

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 336 (2003) 549-554

Group Theory

A Wilson group of non-uniformly exponential growth Un groupe de Wilson de croissance exponentielle non-uniforme

Laurent Bartholdi

Department of Mathematics, Evans Hall, U.C. Berkeley, USA
Received 11 December 2002; accepted 26 February 2003
Presented by Jacques Tits

À Rostislav I. Grigorchuk à l'occasion de son cinquantième anniversaire

Abstract

This Note constructs a finitely generated group W whose word-growth is exponential, but for which the infimum of the growth rates over all finite generating sets is 1 – in other words, of non-uniformly exponential growth.

This answers a question by Mikhael Gromov (Structures métriques pour les variétés riemanniennes, in: J. Lafontaine, P. Pansu (Eds.), CEDIC, Paris, 1981).

The construction also yields a group of intermediate growth V that locally resembles W in that (by changing the generating set of W) there are isomorphic balls of arbitrarily large radius in V and W's Cayley graphs. To cite this article: L. Bartholdi, C. R. Acad. Sci. Paris, Ser. I 336 (2003).

© 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Cette Note construit un groupe W de type fini dont la croissance des boules est exponentielle, mais pour laquelle l'infimum des taux de croissance vaut 1 – en d'autres termes, W est de croissance exponentielle non-uniforme.

Ceci répond à une question de Mikhael Gromov (Structures métriques pour les variétés riemanniennes, in : J. Lafontaine, P. Pansu (Eds.), CEDIC, Paris, 1981).

Cette construction donne aussi un groupe de croissance intermédiaire V ressemblant localement à W dans le sens que (en changeant le système générateur de W) des boules de rayon arbitrairement grand coïncident dans les graphes de Cayley de V et W. Pour citer cet article: L. Bartholdi, C. R. Acad. Sci. Paris, Ser. I 336 (2003).

© 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.

Version française abrégée

Considérons le groupe $A = \mathsf{PSL}(3,2)$ agissant sur le plan projectif à sept points P. Ce groupe est engendré par trois involutions $x = (1,5)(3,\mathbb{Z}), \ y = (2,3)(6,\mathbb{Z}), \ z = (4,6)(5,\mathbb{Z})$. On fait agir à droite deux copies A, \bar{A} de A sur l'ensemble P^* des suites finies d'éléments de P de la façon suivante :

E-mail address: laurent@math.berkeley.edu (L. Bartholdi).

$$(p_1 p_2 \dots p_n) a = (p_1 a) p_2 \dots p_n,$$

$$(p_1 \dots p_m p_{m+1} \dots p_n) \bar{a} = \begin{cases} p_1 \dots p_m (p_{m+1} a) p_{m+2} \dots p_n, & \text{si } p_1 = \dots = p_{m-1} = 1, \ p_m = 2, \\ p_1 \dots p_m p_{m+1} \dots p_n, & \text{sinon.} \end{cases}$$

On note W le groupe de permutations de P^* engendré par A et \bar{A} .

Par ailleurs, on considère les involutions \tilde{x} , \tilde{y} , \tilde{z} de P^* définies par

$$(4 \dots 4p_m \dots p_n)\tilde{x} = 4 \dots 4(p_m x)p_{m+1} \dots p_n, \qquad (1 \dots 1p_m \dots p_n)\tilde{y} = 1 \dots 1(p_m y)p_{m+1} \dots p_n,$$

$$(2 \dots 2p_m \dots p_n)\tilde{z} = 2 \dots 2(p_m z)p_{m+1} \dots p_n,$$

où m est choisi maximal, de sorte que $p_m \neq p_{m-1}$. Elles engendrent le groupe $V = \langle \tilde{x}, \tilde{y}, \tilde{z} \rangle$.

Les résultats principaux de cette note sont les suivants :

- W est un groupe à croissance exponentielle non-uniforme.
- V est un groupe à croissance intermédiaire.
- Pour tout N il existe un système générateur $\{x_N, y_N, z_N\}$ de W tel que les boules de centre 1 et de rayon N dans V et W coïncident, si l'on identifie $\tilde{x}, \tilde{y}, \tilde{z}$ à x_N, y_N, z_N respectivement.

