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Abstract

This paper is concerned with the numerical approximation of the expected®B&i(%;)), whereg is a suitable test function
and X is the solution of a stochastic differential equation driven by a Lévy proEeddore precisely we consider an Euler
scheme or an “approximate” Euler scheme with stepsjze @iving rise to a simulable variablg!*, and we study the error
8n(8) =E(g(X") — E(g(X))).

For a genuine Euler scheme we typically get thal) is of order I/n, and we even have an expansion of this error in suc-
cessive powers of/k, and the assumptions are some integrability condition on the driving process and appropriate smoothness
of the coefficient of the equation and of the test functgon

For an approximate Euler scheme, that is we replace the non-simulable incremgritg afsimulable variable close enough
to the desired increment, the order of magnitudes,afg) is the supremum of AN and a kind of “distance” between the
increments ol and the actually simulated variable. In this situation, a second order expansion is also available.

0 2005 Elsevier SAS. All rights reserved.

Résumé
Cet article est consacré a I'approximation numérique de I'espéfdageX;)), ou g est une fonction test convenableXet
est la solution d'une équation différentielle stochastique dirigée par un processus dé. [RBug précisément, on considére un
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schéma d’Euler ou un schéma d’Euler « approximatif» de pasdroduisant une variablg} simulable, et on étudie I'erreur
3n(g) = E(g(X;)) — E(g(X)).

Pour le schéma d’Euler classique on obtient typiquemensgue est d’ordre ¥n, et on exhibe un développement de cette
erreur en puissances successives gde; les hypothéses sont d’une part une régularité suffisante de la fonction ¢estes
coefficients de I'équation différentielle, d’autre part I'existence de momemnts appropriés pour le processus directeur.

Pour le schéma d’Euler approximatif, on remplace les accroissemerits efe général non simulables, par des variables
simulables assez proches de ces accroissements. L'ordre de granéely)dkevient ainsi le maximum de/& et d’'une sorte
de «distance » entre les accroissement¥ @t les variables effectivement simulées. Dans ce cadre, nous donnons également
un développement a I'ordre 2.

0 2005 Elsevier SAS. All rights reserved.
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1. Introduction

1) Approximating Markov process expectationsn applications of Markov processes, itis frequently necessary to
computeE(g(X,)), whereX is the process modelling the system of interest. While this expectation can sometimes
be obtained by direct numerical computation, for example, by applying numerical schemes for partial differential
equations, Monte Carlo methods may provide the only effective approach. In the simplest Monte Carlo approach,
the desired expectation is approximated as

1<
E(s(X0)~ 4 D _g(XD,
i=1

where the)A(f are simulated, independent copiesXpf In practice, it may not be possible to simulate draws from
the distribution ofX,; exactly, so the Monte Carlo approximation may introduce a bias

Ag =Eg(X,) — Eg(X,),

whereX is a simulatable approximation af. We are interested in developing methods for estimating this bias for
a large class of Markov processes and corresponding approximations.

The simulated process used in the Monte Carlo approximation will typically be a discrete time Markov chain in
which the discrete time-step is identified with a small interval on the real-time axis. To simplify notation, we take
the length of this interval to be/k for some integer and assume that= 1. We will denote the approximating
process byX" to emphasize the dependence on the time-step in the simulation. We also note that the bias will
depend on the initial state, particularly if g is unbounded, so we want to estimate the bias

Ang(x) =Eg(X]) —Eg(X1) (1.1)

as a function ofc andn.
Let (P;);>0 denote the transition semigroup for the procEssind alsa( P}"); >0 be defined as

h(x) =E[h(X",,)|X§=x]

P'=Pl,,. where, forjaninteger P! j/n

j/n

([nt] is the integer part of the number). Then we can write the bias as
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n
Ang(x)=Plg(x) — P1g(x) = Z Py 1y (P1y, — Pryn) Pj—1)/ng(x)
j=1
1
= / Pffn,,(s)fl/nEnPnn(S)g(x) ds, (1.2
0
wheren,, (s) = [ns]/n and

E"h(x) =n(Q7,, — Pyn)h(x).

If X" is a good approximation of, then the operatoP/ is “close” to the operatoP;. Hence the identity (1.2)
suggests that the rate of convergence\gg (x) to 0 is governed by the rate at which the error operatbigoes
to 0. More precisely, one might expect to obtain estimates of the form

|E"h(x)| < enp ()1 E,

for some sequencs, — 0 and functionp > 0 and fork in some collection of function®g with || - | a norm

on Dg. If further P, mapsDg into itself (a requirement which, for diffusion processes, is sometimes implied by
regularity results for partial differential equations but, as we shall show, can also be obtained by direct probabilistic
calculations), then we may expect a bound of the form

1

|Ang@)] < én f P PPy gl ds.

0
This analysis suggests the possibility of an exact asymptotic limit of the form
1
Ir'De(x) = lim_ e A, g(x) = / P1_4E Pyg(x)ds,
0

where

Eh(x) = lim &, E"h(x),

n—o0

for h € Dg. One can also consider the rate of convergence in this limit or attempt to derive higher order expansions.

2) Euler approximations for solutions of stochastic differential equation&e develop the desired estimates for
solutions of a stochastic differential equation

t
Xy =x+ f f(Xs-)dY; (1.3)
0

driven by a Lévy procesg. The proces is d-dimensional, whileY is d’-dimensional, sof takes its values in
RY @ RY, and we systematically use (column) vector and matrix notation. The initial value is somexgivf.
The precise assumptions are stated later.

The procesx” will be given by an Euler approximation with stepsizé:ldefined recursively at timggn by

XSZX, X?i_,_l)/nzX?/n+f(x?/n)(y(i+1)/n - i/n)v (14)

or since the true increment, 1),, — Y1/, may be difficult to simulate, in practice, we may substitute the i.i.d.
random variableg" which are close enough to the true increments, and are exactly simulatable. That is, instead of
thegenuine Euler schengiven by (1.4), we consider thapproximate Euler schemstill denoted byX", given by

0=4x, Xsnym =Xim + F (X080 (1.5)
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In this approximation, we have two sources of error, the discretization error and the error due to the approximation
of the increment. The latter error does not have a natural generic characterization, so we will simply assume that
we have estimates for

8u(h) =E(h(¢])) — E(h(Y1n)) (1.6)
of the form
Kuy,
16,(0)| = [E(h(¢])) — E(h(Y1/n))| < ;‘ s

for 1 in a sufficiently large spac®g with an appropriate norm and a sequengegoing to 0. For higher order
results, we need an expansionsgth) around 0.

The spaceDr will be of the formCk (R?) for some integek > 0 and some functionr > 1, whereCk (R9) is
the space of-times continuously differentiable functions &{ with norm

I llak = inf{a > 0: [V A(x)| < aa(x) fori=0,... k}.
For all p > 0 we introduce the function

1 Pof 0,
ap<x>={ +il® e 1.7)
1 if p=0,

and we writeC% (R?) and||x |, « instead ofo,jp ®RY) and |||, k-
3) The basic problems. We are interested in results of the following types:

(A) An estimate of the bias: for example, ffis in Cé(Rd) andY; has finite moments up to order 8 and

Ku,
n
for some constank and some sequence,,) of positive numbers, then we have

heCiRY) = [8.(h)] <

lAllo,a (1.8)

1
geCJRH = |An(®)]< K/(un v ;) lgllo.a (1.9)

for another constark’. More general results are provided in Theorem 2.1 below.
(B) Afirst order expansion: assume for example tfias in Céo(Rd), thatY; has finite moments up to order 20,

that (1.8) withu,, = X holds, and that

Ku'

heCSRY) = " |lhllos (1.10)

1
8n(h) — ;/3(/1)) <—

for some constank’, some linear maj on Cg(Rd/) and some sequencg,,) with nu), — 0. Then there is a
linear mapy, on CS(R") (wherex is the starting point), such that

1 1
geCSRY) = ‘An<g) — ;yx(g)‘ < K/<u; v ;) ligllo,s (1.11)

for another constark’. Here again, see Theorem 2.2 below for more general results.
(C) Higher order expansions, that is, the existence of operatdtsfor k = 1, ..., m, such that

A 1 k) Cin (g, x)
ng () = Y S I Vgo| < =B (1.12)

k=1
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Remark 1.1. For the genuine Euler schemg = Y1/, (1.9) and (1.10) withi,, = u;, = 0 are obviously satisfied,
hence we recover the results of Protter and Talay [12]: the assumptions made above are a bit stronger, but in
Theorems 2.1 and 2.2 they will be (unsignificantly) weaker.

Remark 1.2. The comparison between the rat&:ldue to the Euler scheme and the ratedue to the approx-
imation of Y1,, by ¢ (in law) is instructive: since the time needed for the simulation is proportionaladad
is also usually an increasing function of, from a practical point of view it is best (asymptotically) to choose
u, = 1/n. This is why we assume, = 1/n in the problem (B) above, which allows for a Romberg-type method
of simulation.

It is noteworthy to observe that, except for genuine Euler schemes, we have in general (1.16)4yvi{h 0,
unfortunately, as we will see in the examples below.

4) Relationship to other work. The results above, starting with (A), are in deep contrast with “pathwise” rates
of convergence obtained for example in [9,5,6], or [14], where one looks for sequenteseasing to infinity
and such thav, (X" — X) is tight (as processes, or at some timeavith non-zero limits. The rate,, depends
on the characteristics of the Lévy procassranging fromv, = /n whenY has a non-vanishing Wiener part
to v, = (n/logn)* whenY is a symmetric stable process with indexand even to ¢,, = co” (that is X" = X
for n big enough, depending an of course) whert is a compound Poisson process. The mathematical reason
for this discrepancy is a lack of uniform integrability which prevents exchanging limits of random variables and
expectations. Itis interesting to observe thalg (x) is alwaysof order ¥/ n, irrespective of the characteristicslof
providedY has some integrability. The reason for that is quite clear whé&nha compound Poisson process, and
we will devote some space to that special case (although from a practical point of view there is a way to simulate
X “exactly” in that case and one should not use an Euler scheme).

The identity (1.2) has been used by a number of authors to estimate the error in Markov process approximation.
See for example [11,3], and Section 1.6 of [4].

The first expansions of type (B) or (C) are due to Talay and Tubaro [16] for diffusions, while Bally and Talay [2]
have considerably weakened the smoothness assumptions on the test fgnetiamg Malliavin calculus, and
under non-degeneracy assumptions on the diffusion coefficient). The discontinuous case has been studied first by
Protter and Talay [12], and more recently by Kurtz and Protter [10] and Kohatsu-Higa and Yoshida [8] for an
equation driven by a Poisson random measure instead of a Lévy process.

5) Implications for simulation. The main motivations for these types of results are practical: we want to estimate
E(g(X1)). We run the Euler schem® times, giving rise to the simulated numbé(%’l, e X’I’N, and we take
the estimateGy , = % ZlNzlg(X'll’i). This is where approximate Euler schemes come into the picture, because
usually one does not know how to exactly simulate the increments of our Lévy process. Section 3 below is entirely
devoted to these practical problems, and in particular to the evaluation of the time necessary to perform simulations.
The expansion (C) is mathematically interesting, but its practical relevance is more dubious: in principle it lays
the foundation for studying higher order Romberg schemes, but these are probably quite unstable, even in the
diffusion case.

6) Organization of the paper. In Section 2 we state the main results in full generality, and “practical” examples

are expounded in Section 3. In Section 4 we state and prove a version of the first order expansion when the driving
processY is a compound Poisson process and for the genuine Euler scheme: this is easy to prove and serves as
a good introduction to the general case. Section 5 is devoted to recalling some more or less known results on
Eqg. (1.3). In Section 6 we prove various technical lemmas, and the last three sections are devoted to the proof of
the main results.
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2. Themain results

1) Some notation. We suppose that the time interval is bounded, and without loss of generality th& itjsThe
starting pointrx plays a role in the results, and a crucial role in the proofs. So, inste&d we write X in (1.3).
Similarly, we writeX?/’fl for the solution (1.5) to the approximate Euler scheme. For more coherent notation, we
also definex;"" for all t € [0, ¢], by settingX;"* = X;’/’ﬁ wheni <nt <i+ 1.

