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Abstract

Let H4, Ho be finite dimensional complex Hilbert spaces describing the states of two finite level quantum systems. Suppose
pi is astate i;, i =1, 2. LetC(p1, p2) be the convex set of all statesin H = H1 ® Ho whose marginal states iH4 and
‘H, arep1 andpy respectively. Here we present a necessary and sufficient criteriorpfor @(p1, p2) to be an extreme point.
Such a condition implies, in particular, that for a state® be an extreme point @(p1, p2) it is necessary that the rank pf
does not exceegi? + d5 — 1)%/2, whered; = dim;, i = 1, 2. WhenH; and’; coincide with the 1-qubit Hilbert space?

with its standard orthonormal bagi®), |1)} andpy = p2 = 31 it turns out that a state € C(51, 31) is extremal if and only

if p is of the form|$2)(§2| where|2) = %(IO)WO) + D) |¥1), {|¥o), [¥1)} being an arbitrary orthonormal basis©f. In

particular, the extremal states are the maximally entangled states. Using the Weyl commutation relations in lr%(apaxte
a finite Abelian group we exhibit a mixed extremal stat€ig 7,,, ”izlnz).
0 2005 Elsevier SAS. All rights reserved.

Résumé
SoientH et’Ho des espaces de Hilbert complexes de dimension finies décrivant les états de diaes gysintiques. Soient
01, p2 deux états sut{, et Ho. Soit (p1, p2) le convexe formé par les états sk ® Ho induisantp; et po. L'objet de ce
travail est de donner un critére nécessaire et suffisant pour qu’ungpdeite convexe soit extrémal. Une condition nécessaire
est que le rang de nexcéde pasdf + d% —1¥2;0u d; = dim™;. LorsqueH; et’H, sont 'espac&? avec sa base standard
{|0)|1)} et quepy = po = —1, les états extrémaux sont caractérisés. Une exemple d'état extrémal mélangé est donné dans
cir, L1
0 2005 Elsevier SAS. All rights reserved.
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1. Introduction

One of the well-known problems of classical probability theory is the determination of the set of all extreme
points in the convex set of all probability distributions in a product Borel spEce Y, F x G) with fixed marginal
distributionsi andv on (X, F) and (Y, G) respectively. Denote this convex set BYu, v). WhenX =Y =
{1,2,...,n}, F =G is the field of all subsets ok andu = v is the uniform distribution then the problem is
answered by the famous theorem of Birkhoff and von Neumann [1,2] that the set of extreme points of the convex
set of all doubly stochastic matrices of ordeis the set of all permutation matrices of orderProblems of this
kind have a natural analogue in quantum probability. Supf@osandH> are finite dimensional complex Hilbert
spaces describing the states of two finite level quantum sysfemsd S, respectively. Then the Hilbert space of
the coupled systerfii2 is H1 ® Ho. Suppose; is a state ofS; in H;, i = 1, 2. Any statep in S12 yields marginal
states Ty, p in Hy and Thy, p in Ho where Try, is the relative trace ovéil;. Denote byC(p1, p2) the convex set
of all stateso of the coupled systersy > whose marginal states i1 andH2 arep1 andp, respectively. One would
like to have a complete description of the set of all extreme point¥ of, p2). In this paper we shall present a
necessary and sufficient criterion for an elemeimt C(p1, p2) to be an extreme point. This leads to an interesting
(and perhaps surprising) upper bound on the rank of such an extremap statkeed, ifp is an extreme point of
C(p1, p2) then the rank op cannot exceeddf + d22 — 1)¥2 whered; = dimH,. Note that the rank of an arbitrary
state inH; ® Hy can vary from 1 talydz. WhenHy = Ha = C2, {|0), |1)} is the standard (computational) basis
of C2 andpy = po = 31 it turns out that a state in C(31, 31) is extremal if and only ifo has the form2)(s2|
where|2) = %QO)WO) + 1) y¥1), {Ivo), |¥1)} being any orthonormal basis 6. These are the well-known
maximally entangled states.

A major part of this work was done by the author during his visit to the University of Greifswald during 17 June—
16 July under a DST (India)-DAAD (Germany) project between the Indian Statistical Institute and the mathematics
department of the University of Greifswald. The author is grateful to these organisations for their generous support.
The hospitality extended by the colleagues of the Quantum Probability group in the University of Greifswald and,
particularly, Michael Schurmann is gratefully acknowledged. The example of Section 4 was constructed during
the author’s visit to the University of Nottingham during 13—25 August, 2003 when he enjoyed the hospitality of
R.L. Hudson and J.M. Lindsay. Finally, the author expresses his thanks to Mr. Anil Shukla for his help in texing
the manuscript.

