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Abstract

This Note constructs a finitely generated gradijpwhose word-growth is exponential, but for which the infimum of the
growth rates over all finite generating sets is 1 — in other words, of non-uniformly exponential growth.

This answers a question by Mikhael Gromov (Structures métriques pour les variétés riemanniennes, in: J. Lafontaine, P. Pans
(Eds.), CEDIC, Paris, 1981).

The construction also yields a group of intermediate groWtinat locally resemble® in that (by changing the generating
set of W) there are isomorphic balls of arbitrarily large radius/irand W’s Cayley graphsTo cite this article: L. Bartholdi,
C. R. Acad. Sci. Paris, Ser. | 336 (2003).
0 2003 Académie des sciences/Editions scientifiques et médicales Elsevier SAS. All rights reserved.
Résumé

Cette Note construit un groug€ de type fini dont la croissance des boules est exponentielle, mais pour laquelle I'infimum
des taux de croissance vaut 1 — en d’autres teriifesst de croissance exponentielle non-uniforme.

Ceci répond a une question de Mikhael Gromov (Structures métriques pour les variétés riemanniennes, in : J. Lafontaine,
P. Pansu (Eds.), CEDIC, Paris, 1981).

Cette construction donne aussi un groupe de croissance intermédiegesemblant localementW dans le sens que (en
changeant le systeme générateumdedes boules de rayon arbitrairement grand coincident dans les graphes de Cayley de
et W. Pour citer cet article: L. Bartholdi, C. R. Acad. Sci. Paris, Ser. | 336 (2003).
O 2003 Académie des sciences/Editions scientifiques et médicales Elsevier SAS. Tous droits réservés.

Version francaise abr égée

Considérons le groupé = PSL(3, 2) agissant sur le plan projectif a sept poifttsCe groupe est engendre par
trois involutionsx = (1, 5)(3,7), y = (2,3)(6,7), z = (4,0)(5, 7). On fait agir a droite deux copies, A de A
sur 'ensembleP* des suites finies d’éléments éede la fagon suivante :

E-mail addresslaurent@math.berkeley.edu (L. Bartholdi).
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(p1p2...pn)a = (p1a)p2. .. pa,
P1-- P (Pm+1@) Pm+2.--Pny Sipr=---=pu_1=1, py =2,

(p1---PmPm+1---D )Ez:{ _
e " pP1...PmPm+1--.DPn; sinon

On noteW le groupe de permutations d& engendré pas et A.
Par ailleurs, on considére les involutiohsy, z de P* définies par

“4...4pm...p0)X=4...4(PmX)Pm+1--- Pn, @...1pwm...p0)y=1...0pmy)Pm+1--- Pn,
@...2pm .. P)Z2=2...2(PmZ) Pm+1- - Pns

oum est choisi maximal, de sorte qwg, # p,,—1. Elles engendrent le groupé= (%, ¥, 2).
Les résultats principaux de cette note sont les suivants :

— W est un groupe a croissance exponentielle non-uniforme.

— V estun groupe a croissance intermédiaire.

— Pour toutV il existe un systéme générateuty, yy, zy} de W tel que les boules de centre 1 et de rayén
dansV et W coincident, si I'on identifiet, ¥, Z axy, yn, zy respectivement.

La construction déV est essentiellement semblable a celle annoncée par John Wilson [8].
1. Introduction

The purpose of this Note is to construct in an as short and elementary way as possible a group of non-uniformly
exponential growth, i.e., a group of exponential growth with a family of generating sets for which the growth rate
tends to 1. The “limit” of these generating sets generates a group of intermediate growth.

This construction is an adaptation of [1], which describes a family of groups of intermediate growth. | completed
it after John Wilson announced that he had produced a group of non-uniformly exponential growth; my method is
similar to his, and indeed only claims to be somewhat shorter and more explicit than that of his recent preprint [8].
The first appearance of these groups seems to be in [6].

The reader is directed to [5] for a survey on uniform growth of groups.

2. A group of non-uniformly exponential growth

First consider the groug = PSL(3, 2) acting on the seven-points projective plaReoverF2. The groupA
is generated by three reflections y, z in P, as in Fig. 1. We have = (1,95)(3,7), y = (2,3)(6,7), z =
4,0)(5,7).

We let two copiesA, A of A act on the right on the set* of finite sequences i® by

(p1p2...pn)a = (pra)p2...pn,
P1-- Pm(Pm+1@) Pm+2.--Pn, H pr=---=pp_1=1, pn =2,

(p1---pmp +1..'p)c‘l={ .
e ! DL Pin PmsdPma2 - - - P otherwise

We then defingV as the group of permutations #f generated byt andA.

