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Abstract We discuss some existence results concerning problems (NLS) and (N), proving the
existence of radial solutions concentrating on a sphere.To cite this article: A. Ambrosetti
et al., C. R. Acad. Sci. Paris, Ser. I 335 (2002) 145–150.  2002 Académie des
sciences/Éditions scientifiques et médicales Elsevier SAS

Solutions concentreés sur spheres des problèmes de perturbation
singulière

Résumé Nous étudions des problèmes de perturbations singulières (NLS), (N). On montre l’exis-
tence de solutions positives qui se concentrent sur une sphère.Pour citer cet article : A. Am-
brosetti et al., C. R. Acad. Sci. Paris, Ser. I 335 (2002) 145–150.  2002 Académie des
sciences/Éditions scientifiques et médicales Elsevier SAS

Version française abrégée

On considère le problème de perturbation singulière (NLS) et on suppose queV ∈ C1(R+,R) est bornée
avecλ2

0 := inf{V (|x|) : x ∈ R
n}> 0. On montre alors (voir Théorème 1) que pour toutp > 1, (NLS) admet

une solution radiale qui se concentre atour de la sphère{|x| = r̄} où r̄ est un maximum ou minimum local
strict du potentiel auxiliarieM(r) = rn−1V θ(r), θ = (p + 1)/(p − 1) − 1/2. De plus, génériquement,
les solutions apparaissent on paires. On montre aussi que l’indice de Morse de ces solutions divèrge vers
l’infini et ceci implique l’existence d’une infinité de solutions non radiales. D’autre part, si (NLS) admet
une solution concentrée sur{|x| = r̂} alors on a nécessariementM ′(r̂)= 0 (voir Théorème 2).

La méthode de démonstration utilise une modification convenable de l’approche par perturbation, de
nature variationelle, employée dans [4]. Un nouvel aspect important est la possibilité de localiser le
problème et ceci nous permet de traiter également le cas d’exposantsp critiques ou surcritques.

Des résultats semblables sont montrés pour le problème de Neumann (N).
Une version complète de ces résultats est contenue dans le travail [3].
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1. Introduction

Elliptic singularly perturbed problems such as

−ε2�u+ V (x)u= up, u ∈ H1(
R
n
)
, u > 0, (1)

have been extensively studied. Roughly, whenV is a C1 bounded potential withλ2
0 := inf{V (x) : x ∈ R

n}>
0, and 1< p < (n+ 2)/(n− 2) (we assume here and in the sequel thatn � 3), it has been shown that (1)
possesses solutions concentrating near stationary points ofV , see, e.g., [2] and references therein. See
also [4] for multiplicity results whenV has a manifold of stationary points. However all these papers deal
with solutions, usually referred asspikes, concentrating at a single or at a finite number of points. Similar
results hold for singularly perturbed boundary value problems with Neumann (or Dirichlet) boundary
conditions, see, e.g., [7–9]. On the contrary, much less is known about the existence of solutions that
concentrate at a higher dimensional manifold. In a recent paper [6] it has been proved that, in the case
of the Neumann problem {−ε2�u+ u= up, x ∈�,

∂u
∂ν

= 0, x ∈ ∂�,
(N)

where� ⊂ R
2 is a bounded smooth domain, there exist positive solutions concentrating on the boundary

∂� for some sequenceεn → 0. Moreover, the Morse index of these solutions becomes higher and higher.
The extension of such a result to any bounded domain inR

n seems a matter of high technical difficulty.
Though the problem of finding concentration on higher dimensional manifolds seem quite far from trivial,
in the special case of radial symmetry some results can be achieved and they will be outlined in the present
Note. For brevity, we will mainly focus on a problem (1). In Section 4 we will also outline some results
dealing with (N). A complete version of the results sketched in this Note is contained in the forthcoming
paper [3].