2. Extreme points of the convex set C(p1, p2)

In the analysis of extreme points in a compact convex set of positive definite matrices the following proposition
plays an important role [7]. See also [3,4] and [6].

Proposition 2.1. Let p be any positive definite matrix of orderandrankk < n. Then there exists a permutation
matrix o of ordern, ak x (n — k) matrix A and a strictly positive definite matriX of orderk such that

-1 K KA
opo = [ﬁﬁ} 2.1)

If, in addition, p = %(p’ + p”) wherep’ and p” are also positive definite matrices then there exist positive definite
matricesK’, K" of orderk such that

# #
s 1| _K* | K*A
e = |:ATK# ATK#A] ’ (22)

where# indicates’ and /.
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Proof. Choose vectors; e C"*,i=1,2,...,n, such that

p=(((wilu;))), i,je{l,2....,n}.
Since rankp = k, the linear span of all the;’s has dimensiort. Hence modulo a permutatieanof {1, 2, ..., n}

we may assume thaty, uo, ..., u; are linearly independent and
Uiyj =aijul+azjuz + - +agjug, 1<j<n—k (2.3)
Putting

K = ((uiluy))), i,jel 2.k,
A=((aij), i=12,....k; j=12,....n—k,

and denoting by the same letier the permutation unitary matrix of ordercorresponding t@ we obtain the
relation (2.1). To prove the second part we express

oot | KL KA | _1[ KBy | 1]K'|B,
Po = aTk[aATka |~ 2| Bl|cy | T 2| Bl|c,

where the two partitioned matrices on the right-hand side are the madries® andop”o ~1. Now construct
vectorsv;, w;,i =1, 2, ..., n, such that

op'oct=(((vilv)))), i,jell2...,n}, (2.4)
ap//cr_lz(((wi|wj))), i,je{l,2,...,n}. (2.5)
Let |0), |1) be the standard orthonormal basist Define

1
|¢i>=ﬁ(|vf>|0>+|wi>ll>), 1<i<n. (2.6)

Then we have
1 ..
(pilo;) = §(<vi|vj) + (wilw;)) = (w;|u;) foralli,je{1,2,...,n}.
Thus the correspondeneg — ¢, is an isometry. Hence by (2.3) we have
Oryj=a1j@1+azj@o+ - takjor, 1<j<n—k
Substituting for thep;’s from (2.6) and using the orthogonality (i) and|1) we conclude that

k
|Vitj) = Zaiﬂvi), (2.7)
i=1
k
|wij) = Zaij|wi>~ (2.8)
i=1
Putting

K =(((vilv)), i,jell2,... k),
K" = (((wilw))), i,je={12...,k},

and substituting (2.7) and (2.8) in (2.4) and (2.5) we obfin= K'A, C1 = ATK’A, Bo= K"A, Co = ATK"A.
Thus we have (2.2). O



260 K.R. Parthasarathy / Ann. |. H. Poincaré — PR 41 (2005) 257-268

Let H1, H2 be two complex Hilbert spaces of finite dimensién d> and equipped with orthonormal bases
ler, e2,....ea}, {f1, f2. ..., fa,} respectively. Consider the tensor prod@tt= H; ® Hz equipped with the
orthonormal basig;; = e; ® f; with the ordered pairs;j in the lexicographic order. For any operatoron H we
associate its marginal operatdfsin H; by putting

X1=Try, X, Xo=Try, X

where Try, stands for the relative trace ovef;. If p is a state or#, i.e., a positive operator of unit trace, then
its marginal operators are statestfy and’>. Now we fix two stateg; andp2 in H; andH2 respectively and
consider the compact convex set

C(p1, p2) = {p | p a state orH{ with marginalsp; andps in H1 andHa2 respectively
in B(H). LetE(p1, p2) C C(p1, p2) be the set of all extreme pointsdp1, p2).

Proposition 2.2. Let p € £(p1, p2). Thenp is singular.