We consider also the processes

[nt]

Ytn — Z Cin’ (2.1)
i=1

where[s] denotes the integer part of For a genuine Euler scheme, we have of coise= 1,1/, In general,
Y™ is a non-homogeneous process with independent increments, however its increments over intervals of length a
multiple of 1/n are stationary. If we use the notatipp(r) = ;- wheni < nt <i + 1, then we can rewrite (1.5) as

1
X\ =x+ / (X)) dry. (2.2)
0

Therefore, by well known results on the stability of stochastic differential equations (plus the fact that a sequence
of processes with independent increments converging in law to a Lévy process is “predictably uniformly tight”
(PUT): see Stominski [15], or also Theorem 1X.6.9 of [7]), we readily obtain that:

v Ly o xnx £ xx
(2.3)

p
Y'=Yuim = SUPgoylX:” =X —0

(the second case corresponds to the genuine Euler scheme).
From time to time we need a filtration. For the genuine Euler scheme we tak&;fothe filtration generated
by Y. Otherwise, we have convergence in law only (see (2.3)), so it is no restriction to assume that all processes
are defined on the same probability space and thar freare mutually independent and independent pind
(Fy) is the filtration generated by all processeandY” forn > 1.

2) Assumptions orf andY. We now state our assumptions, starting with those on the coeffigient

Assumption H(/, N). The coefficienyf is N times continuously differentiable and all partial derivatives of order
I,I+1,..., N are bounded.

Here N is an integer, and will be either 0 or 1. We usually assunt®(1, 1) at least, except wheli is a

compound Poisson. Clealy(I, N + 1) = H(, N).
Next, we denote byb, ¢, F) the characteristics of the Lévy procdssin the sense that

(1) =expt(i(u,b) - <“’26”> +/F(dy)(ei<“’y> = 1—i(u,t(y)>)>,

wherer is a truncation function of?’, that is a map fronR¢" into itself, which is bounded and coincides with
the identity near 0, and whose components can be assumed ta§e(’ ) without loss of generality. Then we
need the following integrability assumption, wherés some nonnegative real:

Assumption F(p). We havef{lyl>1} |y|? F(dy) < oo (equivalently,Y; € IL? for all ¢).
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3) Assumptions on the variablgs. As said before, for each the sequence af’-dimensional variables!" for
i=1,...,nisiid., and some concrete ways of constructing appropti&teare given in the next section. The
discrepancy betweey] andYy,, is measured by the quantitiés(g) of (1.6), and we make different assumptions
according to the kind of result (of type (A), (B) or (C)) which we want to prove. Belpw, R, and N € N*

are arbitrary, andu,),>1 and (u,),>1 are arbitrary sequences of positive numbers tending to 0 and such that
u, /up — 0:

Assumption G({u,}, p). We havd-(p), and there is a constarit such that

Ku,
n

heCARY) = [8,(0)| < =" |Ihllpa. (2.4)

Observe that we put, /» and notu,, on the right: this is because the varialilg, is close to 0, and indeed “of
order I/n" already as: — oo in the sense tha@(h(Y1/,)) = O(1/n) for anyh € Cg(IRid’) underF(p). We will see
later that this assumption is enough to ensure the first convergence in law in (2.3).

Assumption G'({u,}, {u},}, p). We haveG({u,}, p), and there are a constark and a linear mapp on the space
CS(R?) such that

Ku'

u
o ”h”p,ﬁ- (2-5)

Su(h) — —”qs(h)‘ <

heCSRY) =
n

n

Assumption G”(N, p). We haveF(p) and there are a constarit and linear mapsp; on the space§§k+4(Rd/)
fork=1,..., N, such thattwith an empty sum set equal ®:

k

1 K
S (h) — Z W‘f’i (h)‘ < W ||h||p,2k+4~ (2-6)
i=1

k=0.....N, he C2HR") =

Clearly G”(N, p) = G"(N — 1, p), and G"(1, p) = G'({1/n}, {1/n?}, p), and alsoG’({u,}, {u,}, p) =

G({un}, p).
Finally, observe that for the genuine Euler scheme we Bay¥e = 0 for all 4, hence all the above assumptions
are trivially fulfilled in this case.

4) The main results. Our aim is to evaluate the “error” involved by the — approximate or genuine — Euler scheme,
and measured through the quantity

Apg () =E(g(X[) — E(8(Xiu1n)) (2.7
for suitable test functiong.
Our first result is an estimate ok, ;g(x), that is, it solves problem (A) for approximate Euler schemes:

Theorem 2.1. Let p > 0and!/ =0or [ = 1. AssumeH(/,4) and G({u,},4+ 4 v p) for some sequenag, de-
creasing to0. Then there is a constakf depending orp, f, Y only, such that for any € Cﬁ(Rd) we have, for

allr €[0,1],n > 1, x € RY:

1
|An,tg(x)} < Kt(”n 4 ;) ||g||p,4(1+ |x|p+4l). (2.8)

As said before, for the genuine Euler schefig) impliesG({«, }, p) with u,, = 0, so we recover the estimates
of Protter and Talay in [12]. For the approximate Euler scheme this result allows us to single out the contributions
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of the error of the Euler scheme on the one side (that/is),Jand of the simulation discrepancy on the other side
(which isuy,).

The second main result is a first order expansionAgr g(x). The result goes as follows, and we see that
there are in factwo “first order terms” corresponding respectively to the Euler scheme error and to the simulation
discrepancy.

Theorem 2.2. Let! =0 or [ = 1. AssumeH(/, 10) and G’ ({u,,}, {u},}, 104+ 10V p) for somep > 0 and some
sequences, andu), with u, — 0 andu),/u,, — 0. Then there is a constark depending orp, f, Y only, and
linear operatorsU; "and V; on CO(RY), such that for anyg € C1%(R?) the functionsl;¢ and V; ¢ belong to

+61(R‘1) and also that for alk € [0, 1], n > 1, x € R?:
NU:gll p+61,4 < Ktligll p.10. 1Vigll p+er,4 < Ktllgllp, 10 (2.9)
1
(u vulv >||g||,,10(1+ x| P8, (2.10)

1
‘An,tg(x) —u,Uig(x) — " Vigx)| < Kt

For the genuine Euler scheme and urnidérO+ 10V p) we have the previous hypotheses with=u/, =0, so
the first order term is;,L V,g(x) and the remainder is of ordey 2.
Finally we state the result about problem (C), that is expansions of arbitrary order, of the form:
N

1 1
Anr8() =3~ T8 + g Rynag (). (2.11)
k= l

Theorem 23. Let p >0and/=0o0or/=1and N > 1, and assumed(/,6N + 4) and G’(N,6N + 4 +
(6N +4) v p). Then there is a constark depending only orp, f, Y and N, and linear operatorsl“,(k) on
C¥RY) fork=1,..., N, such that ifr = 6k, 6k + 1, ..., 6N + 4 we have

r k -
geCh®) = Ygech B ®Y. 15 gl anr—e < Ktliglpr (2.12)

and moreover ig € CSV*4(R?) we have the expansia@.11) with a remainder satisfying

|Ry g ()| < Ktligllpon-4a(L+ x| PHANTD), (2.13)

Remark 2.4. In a sense (2.11) is not a true expansion because the “coeﬁiciﬁﬁfﬁ’;g(x) depend om, except
whenr =1 of course. But, except fer= 1 again,A, ; g(x) is not really a function of but rather of the discretized
time [nt]/n, so having an expansion which depends on time thrguglin is also natural.

For the genuine Euler scheme, one could also Xisastead ofY” in (2.2) (the two Euler approximations
coincide at all times/n). Instead of (2.7) one naturally takes, ,g(x) = E(g(X;")) — E(g(X})). Then we
have (2.8), but not (2.10), essentially because [nt] oscillates (when £ 1) between 0 and 1 asvaries.

Remark 2.5. For the genuine Euler scheme one can slightly improve the result of Theorem 2.3: we only need
H(, 4N +2) andF(4N + 2+ (4N +2) v p), andg € CAV+2(R?), and thenr; ' g e 312 (R). Similarly,

Theorem 2.2 holds undét(/, 6) andF(6 + 6 v p) and forg € CS(R") (and of coursd/; g does not show up in
that case).

Remark 2.6. Whenu, = 1/n in Theorem 2.2, the sur; + V; is equal to the operatdF,(l) of Theorem 2.3.

Remark 2.7. At the end of the paper (Remark 9.1) we give an “explicit” form fof® in the 1-dimensional case.
This operator is well defined und&(2) only, so it is likely that we cannot drop integrability assumptions, even
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wheng is bounded (but the assumption thathas finite moments of order 20 (or 12 in the genuine Euler case, see
Remark 2.5) is obviously too strong!).

Remark 2.8. From a practical point of view, only the first two theorems are interesting: the first one for the plain
(approximate) Euler scheme, and the second one if one wishes to use the Romberg method. And, in the latter case
this method can be applied only when the two “first order” terms are comparable, that isiyvketyn. This is

not a true practical restriction since the probabilist or statistician can indeed choose the agg\eatiye price of

amore or less long time for the simulation of a single variatle we explain in Section 3 below how this works

on a particular example.

5) Letus end this section with another set of assumptions, in a particular case. Actually, checking Assumptions
G({un}, p) or G'({un}, {u,}, p) if we have a procedure to approximaig,, by variables;;’ when we know only
the laws of the latter may be quite difficult (not to ment@f(N, p)).

However there is a situation which occurs often in practice and for which we have simpler conditions: we will
say that we havemstricted approximate Euler scheifieach¢;' is (in law) the value at time/ln of a Lévy process
Y™ (equivalently, the law of ] is infinitely divisible). That is, for each we have a Lévy process”, and we take

¢t =Y, —Y{ 4, Then of course the proce¥$ of (2.1) is the discretization df, that isY;" = Y, .

In this 5|tuat|0n it is usually the case that the characteristic§’bfare known, and they are denoted by
(), c,, F) (w.r.t. the same truncation functianthanY’). We also consider the second modified characteristics of
Y andY/" given by

c=c+F(rt"), é=c,+ F (xt*) (2.14)

(here and below, we writ& (g) instead off g(y)F(dy)). With this notation, and if we further denote by:‘(]Rd/)

(for k > 2) the set of allh Cf,(Rd’) such thatVin(0) =0 for i =0, 1, 2, we can introduce the following two
assumptions (we suppose, as above,ahat- 0 andu/, /u,, — 0):

Assumption @({un}, p). We have=(p), and there is a constark such that

|b:1_b|<Kuns |E,/1_5|<Kuns
o (2.15)
heCHRY) = |Fj(h) — F(W)| < Kuyllh| pa.

Assumption 6’({u,1}, {u),}, p). We have(p), and there are a vectg € RY" and ad’ x d’ matrixs and a linear
map® on C;?(Rd') and a constank such that
b, —b —unBl < Kuj,, |8, —¢—uyo|<Ku,,
heCHRY) = |Fj(h)— F(W)| < Kuylhllpa, (2.16)
he C;,G(Rd’) = |Fj(h) — F(h) —u, @ (h)| < Kul, ||kl p6.

Proposition 2.9. In the case of a restricted approximate Euler scheme, thgt is Yl/}“n Y/" " /n for some Levy
processy’” with characteristics and second modified characterighi, ¢;,, F,) and¢c),, we have for any >

() G({un}, p) impliesG({u v 2}, p).
(b) fu, >1/n, thenG’({un} {u }. p) impliesG’({u,, }, {u,, v 2%}, p).

The proof of this proposition is given in Subsection 6.1.
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3. Some examples

In this section we consider some practical examples and compute the time necessary to achieve a given precisior
in the computation oE(g(X1)) via a Monte Carlo method, as explained in the Introduction (and espeC|aIIy 85).