2. The main results

Let V ∈ C1(R+,R) andp > 1 and consider the problem

−ε2�u+ V
(|x|)u= up, u ∈ H1

r , u > 0, (NLS)

where|x| denotes the Euclidean norm ofx ∈ R
n and H1

r = H1
r (R

n) denotes the subspace of the radial
functions in H1(Rn). If 1 < p < (n + 2)/(n − 2) the embedding of H1r into Lp is compact and then
a straight application of the Mountain–Pass theorem yields the existence of a radial solution of (NLS)
concentrating onx = 0. Here we look for radial solutions concentrating on a sphere, without any limitation
on the exponentp > 1.

In order to motivate our main existence result, let us take for the momentp ∈]1, (n+ 2)/(n− 2)] and
consider the C2 functionalIε : H1

r → R,

Iε(u)= 1

2

∫
Rn

[|∇u|2 + V
(
ε|x|)u2]dx − 1

p + 1

∫
Rn

|u|p+1 dx

= 1

2

∫ +∞

0
rn−1[(u′)2 + V (εr)u2]dr − 1

p + 1

∫ +∞

0
rn−1|u|p+1 dr. (2)

If u is a critical point ofIε , then−�u+V (ε|x|)u= up and henceu(x/ε) is a solution of (NLS). Roughly,
in the energy integralIε one can distinguish two parts: a first one is the energy due to the potentialV that
would lead the possible radius of concentrationr0 tend to minima ofV ; the remainder part inIε is avolume
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energy and would leadr0 → 0. The existence of a solution concentrating at|x| = r0 arises when the two
effects balance each other, and this is quantified by anauxiliary potential M defined by setting

M(r)= rn−1V θ (r), θ = p+ 1

p− 1
− 1

2
.

Different from the case of spikes, it is the functionM, not justV , that plays a role in proving the existence
of radial solutions of (NLS) concentrating on a sphere. Actually the following result holds:

THEOREM 1. – Let p > 1, V ∈ C1(R+,R) be bounded and assume that λ2
0 := inf{V (|x|) : x ∈ R

n}> 0.
Moreover, suppose that M has a point of strict local maximum or minimum at r = r . Then, for ε > 0 small
enough, (NLS) has a radial solution which concentrates near the sphere |x| = r .

Remark. – In addition to the fact thatV is substituted byM, another specific feature of solutions
concentrating on a sphere is that we can take anyp > 1. In fact it is known that spikes do not exist whenp
equals the critical Sobolev exponent(n+ 2)/(n− 2).

An outline of the proof is carried over in the next section. Here we point out a further new feature of our
result, namely that, for a genericV as above, solutions arise in pairs. Actually, from the behavior ofM one
deduces the following:

COROLLARY 1. – Suppose that, in addition to the assumptions of Theorem 1, there exists r∗ > 0 such
that

(n− 1)V (r∗)+ θ r∗V ′(r∗) < 0. (3)

Then (NLS) has a pair of solutions concentrating on spheres.

The preceding results neatly improve those of [5] where 1< p < (n + 2)/(n − 2) is assumed, some
involved assumptions (that we do not need here) on the behavior onV are made, no multiplicity results are
given, and the radius of concentration is not established.

3. Outline of the proof

Although the proof is related to that of [4], several new ingredients are required here. We will first deal
with the casep ∈]1, (n+ 2)/(n− 2)] when the functionalIε is well-defined on H1r . The general one will
be handled by means of a suitable truncation argument and a priori estimates in L∞. We let:

– Uρ,ε(r) denote the positive solution of−U ′′ + V (ερ)U =Up , U ′(0)= 0;
– φε(r) denote a smooth non-decreasing cut-off function which vanishes in a neighborhood of the origin;
– Z = {zρ,ε(r) := φε(r) Uρ,ε(r − ρ) : ρ ∼ ε−1}.