La construction de W est essentiellement semblable à celle annoncée par John Wilson [8].

1. Introduction

The purpose of this Note is to construct in an as short and elementary way as possible a group of non-uniformly exponential growth, i.e., a group of exponential growth with a family of generating sets for which the growth rate tends to 1. The "limit" of these generating sets generates a group of intermediate growth.

This construction is an adaptation of [1], which describes a family of groups of intermediate growth. I completed it after John Wilson announced that he had produced a group of non-uniformly exponential growth; my method is similar to his, and indeed only claims to be somewhat shorter and more explicit than that of his recent preprint [8]. The first appearance of these groups seems to be in [6].

The reader is directed to [5] for a survey on uniform growth of groups.

2. A group of non-uniformly exponential growth

First consider the group $A = \mathsf{PSL}(3,2)$ acting on the seven-points projective plane P over \mathbb{F}_2 . The group A is generated by three reflections x, y, z in P, as in Fig. 1. We have $x = (1,5)(3,\mathbb{Z}), y = (2,3)(6,\mathbb{Z}), z = (4,6)(5,\mathbb{Z}).$

We let two copies A, \bar{A} of A act on the right on the set P^* of finite sequences in P by

$$(p_1 p_2 \dots p_n) a = (p_1 a) p_2 \dots p_n,$$

$$(p_1 \dots p_m p_{m+1} \dots p_n) \bar{a} = \begin{cases} p_1 \dots p_m (p_{m+1} a) p_{m+2} \dots p_n, & \text{if } p_1 = \dots = p_{m-1} = 1, \ p_m = 2, \\ p_1 \dots p_m p_{m+1} p_{m+2} \dots p_n, & \text{otherwise.} \end{cases}$$

We then define W as the group of permutations of P^* generated by A and \bar{A} .

By $G \wr A$ we mean the wreath product $\{f: P \to G\} \rtimes A$. We introduce the notation $g = \langle \langle g_1, \ldots, g_7 \rangle \rangle a$ for the element (f, a) of $G \wr A$ defined by $f(p) = g_p$ for all $p \in P$, and we omit the "a" from the notation if it is trivial. If G acts on P^* , then $G \wr A$ also acts on P^* via the formula

$$(p_1 p_2 \dots p_n) g = (p_1 a) ((p_2 \dots p_n) g_{p_1}). \tag{1}$$

In this notation, we have $\bar{a} = \langle \langle \bar{a}, a, 1, 1, 1, 1, 1 \rangle \rangle$.

Fig. 1. The projective plane over $\mathbb{F}_2,$ and the functions in the proof of Proposition 2.6.

Fig. 1. Le plan projectif sur \mathbb{F}_2 , et les fonctions de la preuve de la Proposition 2.6.

Let G be a group generated by a finite set S. Its growth rate is, by definition, $\lambda(G, S) = \lim_{n \to \infty} \sqrt[n]{\#B_{G,S}(n)}$, where $B_{G,S}(n) = \{g \in G \mid g = s_1 \dots s_n \text{ for some } s_i \in S\}$ is the ball of center 1 and radius n in G, with the word metric induced by S. (This limit exists because $\log \#B_{G,S}(n)$ is subadditive.)

The group G has *exponential growth* if $\lambda(G, S) > 1$ for one or, equivalently, for any generating set, and has *subexponential growth* otherwise. If $\lambda(G, S) = 1$ and $\#B_{G,S}(n)$ is not bounded by any polynomial function of n, then G has *intermediate growth*. It is non-trivial to construct groups of intermediate growth, and the first example was produced by Grigorchuk [3] in 1983.

Note that if $\lambda_{G,S} > 1$, then there exist other generating sets S' for G with $\lambda(G, S')$ arbitrarily large – for instance, $\lambda(G, B_{G,S}(k)) = \lambda(G, S)^k$. On the other hand, it is not obvious that $\lambda(G, S)$ can be made arbitrarily close to 1.

