dyandd; are identical.

2.5. The translation operator on rough path space

We define the translation operator, first introduced in a more general situation in [23].Heeteal such that
1/g+1/p > 1.
The following definition is motivated by replacingby x + f in (10).

Definition 11. Let x € G£2,+ (RY) and f be aR¢-valued path of finite;-variation. We letr, = 71(x;). Then we
defineT(x) by

m1(T700), , = fra +
and

t t
1 1
T[Z(Tf(X)SJ) = nZ(Xs,t) + EﬂZ(/ fs,u ®dfu> + E / fs,u ®dxu
K K
1

t t

1
+§(/xs,Lt®dfu_/dfu ®xs,u_/dxu®fs,u>v

N N N

where the integrals are well defined Young integrals.
Remark that it is easily checked th&g(x), , = T (x)aj ® Tr(X)o,-

Theorem 12.Letx be aG (R?)-valued path of finitep-variation controlled bys”w (s, t), and f be aR?-valued
path of finiteg-variation controlled byx (s, r). Assume moreover thai(s, 1)¥7 < Cw (s, t)/7. Then for alls < ¢
ande < 1,

d(Tr(X)g.0, S(Fls) < Ciew(s, )MP.

Proof. For alls < ¢, we have

1 1
1 1 1
S(f)s_,;L ® Tf(X)x,t = exp<xs,t - E[fs,lv Xt ]+ 772(Xs,t)> ® eXp(E / Sfsu @dx, + E /xs,u ® dfu)

t t
1 1
®exp(_§/dfs,u R xy — E/dxs,u ®fu>-

s s

Hence, by inequality (6) and Young inequality [42] (which says that far allf, | [ f;., ® dx,| < Cex(s, )}9 x
w(s, 1)Y/P and similar inequalities for the other Young integrals), we get that

IS @ Ty | < ew¥/P (s, 1)+ e2w?/P (s, 1) + Cex(s, )Y 9w (s, NP < Cfew(s, Y. 0




712 P. Friz, N. Victoir / Ann. |. H. Poincaré — PR 41 (2005) 703-724

3. The enhanced Brownian motion

In what follows we will lift Brownian motion agR?, +)-valued to a(G(R%), ®)-valued process. Early work
by Gaveau [14] and in particular the presentation in [26] use related algebraic ideas. See also [30].

3.1. Two classical properties of the Brownian motion
Let (Co(RY), F, (F1);, P) be the Wiener space. The evaluation operatds then unde a Brownian motion

starting at 0.
Applying Garsia, Rodemich and Rumsey inequality, it is not too difficult to see [36,38] that fokall

||B€t||\[/

whereF is a L1-random variable and a constant- 0, sufficiently small.
We denote byw1-2 the Cameron—Martin space

Iog(l +

t
{h:[O, 1] — R4, h(t):/h/(t)dt with 2’ e L([0, 1])}.
0

Cameron—Martin theorem, e.g. [19,32], states thatd W12 is (F,);-adapted, then the law 0B/)o<:<1 (i.e. the
Wiener probabilityl?) and the law of B; + f(¢))o:<1 (that we will denotéP/) are equivalent.

We will now extendB to a G(R¢)-valued path of finitep-variation, for all p > 2 (and hence a geometric
p-rough path), and show that our “enhanced” Brownian motion has a similar modulus of continuity and extend
Cameron—Martin theorem to our enhanced Brownian motion.

3.2. Their extensions to the enhanced Brownian motion

3.2.1. Definition of the enhanced Brownian motion
The enhanced Brownian motion was first defined in [33]. See also [24].
Forn e N andx aR?-valued path, we denote hy the path which agrees withat the point%, k=0,...,2",

and which is linear in the intervals;;, "il k=0,...,2" — 1. Asx" has finite 1-variation, we can definé =

S(x™), that is the naturat; (R¢)-valued path lying above”.
We denote by™ the almost surely defined map

B — (t — lim S(B”)t),
n—00

and we let(B;)o<, <1 be theG (R%)-valued path”(B). Note that [24]

t
1
B; =as exp(Bt + > /(Bu ® odB,, —odB, ® Bu)),
s

where we have used Stratonovich integration. We will /), >0 the enhanced Brownian motion.
Remark 13. Almost surely,I" o 71(B) =B andn1 0 I'(B) =

