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ABSTRACT. – Under general growth assumptions, that include some cases of linear g
we prove existence of Lipschitzian solutions to the problem of minimizing

∫ b
a
L(x(s), x ′(s))ds

with the boundary conditionsx(a)=A, x(b)= B.
 2003 Éditions scientifiques et médicales Elsevier SAS

MSC: 49N60; 49J65
Keywords: Calculus of variations; Existence and Lipschitzianity of solutions

RÉSUMÉ. – Dans l’article on démontre l’existence de solutions Lipschitziennes du problè
minimiser

∫ b
a L(x(s), x

′(s))ds, x(a)=A, x(b)= B, avec des conditions faibles, de croissan
qui comprennent des cas de croissance linéaire.
 2003 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

The direct method of the calculus of variations is based on the notions of coerc
and of weak lower semicontinuity. From the coercitivity of the functional one de
the property that every sequence that makes the values of the functional boun
particular, every minimizing sequence, contains a weakly converging subsequenc
the weak lower semicontinuity implies that the minimum is attained on the weak lim
the minimizing subsequence. For the classical problem of the calculus of variation
minimum is seeked among the absolutely continuous functions assuming given va
the boundary points and the natural norm of this space is theL1 norm of the derivatives
For the spaceL1, a necessary and sufficient condition for weak pre-compactness
sequence is expressed by the criterion of De la Vallée Poussin [4], whose appl
implies that the LagrangeanL(x, ξ), appearing under the integral sign, has to g
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faster than linearly with respect to the variableξ . A necessary and sufficient conditio
seems to leave little hope of being able to apply the method to provide an exis
theorem for absolutely continuous minimizers under assumptions that donot imply
superlinear growth. The purpose of this paper, however, is to show that in the
of autonomous problems, where the Lagrangean does not depend explicitely
integration variablet , a minor variant of the direct method can be applied under m
general growth assumptions. More precisely, we consider problem(P), the problem of
minimizing the integral

b∫
a

L
(
x(s), x′(s)

)
ds

for x : [a, b] → R
N absolutely continuous and satisfyingx(a) = A, x(b) = B. Under

more general growth conditions, that include the classical superlinear growth bu
some cases of Lagrangeans with linear growth, we show that, from any seq
{xn}n∈N, minimizing for the functional, one can derive another sequence{x̄n}n∈N, each
function x̄n obtained fromxn by reparametrizing the interval[a, b], that is again
minimizing, and consists of equi-Lipschitzian functions. As a consequence, in the
the LagrangeanL(x, ξ) is convex inξ , one can prove the existence of a solution
problem (P), that, in particular, is a Lipschitzian function. A result on the regula
(Lipschitzianity) of solutions to autonomous minimum problems, under condition
superlinear growth, was established in [5] and, under weaker growth conditions, i

The growth assumption we consider is expressed in terms of the polar o
LagrangeanL with respect toξ (for the properties fo the polar see, e.g., [6]). The sa
condition was already introduced in [3] to prove existence of solutions for a rather s
class of Lagrangeans. The results we present apply to different classes of Lagra
that can possibly be extended valued and either convex or differentiable inξ . A simple
example of a convex everywhere defined Lagrangean satisfying the assumptions
Theorem 1, in particular the growth condition, is the map, having linear growth,

L(ξ)=
{ |ξ | − ln(|ξ |), |ξ | � 1,

1, otherwise.

2. Main results

In what followsL(x, ξ) :RN ×R
N → �R = R∪ {+∞} is an extended valued functio

continuous and bounded below, not identically+∞. L∗(x,p) is the polar of L with
respect to its second variable [1], i.e.

L∗(x,p)= sup
ξ∈RN

〈p, ξ 〉 −L(x, ξ).

We denote by dom= {(x, ξ) ∈ R
N × R

N : L(x, ξ) ∈ R} its effective domain. Since th
assumptions onL for the case where dom= R

N × R
N are somewhat simpler than th

assumptions needed in the general case, we shall state separately the results fo
cases. For each case,L, as a function ofξ , may be either convex or not; in this seco
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case, we shall need the extra assumption of differentiability ofL with respect toξ .
This assumption is not needed in the convex case, since, in this case, the existe
subdifferential is enough for the proof. Hence, we will provide four different statem
of what is basically the same result; the proof will be one proof for the four diffe
theorems. We first present the results for the simpler case where dom= R

N × R
N .

THEOREM 1 (Convex case). –Assume that:
(1) dom= R

N × R
N and L(x, ·) is convex, ∀x ∈ R

N ;
(2) for every selection p(x, ·) ∈ ∂ξL(x, ·) we have

L∗(x,p(x, ξ)) → +∞
as |ξ | tends to +∞, uniformly in x.