The group *G* has *uniformly exponential growth* if $\inf_{\{\text{finite } S\}} \lambda(G, S) > 1$.

Note that free groups, and more generally hyperbolic groups, have uniformly exponential growth as soon as they have exponential growth. Solvable groups [7], and linear groups [2] in characteristic 0, also have uniformly exponential growth as soon as they have exponential growth.

Mikhael Gromov asked in 1981 whether there exist groups of exponential, but non-uniformly exponential growth [4, Remarque 5.12]. This was answered positively by John Wilson [8] in 2002. The main result of this Note is the following:

Theorem 2.1. The group W has exponential growth, but does not have uniformly exponential growth.

The proof relies on the following propositions:

Proposition 2.2. The group W satisfies the decomposition $W \cong W \wr A$; the isomorphism is given by (1) intertwining their actions on P^* .

Proposition 2.3. The group W contains a free monoid on two generators.

Given a triple $\{a, b, c\}$ of involutions acting on P^* , we define a new triple $\{a', b', c'\}$ of involutions also acting on P^* by

$$a' = \langle \langle 1, 1, 1, a, 1, 1, 1 \rangle \rangle x, \qquad b' = \langle \langle b, 1, 1, 1, 1, 1, 1 \rangle \rangle y, \qquad c' = \langle \langle 1, c, 1, 1, 1, 1, 1 \rangle \rangle z. \tag{2}$$

Proposition 2.4. If G is a perfect group generated by three involutions a, b, c, then $\{a', b', c'\}$ generates $G \wr A$.

Proposition 2.5. *The group W is generated by three involutions.*

Proposition 2.6. Let G be generated by a triple of involutions $S = \{a, b, c\}$, and set $S' = \{a', b', c'\}$ and $H = \langle S' \rangle$. Then

$$\lambda(H, S') \leqslant \inf_{\eta \in (0, 1)} \max \left\{ \lambda(G, S)^{1 - \eta}, \frac{30^{\eta}}{\eta^{\eta} (1 - \eta)^{1 - \eta}} \right\}. \tag{3}$$

Fix the following sets of permutations of P^* : a generating set S_0 of W given by Proposition 2.5; and for all $n \ge 1$ a set S_n obtained from S_{n-1} by application of (2).

Proof of Theorem 2.1. *W* has exponential growth by Proposition 2.3.

Since S_0 contains three involutions, $\lambda(G, S_0) \le 2$. By Propositions 2.6 and 2.4, the sets S_n also generate W for $n \ge 1$. Set $\Lambda_0 = 2$, and for all $n \ge 0$ define $\eta_n \in (0, \frac{1}{2})$ and $\Lambda_{n+1} > 1$ by

$$\Lambda_{n+1} = \Lambda_n^{1-\eta_n} = \frac{30^{\eta_n}}{\eta_n^{\eta_n} (1 - \eta_n)^{1-\eta_n}}.$$
(4)

There is a unique solution η_n because the LHS of (4) is decreasing in η_n while the RHS is increasing. Clearly $0 < \eta_{n+1} < \eta_n$ and $1 < \Lambda_{n+1} < \Lambda_n$, so $\eta = \lim_{n \to \infty} \eta_n$ and $\Lambda = \lim_{n \to \infty} \Lambda_n$ exist. From (4) we have $\Lambda = \Lambda^{1-\eta}$, so either $\Lambda = 1$ or $\eta = 0$, which also implies $\Lambda = 1$. Since $\lambda(W, S_n) \leq \Lambda_n$ for all $n \in \mathbb{N}$, we have $\lim_{n \to \infty} \lambda(W, S_n) = 1$. \square

3. A group of intermediate growth

Consider next the set $\widetilde{S} = \{\tilde{x}, \tilde{y}, \tilde{z}\}$ of permutations of P^* defined implicitly by $\tilde{x} = \langle (1, 1, 1, \tilde{x}, 1, 1, 1) \rangle x$, $\tilde{y} = \langle (\tilde{y}, 1, 1, 1, 1, 1, 1) \rangle y$, $\tilde{z} = \langle (1, \tilde{z}, 1, 1, 1, 1, 1, 1) \rangle z$, and consider the group $V = \langle \widetilde{S} \rangle$.