By G : A we mean the wreath produgf : P — G} x A. We introduce the notatiog = {(g1, . .., g7))a for the
element(f, a) of G A defined byf(p) = g, for all p € P, and we omit the &” from the notation if it is trivial.
If G acts onP*, thenG : A also acts orP* via the formula

(p1p2...P)g = (P10)((P2.-. Pn)gp1)- (1)

In this notation, we have = ((a,a,1,1,1,1, 1)).
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Fig. 1. The projective plane ovél, and the functions in the proof of Proposition 2.6.
Fig. 1. Le plan projectif suF,, et les fonctions de la preuve de la Proposition 2.6.

Let G be a group generated by a finite Setlts growth rateis, by definition,A(G, S) = lim,— « /#Bg.s(n),
whereBg s(n) ={g € G| g =s1...5, for somes; € S} is the ball of center 1 and radiusin G, with the word
metric induced bys. (This limit exists because log# s(n) is subadditive.)

The groupG hasexponential growthf A(G, S) > 1 for one or, equivalently, for any generating set, and has
subexponential growththerwise. IfA(G, §) = 1 and #¢_ s(n) is not bounded by any polynomial function of
thenG hasintermediate growthlt is non-trivial to construct groups of intermediate growth, and the first example
was produced by Grigorchuk [3] in 1983.

Note thatifAg s > 1, then there exist other generating s€tfor G with A(G, S’) arbitrarily large — for instance,

A(G, Bg.s(k)) = A(G, S)¥. On the other hand, it is not obvious thaiG, S) can be made arbitrarily close to 1.

The groupG hasuniformly exponential growt inf iinite 53 A(G, S) > 1.

Note that free groups, and more generally hyperbolic groups, have uniformly exponential growth as soon as
they have exponential growth. Solvable groups [7], and linear groups [2] in characteristic O, also have uniformly
exponential growth as soon as they have exponential growth.

Mikhael Gromov asked in 1981 whether there exist groups of exponential, but non-uniformly exponential
growth [4, Remarque 5.12]. This was answered positively by John Wilson [8] in 2002. The main result of this
Note is the following:

Theorem 2.1. The groupW has exponential growth, but does not have uniformly exponential growth.
The proof relies on the following propositions:

Proposition 2.2. The groupW satisfies the decompositid¥i = W: A; the isomorphism is given %) intertwining
their actions onP*.

Proposition 2.3. The groupW contains a free monoid on two generators.

Given a triple{a, b, ¢} of involutions acting onP*, we define a new tripl¢a’, ', ¢’} of involutions also acting
on P* by

a ={1,1,1,a,1,1, L)x, b =(b,1,1,11,1 1)y, =(1¢c111,1 1)z (2)
Proposition 2.4. If G is a perfect group generated by three involutien, c, then{a’, b’, ¢’} generatesz : A.

Proposition 2.5. The groupW is generated by three involutions.
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Proposition 2.6. Let G be generated by a triple of involutioss= {a, b, ¢}, and setS’ = {a’, b’, ¢’} and H = (§’).
Then

A(H,S) < inf max{A(G, Y (3)
ne(0,1)

307
Tt

Fix the following sets of permutations @*: a generating sefp of W given by Proposition 2.5; and for all
n > 1 a sets, obtained fromS,_1 by application of (2).

Proof of Theorem 2.1. W has exponential growth by Proposition 2.3.
SinceSp contains three involutiong,(G, Sp) < 2. By Propositions 2.6 and 2.4, the séjsalso generat® for
n > 1. SetAg = 2, and for allz > 0 definey, € (0, 3) andA,11 > 1 by

30
" (L—np)t=m
There is a unigue solution, because the LHS of (4) is decreasingjinwhile the RHS is increasing. Clearly
O<npy1<nmp and 1< A1 < Ay, SO =limy—on, and A = lim,_ o A, exist. From (4) we havel =

A" so eitherA =1 or n = 0, which also impliesA = 1. SinceAr(W, S,) < A, for all n € N, we have
im0 A(W,S,)=1. O

1—
Apy1= An =

(4)

3. A group of intermediate growth

Consider next the set = {%, , 7} of permutations ofP* defined implicitly byx = ((1,1,1,%,1,1, L))x, y =
(3,1,1,1,1,1,1)y, 2= (1,%,1,1,1,1, 1))z, and consider the group = (S).

Theorem 3.1. The groupV has intermediate growth.

The groupV is locally isomorphic toW, in that for anyR € N, there exists: € N such thatBy, 3(R) and
Bw._s, (R) are isomorphic graphs, seen as subsets of their respective groups’ Cayley graphs, Wwithdentified
with the elements™, y®, 70 of S, respectively.