Remark 14. The inverse of exp, denoted by log, provides a global charGigk?). Gaveau’s diffusion, [26], is
exactly our EBM seen through this chart.
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3.2.2. Modulus of continuity for the enhanced Brownian motion

We now cite Garsia, Rodemich and Rumsey inequality, but with the fungtitrelow beingG (R¢)-valued
(while usually, f takes values in a normed vector space). Using the propétig¢son G(R?), the proofs of the
following theorem is the same proof than the classical Garsia, Rodemich and Rumsey theorem.

Theorem 15.Let ¥ and p be continuous strictly increasing functions ¢ co) with p(0) = ¥ (0) = 0 and
¥ (x) — oo asx — oo. Given f € Co([0, 1], G(RY)), if

1
/f ( (5)_ ®f(t)>dsdt§F, (12)
p(t —sl)

thenforO<s < <1,
t—s
4F
lfreo e fo) <8 / wl(;) dp(u).
0

Applying the Garsia, Rodemich and Rumsey inequality, we obtain a modulus of continuity for the enhanced
Brownian motion

Theorem 16.Define

1 [ [log(d+ 1/u?)
¢(x) = 2‘/50/ » du

Then there exists a random variabte> 1 a.s. and inL1, and a constan€ > 0 such that for alls < ¢,

B,,| < CzV (t;s) 13
1B, |l e NG (13)

Proof. As in the proof of Lévy's modulus of continuity in [36,38] we use the Garsia, Rodemich and Rumsey
inequality with £ (r) = B, p(x) = /x and¥ (x) = exp(ax?) — 1. We obtain

r—s
log(1 + 4£)
1Byl <Cf\/—“2du,
u
0
Iaw

whereF is the (now random) left-hand side of (12). Sin@& ;|| =
by
E(exp(a|Bo.1/?)). (14)

We claim that this last expression is finite for a small enough 0. Remark thatr1(B), resp.72(B) are some
elements of the first (resp. second) Wiener—Ité Chaos. By general integrability properties of the Wiener—It6 chaos
[32, p. 207], there exist& > 0

J/t —s||Bo, 1]l the expectation of" is estimated

E(exp(@|m1(Bo.1)|34)) < oo,
Q.

]E(exp(&|n2(Bo,1)|Rd®Rd)) <
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By inequality (6), the finiteness of the expectation of @fBo 1]|°) is easily obtair. It remains just to define
Z =max4F, 1} (we wantZ > 1 for technical convenience later on), and do a change of variable to obtain inequal-

ity (13). O

Remark 17.As ¢(x) ~y—0C+~/—xInx,

Bsll

lim  sup <C. (15)
§=00gs<r<1v/—61In8
|[t—s5|<$8

On the other hand we can trivially get a deterministic lower bound by no#ing s < ||B.; || and using Lévy's re-
sult. All this is known (with an equality) for hypoelliptic diffusions on Nilpotent group in [2] and elliptic diffusions
in [3].

Lemma 18.There exists a constant such that for allx, y € [0, 1],

C(xy) < CL(x)E(y).

Proof. Fora small enough, there exists constafitsand K> such that ifx € (0, a]
Kiv—xInx <¢(x) < Kov/—xInx.

Hence, from the inequalityx, y € (0, a], — In(xy) < _2'”“ In(x) In(y), we obtain that for alk, y € [0, a], ¢ (xy) <
C¢(x)¢(y) for a constant.
For a fixedb, it is easily seen that & inf,c 1/5)

2
C(Xy)zg“(axzy)é sup fefa )E(ax y)
a 2€(0,a2) ¢(2)

b b :
LB < sUpco,1m S < oo. Hence, ifx, y € [0, 1],

2
<C sup £(z/a®)
2€(0,a?) $(2)
t(z/a?)
<O ROD O ). o
(inf §(Za))2 ’
z€(0,1/a) @)

¢(ay)t(ay)

Proposition 19.
IBs, eIl < Mi(t— ), (16)

whereM is a random variable for which there exists a constant 0 such thatE (exp(A M2)) < .

