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Abstract

Here we discuss results around the slicing problem, which is a well known open problem in asymptotic convex geom
show that if one can prove that the isotropic constant of bodies with a finite volume ratio is uniformly bounded – then i
follow that the isotropic constant of any convex body is uniformly bounded.To cite this article: J. Bourgain et al., C. R. Acad.
Sci. Paris, Ser. I 336 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Cette Note concerne le problème bien connu de la minoration uniforme de la mesure des sections de codimension
convexes isotrope dansRn, ce qui équivaut à une borne uniforme de la constante d’isotropie. Nous démontrons qu’une
affirmative à cette question dans le cas particulier d’un corps à rapport volumique borné (c’est-à-dire tel que la racinn-ième
du volume de l’ellipsoide de John admet une borne inférieure) entraîne une réponse affirmative en général. La métho
des techniques de symétrisation et de géométrie des espaces de Banach.Pour citer cet article : J. Bourgain et al., C. R. Acad.
Sci. Paris, Ser. I 336 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.

1. Introduction

LetK ⊂ R
n be a convex body of volume one whose barycenter is at the origin (i.e.,b(K)= ∫

K
�x dx = 0). It is

well known (see [6]) that there exists a unique positive definite linear transformationT with det(T )= 1, such that
for any unit vectorθ ∈ Sn−1,
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∫
T (K)

〈x, θ〉2 dx = L2
K

independently ofθ . The numberLK is referred to as the isotropic constant of the bodyK. If the transformationT
is the identity map, we say thatK is isotropic, or that it is in isotropic position.

It is a major unsolved problem, whether there exists a numerical constantC such thatLK <C for every convex
body in any finite dimension. A positive answer to this question has many interesting consequences, see [6
mention one, it implies that every convex body of volume one, has an(n− 1)-dimensional section whose(n− 1)-
dimensional volume is greater than some constantc. The best estimate known today isLK < cn1/4 logn, for an
arbitrary convexK ⊂ R

n (see [2], or the presentation in [3]). For certain classes of convex bodies the ques
affirmatively answered, such as unconditional bodies (as observed by Bourgain, see [6]), zonoids, duals to
(see [1]) or duals to bodies with a finite volume ratio (see [6]). Here we show a reduction of the general p
to the boundedness of the isotropic constant of bodies with a finite volume ratio. ForK ⊂ R

n, the volume ratio of
K is defined as,

v.r.(K)= sup
E⊂K

(
vol(K)

vol(E)

)1/n

,

where the supremum is over all ellipsoids contained inK. Formally, we prove the following conditiona
proposition:

Proposition 1.1.There exists a number v > 0, such that if there exists a number c1, such that for all n, and for all
K ⊂ R

n, inequality v.r.(K) < v implies LK < c1, then there exists a numerical constant c2 such that for all n, and
for all K ⊂ R

n we have LK < c2. Furthermore, the dependence of c2 on c1 is almost linear. For any δ > 0, there
exist numbers v(δ), c(δ) > 0 such that if for any bodyK ⊂ R

n with v.r.(K) < v(δ), we have LK < u(n) – then for
an arbitrary convex body K ⊂ R

n, LK < c(δ)u(n)1+δ .

2. Ideas used in the proof

The proof of Proposition 1.1 uses two powerful tools. The first is the classical method of symmetrization
Steiner. We shall elaborate on this later on. The second important fact, is the existence of anM-ellipsoid (see [4],
or Chapter 7 in the book [7]) in the following formulation:

Proposition 2.1.Let K ⊂ R
n be any convex body. Then there exists an ellipsoid E ⊂ R

n with Vol(E) = Vol(K)
such that

N(K,E)= min{�A;K ⊂A+ E}< ecn,

where �A is the number of elements in the set A, and c is a numerical constant.

One of the consequences of the existence of anM-ellipsoid, is the fact that any convex body has at least
projection to a proportional dimension, which has a finite volume ratio. This result, formulated in the foll
lemma, appears originally in [5]. It can be also deduced from the proof of Corollary 7.9 in [7].

Lemma 2.2.Let K ⊂ R
n be any convex body. Let 0< λ < 1. Then there exists a subspace G of dimension �λn


such that if P :Rn → R
n is a projection (i.e., P is linear and P 2 = P ) with G= ker(P ), then P(K) has a volume

ratio smaller than c(λ), where c(λ) is some function which depends solely on λ.