We drawN independent copies of the approximatif of X; and take the estima@y , = % Z “18(XT b,
If we use a “Romberg technique”, we drav copies of X] and of X2” and take the estimat&y , =
L SN (2g(X2M)) — g(X}'))). Assumingg bounded, the expected erretN, n) = E(|Gy,, — E(g(X1)]) is
the sum of the statistical error, of ordef+IN, plus the biasA, g(x) (or 2A2,g(x) — A, g(x) for the Romberg
method). Therefore if Theorem 2.1 applies we get

1 1
e(N,n) =0 —+—-Vu, |, 3.1
v =0f Z v &
while for the Romberg method and if we can apply Theorem 2.2, we get
1 1

In both cases the time neededlisN, n) = O(Nna,), Wherew,, is the time necessary to calculate a single time
step.

1) Genuine Euler scheme.lf we can simulate exactly the increments 1of the timec,, is o, = O(1), and we
have (2.4) and (2.5) witly, = u), = 0. Optimizing the choices of and N in (3.1), subject to the condition
e(N,n) < ¢, leads to takeV = O(n?) andn = O(1/¢), and injecting intol (N, n) = O(Nn) gives us a timel},
necessary to achieve a precisiowhich satisfies:

T, =07 3). (3.3)

If we use the Romberg method, we apply (3.2) instead of (3.1): this leads to/tak®(n*) andn = O(1/./€),
and injecting intdl’' (N, n) = O(Nn) gives us

T, = O(s~2/?). (3.4)

Observe that if we knew how to exactly simulgteX1) without any bias, we would obtain a tinfe = O(s~2), to
be compared with (3.3) or (3.4).

2) Restricted approximate Euler scheméal/e can exactly simulate the drift (of course!) and the Wiener part, of
but not the jump part (except when this jump part is compound Poisson, or is a stable process, but in the latter case
the integrability assumptions of this paper are not fulfilled). Otherwise, we cannot exactly simulate the increments
of Y. To approximate them, most methods resort to deleting in some way or another the “small juripsbdbr
the discontinuous part we are left with a compound Poisson process, which can usually be simulated. The reader
can look at the papers [13] of Raski or [1] of Asmussen and Rdski for various possibilities. Below we use the
most simple-minded one, with a view towards minimizing the time needed. This method works if we can simulate
a variable whose law is the (normalized) restrictionFofo the complement of any neighborhood of O: sidcés
often explicitly known, this is in general feasible.

So we truncate the jumps at some cut-off arge(gomg to 0 ast — oc). This amounts to a restricted approxi-
mate Euler scheme, the characteristigs c),, F;) andé, being chosen such théi({un} p) or G’({un} {u)}, p)
holds for suitable sequences and/oru;,, and WlthF (dx) = 1jx|>v,1 F(dx). Then we can of course choose
b, = by, andc, in such a way thaf, = ¢, so only the Iast parts of (2.15) or (2.16) have to be checked.

Observe that™ is the sum of a drift, a Wiener process, and a compound Poisson process. So we can simulate
exactly ¢y Yﬂn by using a Gaussian variable, plus a Poisson variZb{the number of jumps on the interval
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(0, 1/n]), plus Z variables according to the la#, (normalized)). The time necessary to do that is random, with
expectation

ap =0(14+E(2)) = o<1 + }F,; (Rd’)>. (3.5)
n

Now we introduce the assumptions. First, we suppege) for all the values ofp necessary to apply our
theorems. Next, we s@t(r) = F({y: |y| > ¢}) for t > 0, and we assume that

<1 = ,s(r)gt% (3.6)

for some constants > 0 andux € [0, 2]: this assumption is always satisfiedif= 2, becausé integrates: — |x|2
near 0, and if it holds fowy it also holds for anyr > aqg. If this holds witha = 0, theng(0) < oo and the purely
discontinuous part ot is compound Poisson. Note also that it holds for same(0, 2) as soon as the Lévy
measureF’ in a neighborhood of 0 is dominated by the Lévy measure ef-atable process.

Forg > 2 we also introduce the functions

t

- C
By(1) = /|ﬂwww=q/ﬁ*w@rwm»m<5{%ﬂﬂ, (3.7)
{lyl<t} 0

where the last inequality holds under (3.6).
We say that we are in theseudo-symmetrical ca$fef{|vlgt} yiyjyeF(dy) =0 for all i, j, kK whent is small

enough (hera; is theith coordinate ofy € RY’; this holds e.g. whet is invariant by all rotations ifR?).
Note that, in view of (3.5), we hawe, = O(1 + 1/nv") under (3.6). Therefore the expected time necessary to
perform the computation, nameM N, n) = O(Nnay,), is

N
T(N,n):O(Nn—i— —). (3.8)
Uy

/Now we want@({u,,}, p)- As said before, only the last part of/(2.15) has to be checked. For any furction
RY we haveF;, (h) — F(h) = — [ h(y)Lqjy<u,) F(dy). If h € C}R?), by using a Taylor expansion éfaround 0,
up to order 4, we obtain

KB4(v,,)||h||,,,4 in the pseudo-symmetrical case

Mﬂm—ang{ (3.9)

K B3(n)llhllp.a otherwise

for some constank . Hence (3.7) yieldé({un}, p) with u,, = v,‘}‘“ in the pseudo-symmetrical case, and=
v,?"" otherwise. Then Theorem 2.2 and Proposition 2.9 i€, n) = O(1/v'N + u, v (1/n)). So in view of
minimizing (3.8 ) it is best to take, = O(1/n) and N = O(n?). This leads to an expected tinig necessary to
achieve an error smaller tharwhich is

T — { O(e™3) in the pseudo-symmetrical case, owif 3, (3.10)

O(e~(6-0)/B-2))  otherwise

Moreover, it is noteworthy to observe that the expected number of jumps to simulate in a single interval is always
smaller than 1 in the first case above.

If we want to use the Romberg method, based upon Theorem 2.2, we need the last two parts of (2.16) with
u, = 1/n, and for this an assumption like (3.6) is not enough, and we need an equivalg@ t@r B+ (¢)) as
t — 0. To keep things simple, we consider the very particular case whetel and the Lévy measurE satisfies

A A_
Fd)1_y = xl% Lo x) + W 1,0 (x), (3.11)

(
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wherea € (0,2) andA, A_ > 0 and for some numbear > 0. This of course implies (3.6) with the sameWe
already know that (2.15) holds with, = v,‘}“" in the pseudo-symmetrical case (corresponding to= A_ here),
and withu,, = v3~* otherwise. Hence we takg =n~Y“= if A, = A_ andv, =n~Y3® otherwise. Then a
simple calculation shows that the last assertion in (2.16) holldsin(Rd'), with

AL+ A

d(h) = @ (0), 1 = (6-0)/(4~a)
W=2aa_—x" O w=n
if AL = A_, and otherwise
Ay —A_
d(h) = 13 (0), Iy~ @4-0)/G-a)
) =Ga=g 'O w=n

Then we can apply Theorem 2.2 and (3.2) to get tat, n) = O(1/+/N + 1/n®0/@=0yjf A, =A_, and
e(N,n) = O(1/+/N + 1/n@*/G-0) otherwise. Then we takll = O(n12-20)/(4-®))y in the first case, antf =
O(n®-20/B-2)y in the second case. This leads to an expected Timeecessary to achieve an error smaller than
¢ which is

O(e~(A6=3)/6-)y jf A, = A_,
T, = { O(e~(A1=30/(A-2)) if A, £ A_ anda < 3/2, (3.12)
O(e~@-0/G-®)y  if A, #£ A_ anda > 3/2.
In all cases we havé, = ¢ @ and the smallep(«) is, the better is the result. We can summarize all the
results by stating the behavior pt«) as a function ofy, as follows:
a: 0 3/2 2

genuine simple 3 —3 — 3
genuine Romberg 3 — 25 — 25
approximate simple, symm. 3—3 — 3

approximate simple, non-symm. 3 — 3 /4
approximate RombergA, = A_ 2.66 \, 255 \, 25
approximate Rombergd, #A_ 275 \, 26 7 3

The reader will observe that the rates of convergence are quite reasonable for the approximate scheme, compare
with those for the genuine scheme. Also, the improvement of the Romberg method is not really significant.

4. The compound Poisson case

In this section we suppose thetis a compound Poisson process. This can be expressed through its character-
istics as followsc =0 andF(Rd/) < oo andb = [ t(y)F(dy). We only consider the genuine Euler scheme, since
we can simulat& exactly in this situation. Actually, we can even simul&t&exactly, so the result below is given
only for the sake of comparison with the general result and because of the simplicity of its proof, and we restrict
ourselves to the first order expansion.

In this situation, Eq. (1.3) has a unique soluti®f, with no assumption at all on the coefficiefit This is why
we assume nothing likel (I, N) below. Observe also that there is no integrability assumption on the jumps of
like F(p) below.

Theorem 4.1. If Y is a compound Poisson process with Lévy meaguyrand if Y" = Y., (the genuine Euler
schemg, for any bounded measurable functigion R? we have the expansia@.11) for N = 1 with the operator

Ft(l) given by
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t

rYs00 =3 [ Pbigras (4.1)
0
Hog(y) = / F(du)F(dv)(Psg(y + f)D @ +v)) — Pig(y+ fFOMu+ f(y+ f()u)v)), (4.2)

where(P;); >0 is the transition semi-group of the proceX¥$, and for some constark depending orF and f we
have(below g |l denotes the sup-nopm

1
IR <tKllglloo, [P e)] <1Klgloo- 4.3)

The reason such a result holds is simple enough: re'call that in this case, w&haweX* on the setd,, where
there is at most one jump &fon each interval’ = (%, ~landP(A,) — 1. The setB, on which there is exactly

one intervall" on which two jumps ol occur andr’ jumps at most once on all other interval}Shas a probability

of order ¥/n, and the complement of,, U B, has a probability of order/k2. On B, the values ofx;* and of
X7 are possibly far apart, %((g(Xf’x) —g(X71))1c,) is 0 whenC, = A, and of order 1n whenC, = B,, and
of course of order An? if C, is the complement oA, U B, (wheng is bounded).

Proof. We setA = F(R?") andG = F/A (a probability measure, which is the law of all jumps¥f We denote
by N the number of jumps of within the interval((i — 1)/n, i/n], and we set for Ki <k <n:

i
Coi=[)IN' <1}, Duix= ( N i< 1}) N{N/'=2}.
j=1 JJFLIS <k
The setsD,; x fori =1, ..., k are pairwise disjoint, with a union denoted By, ;. By well-known properties of
Poisson processeB(D, ; ) does not depend an and we have

e 1 . _K 22 1
PC,)=1——+0|—= ), P(Ch,UD,))<—, PWD,i1)=—+0—=5]). 4.4
(Cnn) 5+ (n2> ((Cn, ©°) 5 PDnin) =55+ (ng) (4.4)
SetQ'g(x) =E(g(X7},,)1c, ;) and

Hjg(y) = / F(du) F(dv)(Qg(y + f0 @ +v) = Qje(y+ fu+ f(y+ f(»u)v))

for j =0,1,...,n. We deduce from the first part of (4.4) that

K
|Pj/ng(x) — Qg (x)] < . l8lleo, (4.5)

hence ifH; is defined by (4.2) we get
K
|[H}8() = Hjjng()| < — liglloc- (4.6)

Observe thaky* = X7 for all s < i on the seC, ;, so the second part of (4.4) gives:

[nt]
K
’An,,g(x) = E((eX i) — X yyn)) 100 )| < S gl 4.7)
i=1
Now, if we denote byW; and W, the sizes of the two jumps df on the interval(%, :l—'], when there are exactly
two of them, we have on the s&, ; x for anyk > i:
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Xiyn =Xy + F X1y Wa+ £ (XG gy + F(XG 1)) W1) W,
X,n/z = X?ifl)/n + f(Xfi,l)/”)(Wl + W2).