Proof. From the previous lemma, we can set

M=cCzY% ( ch /In 1+

Hence, by Jensen inequality,

5 One could prove this directly as we know the densitygf; [22].
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1 1
) Z 7\ 4C?
exp{ 41C<In 1+ dv | <E 1+— dv
v

0 0

! 4;\c2

E(/( > ) < 00

0

for A small enough. O

E(exp(aM?)) < E(

The last estimate looks like a control bt is not convex on the entire intervid, 1]. We definep,, to be pth-

root of the smallest convex function dominating> ¢ (x)” (remark thatp, is very similar tog , of Example 8,

as _fi"l)nx —.501).

Corollary 20. The p-variation of B is controlled by(s, ) — C"Z”/4¢§,’(%) and also by(s, t) — MP¢b (t — ).

3.2.3. A Cameron—Martin theorem on the group

This section, despite being short and quite trivial, will be crucial in the proof of the support theorem. For
f € WL2 the translation oB by f is T¢(B), and it is well defined ag’ has finite 1-variation an8 has almost
surely finite p-variation, 2< p < 3.

Theorem 21.Let f € W12 be an(F,)-adapted path. Then the law Bfis equivalent to the law df ¢ (B).

Proof. By the Def|n|t|on 11 and properties of Young and Stratonovich inted@ialB) = I' (f + B). Hence, the
law of B is P o I"~1 while the law ofT¢(B) is P/ o ', Hence, by the Cameron—Martin theorem, these two laws
are equivalent. O

4. Modulus of continuity for solution of SDEs

Theorem 22.Let y, be the solution of the Stratonovich differential equation

dy, = fo(y)dt + f(y;) odBy,
where f is (1 + ¢)-Lipschitz andf is (2 + ¢)-Lipschitz. Forh € W12, we denote by (k) the solution of the
ordinary differential equatiot

dF(h); = fo(F(h),)dt + f(F(h),)dh;.

We also denote blf the extension of the 1td map to the set ofG (R?)-valued path of finitep-variation. There
exists a constant such that

= IF@B)yll z||
im  sup
h—>00<s<t<1 /=8Iné

lr—s|<8
In particular,

im  sup mgc a.s.

h—>00<s<i<1 v/—8Iné
[t—s5|<$

6 Forh e w2 but not piecewise ! this ODE still makes sense as rough differential equation with driving signal of finitel variation,
see [21].
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Proof. Assume first thalfp = 0. By Theorem 7 and Corollary 20, fer< ¢ such thaCPZP/4¢§’("\/—%) <1,

t—s
IFB),.|| < Ks,vczl/“qsp(ﬁ),
and we obtain our theorem by remarking once againghat) ~_.o +/—x In(x). The second inequality is obvious
from the fact thatry (F(B), ;) = y: — ys.
For the general case, one just need to congidd;) as a path of mixedl, p)-variation and use the continuity
of F, as proved in [22]. O

There is a good hope that thanks to forthcoming paper of A.M. Davie, one will be able to consider the optimal
case wherg is 1-Lipschitz andf is 2-Lipschitz. One should also be able to extend the rough path theory so that
these functions could depend continuously on time. This is out of the scope of this paper.

5. On the support theorem

We are going to show a support theorem for the enhanced Brownian motion. Using the continuity of the 1td6 map,
we will recover the classical support theorem (and even more). First, we need to look carefully at the convergence of
piecewise linear approximation of our Brownian motion to the enhanced Brownian motion, in various topologies.

5.1. Convergence of some smooth paths to the enhanced Brownian motion

Proposition 23.Lety, ¢, € &, such thatim,_.g ";”(—gf)) = 0. Letx, y be twoG (R?)-valued paths. Then, for ali

big enough, withA in any case greater thaa,, (X, ),

-1 1/p
dy(X,y) < A<—¢§l <7A )) .

¢p(x) _
plx) — 0.