Then: given any minimizing sequence {xn}n∈N for the functional in (P), there exists a
constant � and a sequence of reparametrizations sn of the interval [a, b] onto itself, such
that {x̄n}n�n1 = {xn ◦ sn}n�n1 is again a minimizing sequence and each x̄n is Lipschitzian
with Lipschitz constant �.

The convex LagrangeanL(ξ) described in Section 1 is such that

L∗(p(ξ)) = ln
(|ξ |) − 1→ +∞.

THEOREM 2 (Differentiable case). –Assume that:
(1) dom= R

N × R
N and ∀x ∈ R

N, L(x, ·) is differentiable;
(2) L∗(x,∇ξL(x, ξ))→ +∞ as |ξ | tends to +∞, uniformly in x.

Then the conclusion of Theorem 1 holds.

The following are the analogous results in the more complex case where d�=
R
N ×R

N . In this case it is not necessarily true that the functional in(P) is not identically
+∞.

THEOREM 3 (Convex case). –Assume that:
(1) L(x, ·) is a convex extended valued map and (x,0) ∈ dom whenever there exists

ξ such that (x, ξ) ∈ dom;
(2) for every selection p(x, ·) ∈ ∂ξL(x, ·) we have

L∗(x,p(x, ξ)) → +∞
as |ξ | tends to +∞, with (x, ξ) ∈ dom, uniformly in x;

(3) for every M > 0, ∃δ > 0 such that L(x, ξ) > M , for every (x, ξ) ∈ dom with
d((x, ξ), ∂ dom) < δ;

(4) the functional in (P) is not identically +∞.
Then the conclusion of Theorem 1 holds.

THEOREM 4 (Differentiable case). –Assume that:
(1) L(x, ·) is differentiable and dom∩ ({x}×R

N) is star shaped with respect to (x,0)
whenever there exists ξ such that (x, ξ) ∈ dom;

(2) L∗(x,∇ξL(x, ξ))→ +∞ as |ξ | tends to +∞, with (x, ξ) ∈ dom, uniformly in x;
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(3) for every M > 0, ∃δ > 0 such that L(x, ξ) > M , for every (x, ξ) ∈ dom with
d((x, ξ), ∂ dom) < δ;

(4) the functional in (P) is not identically +∞.
Then the conclusion of Theorem 1 holds.

We shall need the following proposition on the existence of a lower bound fo
LagrangeanL under the conditions stated in any of the theorems above.

PROPOSITION 5. –Let L satisfy assumptions (1) and (2) of any of the Theorems 1, 2,
3 or 4. Then there exist α > 0 and β ∈ R such that L(x, ξ)� α|ξ | + β, ∀(x, ξ) ∈ dom.

Proof. – Set�= inf{L(x, ξ)}; assumption(2) implies that there existsr > 0 such that
−L∗(x,p(x, ξ)) � � − 1, for every(x, ξ) ∈ dom with |ξ | � r , wherep(x, ·) is either
∇ξL(x, ·) or any selection from the subdifferential ofL(x, ·). We claim that we can
chooseα = 1/(2r) andβ = �− 1

Fix (x, ξ) ∈ dom. When|ξ | � r , we haveL(x, ξ) � � > |ξ |/(2r) + � − 1, and the
claim is true in this case.

Consider the case|ξ | > r . Setψ(s) = s/(2r) + � − 1; assumption(1) implies that
the convex functionL(s) = L(x, sξ/|ξ |) is well defined fors ∈ [r, |ξ |], hence the
selectionpL(s) = 〈ξ/|ξ |,p(x, sξ/|ξ |)〉 ∈ ∂L(s) is increasing and we havepL(s) �
pL(r); moreover, from the inequality

L

(
x, r

ξ

|ξ |
)

−
〈
r
ξ

|ξ |, p
(
x, r

ξ

|ξ |
)〉

� �− 1,

we obtainpL(r)� 1/r > 1/(2r) = ψ ′(s). FromL(r) > ψ(r), we obtainL(s) > ψ(s),
for everys ∈ [r, |ξ |]; settings = |ξ |, the claim is proved.

Now, assume the validity of(1), (2) of the differentiable cases. Again, letr > 0 be
such that for every(x, ξ) ∈ dom with |ξ | � r we have−L∗(x,∇ξL(x, ξ))� �− 1. As
before, it follows that the claim is true for(x, ξ) ∈ dom, |ξ | � r . Fix ξ, |ξ | > r . By
assumption(1), L(s) is defined fors ∈ [r, |ξ |], and we infer

L

(
x, s

ξ

|ξ |
)

−
〈
s
ξ

|ξ |, ∇ξL
(
x, s

ξ

|ξ |
)〉

� �− 1,

so that

L(s)−ψ(s)=L
(
x, s

ξ

|ξ |
)

−
[
s

2r
+ �− 1

]

�
〈
s
ξ

|ξ | , ∇ξL
(
x, s

ξ

|ξ |
)〉

+ s

2r
= s[L′(s)−ψ ′(s)

]
.