Moreover, it is obvious that if < j, then
IE(g(XE(nt]/n):I'Dn,i,[nr] |f‘i/”) = Q?nt]—ig(xf/n)an,i,i ’

E(g(XElr;?]/n)an,i,[nr] |-7:i/n) = Q}[Ilnt]—l‘g(X?/’z)an,i,i :

Therefore, taking into account the fact that conditionally@y; [»,) the two variablesV, and W» are i.i.d. with
law G = F/x, we get fori < [nt]:

—A/n
E(g(X{y1yn)1D,;) = 627 / Q]_1(x, dy) F(du) F(dv) Qf,1 ;8 (v + 0+ f(y + f(u)v),
—A/n
B(s(X}i010,,) = S5z [ Qax, O F @0 F(@0) Oy e+ FOu+ 0.
Hence we have
n,x X e_)\/n n n
]E((g(x[riz]/n) - g(X[nt]/n))an.i) = -5 Qi_1H)-i8(X). (4.8)

Sincele /" — 1| < K /n, the previous equality and (4.5), (4.6) and (4.7) yield
’ [nt

Apig(x) — o2 Z Pi—1y/n Hni=i)/n & (%)

K
< S liglloe.
. n
i=1

Furthermore it is obvious that far< r <t we have|Pyg(x) — Prg(x)| < K||glloo (r — ), hence we also have
i—1
n

I K
<s < - = |Pi—vy/nH(n-i)/n8(*) — PsHins)/n—s8 ()| < P

Then the sum showing up in (4.7) is in fact equal, up to a term smaller ¥l ./n2, to the integral
% fo[”’]/” P Hipypyn—s 8 (x) ds, and the result follows. O

As said before, there is no assumption here on the size of jumps, nfr©n the other hand, as soon Bss
not a compound Poisson, and even if it is a “compound Poisson pradthsdrift”, the previous result becomes
wrong, and one needs at le&sll), becausg'(y — z(y)) F (dy) comes in the explicit form of the operatﬁ',t‘l) (see
Remark 9.1), and aldd (1, 1) of course in order to have a solution to the equation. Evidently, the opeff‘,é%of
Theorem 2.3 formally takes the expression (4.1) when0 andF(Rd/) <ooandb = [ t(y)F(dy).

On the other hand i§ is unbounded then the two terms on the right of (2.7) might be infinite or not defined: so
if we want the previous result to hold for, saye Cg(]Rd) (or g € CK(R?) for somek; the smoothness @f makes
no difference here), that is if we want (2.8) or (2.11) M= 1 to hold in the situation of Theorem 4.1, thEfp)
is required.

5. Lévy driven stochastic differential equations

In this section we gather some results on Eq. (1.3), whose solution is denofed Byese results are part of
the folklore of the subject, and closely related versions of them can be found in [12]. However we need somewhat
more precise estimates than in that paper and we thus give quick proofs.

Below, K,, (or K («)) denotes a constant which may change from line to line, and depends only on the parame-
tera and on the dimensionsand/ord’.
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1) First we need estimates on stochastic integrals W.r.The forthcoming result is taken from [12], but we give
here a simpler proof.

Lemma 5.1. For any predictable(matrix-valued processH and anyp > 2, and if 8, = [ |y|” F(dy), we have
(recall that time belongs t0, 1)):

(J/de

Proof. Itis enough to prove the result wh@p < co. In this case)’ =b + [(y — t(y)) F (dy) exists and satisfies
|b'| < |b| + K«/B2 for a constantk depending on the functioh only, andY; = bt + Y + M, where M is a
purely discontinuous martingale. Then it is enough to prove our inequality separatelyfywdr:, andY = Y¢,
andY = M. In the first two cases the result is well known (and easy), so we assumié thal. It is also clearly
enough to consider the case whéteand H are 1-dimensional. By a Burkholder—Davis—Gundy inequality the

left side of the inequality is smaller thaﬁpE(Z,”/z), whereZ, = ZS@ HSZAYSZ. So it remains to prove that
E(ZP'?) < K, (BY* + By)as, wherea, = [2 E(|H,|?) ds.

Setq = p/2 > 1. For all x,z > 0 we have first(x + 2)7 — x9 < 297 1(x71z + z9), and second?~1z <
exd +z4/¢? L for all ¢ > 0. Hence for alk > 0 andx, u, v > 0 we have

luvq + uqvq>.

Then if 7,, = inf(¢: Z, > m), and sinceZ is non-decreasing and purely discontinuous,

t
)<KAMW+RV”+%mV”+@J/EOMV)m
0

1
(x+uv)? —x7< 2‘1_1<exqu + i
e

tATy
Zha= Y (et 8200 =7 = [ (e P~ 7 )i, ),
S<UAT, 0

whereu is the jump measure df. The predictable compensatorofis v(ds, dy) = ds ® F(dy), so we get

AT

E(Z, ;) <20” 1E( / /<£Zq A s IHIqu +|H|2q|y|2")F(dy)ds)

1
< 2q l<8,32E(mq A ZIATH) + (ﬂ /32 +ﬂp>a[),

because” is increasing and,_ < m if s < T,,. The right side above is finite, hence the left side as well. Then
it remains to take = 1/(278,) and letm — oo and apply the monotone convergence theorem: we get the result

with K, =2¢°. O
For further reference, we set

np = 1bl +c| +f(|y|21{\y|<1} + y1PLjy)>13) F (dy) (5.1)

soF(p) amounts to saying that, < oo. With this notation, it follows from the previous lemma that for gng 2
and any predictable procegswe have

s
2<p'<p = E(Sg%/lisdh
s<t 0

whereK (p, n,) denotes a constant which depend onlypoands,, and on the dimensions &fandH.

[7/ t
)gK@mm/EWMﬂm, (5.2)
0



538 J. Jacod et al. / Ann. |. H. Poincaré — PR 41 (2005) 523-558

2) Now we turn to estimates on the solutigif of (1.3). We know that it is a Markov process, whose semigroup
is denoted by P;). The following estimates o®; are crucial (when we writég ||, x < oo for a functiong on RY,
this automatically implies that € Cf, (R):

Proposition 5.2. (a) UnderH(1, 1) andF(2 v p) for somep > 0, we have for some constafit= K (p, f, n2v,)
(recall (1.7)):
E(sup [X717) < Kap(x),
geChRY) = IPglpo<Klglpo 3
(b) Under H(A,N) and F(N + N Vv p) for somep > 0 and N > 1, we have for some constakf =
K(p, f,nn+Nvp)

geCI®Y) = [IPglpn <Klgllpn. (5.4)

The first property in (5.3) is then a consequence of (5.2) and of Gronwall’'s inequality (recal (ihats
np < 00). The second property in (5.3) is a trivial consequence of the first one.

For (b) above we need first some facts about the differentiability ief X*. We say that it iscontinuously
differentiable inL? if there ared x d-dimensional processes™(® which satisfyE(sup, |X¥®|?) < oo and also
E(sup | X3 — X¥ — xF Dy —x) Py =o(ly — x|P), andE(sup 1x2@® — x*®py _ 0 asy — x. By induction,
itis N times continuously differentiable ib? if the (N — 1) derivative procesXx -(N=D) exists and is continuously
differentiable inl.”. Observe thak*-" is 4" -dimensional.

It is well known, using Gronwall's Lemma and (5.2), that un#igid, 1) andF(p) for somep > 2, thenX”* is
once continuously differentiable ib”? and X* 1 is the unique solution of the following linear equation (with
being thed x d identity matrix):

t
xpP=1 —i—/Vf(X" x5 dy, (5.5)
0

x,(1)

and furtherx — E(sup | X5~ |?) is bounded. More generally, we have:

Lemma 5.3. UnderH(1, N) for someN > 1 and F(Np) for somep > 2, thenx — X* is N times continuously
differentiable inl.”, and we have for some constdt= K (N, p, f, nnp):

E(sup|Xj’(N)|P> <K. (5.6)
s

Proof. Not only do we get (5.6), but we also have that ffith derivative is the unique solution of the following
linear equation (when th&*() for j =1,..., N — 1 are supposed to be known):

t

XV = / VXN dy, +Z / VX P (XEP X MT) dy, (5.7)
0 =27
if N> 2 (and (5.5) ifN = 1). Here, the components &ty ; (x©, ..., xN =Dy are sums of terms of the form
N—i+1 @j )
[T []xY". where)  ja;=N, (5.8)
j=1 r=1 j

and wherer )/ is thelth component o) € R*’ | and an “empty” product equals 1.
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The proof is by induction oV, using Gronwall’s Lemma and Lemma 5.1, and as it is well known it boils down
to proving first that by formal differentiation of (5.7) fav — 1 we get Eqg. (5.7) fov, and to proving secondly
that the solution of (5.7) satisfies the estimate (5.6).

Hence we assume the result for Al < N. By formally differentiatingx — X*® =1 in Eq. (5.7) written for
N — 1 we readily get (5.7) fo, with (using matrix notation, anély 1 1(x®, ..., xNV=D) = x(N-D).

N—i

Fni(x®, o x W=ty = x(l)FN,l,i,l(x(l), e x(N_i+1)) + Z FN,l,,-(x(l), ...,x(N_i))x(j+1).
j=1

3x ()

Thenif all Fy,; for N' < N are sums of terms like in (5.8), the same is truggf;.
Next, we prove that the solution of (5.7) satisfies (5.6) (assuming again this is true Mt -allV). By Gron-

wall's Lemma and the fact that f is bounded, the only thing to prove is that
! p
E(su%/(vif(xj‘))FN,i(x;"(l),...,Xj."(N"'“))dYS ) <K
t
0

for all i =2,...,N and for some constank = K(N, p, f,nyp) (in the remainder of the prookK =
K (N, p, f,nnp) varies from line to line). And of course, it is enough to prove thaf ifs any monomial like
in (5.8), then

! p
E(su%f(V’f(Xf_))G(X;"_(l),...,Xf’_(N_iH))dYX ) <K. (5.9)
"1
For this we use Lemma 5.1 and the fact tWaif is bounded. By (5.2) the left side of (5.9) is smaller than
N+1—i o N+1—i ' \jai/N
KIE( I sude’W”“’) <k JT (B(sumx:"@[*77))™
=1’ j=1 *

by Hélder inequality, sinc{jj joj = N. The recurrence assumption yields that each expectation above is smaller
than some constai (p, N, f, nnp), SO we obtain (5.9). O

Proof of Proposition 5.2(b). Let g € C[’,V(Rd). By Lemma 5.3, for anjt = 1, ..., N thenx — X* is k times
continuously differentiable ifl.s, wherer, = X2 further if X*© = x”* and X*() = sup 1x7Y, then
K(l+ |x|’) if j=0andr €[0, r1],
K if j=1,...,N andr €[0,r;].
Then anykth partial derivative (fork = 1,..., N) of x i g(X}) exists (in probability), and is continuous in
probability and is smaller than a sum of terms of the form
k k
Zx,p,k,{ozj} :a(l+ |3‘(’x,(0)|p) 1_[|5(5x,(j)|01j7 WhererOlj =k, aj € N,
j=1 j=1
with an empty product equal to 1. Then itis enough to prove that under our assumptiong, gach;; as above
hasE(Zx p.k.{o;}) < aK(1+ |x]?). But HOlder's inequality anc[jﬁzljaj =k <r1— pyield

E(|X*D|") < { (5.10)

k k

E(Zx,p.kfa;) < a|:l_[(E(|f('x,(j) |k/j))ja_;/k I (]E(‘gx,(m |r1p/(r17k>))(rrk)/r1 H(E(’;(x,(j) |r_,~))ja_,~/r1}

»P oY
j=1 j=1

Then the result readily follows from (5.10).0
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3) The generator ok*. As is well known, the “extended generator” of the Markov proaess) is the operator
A acting onC? functionsg onR¢ as follows (wherev g is a row vectory is the truncation function):

14 0% wii
Ag(x) = V(0 f ()b + 5 ,-,-Zzl o (fwef )"
+ / Fdy)(g(x+ f(x)y) —g(x) = Vg@) f(0)T (). (5.11)

In the next lemma, we denote M;{,V‘l(Rd x [0, 1]) the set of all familieg;);c[0,17 Of functions onR? such
thatg; (x) = %gt (x) exists and is continuous for all and that the functiong, andg; all belong ton)V (R?) with
sup (gl p.n + g/l p.n) < oo.