Remark that the functions = ¢, ,, a > 1 of example 8 satisfy the condition lim o

Proof. Firstnote thatag € &, lim,_ o ¢(x) = +o0, hencep~! is an increasing concave function frat onto
R*. Idem for¢,. With our assumption, one can sgé} is increasing and bounded by 1 on a neighborh@od)
p

of 0. Let us choose 4 > Co.9,dp,(X,Y), WhereCM)p is a constant greater than 1 such tﬁw < 7. Then,
forall s <,

1 ||x;,1®ys,t||)_¢_-l Xt ® Y - ||x;,,1®ys,t||>
v A Tt A P A
-1
o7t (doo Y\, 1 s, %)
< (S (BR2))orr (o)

p

-1
0L (dsx,y)
s (qs;l( A >>(t_s)‘

-1 . . d, ,
So far, we have used the fact tlﬁéﬁi and¢,* are increasing, and tha&# <1.Foralls <t,
14

154 ® Vi ((¢—1<dw<x, y))) ) (w—l(doo(x, y>>>l/f’
—_— <¢ A\ T (t—S) < —a\ T ‘P(t_s),
A AN i\ A
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) —1
asy” is convex andﬁ(%) < 1. Hence,
p

-1 doo , 1/p
d(p(X, y) < A(%<ﬂ>> . O

P A
Corollary 24. Lety € &), such thatim,_, ¢ % =limy_o¥ ;fx')”x =0. Letx, be a sequence @ (RY)-valued

paths, which converges pointwise to anotligiR?)-valued pathx. Assume thasup, [Xnllg, < co. Thenx, con-
verges tax in the topology induced hy,,.

Proof. First notice that by Arzela—Ascoli theorem,

7 . -1
doo(Xn, X) 1= SUP ”XnJ ® X |l > n—00 0.
te[0,1]

But inequality (7) gives

oo (%, X) < oo (X, X) < C(doo X, X) + 1/ doo s ) X100 ) (17)

hencedo, (X, X) =100 0. Using Proposition 23 and its notations, we see dhéx,,, X) is bounded by

-1 1/p
4 doo (X, X)
26, sl (= (2 s,
n ¢p (ﬂ"ﬁp pl n ¢p

which goes to 0 when tends to infinity. O

This corollary is going to allow us to prove that various approximations of enhanced Brownian motion converge
in the topology induced by,,, wherep € =, is such that, (x) = o(¢(x)) asx — 0. To obtain an accurate uniform
control of |B" |, , we first need the following result, in the spirit of Doob’s martingale inequality.

Lemma 25.Let X a random variable such thak(exprX2) < oo, and G, a sequence of-algebras. Define
X, =E(X/Gy). Then

E(supeprX,%) <.
n
Proof. Using Fubini and Doob’d.” inequality, we obtain

E(supexp/\X2> =1+ i )L—kE(supXZk)
n AR T W

Sk 2k \NE
<1 (2 ) Ex
2 k!<2k—1> X
k=1
<2¢E(exprX?). O

Proposition 26.r — B, and+ — B} are almost surely of finitg-variation uniformly controlled bys, ) —
K”¢{,’ (t — 5), wherek is a random variable such that for small enoughf (exp(A K ?)) < oo.

Proof. B is controlled inp-variation byCPMl’qSI’;(t — 5), where, fora small enoughE (exp(AM?)) < co. By
inequality (6), we see that for all< ¢

M
IBy.rll < = (r ).
c1



718 P. Friz, N. Victoir / Ann. |. H. Poincaré — PR 41 (2005) 703-724

Now defineg, theo-algebra generated by the random variahﬂ%s. Then, loB{ , = E(logB; ;/G,) [26]. Hence,

1B, I = Il expE(ogBy.. /Gl
= [E(m1(Bs.)/Gn) |+ |E(72(Bs.0)/Gn) | g

< VE(r1Bo) 2 /Gn) +E(72Bs)| gz /Gn)

< CVE(IIBs.2/Gn)

C

St — ) JE(M2
<Cl¢p(t $)y E(M</Gp).

Define K2 = sup, E(M?/G,). For alln ands <1, ||B!, || < Cc—qup(t — 5). By the previous lemma, fax small
enoughE (exp(AK 2)) < oc. A last use of (6) gives us the propositionz

As a consequence of Proposition 26 and Corollary 24, we obtain the following corollaries.

Corollary 27. Lety € 5, such thalim,_,¢ 7V_(p"()':‘)(") =0. Then,B" converges almost surely Bin the topology
induced byd,,.