Proof. Supposep is nonsingular. Choose nonzero Hermitian operafgrén H; with zero trace. Then for all
sufficiently small and positive, the operatorg + ¢L1 ® L, are positive definite. Since the marginal operators of
L1 ® Lo are 0, both of the operators+ ¢ L1 ® L2 belong toC(p1, p2) and
1
p= E(('O +eL1®L2)+ (p—eL1® L2))
andp is not extremal. O

Proposition 2.3. Letn = d1d>, p € C(p1, p2), rankp = k < n and leto be a permutation of the ordered ba$§,j}
of H such that

1 K KA
opo = [ﬁﬁ} (2.9)

whereK is a strictly positive definite matrix of ordér Then, in order thap € £(p1, p2) it is necessary that there
exists no nonzero Hermitian matrix of orderk such that both the marginal operators of

L] LA
o |:ATL ATLA:|G (2.10)

vanish.

Proof. Suppose there exists a nonzero Hermitian mdtrdf orderk such that both the marginals of the operator
(2.10) vanish. Sinc& in (2.9) is nonsingular and positive definite it follows that for all sufficiently small and
positivee, the matricek & ¢L are strictly positive definite. Hence

_L a| K telL | (K+el)A o] K=eL | (K —eL)A
P=3 AT(K +eL)|AT(K +eL)A 7 | AT —eD)[AT(K —eD)A |

where each summand on the right-hand side has the same marginal operatdfaréisermore

[ K+el | (K+el)

I
ATk £eL)|AT(K igL)A} = [ﬁ}(lf +eL)[I|A]>0.

Thusp is not extremal. O
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Corollary. Letp € E(p1, p2). Thenrankp < ,/d? +d3 — 1.

Proof. Let rankp = k. By Proposition 2.2k < n. Sincep is a positive definite matrix in the basig;;} such that

opo~1 can be expressed in the form (2.9). The extremality afplies that there exists no nonzero Hermitian
matrix L of orderk such that the matrix (2.10) has both its marginals equal to 0. The vanishing of both the marginals
of (2.10) is equivalent to

4| L | LA
Tro l|:ATL ATLA]O'(X1®I(2)+I(1)®X2)=0 (2.11)

for all Hermitian operators; in ;, I”) being the identity operator i#;. Eq. (2.11) can be expressed as

I
TrL[|Ale (X1 0 1@ + 1V @ xz)a—l[A_"T} =0.

In other wordsL is in the orthogonal complement of the real linear space

1
D= {[lk|A]a<X1 RIP+ 1V g xg)al[A—’;}

X; Hermitian inH;,i =1, 2},

with respect to the scalar produ@|M) = Tr LM between any two Hermitian matrices of orderThus the
extremality ofp implies thatD = {0}. The real linear space of all Hermitian matrices of ordbas dimension?.
The real linear space of all Hermitian operators of the farn® 1 @ + 1Y ® X5 isd?+ds — 1. Thusk? = dimD <
d?+d3-1. O

Proposition 2.4. Let p € C(p1, p2), k,0, K, A be as in Propositior2.3. Suppose there is no nonzero Hermitian
matrix L of orderk such that both the marginal operators of

ool L | LA |
ATL|ATLA
vanish. Them € £(p1, p2).
Proof. Supposep ¢ £(p1, p2). Then there exist two distinct statg§ p” in C(p1, p2) such that
1

p= E(p/ +0", o' #p"
Since rank = k it follows from Proposition 2.1 that there exist positive definite matrikésk” of orderk such
that

soto—1_ K# | K*A

PO T ATK ATk A

where(p*, K¥) stands for any of the three paifs, K), (o', K'), (0", K"). Sincep’ # p” and hencerp'c 1 +

op”o~Lit follows that K’ # K”. PuttingL = K’ — K” # 0 we obtain a nonzero Hermitian matrixof orderk

such that both the marginal operators of

ot L | LA |
ATL|ATLA
vanish. This is a contradiction.O

Combining Proposition 2.3, its corollary and Proposition 2.4 we have the following theorem.
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Theorem 2.5. Let’H1, H2 be complex finite dimensional Hilbert spaces of dimengiow, respectively. Suppose
C(p1, p2) is the convex set of all statgsin H = H; ® H2 whose marginal states i, and Ha are p1 and p2
respectively. Lefe; }, { f;} be orthonormal bases fdt1, H respectively and leg;; =e; ® f;,i =1,2,...,d1;
j =12, ...,ds be the orthonormal basis 61 in the lexicographic ordering of the ordered paits In order that

an elemenp in C(p1, p2) be an extreme point it is necessary thatraskk does not exceeg d12 + d22 —1. Leto
be a permutation unitary operator i, permuting the basifg;;} and satisfying

| k| ka
Pe =1 ATk ATk A

whereK is a strictly positive definite matrix of ordér. Thenp is an extreme point of the convex §&p1, ) if
and only if the real linear space

1 e
D= {[IklA]o(Xl RI?+1Vg X2)01|:F:| ‘ X, Hermitian in;, i = 1, 2}
coincides with the space of all Hermitian matrices of order

Proof. Immediate from Proposition 2.3, its corollary and Proposition 24.