(Note thatV is not perfect; indeed’/ V' = (Z/2)3. HenceV does not decompose as a wreath product ke
Note also tha = lim x in the compact-open topology on &at"); and similarly fory andz.)

Proof. Apply Proposition 2.6 tqV, S), and noteS” = S; hencer(V, S) = A(V, §'), soA(V, §) = 1 by (3).

A group G acting onP* is contractingif G identifies with a subgroup af : A via the decomposition (1), and
there are constanis< 1 andM such thatB(G, R) identifies with a subset B(G, pR + M) A forall R e N.

This property is independent of the chosen generating set, though the copstRmis depend on it. FafV, S)
and for(W, S,,) for all n > 0 the property holds witlp = M = 3.

Pick nowR € N. By contraction there exisis € N such that the:-fold decomposition oB(G, R) is a subset
of (---(B(G,1) 1 A) 1 A---1 A). Since the generatorf$ and So agree on a ball of radius 1, this implies that the
generator§ andsS, agree on a ball of radiuB. O

4. Proof of the propositions

We will use repeatedly the following facts ot it has order 168, and is simple, hence perfect. It is generated
by {x, y, z}, and also by{xy, yz, zx}.

Proof of Proposition 2.2. SinceA acts 2-transitively orP, there exists: € A that fixesl and moveg to another
point, andv € A that fixes2 and moved to another point.

ThenW containga, b*] = (([a, b], 1,..., 1)) foranya, b € A, and sinced is perfect,W contains(A, 1, ..., 1)).
Similarly, W containga, b'] = (1, [a, b], 1, ..., 1)) foranya, b € A, soW contains{(1, A, 1, ..., 1)). Combining
these W contains{(W, ..., W)) andA, soW containsW : A. The converse inclusion is obviousO
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Proof of Proposition 2.3. Pick u # v € A such thatlu = 1v = 2 and 2u = 2v = 1. Consider the elements
a=uu,b=uv,c=vu,d=vv. They admit the decompositions

a=(i,u,l,..., 11,20, b=(i,ul,.. . 1127, )
c={,v,1,...., 101,20, d={b,v,1,..., 1)1 2z,

for some permutations # t of P \ {1, 2}. We claim that{a, d} generates a free monoid i; actually, we
will show slightly more: letM = {a, b, ¢, d}* be the submonoid oW generated bya, b, ¢, d}. We claim that
M/(a =b,c=d) is free, freely generated Qy, d}.

Consider two word<, Y overa, b, c, d, that are inequivalent undé&t = b, ¢ = d); we will prove by induction
on|X| + |Y| that they act differently orP*. We may assume that andY are both non-empty, and that starts
by a or b, andY starts byc ord. If |X|=|Y| =1 then the decompositions (5) show tlatndY act differently
on P*. Otherwise, we haveX| = |Y| mod 2, by considering their action dn and furthermore we may assume
|X|=1Y] =0 mod 2, if necessary by multiplying botti andY by a on the right. Consider the decompositions
X={(X1,..., X)), Y =(Y1,...,Y7))B. ThenXq, Y1 € M, andX starts by or b, while Y1 starts byc or d; so
X1 andY; are inequivalent unden = b, c = d). We have X1| = | X|/2 and|Y1| = |Y|/2, sO by inductionx; and
Y7 act differently onP*, and hence so d& andY. 0O

Proof of Proposition 2.4. SetH = (a’, b/, ¢’). ThenH containga’b’c’'b’)® = (1,1, ac, ac, 1,1, ca)), (b'c'a’c’)® =
(ba,1,1,1,1, ba,ab)) and (c'a’b'a’)® = (1,cb, 1,1, cb, 1, bc)); S0 H containsv = [(a'b'c'b)3, (b'c'a’c')3] =
(1,...,1,[ca,ab]) # 1. NowG = (ca, ab, bc) = ([ca,ab]®, [ab, bc]®, [be, ca]®) becauses is perfect, so con-
jugatingv by all words in(a’b’c’b)3, (b'c'a’c)®, (¢'a’b'a’)® we see thaH contains((G, ..., G)).

Finally, H containsy = ((1,1,1,a,1,1, 1))a’, and similarlyy andz, sSoH =G A. O

Ny, ¢=

Proof of Proposition 2.5. Define a,b,c € W by a = {(1,x,1,x,1, 1, 1)x, b = (y,1,1,5,1,1, 1)y,
x,1,1 x,x)),

(z,2,1,1,1,1,1)z. Then (ab)* = ((1.%, 1, xy,y, L, W)xy)* = (1, x, %, x5)* 1, %, %)) = (L.,
and similarly(be)*= (1,1, 1,7, ¥, 3, ¥) and(ca)* = (z,1,z, 1,7, 1, 2)).