Corollary 28. Lety € &, such thatim,_.o 7“;()'6”)()‘) =0. We defineB™ to be the(F;)-adapted path such that

[2"1]
B[(n) — B[Z"_t] + <[ _ 2n B[ZZ’# — Blznz,’%_lvo .

Then,B™ = S(B™) converges almost surely ®in the topology induced hy,.

Proof. We have seen in Proposition 26 that, almost surely, $B8f |y, < oo a.s. Observe th&®&™ is essentially
B" shifted bye = 1/2". More precisely,

1B = 1B,y 0. r—epnoll < SUPIIB" I, &p(r — 5).
n

By Corollary 24 it suffices to show that, almost suré{’ — B, for fixed . But this simply follows from

1B/ ' @B | <IB; ' @B +[ B ®B_, .0 O
—————
—0 <C¢p ()0 with n—oo.

In particular, we recover the convergence in thi@-Hdélder distance (and hence in thevariation topology) of
B" andB™ to B.

5.2. Some more convergence results

Lemma 29.Lety € &, such thatim,_,q —V_(;‘)'C”)(x) =0and f € W12 be an(F,)-adapted path. TheR-almost
surely,T;_ ) (B) converges in the topology induced dyto S(f).

Proof. Note first thatf — B®™ e W12 ¢ wl1, which is precisely the set of path of bounded variation, hence
T;_pw (B) is well defined. Assume that we have shown thaj ., (B) converges to ex@) in the topology induced
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by d,, i.e. that there exists a sequengg which converges almost surely to €®p, and such that! ¢?(r — s)
controls thep-variation of7_ . (B). Then, as

t 1 1
/If;ldu<«/_t—s flﬁ:lzdu<c /If;lzdugo(t—s),
) 0 0

we obtain from theorem 12 and the equalﬁy_3<n>(B) = T¢[T_pw(B)] that de(T_pw (B), S(f)) < C{/en.
Hence, we can assume that= 0.
Note that

t

T_ g (B)s, = exp(Bs,u - B + f [Bs.u — B"), 0d (B, — B{™ ]).

N

Conditioning partially, i.e. only with respect to the values of ttlecomponent of the Brownian motion at some
fixed time, we obtain, similarly as in the previous section (and as in [12]), that, almost sturgly,(B) converges
pointwise to exg0), and that for alk,

1T g By | <K'yt —5).

whereK’ is a random variable such that forsmall enoughE (expiK’?) < co. The proof is then finished using
Corollary 24. O

5.3. Support theorem with refined norms

As observed in [12] we can combine the rough path approach of [25] with ideas from [28] and get an improved
support theorem as a corollary.

Theorem 30.The support of the law @ is the closure o (W) in the topology induced by,, wherey € &,
is such thatim,_.o 7V‘(p"()':‘)(") =0.

Proof. Corollary 28 implies classically that the support of the lawBak contained in the closure ¢fW1?) in
the d, topology. Reciprocally, our Cameron—Martin Theorem 21 implies it is enough to show that for a function
x e wb? T,_pm (B) converges in the, topology toS(x). But this was proven in Lemma 29.0

Remark 31. As noted in [16], the previous theorem would not work in the topology inducedghy Indeed,
{x € Co([0, 1], G(RY)), [Xllg, < oo} is not separable (but the set of continuakigR?)-valued pathx such that

Xl (i
W’) =0 is separable).

[Xllg, < oo and such that ligL, o sup,_ <5

As in Section 4, we lep, be the solution of the Stratonovich differential equation

dy; = fo(y)dt + f(y) odBy,

where fp is (1 + ¢)-Lipschitz andf is (2 + ¢)-Lipschitz. Forh € W12, we denote byF (k) the solution of the
ordinary differential equation

dF () = fo(F () dt + f (F(h),) dh. (18)

We also denote b the extension of the 1t6 map to the space of; (R?)-valued path of finitgp-variation. From
the continuity ofF in thed,, topology (Corollary 9), we instantaneously obtain the following:
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Corollary 32. The support of the law af'(y) (the Stratonovich extension efto a p- rough path is the closure of
F(S(W12)) in the topology induced by,, wherep € &), is such thatim,_,¢ "()'(’;(x =

Projecting on the first level, we improve Stroock—Varadhan’s result [37], its extension to Hoélder norm [28,6,
7,35] as well as the-variation result [25]. Our approach allows us to use more refined topologies than the one
induced by Holder distances. L&t , be the distance defined by the following formula:

|YS,I - xs,t|]Rd
diy(x,y)= sup —————
o<s<i<l P —s)

Corollary 33. The support of the law of is the closure of"(W'2) in the topology induced by, wherep € 5,

is such thatim,_.o 7“?5?!3@ —0.