We turn to describe Steiner symmetrization, in a generalization referred to as Schwartz–Steiner symme
Let K ⊂ R

n be a convex body, and letF ⊂ R
n be any subspace of any dimension. Define the Schwartz–St
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symmetrization ofK with respect toF as the unique bodyK ′ such that for allx ∈ F the bodyK ′ ∩ (x + F⊥) is a
Euclidean ball centered at a point belonging toF and

Vol
(
K ∩ (

x + F⊥)) = Vol
(
K ′ ∩ (

x + F⊥))
,

where Vol, of course, is the Euclidean volume in the corresponding subspace. It is easy to verify thatK ′ is convex
(“Brunn principle”), and that Vol(K ′)= Vol(K). The role of the next lemma is to connect the isotropic const
of K andK ′. Whenever we writeA ≈ B, we mean that there exist numerical constantsc1, c2 > 0 such that
c1A<B < c2A.

Lemma 2.3. Let K ⊂ R
n be a convex isotropic body of volume one, and let K ′ be its Schwartz–Steiner

symmetrization with respect to a k-codimensional subspace F . Then

LK ′ ≈ L
1−k/n
K

Vol(ProjF (K))1/n
,

where ProjF is the orthogonal projection onto F in R
n.

We would like to combine the properties of anM-ellipsoid, together with the properties of the isotropic posit
(Lemma 2.3). This cannot be done in a direct manner, since apriori theM-ellipsoid and the isotropy ellipsoid ma
be very different. Our method to bypass this obstacle, is to show that for bodies with largest possible is
constant, these two ellipsoids coincide in some subspace of proportional dimension.

3. Worst possible body

DefineLn = supC⊂Rn LC where the supremum is over all convex sets of volume one inR
n. DefineK to be one

of the worst possible bodies of dimension up ton, i.e.,LK = supm�n Lm andK is isotropic and of volume one
The dimension ofK may be smaller thann (yet it isn’t smaller thann/2). With some abuse of notation, we use
lettern to denote the dimension ofK. One can apply the connection between the isotropic constant and vo
of sections of arbitrary dimension (that appears in [6], Proposition 3.11), to prove the following:

Lemma 3.1.Let K be a worst possible isotropic body of volume one. Then for any subspace E of any dimension
1 � k � n,

Vol
(
ProjE(K)

)1/k � c,

where c is some numerical constant.

Lemma 3.1 has some consequences about the structure of anM ellipsoid. Recall Proposition 2.1.K is covered
by an exponential number of translations ofE . If we takek = �n2
, and projectK to a subspaceE of dimensionk,
then Vol(ProjE(K))� ecnVol(ProjE(E)) and we may conclude that projections of theM ellipsoid to any subspac
of proportional dimension have large volume. SinceE is an ellipsoid of volume one, this fact implies stringe
conditions on the lengths of the axes ofE , that lead to the following:

Claim 3.2.There exists a subspace E of dimension �n2� such that if we denote by DE the Euclidean ball of volume
one in E (centered at the origin), then

ProjE(E)⊂ cDE,

where c is some numerical constant.
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4. Reducing to finite volume ratio

Let us look at the projection of the worst possible bodyK to the subspaceE from Claim 3.2. According to
Lemma 2.2, this body ProjE(K) has projections with finite volume ratio. Specifically, there exists a subs
F ⊂E such that dim(F )= �n/4� and

v.r.
(
ProjF (K)

) = v.r.
(
ProjF

(
ProjE(K)

))
<C.

Indeed,F is the orthogonal complement insideE, to the subspaceG from Lemma 2.2.
We will perform a Schwartz–Steiner symmetrization to the bodyK, with respect to the subspaceF . Denote

the resulting body byK ′. The bodyK ′ is a direct sum of a finite volume ratio body (in the subspaceF ), and a
Euclidean ball (in the subspaceF⊥). Therefore, alsoK ′ is a finite volume ratio body. SinceF ⊂E, we can contro
the volume of ProjF (K) by Claim 3.2:

Vol
(
ProjF (K)

)1/n �
(
ecnVol

(
ProjF (E)

))1/n
< c′.

Now we can use Lemma 2.3:

LK ′ ≈ L
1/4
n

Vol(ProjF (K))1/n
> cL

1/4
n

and therefore,Ln < c(L0)
4, whereL0 is the largest possibleLK among all convex bodies which has a volume ra

less thanc (wherec is some number), and Proposition 1.1 is proved.

Remark. Regarding the connection betweenv, c1 and c2 in Proposition 1.1; Formally, we have proved th
c2 � c4

1. However, by playing with the dimensions of the subspacesE andF , we can reduce the power ofc1,
at the expense of increasing the volume ratio constant. The dependence we get in this way is quite
L(a)= sup{LK; v.r.(K)� a}. Then for any 0< θ < 1,

Ln � ec/(1−θ)L
(
ec/(1−θ))1/θ

.
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