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Abstract

Here we discuss results around the slicing problem, which is a well known open problem in asymptotic convex geometry. We
show that if one can prove that the isotropic constant of bodies with a finite volume ratio is uniformly bounded — then it would
follow that the isotropic constant of any convex body is uniformly boundedite thisarticle: J. Bourgain et al., C. R. Acad.

Sci. Paris, Ser. | 336 (2003).
0 2003 Académie des sciences/Editions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Cette Note concerne le probléme bien connu de la minoration uniforme de la mesure des sections de codimension 1 de corp
convexes isotrope dafi®’, ce qui équivaut a une borne uniforme de la constante d’isotropie. Nous démontrons qu’une réponse
affirmative & cette question dans le cas particulier d’'un corps a rapport volumique borné (c’est-a-dire tel que taiéactne
du volume de I'ellipsoide de John admet une borne inférieure) entraine une réponse affirmative en général. La méthode utilise
des techniques de symétrisation et de géométrie des espaces de Panacher cet article: J. Bourgain et al., C. R. Acad.

Sci. Paris, Ser. | 336 (2003).
0 2003 Académie des sciences/Editions scientifiques et médicales Elsevier SAS. Tous droits réservés.

1. Introduction

Let K C R" be a convex body of volume one whose barycenter is at the origini{&),= [, x dx = 0). Itis
well known (see [6]) that there exists a unique positive definite linear transfornfatiath det(7) = 1, such that
for any unit vectop € §"1,
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/ (x,0)%dx = L2
T(K)

independently of. The numbelk is referred to as the isotropic constant of the b&dyif the transformatior?”
is the identity map, we say tht is isotropic, or that it is in isotropic position.

It is a major unsolved problem, whether there exists a numerical cordtaunth thatl. x < C for every convex
body in any finite dimension. A positive answer to this question has many interesting consequences, see [6]. Just tc
mention one, it implies that every convex body of volume one, hga anl)-dimensional section whose — 1)-
dimensional volume is greater than some constafihe best estimate known todaylig < cn/#logn, for an
arbitrary convexk C R" (see [2], or the presentation in [3]). For certain classes of convex bodies the question is
affirmatively answered, such as unconditional bodies (as observed by Bourgain, see [6]), zonoids, duals to zonoid:
(see [1]) or duals to bodies with a finite volume ratio (see [6]). Here we show a reduction of the general problem,
to the boundedness of the isotropic constant of bodies with a finite volume rati& EdR”, the volume ratio of
K is defined as,

vol(K)\ V"
voI(S)) ’

where the supremum is over all ellipsoids containedkin Formally, we prove the following conditional
proposition:

V.r.(K) = sup(

EcK

Proposition 1.1.There exists a number v > 0, such that if there exists a number ¢1, such that for all », and for all
K Cc R",inequality v.r.(K) < v implies Lx < c1, then there exists a numerical constant ¢ such that for all n, and
for all K C R" we have Lk < c¢2. Furthermore, the dependence of ¢2 on ¢ is almost linear. For any § > O, there
exist numbers v(8), c(8) > 0 such that if for any body K c R” with v.r.(K) < v(§), we have L < u(n) —then for
an arbitrary convex body K C R”, Lx < ¢(8)u(n)1t?.

2. ldeas used in the proof

The proof of Proposition 1.1 uses two powerful tools. The first is the classical method of symmetrization due to
Steiner. We shall elaborate on this later on. The second important fact, is the existendd -@lligrsoid (see [4],
or Chapter 7 in the book [7]) in the following formulation:

Proposition 2.1.Let K C R" be any convex body. Then there exists an ellipsoid £ ¢ R" with Vol(£) = Vol(K)
such that

NK,E)=min{tA; K CA+ &} <&,
where A isthe number of elementsin theset A, and ¢ isa numerical constant.

One of the consequences of the existence o#faellipsoid, is the fact that any convex body has at least one
projection to a proportional dimension, which has a finite volume ratio. This result, formulated in the following
lemma, appears originally in [5]. It can be also deduced from the proof of Corollary 7.9 in [7].

Lemma 2.2.Let K C R" be any convex body. Let 0 < A < 1. Then there exists a subspace G of dimension |An ]
such that if P:R"” — R” isa projection (i.e., P islinear and P2 = P) with G = ker(P), then P(K) hasa volume
ratio smaller than c(1), where c()) is some function which depends solely on A.