3. Thecase H1=Ho=C?

We consider the orthonormal basis

in C2 and write
lxy)=x)®|y) forallx,ye{0,1}.

Theney = |00), e2 = |01), e3 = |10), e4 = |11) constitute an ordered orthonormal basis@3r® C2. For any state
o in C2 ® C? define

Ky (e, 9), (', 9)) = (xylplx’y),  x,y.x",y €{0,1}. (3.1)
If p has marginal states, po then

Kp((x» 0)5 (x/’ O)) + Kp((xa 1)’ (x/’ l)) = <x|,01|.x/>, (32)

K,((0,y),(0,y)) + K,((L, y), (L, y)) = (ylp2ly’) (3.3)

for all x, y, x’, y’ in {0, 1}. If p is an extreme point of the convex s&tp1, p2) it follows from Theorem 2.5 that
the rank ofp cannot exceed/7. In other words, every extremal stgt€in C(p1, p2) has rank 1 or 2. When
p1 = p2 = %I we have the following theorem:

Theorem 3.1. Let H1 = Ho = C2. A statep in C(%I, 17)is an extreme point if and only jif = |£2)(£2| where
1
1£2) = EOO) ® o) +11) ® [¥1)).

{Ivo), |¥1)} being an orthonormal basis @?.
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Proof. We shall first show that there is no extremal sfate rank 2 inC(%I, 17). To this end choose and fix a state
p of rank 2inC(31, 31). Then the right-hand sides of (3.2) and (3.3) coincide Vjith,» and 38, respectively
and in the ordered basfs;, 1 < j < 4} the positive definite matriX, of rank 2 in (3.1) assumes the form

5 lx y Z
x i—a t —y
K,=| "_ 2 3.4
S (54
=y x5

forsome 0<a < 1,x,y,z,t € C. The factK, has rank 2 implies that one of the following three cases holds:
(1) [“;2 (1:; , /2] is strictly positive definite;

) [a§2 (1_Z) /2] is strictly positive definite;

@3) [x2=yl> = “L2 and one of the matrice[gé2 a2} [(1_?)/2 (1_;)/2] is strictly positive definite.

We shall first show that case (3) is vacuous. We assume that

1— 2
|x|2:|y|2:a(Ta), |z|2<%, rankk, = 2. (3.5)
Conjugation by the unitary permutation matrix corresponding to the permutation (1)(24)(3) brings (3.4) to the form
[ 4z |y «x
~ o
‘a2 | YT (3.6)
= l-a £ ’
yox|T7z 1
| y] o B
with rank 2. By Proposition 2.1 this implies that
[l-a 7 t
2 1 } =ATKA (3.7)
L 2
where
a
A:Kl[y_ x-] K:[% ﬁ]. (3.8)
—X -y Z 3

Puttingx = ¥40=4) g0,y = ¥4C=9 de substituting the expressions of (3.8) in (3.7) and equating the 11-entry of
the matrices on both sides of (3.7) we get

2
=0

a .
—+4z e_|(9+(ﬂ)
b

and thereforéz|2 = “742, a contradiction.

2 . . .
The caset|? < @’Ta) is dealt with in the same manner.
Now we shall prove thap is not extremal. Express (3.4) as

K | KA
Ko= |:ATK ATKA:| (39)

K:[z 1’;}, A:K—l[f Z] (3.10)
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1—
_ed-a) n D _xp?
This implies the existence of a unitary matfixsuch that

Kl/ZA — dl/ZUK_l/Z.

ATKA=dKk™Y, d > 0. (3.11)

From (3.10) we have

[f _Zy } =KA=d"?kY2uk-12

Hence TV = 0. SinceU is a unitary matrix of zero trace it has the form
U=e€’v
whereV is a selfadjoint unitary matrix of determinantl. In particular
A=dY?ok2y g-1/2 (3.12)

whereV is selfadjoint and unitary. We now examine the linear space

1
D= {[12|A](X1 RL+1L® Xz)[A—'i]

X; is Hermitian for eachi}. (3.13)

In the ordered basi;, j =1, 2,3, 4]} itis easily verified thal(; ® I> + I1 ® X, in D varies over all matrices of
the form

X+ph| rb y
- X Hermitian,p,qg e R, r € C}.
” Pl |X+ql P4

Thus
D={X+AXA"+rA"+7A +gAAT + pI | X Hermitian,p, g¢R, r € C}.