Lemmab54. Let/=0o0r/=21andp >0andN € N.

(@) UnderH(/,1v N) andF(p + N) there is a constank = K (p, N, f, np+n) such that
geCy?®Y) = |lAglpran < Kligllpnr2:

(b) UnderH(, 1) andF(p), for any(g;) € Clz,’l(Rd x [0, 1]), the functiory — Ag;(x) is continuously differen-
tiable and its derivative igig) (x).

Proof. We prove (b) first. Observe that under our assumptiongggnthe partial derivatives of order 1 and 2
w.r.t. x commute with the partial derivative w.rtt.hence the claim readily follows from (5.11) and the dominated
convezrgence theorem. It is even simpler to check &gl ;12,0 < Klgll »,2 for someK = K (p, f, n,) when
g € C2(RY).

It rlzamains to prove (a) whey > 1, and this is proved by induction ai. For example ifN =1 and if we
denote byo; the derivative w.r.t. théth coordinate of, we haved; Ag = Adig + A} g (by applying (b) and again
the dominated convergence theorem, and ubitigl1)), where

d 2

/ 1 8 g * ij
Apg() = V(0 f (b + 5 ijZ:l 37 (S ef (7))
+ / F@dy)(Vg(x + f@)y)ahf @)y = VE)ah f ()T())- (5.12)

We have seen already thgfdigllp+2.0 < K|lgllp.n1+2, and the same argument shows thialt, g || ,121.0 <
Kllgllp.n+2 as well: hence the result fav =1. We can obviously iterate the procedure and get the result for
N arbitrary; details are left to the readem

We denote byA* the kth iterate ofA (and A is the identity). A straightforward iteration of the above result
yields the

Lemmab5.b. Let/=00r/=1andp >0andk > 1, and assumeél(/,1v (N + 2k — 2)) andF(p + N + 2k — 2)
for someN e N.

(a) There is a constank = K (p, N, k, 0,4 n+2k—2) such that

ge CT*®Y = || Al pran.n < KIIglp N2k
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(b) If (g) € Cﬁk’l(Rd x [0, 1)), then the function — A¥g,(x) is continuously differentiable and its derivative
is Akg!(x).

Another very important property for us is the next one, well known in general but perhaps not under these
hypotheses:

Lemmab5.6.Let/=0o0r/=1andp > 0.

(a) AssumeH(/, 1) andF(2V (p + 21)). For anyg e Cf,(]Rd) we have
t
Pgx)=gx)+ / PsAg(x)ds. (5.13)
0
In particular, the map — P;g(x) is differentiable and

d
g [18() = PiAg(x) = APg(x). (5.14)
(b) LetN, N’ >0and assumél(l,1v 2N + N)) andF2V (p+2) vV (p+2N + N')).lf g e C§N+2+N’(Rd)
we have
N gk 1
Pig(x)=>_ EAkg(x) + i /(r — )N P AN Lo (x) ds. (5.15)
k! ¥

Proof. (a) An application of Ité’s formula yields that the process

t
M; =g(X;) —g(x) — / Ag(X5_)ds
0

is a local martingale. Further Lemma 5.4 yields thig < C2+21(R"), hence supM;| < K(1 + [x|? +
sup |X§‘|1’+21) for some constank, and this quantity is integrable by (5.3). Hendeis a martingale, and taking
expectations above yields (5.13). This gives that the map P,;g(x) is first continuous, and second differen-
tiable with derivativeP; Ag(x). For any givens the functiong’ = P,g is also in C,%(]Rd) and the derivative of
t— PLsg(x)=Pg'(x)atr=0is P;Ag(x) and alsoAg’(x) = A P;g(x), so that (5.14) holds.

(b) Observe that (5.15) fav = 0 is indeed (5.13), and the proof fof arbitrary is by induction. In fact, it is
clearly enough to prove

t

t
1 1
/ (1 =N P AN (0 ds = ZANg (0 + = f (t — )N P,AN g (x) ds.
0 0
But this follows from (5.14) applied td" g, which is in C§+2,N(Rd) by Lemma5.5. O

4) The generator ofr. All the previous results hold of course wheh= d and f(x) is equal to the identity
matrix for all x: we then getX® = Y: so (P,) is the semigroup of’, and A is replaced by the generat®r of ¥
which acts orC? functionsh onRR¢ as follows:
1 & 92
Bh(x)=Vh(x)b+5 Y

2
i,j=1

T75y7 (x)c + / F(dy)(h(x +y) — h(x) — VR(x)T())). (5.16)
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In this case, observe that in Lemma 5.4(a) we need Bap): indeedH (0, N) is trivially fulfilled for all N;
and we have/ g =0 in (5.12) sod; Ag = Adg, hence in order to havég = Bg € C}(R?) we need onlyF(p)

andg € Cf;(]Rd’), and our claim follows by a trivial induction. Therefore, wiltf denoting thekth iterate ofB,
Lemma 5.5 reads as follows:

Lemmab.7. Let p > 0andk, N € N with k > 1, and assumé&(p).
(a) There is a constank = K (p, N, k, n,) such that
heCYPE®RYY = B hllp.y < hllp.n2.

(b) If (hy) € C,z,k’l(Rd' x [0, 1]), then the function — B*h,(y) is continuously differentiable and its derivative
is BKR! (v).

Similarly, Lemma 5.6 is true witk (2 v p) as the only assumption, and for all Therefore, using the previous
lemma, we readily obtain:

Lemma5.8. UnderF(2V p), for anyk € N there is a constank = K (p, k, n,) such that ifs € C%’(*“(Rd'), then

k

; K
n(B(h(Y1/n)) —h(0)) — Z( +1)' BT < gl 2xta (5.17)
i=0

6. Some technical lemmas
6.1. Some consequences of the assumptiog$ on

Let us associate withy' its “normalized” distributionF;,, and also the vectds, and the matrix;, as follows:

Fo(A)=nP(] € A), by=F,(tv), ¢&=F,(t1t"). (6.1)

By results in [7] (see Theorem VII-3-4), the convergeﬂr(’feg Y is equivalent to having
b, — b, ¢, — ¢, hbounded continuous nullaround O=  F,(h) — F(h). (6.2)
We also introduce an operatsy, acting onC? functionsh onR¢" as follows:
By (h) = Vh(0)b, + / F,(dy) (h(y) — h(0) — VR(O)T(y)) =nE(h(¢]) — h(0)). (6.3)
Let us also recall thatt?;f‘(Rd/) is the set of all functions im:f,(Rd/) which vanish at 0, as well as their first and
second derivatives. The next lemma shows in particular®tét,,}, p) for any p > 2 and any sequenag, — 0

implies (6.2).

Lemma 6.1. If u,, is a sequence satisfying > and if p > 2, then Assumptio ({u,,}, p) is equivalent to each
one of the following two properties

(a) We have=(p) and there is a constark such that
he CQ(R") = |Bu(h) — Bh(0)| < Kuyllhl pa (6.4)
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(b) We havd=(p) and there is a constart’ such that(recall (2.14) for ¢):
|bn_b|<Kunv |5n_5|<KMn,

| (6.5)
heCHRY) = |Fu(h) — F(h)| < Kuy|lhlpa

Proof. First, we have

Bt(0)=b, B, (t) = by,
B(tt*)(0) =, B, (tt*) =¢,,
heCARY) = BhO)=F(h), Bu(h)=Fyh).

Since the components efandzt* belong toC'H(R?) for all p >0, we get (a)=> (b).
Next, we can rewriteB/(0) and B, (h) as follows:

2

d/
Bh(0) = VA(O)b + % Z (07 + F(h),

Pt} ay'ay/
18 2
By(h) = Vh(O)by + > >

2
ij=1

)& + Fu(h), (6.6)

dyioy/

where
3 1&, 92
h(y») =h(y) =h(© = VhOT(y) = 5 3

i,j=

Ty7ayT O T ). 6.7)

Observe that there is a constahsuch that|i|| , 4 < C||k| .4 andVi/(0) = 0 fori = 0, 1, 2 (recallz is C* with
compact support and(y) = y for |y| small). Thus (b)= (a).
Third, (1.6) and (6.3) yield

By (h) = n(E(h(¢])) — h(0)) = n8, (h) + n(E(h(Y1/n)) — h(0)). (6.8)

Combining this with (5.17) fork = 0 immediately yields the equivalence &({u,}, p) with (a), since
up, =21/n. 0O

In the next corollary we use the notation (to be compared with (5.1)):

0, = sup(lbnl + f Fu(@y) (IyPLyyi<1) + |)’|p1{|y|>1})>- (6.9)
n

Corollary 6.2. Suppose thaB ({u,}, p) holds for some sequenag — 0 and somep > 2. Thenn;, < 00.

Proof. It is of course no restriction here to assume that> 1/n. Hence we have (6.5) by the previous lemma.
Since we can find a functiol e C},“(Rd') such that

2
P y<ny + 1P Ly < [TO)]+ 2O,

the result readily follows from (6.5) arfe(p). O
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We have seen th&({u,}, p) gives us an estimate on the differer&gh) — Bh(0). Our other assumptions will
give us expansions a, (h) aroundBh(0):

Lemma 6.3. (8) UnderG’({u,}, {u,}, p v 2) for somep > 0 we have a constarit’ such that for alli € C?(R")
(recall (2.5) for ¢):

lp ()| + |B2h(0)| < K |1l p.6,
(6.10)
B, (h) — Bh(0) — un¢<h)——32h<0> K(u v )nhnpe

(b UnderG”(N pV2) forsomep > 0and someV > 1we have a constar such thatforalk =0,..., N+1
andg e c§k+2(Rd )

|BO (h)| < KIIAll p, 2642,

k

N

i=1
whereB® (h) = Bh(0) and B® (h) = BKh(0) + k! ¢r_1(h) fork > 2

K (6.11)
< pr3 21l p,2k+2,

Proof. (a) The first inequality follows from combining (2.4) and (2.5) plus the fact thai:, — 0, and from
Lemma 5.7. The second inequality follows from combining (6.8) with (2.5) and (5.1%)$ot.
(b) The second inequality follows from combining (6.8) with (2.6) for- 1 and (5.17) fork. For the first
inequality in view of Lemma 5.7 it suffices to prove thai_1(h)| < KAl p, 242 for k > 2. We setcbn,k =
- Y 11 L ¢i. We know that|®,, « (h)| < K ||| p.2k+2/n*+t and also|@, x—1(h)| < K||h| p,2c42/n*. Since
¢k,1 =n* (D1 — @, 1), the result is then obvious.OO

The operator8® and¢ above are linear, and we need to check that they commute with differentiation. This is
obvious forBY by Lemma 5.7, but otherwise it needs a proof.

Lemma6.4. Let p > 0andk > 2and (k) € C¥T2HRY x [0, 1)).

(@) Under G'({u,}, {u,}, p v 2) and if k = 2, the functions > ¢ (k) is continuous and is the derivative of
1> ¢ (hy).
(b) UnderG”(k — 1, p v 2) the functiory - B®) (n}) is continuous and is the derivative of> B® (h,).

Proof. We prove only (b), since for (a) the proof is similar (simpler in fact because we do not need the induction
step).

In view of Lemma 5.7, it is enough to prove the result with_1 instead of B%, and for this we use an
induction: we suppose that the result holds fokak k — 1. We consider the operatogs, ;. of the previous proof,
with @, 1 =0.