Theorem 3.1. *The group V has intermediate growth.*

The group V is locally isomorphic to W, in that for any $R \in \mathbb{N}$, there exists $n \in \mathbb{N}$ such that $B_{V,\widetilde{S}}(R)$ and $B_{W,S_n}(R)$ are isomorphic graphs, seen as subsets of their respective groups' Cayley graphs, with \widetilde{x} , \widetilde{y} , \widetilde{z} identified with the elements $x^{(n)}$, $y^{(n)}$, $z^{(n)}$ of S_n respectively.

(Note that V is not perfect; indeed $V/V'\cong (\mathbb{Z}/2)^3$. Hence V does not decompose as a wreath product like W. Note also that $\tilde{x}=\lim x^{(n)}$ in the compact-open topology on $\operatorname{aut}(P^*)$; and similarly for \tilde{y} and \tilde{z} .)

Proof. Apply Proposition 2.6 to (V, \widetilde{S}) , and note $\widetilde{S}' = \widetilde{S}$; hence $\lambda(V, \widetilde{S}) = \lambda(V, \widetilde{S}')$, so $\lambda(V, \widetilde{S}) = 1$ by (3).

A group G acting on P^* is *contracting* if G identifies with a subgroup of $G \wr A$ via the decomposition (1), and there are constants $\rho < 1$ and M such that B(G, R) identifies with a subset of $B(G, \rho R + M) \wr A$ for all $R \in \mathbb{N}$.

This property is independent of the chosen generating set, though the constants ρ , R do depend on it. For (V, \widetilde{S}) and for (W, S_n) for all $n \ge 0$ the property holds with $\rho = M = \frac{1}{2}$.

Pick now $R \in \mathbb{N}$. By contraction there exists $n \in \mathbb{N}$ such that the n-fold decomposition of B(G, R) is a subset of $(\cdots (B(G, 1) \wr A) \wr A \cdots \wr A)$. Since the generators \tilde{S} and S_0 agree on a ball of radius 1, this implies that the generators \tilde{S} and S_n agree on a ball of radius R. \square

4. Proof of the propositions

We will use repeatedly the following facts on A: it has order 168, and is simple, hence perfect. It is generated by $\{x, y, z\}$, and also by $\{xy, yz, zx\}$.

Proof of Proposition 2.2. Since A acts 2-transitively on P, there exists $u \in A$ that fixes 1 and moves 2 to another point, and $v \in A$ that fixes 2 and moves 1 to another point.

Then W contains $[\bar{a}, \bar{b}^u] = \langle \langle [\bar{a}, \bar{b}], 1, \dots, 1 \rangle \rangle$ for any $a, b \in A$, and since A is perfect, W contains $\langle \langle \bar{A}, 1, \dots, 1 \rangle \rangle$. Similarly, W contains $[\bar{a}, \bar{b}^v] = \langle \langle 1, [a, b], 1, \dots, 1 \rangle \rangle$ for any $a, b \in A$, so W contains $\langle \langle 1, A, 1, \dots, 1 \rangle \rangle$. Combining these, W contains $\langle \langle W, \dots, W \rangle \rangle$ and W contains $W \wr A$. The converse inclusion is obvious. \square