Assume that the set{s ∈ (r, |ξ |]: L(s) − ψ(s) < 0} is non-empty, and lets0 be its
infimum. By continuity,L(s0) − ψ(s0) = 0, so thats0 > r . From the Mean Value
Theorem we infer the existence ofs1 ∈ (r, s0) such thatL′(s1)−ψ ′(s1) < 0, that in turn
impliesL(s1)− ψ(s1) < 0, a contradiction to the definition ofs0. HenceL(s)� ψ(s),
∀s ∈ (r, |ξ |], in particular fors = |ξ |. ✷
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LEMMA 6. – Let f :RN → �R be convex, and such that dom contains the origin.
Then, for every ξ in the domain of f , the function f (ξ/(1+ ·))(1+ ·) from [0,+∞) to
R is convex. Moreover, there exists a selection p(·) ∈ ∂f (·) such that

f

(
ξ

1+ s
)
(1+ s)− f (ξ)� −sf ∗

(
p

(
ξ

1+ s
))
, ∀s ∈ [0,+∞).

Proof. – See the proof in [1]. ✷
3. Proof of Theorems 1–4

Proof. – Setm be the infimum of the values of

b∫
a

L
(
x(s), x′(s)

)
ds

for x as in problem(P). Proposition 5 and the assumptions of Theorems 1–4 imply
m is finite. Let{xn}n∈N be a minimizing sequence for problem(P). By Proposition 5 we
obtain that there existsH > 0 such that‖x′

n‖1 � H so that, for everyn, for everys in
[a, b], we havexn(s) ∈ B[0,A+H ].

Next point (a) reaches a conclusion with an argument that differs in the cases
L is or is not extended valued, so the argument is presented separately in the two

(a) (Case dom= R
N × R

N ) For everyn, consider the subset of[a, b] defined by

T Hn = {
s ∈ [a, b]: ∣∣x′

n(s)
∣∣ � 4H/3(b− a)};

one verifies that the Lebesgue measure of any such set is larger or equal to(b− a)/4.
Fix δ > 0. Since(xn(s), (1 + δ)x′

n(s)) ∈ B[0,A +H ] × B[0,4(1 + δ)H/3(b − a)],
andL is continuous, we infer that: there existsµ ∈ R such that, for everyn ∈ N and
s ∈ T Hn ,

L
(
xn(s), (1+ δ)x′

n(s)
) 1

1+ δ −L(
xn(s), x

′
n(s)

)
� µ.

(a) (Case dom�= R
N × R

N ) Consider a real positiveM . Assumption(3) implies that
there existsδ(M) > 0 such thatL(x, ξ) > M , ∀(x, ξ) ∈ dom with d((x, ξ), ∂ dom) <
2δ(M).

Consider the subsets of[a, b]
J δ(M)n = {

s ∈ [a, b]: d((xn(s), x′
n(s)

)
, ∂ dom

)
� 2δ(M)

};
we have the inequality

b∫
a

L
(
xn(s), x

′
n(s)

)
ds =

∫

J
δ(M)
n

L
(
xn(s), x

′
n(s)

)
ds +

∫

[a,b]\J δ(M)n

L
(
xn(s), x

′
n(s)

)
ds

�
∣∣J δ(M)∣∣�+ ∣∣[a, b] \ J δ(M)∣∣M = (b− a)M + ∣∣J δ(M)∣∣(�−M),
n n n
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so that

lim inf
n→+∞

∣∣J δ(M)n

∣∣ � (b− a)M −m
M − � .

Since limM→+∞[(b− a)M −m]/(M − �)= b− a, we can choose�M > 0 such that

[
(b− a) �M −m]

/( �M − �) > (b− a)3/4.
Setδ = δ( �M). We have obtained that there existsn1 ∈ N such thatn� n1 implies

∣∣J δn ∣∣ � (b− a)3/4.
We have also obtained that the sets{(xn(s), (1 + δ)x′

n(s)): s ∈ J δn } are contained in
dom. Finally, consider the sets

IHn = {
s ∈ [a, b]: ∣∣x′

n(s)
∣∣ � 4H/(b− a)};

the measure of eachIHn is at least(b− a)3/4 so that, definingT Hn = IHn ∩ J δn , we obtain
|T Hn | = |IHn ∩ J δn | � (b− a)/4, ∀n� n1.