We haveF(p) and (2.4), thugYy,,|” and|zf'|” are integrable. It follows from Lebesgue’s theorem that
8 (h}) is continuous and is the derivative of> 8, (1,). Then the induction hypothesis yields that

t+— @, r—1(h}) is continuous, and

P k—1(hits) — Prp—1(hy) — Jo Pnik—1(h},) du=0.
Next, (2.6) fork — 1 yields for allz, and for some constarkt :

(6.12)

K
|Pn k)| + | Pui hD] < 7. (6.13)
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Moreover,¢y_1 = nk(qﬁ,,,k_l — @, ). Hence we first deduce from (6.13) and [0, 1] that
/ / k / / 2K
[ $e-11) = dr1.(h)| <[ @ g1 (h]) = Py 1 ()] + =

If we use the first part of (6.12) and let first—> ¢ and next: — oo, we deduce thapi_1(h,) — ¢r_1(h}) as
s — t. Second, taking account of the second part of (6.12), we see that

N

Gk—1(hrs) — Pr—1(hy) — /¢k—1(h;+u)du =—n* (q)n,k(hl+s) — Dy i (hy) _/®n,k(h;+u)du)~
0 0

By (6.13), the right side above is smaller than a constant tiiesThis being true for alk, we getg;_1(hsys) —
¢k-1(he) — [y dr—1(h; ) du = O: this finishes the proof. O

6.2. Proof of Proposition 2.9

In Case (a) we assunﬁ({un}, p) andu, — 0; in Case (b) we assun@({u,,}, {u),}, p) with u, > 1/n and
u, — 0 andu, /u, — 0; and in both cases we suppgse: 2.
1) Set

’7}’=Sup(|bf1| + IC,QI+/E§(dy)(|y|21{\y|<l} + lyl”l{|y|>1}))~
n

Exactly as in Corollary 6.2 we see that in both cases we hgve oo. In the remainder of the prod denotes a
constant which changes from line to line and dependp ands,, andng only.
We denote byB;, the generator of the Lévy proceB4'. Lemmas 5.7 and 5.8 and the fact tb@n =¢{, hence

B, (h) = n(]E(h(Yﬂn)) — h(0)), yield fork = 0 andk = 1:

heCﬁ(IR{d) = By hlpa<Klhlpe. (6.14)
: k 1
he CyP#®RY) = |By(h) — ZO P ,/,‘“h(O)‘ g Il a2 (6.15)
On the other hand, similar to (6.6), we have
1 & 9%, . -
(B, = BYh(x) = VR Q)b = D) + 5 D TyTdy] )@ — &) + (F — F)(hy), (6.16)

l,j—

whereh, (y) = h(x + y) and/, is the transform of:, given by (6.7). Then, comparing this with (6.6), and since
he Cf, (R?) yields 171l p.k < CliA|l p.x for some constant, we immediately deduce from (6.16) with= 0 that

heCy®Y) = |Bh(0) = BR(O)| < Kuylihlp.a (6.17)
in Case (a). In Case (b) we have the same, and also

heCSRY) = |BLh(0) — BR(O) —unp ()| < Kupllhll 6. (6.18)
provided we have set (recall (2.16) f6ro and®)

1 2
o) =VhOp+5 )

i,j=1

T3y 00 + o).
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2) In Case (a), the result is then a trivial consequence of (6.17) and (5.17) withand (6.15) withk = 0 as
well, applied to the equality (6.8).

3) Now we assume that we are in Case (b). The assumptions of this case imply those of Case (a), so (2) above
yieldsG({u,}, p) (recall that now, > 1/n), so it remains to prove (2.5) witl, v (u,/n) instead ofu,.

Let us consider (6.16) with soniec CS ®RY. Exactly as in Lemma 5.7, we can differentiate up to 2 times in
and any partial derivative of the left side is given by the right side applied to the same partial derivatives/of
or x — h,, andh, belongs toCZ‘(Rd ) and satisfiegh, | ,.4 < 1+ |x|?) ||kl p,6. Then we deduce from (6.17) that

|(B), = B)h| , , < Kunllhtll p.6-
Next, Lemma 5.7 yields
|B(B,, — BYh(O)| < Kuyllhll 6.
On the other hand combining (6.14) and (6.17) gives us
(B, — B)B,h(0)| < Kun |kl p.6
as well, and sinc&/2 — B2 = (B, — B) B, + B(B], — B) we finally get:
he cjj(Rd’) = |B?h(0) — B?h(0)| < Kuyllhl p.6. (6.19)

At this point we can inject (5.17) for = 1 and (6.15) fok = 1 as well into (6.8); in view of (6.18) and (6.19)
we obtain:

5(h)——¢(h)’ ( +—+ )Ilhllpe,

and sincer,, > 1/n the result readily follows.
6.3. Estimates fox"*

Next we turn to studying the solutiaXi"* of Eq. (2.2), withY” given by (2.1). We first give a result similar to
Lemma 5.1:

Lemma 6.5. For any adaptedmatrix-valued processt and anyp > 2, and if 8 = [ 1y|? F,(dx), we have

( %an(S) dY
s<t

Proof. It is enough to prove the result wheff < co, and in the 1-dimensional case. Thep=b, + [(y —
7(y)) F, (dy) exists and satisfid®/,| < |b,| + K\/Fg for a constank depending on the functignonly, andY;” =
b,y p7, whereM] = Y1) & andg! = ¢ —E(¢"). Asin Lemma 5.1, the result is obvious whih = b/, 1221,
hence we can assuni® = M". Note thatM" is a martingale w.r.t. the filtratioQF,:1/,):>0. SO we reproduce
the proof of Lemma 5.1 wittz, = Y"1 H2 _1y/,5 anda; = %ZEQE(W&—D/M”) < JoE(1Hy, )P ds, and
we have to prove again thB(z//?) < p((ﬂz)”/z + B)a;. With T,, as in Lemma 5.1, we get

1
) < Kp(1bal? + (B3P +ﬂ7,)/E(|H W(o)|7) ds

0

[n1]
E(Z/,;,)=E (Z((Zal)/n + HG ), (ED?)T - (Z<i1>/n)q)1{nTm>i})
1

i=

[nt]
1
=;/Fn(d)’)E<Z((Z(1 1)/n~l-H(, 1)/nY) — (Zi—1)?) Y, > })

i=1
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because the s¢iT,, > i} = {nT), > i — 1} is F(;_1),,-measurable. Then we finish as in Lemma 5.1 again.

As a consequence we get, using the notation (6.9), and similarly to (5.2):

s

2<p'<p = E(Sg%/Hn(s)dYSn
s<t

0

P !
) < K(p,n;,)/E(IH L] 7) ds. (6.20)
0

At this point we can do fox™* exactly what we have done fof* in the previous section. First, althougtf-~
is not a Markov process, we introduce the analogue of its semigroup by putting

Pg(x) =E[g(X;™)]. (6.21)
Observe thaP, g (x) = Pi’;ng(x) wheneverli < nt <i 4+ 1. Then the analogue of Proposition 5.2 reads as:
Proposition 6.6. (a) UnderH(1, 1) and n/2\/p < oo for somep > 0, we have for some constakit= K (p, f, r;/ZVp):

E(sup X5 |P) < Kap(x),

0 mod (6.22)
geC,(RY) = |IP'gllpo<Klglp.o.

(b) Under H(1, N) and ’7§V+va < oo for somep > 0 and N > 1, we have for some constaik =
K(pa f» n§V+va):

geCI®Y) = [IP'gllp.n <Kligllp.n- (6.23)

Let us define the following operators, acting onC? functions:
Ang(x) =nE(g(x + f(x)¢]) — g(x))
=VgX) f(x)bn + / Fu(dy)(g(x + f(x)y) — g(x) = Vex) f()T(y)). (6.24)
This operator obviously satisfies (by (2.2) and (6.24)):
1
P(’f+1)/ng(x) = Pi';ng(x) + ;Pi’}nAng(x). (6.25)

So it plays the role of the generator for the proc¥8s . The proof of Lemma 5.4 holds (“uniformly” in) in that
case as well, and we can state the

Lemma6.7.Let/=0or/=21andp >0andN € N.
(&) UnderH(,1v N) and n£p+N)v2 < oo there is a constank = K(p, N, f, nszrN)vz) such that

geChT?®RY) = [ Augllpran < KIglp.n+2.

(b) UnderH(,1) and ’l}vz < oo, for any (g;) € C%l(Rd x [0, 1]) the functionz — A, g,(x) is continuously
differentiable and its derivative id, g/ (x).

6.4. Expansion of the generators

Observe that we can writé, in a different form. For any’? functiong we put
Lig(y) =g(x + f(x)y). (6.26)
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Then we have for > 1 (recall (6.3)):
Ang(x) =B,(Lyg). (627)

Note that we also haveg(x) = BL,g(0) (see (5.11) and (5.16)). Then und&f(N, p), and similarly to (6.27) it
is natural to setfok=1,..., N + 1:

AW g(x)=BM(L,g). (6.28)
while underG’ ({u,,}, {u),}, p) we set
Ug(x)=¢(Lrg).  Vg(x)=B?L.g(0). (6.29)
SinceBW (g) = Bg(0), we see that
AD =4, (6.30)

Lemma6.8.Let/ =0or/=1andp >0andN € Nandk > 2. Assumed(, N v1) andG"(k—1,(p+ N) v 2).

(a) There is a constark such that

g e CHTFP2RY) = 1AW gl ops1yn < K18l p.ns2ir2-
(b) If (g1) € C,2,k+2’1(Rd x [0, 1]), thent — A® g, (x) is continuously differentiable and its derivatived&) g/ (x).
Proof. We denote byV/ (resp.V}) the rth iterate of the gradient w.r (resp.y). Let g € CYT#T2(R9). We

clearly have for 6<i +r < N + 2k + 2 andr < N and some constark (which varies from line to line in this
proof):

IVIVILg(3)| < Kapyir() (L4 13177 ) gl p.v+2xs2.
Therefore
r=0,....,N = |IViL,gllp+n2c+2 < Kotp 21 (X8l p, N4 2k+2- (6.31)

Then applying Lemma 6.Atimes, withz replaced by the component efw.r.t. which we differentiate, we obtain
that

ViB®(L,yg)=B® (VL) (6.32)

as soon ag < N andG”(k — 1, p + N) holds. In view of (6.28), the properties (6.31) and (6.32) and (6.11)
imply (a).

If further ¢ = g, depends on € [0, 1] in a continuously differentiable way, we can add a derivation w.r.t.
above, and this derivation again commutes witR, hence withA®: so we have (b). O

Remark 6.9. For the genuine Euler schem#e® (¢) = BXL,¢(0). Hence by Lemma 5.7 the above result holds
with ¢ € C) T2 (R?) instead ofg € CYT#+2(R9), and then| A® g|| 121, < K I8l p. N2 -

The same proof, based on (a) of Lemmas 5.7 and 6.4, yields also the following:
Lemma6.10. Let/ =0or/=1andp >0andN € N. Assuméd(/, N v 1) andG'({u,}, {u,}, (p + N) vV 2).

(a) There is a constarnk such that

geChT Y = |Ugllpren < Kliglpnrs.  1Velpran < KlIglp.n-6-
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(b) If (g1) € Cf;”l(IRd x [0, 1)), thent — Ug,(x) andt — Vg, (x) are continuously differentiable and their deriv-
atives ardfg;(x) and Vg, (x).

Lemma6.11. Let/=0o0r/=1,andp > 0,andN € N, and assumeéi(/, N v 1).

(a) UnderG({u,}, (p + N) v 2) there is a constank such that

geCH®RY = ||Aug — Agllpran < Kitnligllpnia.
(b) UnderG’({u,}, {u}}, (p + N) v 2) there is a constank such that

1
Ang—Ag —udg — —Vg

N+6 md
g€C, R = .

1
< K(” Vv )Ilgllp N+6-

p+6l,N
(c) UnderG”(k — 1, (p + N) v 2) for somek > 2 there is a constank such that

A(l)

M»

K
eCYTHPRY) = < —lglp nr2ns2.
n

/!
iz il p+2(k+1),N

Proof. (a) Letg € C;,V+4(Rd). SinceB,, and B commute with derivations we have (as in (6.32))fc£0, ..., N

Vr(Bn(Lxg) - BLxg(O)) = Bn(erxg) - Berxg(O)-

We also have (6.31) with =1, hencel| Vi L, gl p+n.4 < Kapra(x)llgllp, n+4 for r =0,..., N. Then the result
readily follows from (6.4).
(b) Letg € C;,VJFE’(R"). Exactly as above (and using Lemma 6.10) we get

1
v (Bn@xg) — BLyg(0) —un¢p(Lrg) — EBZLxgm))

1
= By(VyLyg) — BV, L:g(0) —un¢(VyLig) — P B?V;L.g(0).