6. Large deviations results
6.1. Some preliminary results
Forn € N, we define the mafy;, : Co([0, 11, G(R%)) — Co([0, 1], G(R?)) whereT;,(x) is defined by:

0] VkE{O,...,Z"},Tn(X)ZLn =X21\7;l,
(i) Vke{0,...,2"}andvr € [0,27"], Y;l(X)ZthZkT'H :8t2’l(X2Ln,k2%1)-

7, (X) is a piecewise linear approximationxfo which we assign a non-canonical area!

Lemma34.Forall n e N,
[ 70014, < Clixllg,.

Proof. One can show, with similar techniques than in Lemma 18, that far, alle (0, 1],

dplay) = Cad,(y). (19)
Whenever Xs <t <2™, 7, (X)zin+s,2in+t is equal to

exp(2" (t = $)ma(x g 1) + 22 (1% — sz)nz(xzx%’%)).
Hence, by inequality (6),

17000 5 45 el S Clxg a2 = 5) + 2720 =5) < Clix g, gal|2/2V1 = (20)

Hence, fors <s <t < 52,

dp(27")
dpt—s)
S andy =27".

17050 | < Clixlg, ¢p(t = $)F— <C||X||¢p¢p(t 8)s

applying mequallty (19) withe = 5=
For generab < 4 < 4 <1, as
T (X5 =T (X) % ® Tu(X) ke ®Tn(x)2Ln)t
=10 (X % ®Xj’k ®Tn(X)2Ln,,, (21)
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k k
700l < €, (0 =5) + 00 (52 ) + 00 (1= 35 ) ) <Ml =00

Lemma 35.Forall n € N,
doo (X, 13 (X))
——= < C,/9p(27").
I1Xllg, b

Proof. Fors < ZL < zi <t, using Eq. (21), we see that the distance betwegrand?;, (x); ; is equal to

(T(x)’ ®X ,k®T(X)kt, ’,®x, ®th).

on > 2n

We then use mequallty (8):

d(xs,f,n(x)s,,)<d(n(x>s,%, ogp) A0 L xa )+ Jd(Ta00, X )X

Then we simply boundi(7, (x) S X L) by 17,0, 4 I + ||x || Clixllg,¢p(27"), and similarly for
v ‘72}'! ‘72"
e (X)Zin, iy .)- Hence,

d(Xs,1, Vi (X)s.,1) . —
W SCPp2") +C\/dp(27M)¢p(D). O

Corollary 36. For all n € N,
w—l 1/p
dy (X, 1,(0) < C||x||¢,,( sup j<x>> :
0<x<C/ /(277
In particular, if [x[lg, < 00, dy (X, T, (X)) converges t® whenn tends to infinity.
Proof. We apply Proposition 23, withh = C||X||y, = dy, (Tx(X), X). It gives

doo(X, T, (x))))””
d,(X, T, C _— .
(% 100) < |Ix||¢,,(¢ < Ciixl,

The result is then given by Lemma 350

Remark 37. A feature of this approximation is that it does not rely on dyadic (or nested) approximations which
are fundamental for our earlier martingale approach. Indeed, thea@pearing on the right-hand side of above
estimate is readily replaced by the mesh of any dissection upon Whigh is constructed. Introducing the right
area in our approximation improves its convergence properties.