Proof of Proposition 2.3. Pick $u \neq v \in A$ such that $\mathbb{1}u = \mathbb{1}v = 2$ and 2u = 2v = 1. Consider the elements $a = \bar{u}u, b = \bar{u}v, c = \bar{v}u, d = \bar{v}v$. They admit the decompositions

$$a = \langle \langle \bar{u}, u, 1, \dots, 1 \rangle \rangle \langle 1, 2 \rangle \sigma, \qquad b = \langle \langle \bar{u}, u, 1, \dots, 1 \rangle \rangle \langle 1, 2 \rangle \tau, c = \langle \langle \bar{v}, v, 1, \dots, 1 \rangle \langle 1, 2 \rangle \sigma, \qquad d = \langle \langle \bar{v}, v, 1, \dots, 1 \rangle \langle 1, 2 \rangle \tau,$$

$$(5)$$

for some permutations $\sigma \neq \tau$ of $P \setminus \{1, 2\}$. We claim that $\{a, d\}$ generates a free monoid in W; actually, we will show slightly more: let $M = \{a, b, c, d\}^*$ be the submonoid of W generated by $\{a, b, c, d\}$. We claim that M/(a = b, c = d) is free, freely generated by $\{a, d\}$.

Consider two words X, Y over a, b, c, d, that are inequivalent under (a = b, c = d); we will prove by induction on |X| + |Y| that they act differently on P^* . We may assume that X and Y are both non-empty, and that X starts by a or b, and Y starts by c or d. If |X| = |Y| = 1 then the decompositions (5) show that X and Y act differently on P^* . Otherwise, we have $|X| \equiv |Y| \mod 2$, by considering their action on $\mathbb{1}$; and furthermore we may assume $|X| \equiv |Y| \equiv 0 \mod 2$, if necessary by multiplying both X and Y by a on the right. Consider the decompositions $X = \langle \langle X_1, \ldots, X_7 \rangle \rangle \alpha$, $Y = \langle \langle Y_1, \ldots, Y_7 \rangle \rangle \beta$. Then $X_1, Y_1 \in M$, and X_1 starts by a or a, while a starts by a or a, while a starts by a or a, while a starts by a or a inequivalent under a and a starts by a or a. We have a inequivalent under a inequivalent a inequivalent a inequivalent a inequivalent a inequivalent a

Proof of Proposition 2.4. Set $H = \langle a', b', c' \rangle$. Then H contains $(a'b'c'b')^3 = \langle \langle 1, 1, ac, ac, 1, 1, ca \rangle \rangle$, $(b'c'a'c')^3 = \langle \langle ba, 1, 1, 1, ba, ab \rangle \rangle$ and $(c'a'b'a')^3 = \langle \langle 1, cb, 1, 1, cb, 1, bc \rangle \rangle$; so H contains $v = [(a'b'c'b')^3, (b'c'a'c')^3] = \langle \langle 1, \ldots, 1, [ca, ab] \rangle \rangle \neq 1$. Now $G = \langle ca, ab, bc \rangle = \langle [ca, ab]^G, [ab, bc]^G, [bc, ca]^G \rangle$ because G is perfect, so conjugating v by all words in $(a'b'c'b')^3, (b'c'a'c')^3, (c'a'b'a')^3$ we see that H contains $\langle \langle G, \ldots, G \rangle \rangle$.

Finally, H contains $x = \langle (1, 1, 1, a, 1, 1, 1) \rangle a'$, and similarly y and z, so $H = G \wr A$. \square

Proof of Proposition 2.5. Define $a, b, c \in W$ by $a = \langle (1, \bar{x}, 1, x, 1, 1, 1) \rangle x$, $b = \langle (y, 1, 1, \bar{y}, 1, 1, 1) \rangle y$, $c = \langle (\bar{z}, z, 1, 1, 1, 1, 1) \rangle z$. Then $(ab)^4 = (\langle (1, \bar{x}, 1, x\bar{y}, y, 1, 1) \rangle xy)^4 = \langle (1, \bar{x}, \bar{x}, (x\bar{y})^4, 1, \bar{x}, \bar{x}) \rangle = \langle (1, \bar{x}, \bar{x}, 1, 1, \bar{x}, \bar{x}) \rangle$, and similarly $(bc)^4 = \langle (1, 1, 1, \bar{y}, \bar{y}, \bar{y}, \bar{y}, \bar{y}) \rangle$ and $(ca)^4 = \langle (\bar{z}, 1, \bar{z}, 1, \bar{z}, 1, \bar{z}) \rangle$.