We look for critical points ofIε in the formu= z+w with z ∈ Z andw ⊥ TzZ. For this it suffices:
(i) for all z ∈ Z to find w(ρ, ε) ⊥ TzZ such thatI ′

ε(z + w) ∈ TzZ, namelyI ′
ε(z + w) = αz′ for some

α ∈ R; and next
(ii) to find ρε such that, setting�ε(ρ)= Iε(zρ,ε +wρ,ε), there holds�′

ε(ρε)= 0.
If (i) and (ii) hold then, according to general results (see [1]) uε = zρε,ε +wρε,ε is a critical point ofIε and
hence is a solution of (NLS). As for step (i), one first shows thatI ′′

ε (zρ,ε) is invertible for allε small and
ρ ∼ ε−1. Then the equationI ′

ε(z+w) = αz′ is equivalent to

w = Sε(w) := −[
I ′′
ε (z)

]−1(
I ′
ε(z)+ I ′

ε(z+w)− I ′
ε(z)− I ′′

ε (z)[w] − αz′).
In order to find fixed points ofSε , some preliminary setting is in order. From the definition ofzρ,ε it follows
that

z(r)� C e−λ0|r−ρ|.
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Let η > 0 be such that

λ1 := λ0 − η >
λ0

min{p,2}
and define, for allγ > 0

Cε(γ )= {
w ∈ H1

r :w ∈ (TzZ)
⊥, ‖w‖H1

r
� γ ε‖z‖H1

r
,

∣∣w(r)∣∣ � γ e−λ1(ρ−r) for r ∈ [0, ρ]}.
Using also the exponential decay ofz one proves that, forε > 0 small,w ∈ Cε and ρ ∼ ε−1 one has
‖zρ,ε‖H1

r
∼ ε(1−n)/2. This, in turn, allows us to show the existence ofγ > 0 such that:

(a) w ∈ Cε(γ )⇒ ‖Sε(w)‖H1
r
� γ ε‖zρ,ε‖H1

r
;

(b) w ∈ Cε(γ )⇒ |(Sεw)(r)| � γ e−λ1(ρ−r) for r ∈ [0, ρ].
In other words,Sε mapsCε(γ ) into itself. Moreover, takingε possibly smaller and, as before,ρ ∼ ε−1, Sε
is a contraction and therefore has a (unique) fixed pointwρ,ε ∈ Cε(γ ).

About step (ii), one writesIε(zρ,ε +wρ,ε) = Iε(zρ,ε)+ I ′
ε(zρ,ε)[wρ,ε] + ∫

I ′′
ε (zρ,ε + swρ,ε)[wρ,ε]2 ds.

A straight forward calculation yields, forε small,ρ ∼ ε−1 andw ∈ Cε,∥∥I ′
ε(zρ,ε + swρ,ε)

∥∥ ∼ ε(3−n)/2,
∥∥I ′′

ε (zρ,ε + swρ,ε)
∥∥ � const.

Since, in addition,‖wρ,ε‖H1
r
� γ ε‖zρ,ε‖H1

r
and‖zρ,ε‖H1

r
∼ ε(1−n)/2, it follows that

Iε(zρ,ε +wρ,ε)= Iε(zρ,ε)+ O
(
ε3−n

)
.

By definitionzρ,ε = φε(r) Uρ,ε(r − ρ) and this readily implies

Iε(zρ,ε)∼ ρn−1
∫ (∣∣U ′

ρ,ε(r)
∣∣2 + V (εr)U2

ρ,ε(r)− U
p+1
ρ,ε (r)

p + 1

)
dr.

Since Uρ,ε satisfies−U ′′ + V (ερ)U = Up then Uρ,ε(r) = λ2/(p−1)U1(λr), where λ2 = V (ερ) and
−U ′′

1 +U1 =U
p
1 . By a straight calculation, it follows that

∫ (
|U ′

ρ,ε|2 + V (εr)U2
ρ,ε − U

p+1
ρ,ε

p+ 1

)
dr = cV θ (ερ), c =

(
1

2
− 1

p + 1

)∫
U

p+1
1 .

In conclusion, forε small andρ ∼ ε−1 the following expansion holds true:

�ε(ρ)= Iε(zρ,ε +wρ,ε)= ε1−n
[
cM(ερ)+ O

(
ε2)].