We now search for a Hermitian matrix of order 2 inD with respect to the scalar product|X,) = Tr X1X>
for any two Hermitian matrices of order 2. In other words we search for a Herniitsatisfying

TrL=0, TrLK Y2vkY2=0, (3.14)
TrL(X +dK Y2y Kk—Y2xKk-12yk-12) =0 '
for all Hermitian X. (Here we have substituted fdrfrom (3.12).)
Note thaty/d K ~Y/2V K ~%/2 = B is a Hermitian matrix of determinant1. Thus (3.14) reduces to
TrL=0, TrLB=0, L+ BLB=0. (3.15)

The matrixB can be expressed as
B=wDW'

whereW is unitary and

D=|:a 0 i| a > 0.

0 —at
Then for any¢ € C the Hermitian matrix
_wt| 0 &
L=W [é 0] w

satisfies (3.15). In other word3" = {0} and therefore the linear spaBain (3.13) is not the space of all Hermitian
matrices of order 2. Hence by Theorem 2.5, the staitenot extremal.
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Thus every extremal stajein C(%I, 11)is of rank 1. Such an extremal statéhas the form

p=12)(2]
where
12)= > aylxy),
x,yef{0,1}

2
> laxyP=1.
X,y

The fact that|$2) (2| has its marginal operators equal%dﬁ implies that((axy)) = \ifz((uxy)) where((uxy)) is a
unitary matrix of order 2. Putting
1

D ugyly) =19)

y=0
we see that
1
£2)=—(|0 1 3.16
[£2) ﬁ(l Vo) + 1)) (3.16)

where{|0), |1)} is the canonical orthonormal basisi® and{|vo), |¥1)} is another orthonormal basis@? (which
may coincide with{|0), |1)}). Varying the orthonormal basi$yo), |¥1)} of C2 in (3.16) we get all the extremal
states o€(31, 31) as|2)(2|. O

4. An example of a mixed extremal statein C(,—lll,,, nizlnz) which isalso nonsepar able

Let A be a finite additive Abelian group of cardinality addition operationt and null element 0. Choose and
fix a symmetric bicharactef,-) on A x A satisfying

(a,b) = (b, a), [(a,b)| =1,
(a,b+c)={a,b)(a,c)

for all a, b, c € A. Denote byH the Hilbert space.?(A) with respect to the counting measuredrand consider
the orthonormal basis:

la) =11, a€A,

where the right-hand side denotes the indicator function of the sing{ejdn A. Define the unitary operatots,,
Vp in 'H by

Uale) =la +c),
Vle) = (b, c)lc)
foralla, b, cin A. Then we have the Weyl commutation relations
UUy=Usrp, VVpo=Vyyp, VpU,={a,b)U,V, foralla,beA.
Put
Wy=U,Vp, x=(a,b)e A xA.
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Then the family{W,} is irreducible and
Trwlw, =ns,,.
In particular{%wx, x € A x A} is an orthonormal basis in the Hilbert spag¢) of all operators ori with the
scalar product
(X|Y)=Trx'y, X,YeBH).
Define the operator matrix

1 ot
P:;[Wny], X, yEA XA, (4.2)

of ordern? with entries fromB(H). ThenP = PT = P2 and TrP = n, when P is considered as an operator in
H ® K wherekC = L2(A x A). Thus P is a projection of rank in ann3-dimensional Hilbert space. Define the
state

1
po=—P. (4.2)
n

Theorem 4.1. pg is an extremal state in the convex s’e% Iy, n—lzl;c) wherely; and I are the identity operators
in H and K respectively. Furthermore, in the range @f there does not exist a nonzero product vector of the form
u® f,ueH, fek.