By (6.31) fork = 2, we havel| VL, gl p+n.6 < Kopra (X)lIgllp,n46 fOr r =0, ..., N. Hence the result readily
follows from (6.10).
(c) Letg € CY*#+2(R9). Using now Lemma 6.8, we get

k k

1 ; 1 .
\z (Bn - Bm)(Lxg) = (Bn -> mB“))(V;Lx@

i=1 i=1

and alsa| VL gll p+n,2t+2 < Kt py21e+1) (O NIg Nl p, v 42642 for r =0, ..., N. Then the result follows from (6.11).
O

Now we define the operators which come in the definitioﬂ“&) in the expansion (2.11). We set, as soon as
A® is well defined:

1
Dy = E(A(k) — ARy, (6.33)

Observe thaD; = 0. By combining Lemmas 5.5 and 6.8, we readily get:

Lemma6.12. Let/=0o0r/=1,andp > 0,andN €N, and assumeél(/, N +2k —2) andG"(k, p+ N + 2k — 2)
for somek > 2.
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(a) There is a constank such that
geCYT#2®RY) = |IDiglprakrann < Klglp nr2is.

(b) If (g1) € C§k+2’1(Rd x [0, 1]), thent — Dy g; is continuously differentiable and its derivativelig g;.
6.5. The operator#/,, V; and F,(k)

At this point we can define the operatdrs, V; and E(k) coming in (2.10) and (2.11). Firstj; and V; are
defined as follows:

t t
Uig(x) = / PUP_sg(x)ds,  Vig(x)= f Py(V — A% P,_;g(x)ds. (6.34)
0 0
For 1}(") we start by defining a sequence of numbers by inductiom:on
n+1 dyi1 i
do=1, dooq=— §  2ntik 6.35
0 n+1 ; k + 1)! ( )
Then]“,(q) is defined by induction og, starting Withl}(o) = P;, and setting fog > 1:
(q) rdq—k—r—u \ 94—k (u) r
I"gx) = Z (-1 - Py (I DrgyaPr—s A" g(x)) ds. (6.36)
k=21 u,r20: k+u+r<gq 0
Of course one has to prove that this makes sense; Eot, the previous equation takes a simpler form:
1
r®g) = / PDoP,_,g(x)ds, (6.37)

0

More generally, the right side of (6.36) involves the operalt)ﬁ’g fori =0,...,q9 — 1, so this formula is indeed
an induction formula.

In order to give a precise meaning to the previous formulas, we need some prerequisifes.1 ahdn, g > 2.
if it is the composition (in ei.r'l"arbitrary order) of the operatéys_,,,, andj operatorsDy, with 2 <k; < ¢, and;’
times the operatod, with j' + k1 +--- +k; =n.
Lemma®6.13.Let/ =0or/=1,andp > 0,andj > landn,q > 2. LetQ,, ..,
AssumeH (I, N) andG” (¢, N + N v p) for someN.

«, b€ an operator of type An, j).

(@) If N > 2n + 2j there is a constank such that

geCY®) = Quy.ungllprams . n-20-2 < Kligllp.n-

(b) If N>2n+2j+ 2 then(uy, ..., un) = Qu,,..u,8(x) is continuously differentiable, and any one of the
partial derivatives is the action ovegrand at pointx of a linear combination of operators of typg ¢ + 1, j),
containing exactly the sam@,'s as Q,,, ... ,,, does.

Proof. Q... u, is aproductRsB;Rs_1B,_1 ... RiB1Ro, where eaclr; is eitherP,, or P,,_,, , or the identity,

and eachB; is either someDy, (we then sek; = k; + 1), or A (we then sek; =k = 1), withky +--- +ky=n
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and 2< k; < g if B; = Dy,. We write Ty = By Riy—1Bi—1... R1B1Ro, and alsor; =k} + --- + k;. Observe that
n+ j =rs. Below, the constank will change from line to line.
Then apply repeatedly Lemmas 5.2(b), 5.4(a) and 6.12(a):ﬁ55$endscf,\’ (R4) continuously intoCQ’ (R9);

thenTy = B1Rg sendsCN(R") continuously |ntoCN+22,2 (R%) becauseV + N V p > p + (N — 2r7).

Suppose thaf; sendsC}) (R¢) continuously |nt0CN;2212" (RY). If i <s, thenR, Ty sendsC) (RY) continuously

into CII,\’+221” (R?) as well by (5.4), because2(N — 2r; + (N —2r;)) V (p+2lr;)) < N+ N Vv p; and ifi < s, then

Tit1= Bi 1R T, sendsCN(]Rd) continuously |nt0Cp+2]r’+1(Rd) by Lemmas 6.12 or 5.4. Sina@,,....u, = RsT;
andn + ] = Vs we flna”y get” Qul,...,umgl|p+21(n+j),N n-2j X K”g”p,N-
For (b) we can apply repeatedly (5.14): with the notation above, only the opeRtbes/e to be differentiated

w.r.t. some given:;. Assume thal®; = P,; ., , (resp.= Py, ;). Then we differentiater; applied to7;g,
which is incN 2 '(RY), so we need (p + 2r; + 2I), which holds becauser2+ 2 =2n +2j < N, and the

p+2r;
differential isAR; T;g (resp.—AR;T;g), which belongs t(fNJrzfj’ +21(Rd) then we have to check that this dif-

ferentiation commutes with the action &f B; ... B;;1: for this we use Lemmas 5.4(b) or 6.12(b) and we need
N > 2n 4 2j + 2. Hence the partial derivative @, ... 4, g(x) W.r.t. u; is the sum, over all such thatr; is as
above, of the same operator except that we introduce an additional opérater A at thei’th place. O

In a similar way, but with the help of Lemma 6.10, we get:

Lemma6.14. Let/ =0or/=1,andp >0,andN > 6. LetQ, , = P,UP,_; or Q;, = Py(V — A®) P,_,. Assume
H(, N) andG'({u,}, {u),}, N + N Vv p) for someN.

(a) We have a constark such that

geCl®RY = 1Qsglpren-6<Kligllpn-

(b) If N > 8, thens — Q;,g(x) is continuously differentiable, and its derivative is the action ayemd at a
point x of an operator which senc@N(Rd) into C (Rd)

Lemma6.15. Let N >6and/=0o0r/=1andp >0, and assumei(/, N).

(@) UnderG’({u,}, {u,,}, N + N Vv p) there is a constank such that
gGCf,V(Rd) = |Uigllp+ein-6< Ktllgllp.n, 1Vigllprein—6 < KtlgllpN-

(b) UnderG”(g, N + N v p) for someg > 1 and N > 64 the formula(6.36) defines an operatoF,(q) on C;}’,
and there is a constark such that

geCYRY = 159l praq.v-6 < Ktliglp.y-

Proof. (a) is obvious (because of the previous lemma), so we concentrate on (b). In all the proof we assume
H(, N)andG"(¢ +1, N+ N v p) with N > 64, andr ranges througl, ..., ¢ + 1}. Here agairk changes from
line to line.
(1) An operatorR; , is said to be “of type B(n, j)” if its action overg is a linear combination of terms of the
form

Um—-1

/dul / dum Qul,‘..,um,l,vg(x) (638)
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(whenm = 0 this is justR, = Q,), where eactQ,,. . u,...v iS Of type A.(n’, j') for somen’ < n andj’ < j. Of
course, the second argumentnay be lacking, and then we just wrifg.
If R, is of type B, (n, j), the previous lemma readily gives, for any 0:

N=2n+2j, geCl®Y) = |Riugllpramtp.N-20-2] <Ktlglpn. (6.39)

Next, if we formally differentiate the expression (6.38), $&y, g(x), we get

t Um—1
0 d
_nt,vg(x) = dul dum _Qul,...,um,t,vg(x)a
av av
0 0
t Um—1 t Un—1
d d
Ent,vg(x) = dMl dum EQul ..... um,t,vg(x) + dMZ dum Qt,uz ,,,,, um,t,vg(x)~
0 0 0 0

Therefore the second part of the previous lemma gives us for any op&ataf type B.(n, j):

N>2n+42j+2, geC) ®RY) = (t,v)~ R, ,g(x)is continuously
differentiable, and its partial derivatives are the action @ver (6.40)
and at pointc of another operator of type, Bz + 1, j).

Two other trivial facts are as follows:

t
R, ,isoftypeB,(n,j) = R, =/RS,,ds is of type B, (n, j). (6.41)
0

R, is of typeB, (n, j) andQ; , is of typeA,(n’, j) = R,;Q;,isoftypeB,(n+n',j+j). (6.42)
(2) Now we prove by induction om that
;"™ is of type By, 1(2m, m) (6.43)

forallm=1,...,q. Observe that this is true fat = 1, in an obvious way, by (6.37).

Let us assume that (6.43) holds forall < m — 1, for somen between 2 ang. In order to prove (6.43) far,
and in view of (6.36), it is enough to prove that for any: 1 andi, w, r > 0 with i + k + r + w = m, then the
operator

t .
L :
R = / E(EJWD,(HPt_SAr)ds is of type By, +1(2m, m) (6.44)
0

(recall thatl}(o) = Py). For w > 1 our induction hypothesis yields tha‘g(w) is of type B,+1(2w, w), hence
I“S(w)DkHP,_SA’ is of type Brivw(Rw + k +r + 1, w + 1) by (6.42); and the same is obviously true when
w = 0. Therefore (6.40) applied repeatedly and (6.41) imply that, provied6w + 2k + 2r + 2i + 2, thenR,
is of type Biyxvw(Pw +k+r+i+ 1w+ 1). Since the maximaob (resp. v +k+r+i+1=m+w+1,
resp. v + 2k + 2r + 2i + 2) over our possible choices b, k, i, r) are achieved simultaneously and are equal to
m — 1 (resp. 2z, resp. @ — 2), and sincé v w < m, we deduce fronV > 6m — 2 that indeed (6.44) holds: hence
we get (6.43) whenever < g.

At this stage, (6.43) witlm = g and (6.39) gives the result.0
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7. Proof of Theorem 2.1

Letussetfom >1andj=1,...,nandi =0,...,:

Bn.i,j8(xX) = P/}, P(j—ir/mg(x),
and alsofoi =1,..., j

Vn,i,jg(x) = ﬁn,i,jg(x) - ,Bn,i—l,jg(x)'
Observe that:

[nt]

An,tg(x) = ,Bn,[nt],[nl]g(x) - .Bn,[nt],Og(x) = Z yn,i,[nt]g(x)- (71)
i=1
Below, we assumel(/,4) for/ =0or!/ =1, and als& ({u,}, 4+ 4V p) for somep > 0 and for some sequence

(u,) decreasing to 0. By Corollary 6.2 we ha)ngvp < 00. We also takeg Cj(Rd). In view of (5.15) for
N =0 and of (6.25), a simple computation shows that

1/n
1
Vnzjg(x)—_ (, 1)/nA P(] z)/ng(x)_/P(I;_l)/nPsAP(j—i)/ng(x)dS- (7-2)
0

Proposition 5.2 and Lemma 6.11 fof = 0 andN’ = 1 and (6.30) yield thaf(A, — A) P:gll p+21,0 < KlIgllp,4
for all r and some constatk . Hence if

1/n
1
yn i /g(x) - (l 1)/nAP(] 1)/"g(x) / P(,tl'—l)/nPSAP(j—i)/”g(x)ds
0

1/n
= / Pi_1y/n(I — P)AP(j—iyng(x) ds, (7.3)
0
wherel denotes the identity operator, then by virtue of (6.23) and (7.1), we clearly have

ntg(x) Zyn[ [n[]g(-x)

i=1

[nt]
’ Ktunap+21(x)||g”p 4. (7-4)

Next we apply (5.15) forNV = 0 again and to the functiop’ = AP(;_;)/»g, Which satisfies||g’|| p42,2 <
K|gll».4 by Proposition 5.2 and Lemma 5.4, to get thid g — ¢'ll 44,0 < KIgllp,4 (uniformly in i and j).
Using also (6.23), we readily deduce that

K
71,80 < —@pra(liglp.a,

and the estimate (2.8) thus follows from (7.4).