It follows that�ε possesses a maximum (resp. minimum) at someρε ∼ r/ε, providedr is a maximum
(resp. minimum) ofM. This completes the proof of Theorem 1 when 1<p � (n+ 2)/(n− 2).

Forp > (n+ 2)/(n− 2) andM > 0, we define a positive and smooth functionFM : R → R such that

FM(t)= |t|p+1 for |t| �M; FM(t)= (M + 1)p+1 for |t| �M + 1.

We also define the corresponding functionalIε,M on H1(r) obtained substituting|u|p+1 with FM(u) in Iε .
DefineM0 = (supV )1/(p−1). We note that, by definition, there holds‖zρ,ε‖∞ �M0 for all ρ andε. Using
this one can prove that ifM �M0, then (roughly) the operatorI ′′

ε (z) is invertible for allz ∈ Z, and the norm
of its inverse is independent ofM. Also, if M �M0 + γ , the estimates involvingI ′

ε(z+w) andI ′′
ε (z+w),

with z ∈Z andw ∈ Cε(γ ), are independent ofM. In this way, one can choseγ depending only onp andV ,
andM �M0 + γ such thatSε,M (corresponding toI ′′

ε,M ) is again a contraction onCε .
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4. Further results

As in the case of spikes, see [10], one can also prove a necessary condition for concentration on a sphere.

THEOREM 2. – Suppose that, for all ε > 0 small, (NLS) has a radial solution uε concentrating on the
sphere |x| = r̂ , in the sense that ∀δ > 0, ∃ε0 > 0 and R > 0 such that

uε(r)� δ for ε � ε0, and |r − r̂| � εR. (4)

Then uε has a unique maximum r = rε , rε → r̂ and M ′(r̂)= 0.

The next result shows that (NLS) has indeed many (non-radial) solutions in addition to the ones
concentrating on spheres. Letuε denote the solutions found in Theorem 1.

THEOREM 3. – (i) The solution uε obtained in Theorem 1 has the property that its Morse index, as
critical point of the functional Iε defined on all of H1(Rn), diverges as ε ↓ 0.

(ii) If V is smooth and M ′′(ū) �= 0, there exists ε0 > 0 such that the set {(ε, uε) : 0< ε < ε0} is a smooth
curve in R × H1(Rn) and there exists a sequence εj ↓ 0 such that from each uεj ∈+ bifurcates a family of
non-radial solutions of (NLS).

The same abstract method discussed before allows us to handle also problem (N), giving rise to a new
class of concentrating solutions. Actually, we have the following result:

THEOREM 4. – Let � be the annulus {x ∈ R
n : a < |x|< 1}, where 0< a < 1. Then there exists a family

of radial solutions uε of (N) concentrating at |x| = 1. More precisely uε possesses a local maximum point
rε < 1 for which 1− rε ∼ ε| logε|.

Remarks. – (i) The result of Theorem 4 can be heuristically explained as follows. For problem (N), the
boundary of� attracts the mass of solutions. In the case of spike-layers this determines their location
depending on the geometry of�. In our case this attraction force balances the volume energy of the solution,
which tends to shrink the circular crown.

(ii) The solutionsuε concentrate at the boundary of the unit ball, although they have an interior maximum
on the sphere|x| = rε. In other words, the profile of these solutions is that of an interior spike in one
dimension, hence they are qualitatively different from those found in [6]. A natural and interesting result
to pursue is to find solutions of (N) concentrating on an interior sphere or, for a general domain�, on an
interior manifold.

(iii) Theorem 4 holds also when we prescribe Dirichlet boundary conditions. In this case one can prove
analogous concentration results, at the inner boundary. Moreover, a concentration result like the one stated
in Theorem 4 is also true when� is the unit ball.

(iv) The results in this paper can provide suggestions for more general results in non-symmetric cases,
for which the above techniques do not apply. In [3] we will discuss some open problems and perspectives.
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