6.2. Schilder and Freidlin—Wentzell theorem with refined norms

We extend Schilder theorem [8,9,4] to the enhanced Brownian motion in our refined topology. First, we need
the following lemma

Lemma 38.Letg € &), such thalim,_,q % =0. The maps

7,2 (Co([0, 11, G(RY)), dwo) — (Co([0, 11, G(RY)), d, )

are continuous.
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Proof. The mapY;, from (Co([O, 1], G(Rd)) dso) into itself is clearly continuous as easily seen using (8) as before.
Letx € Co([0, 1], G(R?)) ands < f <4<,

Hnmw<wmkﬂ+w%g+wm%ﬂ

2 [d 2] _k . k7
SClxa g 1295 o = s + Clixica £ 1251 = = +1;2Y IIXZLn,szII o " o
c "/2||x|| Ji—s.

we also have

<
Whenzf—;, <s<rgd 2n ,
|7 005 | < Clixg a2/ =,
as already notice in Eq. (20). Hence,

s
s<t  Afl—S
The proof is then finished applying a slight modification (replagpdy . /) of Proposition 23. O

< CulliXlloo-

Theorem 39.Lety € &, such thatim,_.o V"“)'Cr;(x = 0. The random variables,B satisfies a large deviation
principle in the topology induced hy, with good rate function

[(x) = { %fol Ix/|>du, if S(x) = x for somex € W12,
400 otherwise.

Proof. The large deviation result in [25] tells us thiaB satisfies a large deviation principle with good rate func-
tion I using the topology induced hy.,. By Lemma 38, if we prove that;, (5.B) is an exponentially good
approximation of.B, i.e.

lim Tim e2logP(dy (7, (5:B), 8:B) > §) = —oc0 (22)

n—00g—0

and that for alkr,
lim  sup dy(7,(X),x) = (23)

N=>0y 1(x)<a

we will have shown our theorem, by applying Theorem 4.2.23 in [9].
Let us first prove Eq. (23). First observe that/ifx) < «, letting x € W2 be such thafS(x) = x, we have,
by definition of our homogeneous norm and by Cauchy—Schwxtz,|| < f; lx, | du < 23/t —s1(X). Hence,

IXllg, < 2SUR<, <1 ¢—:é:i,)[: C/a and hence by Corollary 36,

sup  dy (7 (%),X) < Cﬁ( sup (p—j(x)>l/p — 00 0.
X TS« 0<x<C /9,27
To obtain inequality (22), we just need to apply Corollary 36 to the enhanced Brownian motion. Indeed, letting
on = C(SURye <o /T ZTj(x))l/l’, we see that
P(dy(8: 7 (B), 8,B) > 3) =IP’<d¢(T,,(B), B) > g) < P<C||B||¢pan > g) < IE”(M > %)
whereM is the random variable in Proposition 19. As

8 ) 5 \?
) < E(exp(M ))exp(—k( ) )
£ o, 8

(&7

]P’(M >
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5\2 2
![)noe logP(dy (3: 7 (B), 8:B) > §) < linog log E (exp(AM?)) — A 2 ) s by ,
which gives inequality (22), since, is a deterministic converging to 0.0

By the continuity of the It6 map in the topology induceddjy, we obtain the following extension of Freidlin—
Wentzell theorem [8,9,5].

Corollary 40. Lety € &), such thatim,_,g 7V:0"()':‘)(” = 0. Lety; be the solution of the Stratonovich differential
equation
dyf = fo(y))dt +ef (y{) odBy,

where fy is (14 «)-Lipschitz andf is (2+«)-Lipschitz,0 < « < 1. The Stratonovich extensionygfto a geometric
rough path, i.el" (y;/) = F(8,B) (F has been defined in E(L8)) satisfies a large deviation principle in the topology
induced byd,, with good rate function

J09 = inf 1.

Remark that if we only consider the first level of our patfiswe obtain the classical Freidlin—Wentzell theorem
in the topology induced by .

6.3. Strassen law
A classical corollary of Schilder is the law of the iterated logarithm [8,9,25]:

Corollary 41. LetK = {x = S(x), x € W}2 and fol |x/|2du < 1} and
Etn = 6(2;1 log Iogn)*l/ZBnt-

Then, ifp € &, is such thatim,_, ¢ —V_wx()'c")(x) =0,

lim d, (", K)=0,
n—0o0

and the set of limit points of ifp([0, 1], G (R¥)) with the topology induced hy, is equal toK .
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