Therefore the grougs = (a, b, ¢) containsu = [[(ab)?, (bc)H, (ca)*] = (1,...,1,[[X,71.Z]) # 1, s0G
contains all the conjugates ofby (ab)?, (bc)?, (ca)?, and sinced is simple,G contains(1, ..., 1, A)). SinceG
acts transitively orP, it contains((A, ..., A)).

Next,G containg(1,x,1,1,1, 1, 1)a=(1,1,1,x,1, 1, 1)x,and similarly{y, 1,1, 1,1, 1, 1))y and{(1,z, 1, 1,
1,1,1)z, soG containsA : A by Proposition 2.4, and =W. 0O

Proof of Proposition 2.6. Consider a wordv € {a’, b, ¢'}* representing an element i, and its decomposition
{w1, ..., w7))o. Each of thew;’s is a word ovel{a, b, c}, and the total length of the; is at most the length ab,
since by the definition (2) ead$i-letter inw contributes a singl§-letter to one of thew;’s.

A reducedword is a word with no two identical consecutive letters; we shall always assume that the words we
consider are reduced. Thereforeall-, bb- andcc-subwords of thew;’s are to be cancelled; and such subwords
appear in av; whenevemw has a subword belonging to

A={d'ba bt ca'c,a'cba'ca'bca ,ba'c’ba'bcab,c'ba'c’bc’abc};
indeedA’s elements are, up to the cyclic permutation> b’ — ¢’ — d’,

aba ={1,1,1aa,b,1, 1)xyx=(1,1,1,1,b,1, 1)xyx,
acdbacabca = {a,ch,1,aa,bc,a,c)yzxzy={a,cb,1,1,bc,a,c)yzxzy.

Lemmad4.1. Foranyn € N, there are at mos20reduced wordsv € {a’, b’, ¢'}* of lengthn that contain no subword
belonging toA.

Proof. If w containsa’c’a’, b’a’b’ or ¢’b’c’ as a subword, then this subword occurs either among the first five or
the last five letters ofv, andw is a subword ofxyz)®y(zyx)®°, wherex, y, z is a cyclic permutation of’, »’, ¢’.



554 L. Bartholdi / C. R. Acad. Sci. Paris, Ser. | 336 (2003) 549-554

This gives 24 possibilities: 3 for the choice of the cyclic permutation and 8 for the position ef threubword
inw.

If w does not contain any such subword, themmust be a subword ofcyz)° or (zyx)°°, and this gives 6
possibilities: 3 for the choice of the cyclic permutation and 2 for the choiagobrzyx. O

Fix now for everyh € H a wordwy, of minimal length representing and for alln € N let W,, denote the set of
such words of length. We wish to estimate ¥,, .
For anyn € (0, 1), define the following sets:

Wf” ={w € W,, | w contains at leasjn subwords belonging ta},
Wf” ={w € W, | w contains at mosjn subwords belonging ta}.

Any w € Wf" factors as a product of at magt non-empty pieces; . ..u,,, where nau; contains any subword
belonging toA. We therefore have

nn
-1
#Wf” < Z (l’l 1)30" < r]n(n )30’7”;
1 m — nn

herem is the number of pieces; (;:,:11) is the number of possible lengths|, ..., |u;,| summing ton; and 30"
is (by Lemma 4.1) the number of possillg . .., u,, with prescribed lengths.

Estimating the binomial coefficierf, ) ~ (" (1 — MM we get limy_ oo v #W,S" < %.

Consider nextw € Wf”, and decompose it as = (w1, ..., w7)a. The seven words, ..., wy have total
length at most1 — n)n, after cancellation of thea-, bb- andcc-subwords.

For anye > 0, there is a constaik such that B¢ s(n) < K(A(G, S) + ¢)" for all n € N. Therefore

n+7

7
HWZI<HA Y [TK(*G. ) +e)" < #A( >K7(A(G, $) 4 &)
p=1

ny+-+n7<(1—nn
the binomial term counts all possible lengths of the seven wesdsind the other terms count the number of

possiblew;’s with prescribed lengths. It follows that lim, . v #Wf” < (MG, S) + &) for all ¢ > 0, and

therefore lim_ oo \/ #W,>" < A(G, )17
< P
Now #Bp 5(n) < X _o#W " +#W "), and

N o— i n - im g ST 21 i " < 21
A(H, S = lim f#By () < lim J#WS" +#W; gnleoomax[ WS aw; }

< maxd A(G, $)F" - O
h ’ K
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