8. Proof of Theorem 2.2

Let us state first a (probably) well known lemma, which shows in particular how the congtafté.35) come
into the picture through expansions of some integrals. This lemma is a simple variation on Taylor’s formula and its
proof is left to the reader.
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Lemma8.1. Let M € N, andh be anM + 1 times differentiable function ovg®, 1], whose derivatives of order
0,1,..., M+ 1are all bounded by a constapt Then we have for al € [0, 1]:

e

y  Intl/n

) » —di / h(s)ds| <
n
0

r=0

2Mtp
aM+1

(8.1)

Now we assuméd (/, 10) and G’ ({u,,}, {u},}, 10+ 10V p) for somep O Recall thaw,, andu),/u, go to 0.
Take a functiorg € C3%(R). For simplicity we also writer, = u;, v uZ v .

We still have (7. 1) and (7.2). By Proposition 5.2 and Lemma 6. 11(b) we have for some cangtelnich below
will change from to line) thatf (A, — A — u, U — —V)P,g||p+6,,0 < Kuj gl p,10. Hence, if instead of (7.3) we set

1/n

/ n 1
Vi, j8(X) = / Pi_1y/n (U — POA+unld + EV) Pij=iymg (x) s,
0
by virtue of (6.23) and (7.1), we get

14

u
“atpy61(X) 1€l p.10- (8.2)

Vi, (118 (X) = Vi i a8 )| <

Next we apply (5.15) withV" =0 and N = 1, and Lemma 5.5(b) witlt =2 and N =0, to the function
AP(;_iy/ng, Which satisfies| AP _iy/ngll p+21,4 < K| gllp,10 (by Proposition 5.2 and Lemma 5.4), to get that
|(Ps — I —sA)AP;_iy/ng&llp+e1,0 < Kllgllp,10- Using also (6.23), we readily deduce that if

1/n
1
Vi j8X) = / Pli—1)/n (“nu +o V- SA2) P(j—iy/ng(x) ds
0

1 2
= Pli_1y/n <”nu + T)ﬂj—n/ng(ﬂ,

n

then

K
Vi 018 = % 80| < 5@t (g .20 (8.3)

Next we apply (5.15) again witly = 0, and Lemma 5.5(b) witkh = 1, to get that

K
| Pj—iy/ng — Pj—it+1)/n&llprai6 < —||g||p10

Since by Lemmas 5.5 and 6.8 the operafgrand) — A2 sendC§+21(Rd) continuously intoC2+8, (R%), and
by (6.23), we obtain

4

Y — A2
L apra (0)glp, 10 (8.4)

1
V,ﬁfi,jg(X) - ;P{;_D/,, <unU + )P(j—i+l)/ng(x) <

Next we observe once more that the|| ,+4,4 norms of the functiona/ P;g and () — A?) P, g are smaller than
K| gllp,10: we can apply Theorem 2.1 to these functions and, s'uﬁmd ¥n? are smaller tham!/, we get
n Y — A? V- A?
Pii 1y | und + . Pi—it1y/mn8(x) — Pi—1y/n| unld + o0 Pi—i+1)/n8(x)

< Kuyopis(x)lgllp,10-
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Then putting this together with (7.1), (8.2), (8.3) and (8.4) gives us, with the not@tigs) = PsU P;_;g(x) and
Hyi(s) = Py(V — A®) Pr_sg(x):

1y i—1y 1 W i—1

" _ _

‘An,tg(x)_ z;Gx;[nt]/n< " ) - WXin;[m]/n( " )' gtKu;,/ap+8l(x)”g”p,lO- (85)
1= 1=

It remains to observe that the two functio@s.; and H,., (on the intervall0, r]) satisfy the assumptions of
Lemma 8.1 withM = 0 and for some constapt, by virtue of Lemma 6.14(b). Then with the notation (6.34) we
readily deduce (2.10) from the previous inequality and the factthat < u/,.

9. Proof of Theorem 2.3

The proof of this theorem is similar to the proof of the previous one, except that here we need an induction on
N, after observing that the result faf = 0 is nothing else than Theorem 2.1.

So below we assume that > 1 and thatH(/, 6N + 4) andG(N, 6N + 4+ (6N + 4) v p) hold, and we take
g € CSNT4(R?). We also assume that the expansion (2.11) with a remainder satisfying (2.13) holds for all integers

from O up toN — 1. The claims concerning the operatd?,ék) are in Lemma 6.15, so we concentrate on the
expansion.
We still have (7.1) and (7.2). By Proposition 5.2 and Lemma 6.11(b), and sic¥ 3 6N + 4, we have

N+1 1
(k)

k=1
for all ¢, for some constark’ (which again changes from line to line). Hence, recalling #f&t = A, and if instead
of (7.3) we set

S Vi llgllp,6n+a
p+2/(N+2),0

1/n N+1 1

Vi, j8(X) = [ Pi_1y/n ((1 —P)A+ > i A(k))P(j—i)/ng(x)dS,
9 k=2 '

by virtue of (6.23) and (7.1), we get

K
|Vn,i,[m]8(x) - ]/,:,,-’[m]g(X)| < NT2 op+2N+2) ()18l p6N-+4- (9.1)

Next we apply (5.15) withNV' = 0, to the functionAP;_;),,g: taking advantage of Proposition 5.2 and
Lemma 5.4, we get that

Nk
N
H (PS —1- 5 Ak>AP<j—i)/ng

k=1 "

N+1
< Ks" gl pen+a.
p+2(N+2),0

Using also (6.23) and the notatidp, of (6.33), we readily deduce that if

1/n

N+1 1 N Sk
k k+1
Vi, i) = [ Pﬁl)/n(Z gAY - ZEA i )P(./—D/ng(x)ds
k=2 ’ :

0 k=1

1 Noq
= ;P('f_l)/,, (Z pr3 Dk+1) Pi—iy/ng(x),
k=1
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then

K
|Vini 018 ) = Vi (a8 0| < NP HANA2) ) llglp.en+a- (9.2)
We easily deduce from (5.15) that, under the same assumptions than in Lemma 5.6(b), we have

g(x)-Z( Dt g - / (@2 — )™ ANFLP g(x) . (©.3)

(For checking this, we us®; A* = AXP, and we can replac®, g in the kth summand above by the right side
of (5.15) written forN — k instead ofN and then compute the right side of (6.21); a repeated use of the binomial
formula gives us that this right side equals).)
Coming back to our problem, we deduce from (9.3) that the funatipR —r = g — Zﬁvz‘(,"(—l)"n,%,Pl/nA’g,
for anyk < N, satisfies
K
n, N—kll p+21(N—k+1), 4N +2%+2 < Py gl p.6n-+4.

and so does the functiaf ;. n—k = P(j—iy/n¥n,N—k. HENCE

K
1 PG — 10 Di+19i jn. N—k | pr21(v +2),48 -2 < N1 18llp.6v+a

by Lemmas 6.6 and 6.12, and if
N N—k

(-1
v 8(x) = Z D i Py Dist Pty ATg (1)
k 1 r=0
we get
" " K
|Vn,i,[m]g(x) - Vn,i,[m]g(x)| < Wap+21(N+2) @) lgllp.6n+a- (9.4)

Now we apply the induction hypothesis. Observe that i r < N the functiong’ = Dy;1 P, A" g satisfies
I8 Il p+21Gk+r+1),6N—2k—2r < K Il p.6n+4 DY Lemma 6.12. So our assumptions and the fact tt-6k —r) + 4 <
6N — 2k — 2r (remember that +» > 1) allow us to apply the expansion (2.11) to this function at the order
N — k — r, which gives
N—k—r 1
‘(P(r;l)/n - P(ifl)/n - Z F(u 1)/n>Dk+lP(j z+l)/nA g(x)
u=1
K
< m“erZl(ZNJr&kfr) gl p.6n-+a-
Henceforth, if we sel“(o) = P; and

k,r,u

énljg(x)_ (1 1)/nDk+1P(] l+l)/nA g(x)
forl<k<NandO<r<N-—-kand0<u <N —k—r,then
N N—kN-r—k

K

k

Vo i g(x)——§ D W,ﬂ NI 800 < s v N8l p o 9.5)
k=1r=0 u=0

In other words, if we fix and introduce the functions
Srikrat () =T D1 P ATg(x),




J. Jacod et al. / Ann. |. H. Poincaré — PR 41 (2005) 523-558 557

by putting together (7.1), (9.1), (9.2), (9.4) and (9.5), we obtain

N N—k N—-r—k

(-1 1 -1 Kt
‘ Aprg(x) — ZZ Z nk+r+”r' ngkrut< )‘gWap+4l(N+l)(x)”g”p,6N+4- (96)

k=1 r=0 u=0

Now, by (6.43)g,.x.u.: (s) is the action oveg and at pointx of an operator of type B, vk (2u +k +r + 1,
u + 1). Hence (6.40) applied repeatedly and the fact tha+64 > 22u +k+r+ 1) +2w +1) + 2(N — k —
r —u) for all u, k, r with k > 1 andk + r + u < N show that the functiog,., . . is differentiable up to order
N —k —r —u + 1, with all partial derivatives up to that order being boundedy, . 4;(v+1) (x)1Ig |l p,6n+4- Then
Lemma 8.1 applied tdf = N —k —r — u gives:

[nt]/n
[nt N—k—r—u
Z )= X D[ o] < i
8x:k,ru,t Yy Exikorut WNFLk—r—u 8llp,6N+4-
v=0 0
Injecting this into (9.6) gives
N N—k N—r—k N—k—r—u [nt]/n

(=Ddy 1 ;
I I D DD M- =Tl I RCL

k=1 r=0 u=0 v=0

o

Kt
< SNFT Y HA(NHD @) gl p.en+a-

At this point, it suffices to use the definition (6.36) E,\‘Q) and to reorder the sums above: we readily get (2.11)
and (2.13), and we are done.

Remark 9.1. We can compute “explicitly” the operatorls(k), although this becomes incredibly tedious wten
grows. For example, in the 1-dimensional case-(d = 1), and using (6.37) and the fact that

t

1
Vg0 = [ PDeP g0,
0
wherelT is the following operator:

Dag(x) = —b*(g' f")(x) — b—zc(4g”f2f/ +&' 2 - 6—22(2g/”f3f/ +&" 2+ ¢ A rA )
=bf@ 00 [ F@(E e+ 703)y g 0 0)
—b / Fdy)(g'(x + fy) (f(x + fF@)y) = F(0)) =& @ F ) f(0)T())
~ e @) [ FE(E e+ F@n)y - ' 0rw)

5 P ) / Fdy)(g'(x + £()y)y — ')

5 P00 / F(dy)g”(x+ f()y)y?

5 | F@I (o) (s £ = £00%) = 2800 £ 0P F (e (r)
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_ / F(dy) / Fy)(g(x + £y + F(x+ F0)y) — gl + £y + F()y)

=g (x + QY ) (f(x + £x)Y) = F0))T(y)
— (&' (x+ fD)y)y — g T F ) ' (D)T(R)).

If we are in the compound Poisson case .0 andF(R) < co andb = [ 7(y) F(dy)), we see thaD, P,g =
H, ¢ whereH;, is defined by (4.2), as it should be.

On the other hand, as soon &gt [ t(y)F(dy), and even ifF (R) < oo, then D»g is well defined only un-
derF(1), and we even neel(2) if further ¢ # 0. So, although this is no true proof, it seems quite unlikely that
Theorems 2.2 and 2.3 stay true when we drop all integrability assumption on the juniipseeén wheng is
bounded.
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