We turn to describe Steiner symmetrization, in a generalization referred to as Schwartz—Steiner symmetrization.
Let K c R" be a convex body, and lgt C R" be any subspace of any dimension. Define the Schwartz—Steiner
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symmetrization o with respect taF as the unique bodi(’ such that for allk € F the bodyk’ N (x + F1) is a
Euclidean ball centered at a point belongingt@and
Vol (K N (x + F1)) = Vol (K' N (x + F1)),

where Vol, of course, is the Euclidean volume in the corresponding subspace. It is easy to vekfyithednvex
(“Brunn principle”), and that ValK’) = Vol (K). The role of the next lemma is to connect the isotropic constants
of K and K’. Whenever we writeA ~ B, we mean that there exist numerical constants> > 0 such that
c1A < B < c2A.

Lemma 2.3.Let K ¢ R" be a convex isotropic body of volume one, and let K’ be its Schwartz—Seiner
symmetrization with respect to a k-codimensional subspace F. Then

= Vol(Proj (K ))1/n”

where Proj, isthe orthogonal projection onto F in R”.

Ly

We would like to combine the properties of &h-ellipsoid, together with the properties of the isotropic position
(Lemma 2.3). This cannot be done in a direct manner, since aprioMtedlipsoid and the isotropy ellipsoid may
be very different. Our method to bypass this obstacle, is to show that for bodies with largest possible isotropic
constant, these two ellipsoids coincide in some subspace of proportional dimension.

3. Worst possible body

DefineL, = sup-g» Lc Where the supremum is over all convex sets of volume o irDefineK to be one
of the worst possible bodies of dimension umtd.e., Lx = sup, ¢, L» andK is isotropic and of volume one.
The dimension ok may be smaller than (yet it isn’t smaller tham /2). With some abuse of notation, we use the
lettern to denote the dimension & . One can apply the connection between the isotropic constant and volumes
of sections of arbitrary dimension (that appears in [6], Proposition 3.11), to prove the following:

Lemma 3.1.Let K be a worst possible isotropic body of volume one. Then for any subspace E of any dimension
1<k <n,
Vol (Proj; (K))"* > ¢,
where ¢ is some numerical constant.
Lemma 3.1 has some consequences about the structureWfedlipsoid. Recall Proposition 2.X is covered
by an exponential number of translationséofif we takek = | 5 |, and projectX to a subspacé of dimensiork,
then VoKProj; (K)) < € Vol (Projz (£)) and we may conclude that projections of teellipsoid to any subspace

of proportional dimension have large volume. Siigtés an ellipsoid of volume one, this fact implies stringent
conditions on the lengths of the axesé&fthat lead to the following:

Claim 3.2. There exists a subspace E of dimension [ 57 such that if we denote by D the Euclidean ball of volume
onein E (centered at the origin), then

where ¢ is some numerical constant.
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4. Reducing to finite volume ratio

Let us look at the projection of the worst possible bddyo the subspac& from Claim 3.2. According to
Lemma 2.2, this body PrgiK) has projections with finite volume ratio. Specifically, there exists a subspace
F C E such that dingF) = [n/4] and

v.r.(Proj(K)) = v.r.(Proj. (Projz (K))) < C.

Indeed,F is the orthogonal complement insidg to the subspacé from Lemma 2.2.

We will perform a Schwartz—Steiner symmetrization to the b&dywith respect to the subspaée Denote
the resulting body byk’. The bodyK’ is a direct sum of a finite volume ratio body (in the subsp&geand a
Euclidean ball (in the subspadée-). Therefore, als&’ is a finite volume ratio body. Sincé ¢ E, we can control
the volume of Praj(K) by Claim 3.2:

VoI(ProjF(K))l/” < (€™ Vol (ProjF(g)))l/" <.

Now we can use Lemma 2.3:
Ly

~ 1/4
Vol (Projs (K )) /7

>cL;,

Lk

and therefore,, < c(Lo)*, whereLy is the largest possiblex among all convex bodies which has a volume ratio
less thart (wherec is some number), and Proposition 1.1 is proved.

Remark. Regarding the connection betweenc; and ¢z in Proposition 1.1; Formally, we have proved that

c2 < c‘l‘. However, by playing with the dimensions of the subspaEesnd F, we can reduce the power of,

at the expense of increasing the volume ratio constant. The dependence we get in this way is quite poor: let
L(a) =sufdLg;V.r.(K)<a}. Thenforany 0<6 < 1,

L, <e/1=9 L(ec/(l—m)l/@
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