Therefore the group $G = \langle a, b, c \rangle$ contains $u = [[(ab)^4, (bc)^4], (ca)^4] = \langle (1, \dots, 1, [[\bar{x}, \bar{y}], \bar{z}]) \rangle \neq 1$, so G contains all the conjugates of u by $(ab)^4, (bc)^4, (ca)^4$, and since A is simple, G contains $\langle (1, \dots, 1, \bar{A}) \rangle$. Since G acts transitively on P, it contains $\langle (\bar{A}, \dots, \bar{A}) \rangle$.

Proof of Proposition 2.6. Consider a word $w \in \{a', b', c'\}^*$ representing an element in H, and its decomposition $\langle\langle w_1, \ldots, w_7 \rangle\rangle \sigma$. Each of the w_i 's is a word over $\{a, b, c\}$, and the total length of the w_i is at most the length of w, since by the definition (2) each S'-letter in w contributes a single S-letter to one of the w_i 's.

A reduced word is a word with no two identical consecutive letters; we shall always assume that the words we consider are reduced. Therefore all aa-, bb- and cc-subwords of the w_i 's are to be cancelled; and such subwords appear in a w_i whenever w has a subword belonging to

$$\Delta = \{a'b'a', b'c'b', c'a'c', a'c'b'a'c'a'b'c'a', b'a'c'b'a'b'c'a'b', c'b'a'c'b'c'a'b'c'\};$$

indeed Δ 's elements are, up to the cyclic permutation $a' \mapsto b' \mapsto c' \mapsto a'$,

$$a'b'a' = \langle \langle 1, 1, 1, aa, b, 1, 1 \rangle \rangle xyx = \langle \langle 1, 1, 1, 1, b, 1, 1 \rangle \rangle xyx,$$
$$a'c'b'a'c'a'b'c'a' = \langle \langle a, cb, 1, aa, bc, a, c \rangle \rangle yzxzy = \langle \langle a, cb, 1, 1, bc, a, c \rangle \rangle yzxzy.$$

Lemma 4.1. For any $n \in \mathbb{N}$, there are at most 30 reduced words $w \in \{a', b', c'\}^*$ of length n that contain no subword belonging to Δ .

Proof. If w contains a'c'a', b'a'b' or c'b'c' as a subword, then this subword occurs either among the first five or the last five letters of w, and w is a subword of $(xyz)^{\infty}y(zyx)^{\infty}$, where x, y, z is a cyclic permutation of a', b', c'.

This gives 24 possibilities: 3 for the choice of the cyclic permutation and 8 for the position of the zyz subword in w.

If w does not contain any such subword, then w must be a subword of $(xyz)^{\infty}$ or $(zyx)^{\infty}$, and this gives 6 possibilities: 3 for the choice of the cyclic permutation and 2 for the choice of xyz or zyx.

Fix now for every $h \in H$ a word w_h of minimal length representing h; and for all $n \in \mathbb{N}$ let W_n denote the set of such words of length n. We wish to estimate $\#W_n$.

For any $\eta \in (0, 1)$, define the following sets:

 $W_n^{\geqslant \eta} = \{ w \in W_n \mid w \text{ contains at least } \eta n \text{ subwords belonging to } \Delta \},$

 $W_n^{\leq \eta} = \{ w \in W_n \mid w \text{ contains at most } \eta n \text{ subwords belonging to } \Delta \}.$

Any $w \in W_n^{\leq \eta}$ factors as a product of at most ηn non-empty pieces $u_1 \dots u_m$, where no u_i contains any subword belonging to Δ . We therefore have

$$\#W_n^{\leqslant \eta} \leqslant \sum_{m=1}^{\eta n} \binom{n-1}{m-1} 30^m \leqslant \eta n \binom{n}{\eta n} 30^{\eta n};$$

here m is the number of pieces u_i ; $\binom{n-1}{m-1}$ is the number of possible lengths $|u_1|, \ldots, |u_m|$ summing to n; and 30^m is (by Lemma 4.1) the number of possible u_1, \ldots, u_m with prescribed lengths.