Proof. Observe thapg can be expressed in the block form

11yl B
P~ %3 | B(BTB

whereB = [W,, x € A x A, x # 0] and rankpg = rankl); = n. Now consider a Hermitian operatérin H and

put
o | L | LB
L=\ BtL|BTLB |

Suppose that the relative tracesgfin H andK vanish. This would, in particular, imply
TrLW,=0 forallxc A® A.
Since the family{%wx,x € A x A} is an orthonormal basis iB(H) it follows that L = 0. In other wordsog

satisfies the conditions of Proposition 2.3 and therefgris an extreme point of the convex ﬁt% Iy, n—lzl,c).
To prove the second part, suppose that there exists a nonzero producta®@cton the range ofg. It follows
from (4.1) and (4.2) that

Pu@ f=u® f
or equivalently
n—lz > fOWyu=fx)Weu forallxeAxA.
yeEAXA
Thus the right-hand side is independenkaind therefore
F@)Wyxu = f(0,0)u.

Sinceu ® f # 0 it follows that £ (0, 0) £ 0 and thereforg (x) # O for everyx € A x A. ThusCu is a 1-dimensional
invariant subspace for the irreducible famfly/,., x € A x A}. This is a contradiction. O
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Remark. The last part of Theorem 4.1 implies that the stages not separable in the sense tlwgtcannot be
expressed a}_; p;o; ® Bi, wherei runs over a finite index se, {p;} is a probability distribution or$, {«;} and
{B;} are families of states it andK respectively (see [5]).

Theorem 4.2. Let H, K be Hilbert spaces of dimensiam, n respectively and lep be a state ir{ ® K such that
peC(EIy, Lik). Then
S(p) = llogm — log, n|
whereS(p) denotes the von Neumann entropyofn particular,
max(m, n)

rankp > — .
= min(m, n)

Proof. Consider a spectral decompositionmin the form
k
p=Y pil;)2l
j=1

where({|£2;), 1< j <k} is an orthonormal set angp;, 1< j < k} is a probability distribution withp; > 0
for every j. In particular, ranko) = k. Let {le,), 1 <r <m}, {|fs), 1 <s < n} be orthonormal bases iH,
respectively. Define
. 2
P(j.r.s)=pjlier ® f5l2))|".

ThenP(., -, -) can be viewed as a joint probability distribution of three random variablé§ Z assuming values
inthe setd1,2,...,k},{1,2,...,m}, {1, 2,...,n} respectively. Using the symbdal for the Shannon entropy as
well as conditional entropy for random variables assuming a finite number of values we have

HXYZ)=HY)+ HXZ|Y)=H(Z)+ H(XY|Z).
By the hypothesis om we conclude that and Z are uniformly distributed in1,2,...,m} and{1,2,...,n}
respectively. Thus we get

log,m —log,n=H(Y) — H(Z) = H(XY|Z) — H(XZ|Y)

SH(XY|Z) < HX|Z) < H(X) = S(p).

Interchanging? andZ in this argument and combining the two inequalities we get

S(p) = llogym — logy .
This completes the proof of the first part. We have

k

S(p)=—Y_ pjlog, p; <logy k
j=1

which yields the second part.0

Remark. It is interesting to note that, in view of Theorem 4.2, the extremal stat®nstructed in Theorem 4.1 is,
indeed, of minimal rank.

We conclude with an example which is of some interest, particularly, in the context of Theorems 3.1 and 4.1
with n = 2 which cover the case®’ ® C? andC? @ C*.
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Example 4.3. Let H = C2, K = C2 with labeled orthonormal basé), |1)}, {|0), |1), |2)} respectively. Suppose
00 = %P where P is the 2-dimensional projection iH ® K onto the span of|00) + [11) +i|12), |10) + |01) —
i102)}. Using the ordered orthonormal bagie0), |10), |01), |11), |02), |12)} in H ® K and looking upor{ ®
asC2 @ C2 @ C2, P can be expressed as a block matrix:

1 L o1 |02
P==| o1 I |i

3 1 -2 o3

o2|—loz| I

whereo;, i = 1,2, 3, are the 2x 2 Pauli matrices. Since the trace of any Pauli matrix is O it follows Hyat
C(%Iz, %13). It is straightforward to verify that there is no product vector in the rang®.oThus pg is a mixed
entangled state with both the marginals having maximum entrofdy.idfa 2x 2 Hermitian matrix such that the
marginals of the operator

L | Lop | Lo

Tr = | o1L|o1Lo1|o1Lo?

o2L|o2Lo1|0o2L0o2

in H andkC are 0 then it follows that TE = Tr Loy = Tr Loz = Tr Loz = 0 and thereford. = 0. By Proposition 2.4
it follows that pg is an extremal state i6i( 2, §/3). By Theorem 4.2po has minimal rank.
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