Estimating the binomial coefficient
$$\binom{n}{\eta n} \approx (\eta^{\eta} (1 - \eta)^{1 - \eta})^{-n}$$
, we get $\lim_{n \to \infty} \sqrt[n]{\#W_n^{\leqslant \eta}} \leqslant \frac{30^{\eta}}{\eta^{\eta} (1 - \eta)^{1 - \eta}}$.

Consider next $w \in W_n^{\geqslant \eta}$, and decompose it as $w = \langle \langle w_1, \dots, w_7 \rangle \rangle a$. The seven words w_1, \dots, w_7 have total length at most $(1 - \eta)n$, after cancellation of the aa-, bb- and cc-subwords.

For any $\varepsilon > 0$, there is a constant K such that $\#B_{G,S}(n) \leq K(\lambda(G,S) + \varepsilon)^n$ for all $n \in \mathbb{N}$. Therefore

$$\#W_n^{\geqslant \eta} \leqslant \#A \sum_{\substack{n_1, \dots, n_7 \geqslant 0 \\ n_1 + \dots + n_7 \leqslant (1-n)n}} \prod_{p=1}^7 K(\lambda(G, S) + \varepsilon)^{n_p} \leqslant \#A\binom{n+7}{7} K^7 (\lambda(G, S) + \varepsilon)^{(1-\eta)n};$$

the binomial term counts all possible lengths of the seven words w_i , and the other terms count the number of possible w_i 's with prescribed lengths. It follows that $\lim_{n\to\infty} \sqrt[\eta]{\#W_n^{\geqslant \eta}} \leqslant (\lambda(G,S)+\varepsilon)^{1-\eta}$ for all $\varepsilon>0$, and therefore $\lim_{n\to\infty} \sqrt[\eta]{\#W_n^{\geqslant \eta}} \leqslant \lambda(G,S)^{1-\eta}$.

Now
$$\#B_{H,S'}(n) \leqslant \sum_{i=0}^{n} (\#W_i^{\leqslant \eta} + \#W_i^{\geqslant \eta})$$
, and

$$\begin{split} \lambda(H,S') &= \lim_{n \to \infty} \sqrt[n]{\#B_{H,S'}(n)} \leqslant \lim_{n \to \infty} \sqrt[n]{\#W_n^{\leqslant \eta} + \#W_n^{\geqslant \eta}} \leqslant \lim_{n \to \infty} \max \left\{ \sqrt[n]{\#W_n^{\leqslant \eta}}, \sqrt[n]{\#W_n^{\geqslant \eta}} \right\} \\ &\leqslant \max \left\{ \lambda(G,S)^{1-\eta}, \frac{30^{\eta}}{\eta^{\eta}(1-\eta)^{1-\eta}} \right\}. \quad \Box \end{split}$$

References

- [1] L. Bartholdi, Groups of intermediate growth, 2002, submitted.
- [2] A. Eskin, S. Mozes, H. Oh, Uniform exponential growth for linear groups, Internat. Math. Res. Notices 31 (2002) 1675–1683.
- [3] R.I. Grigorchuk, On the Milnor problem of group growth, Dokl. Akad. Nauk SSSR 271 (1) (1983) 30–33.
- [4] M. Gromov, Structures métriques pour les variétés riemanniennes, in : J. Lafontaine, P. Pansu (Eds.), CEDIC, Paris, 1981.
- [5] P. de la Harpe, Uniform growth in groups of exponential growth, Geom. Dedicata 95 (2002) 1–17.
- [6] P.M. Neumann, Some questions of Edjvet and Pride about infinite groups, Illinois J. Math. 30 (2) (1986) 301-316.
- [7] D.V. Osin, The entropy of solvable groups, Ergodic Theory Dynamical Systems, 2003, to appear.
- [8] J.S. Wilson, On exponential and uniformly exponential growth for groups, Preprint, 2002, http://www.unige.ch/math/biblio/preprint/2002/growth.ps.