Since(xn(s), (1 + δ)x′
n(s)) belongs toB[0,A + H ] × B[0,4(1 + δ)H/(b − a)] ∩

{(x, ξ) ∈ dom: d((x, ξ), ∂ dom)� δ}, a compact subset of dom andL is continuous on
dom, we infer that: there existsµ ∈ R such that, for everyn ∈ N ands ∈ T Hn ,

L
(
xn(s), (1+ δ)x′

n(s)
) 1

1+ δ −L(
xn(s), x

′
n(s)

)
� µ.

(b) Consider a real positiveν and setSνn = {s ∈ [a, b]: |x′
n(s)|> ν}. From‖x′

n‖1 �H ,
we easily obtain that both the measure ofSνn and

ενn =
∫
Sνn

[ |x′
n(s)|
ν

− 1
]

ds

converge to 0 asν→ +∞, uniformly with respect ton ∈ N.
Consider first the convex case; letp(x, ·) ∈ ∂ξL(x, ·) be the selection provide

by Lemma 6. By assumption(2) of this case, ther exists a mapM :N → R,
limν→+∞M(ν)= +∞, such that

L∗(x,p(x, ξ)) �M(ν)

for every(x, ξ) ∈ dom∩[RN × (B[0, ν])c]; in particular

L∗(xn(x),p(
xn(s), x

′
n(s)

))
�M(ν)

for every n ∈ N and s ∈ Sνn . Analogously, under assumption(2) of the differentiable
case, there exists a mapM :N → R, limν→+∞M(ν)= +∞, such that

L∗(x,∇L(x, ξ)) �M(ν)
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for every(x, ξ) ∈ dom∩[RN × (B[0, ν])c]; in particular

L∗(xn(x), ∇L(
xn(s), x

′
n(s)

))
�M(ν)

for everyn ∈ N ands ∈ Sνn .
Hence, both in the convex and in the differentiable case, we have obtained tha

exists an integer̄ν such that at once we havēν � 4H/(b − a), M(ν̄) � (1 + δ)µ and
εν̄n � (b− a)/[4(1+ δ)], ∀n ∈ N.

(c) For everyn � n1, there exists)Hn , a subset ofT Hn , having measure(1 + δ)εν̄n.
Define the absolutely continuous functionstn(s)= a + ∫ s

a t
′
n(τ )dτ by setting

t ′n(s)=



1+ [ |x ′
n(s)|
ν̄

− 1
]
, s ∈ Sν̄n ,

1− 1
1+δ , s ∈)Hn ,

1, otherwise;

eachtn is an invertible map from[a, b] onto itself.
(d) From the definition oft ′n we have that

b∫
a

L

(
xn(s),

x′
n(s)

t ′n(s)

)
t ′n(s)ds −

b∫
a

L
(
xn(s), x

′
n(s)

)
ds

=
∫

Sν̄n

L

(
xn(s), ν̄

x′
n(s)

|x′
n(s)|

) |x′
n(s)|
ν̄

ds −
∫

Sν̄n

L
(
xn(s), x

′
n(s)

)
ds

+
∫

)Hn

L
(
xn(s), (1+ δ)x′

n(s)
) 1

1+ δ ds −
∫

)Hn

L
(
xn(s), x

′
n(s)

)
ds.

We wish to estimate the above integrals. Since)Hn ⊂ T Hn , we easily obtain

∫

)Hn

[
L

(
xn(s), (1+ δ)x′

n(s)
) 1

1+ δ −L(
xn(s), x

′
n(s)

)]
ds � (1+ δ)εν̄nµ.

To conclude the estimate we have to consider separately the convex and the differe
case.

(e) (Convex case) The choice ofp implies that

L

(
xn(s), ν̄

x′
n(s)

|x′
n(s)|

) |x′
n(s)|
ν̄

−L(
xn(s), x

′
n(s)

)

� −
[ |x′

n(s)|
ν̄

− 1
]
L∗

(
xn(s), p

(
xn(s), ν̄

x′
n(s)

|x′
n(s)|

))

for everys ∈ Sν̄n .
(e) (Differentiable case) The Mean Value Theorem implies that there existsαn(s) ∈

[0, |x′ (s)|/ν̄ − 1] such that
n
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hat

tant
L

(
xn(s), ν̄

x′
n(s)

|x′
n(s)|

) |x′
n(s)|
ν̄

−L(
xn(s), x

′
n(s)

)

= −
[ |x′

n(s)|
ν̄

− 1
][〈

∇ξL
(
xn(s),

x′
n(s)

1+ αn(s)
)
,
x′
n(s)

1+ αn(s)
〉

−L
(
xn(s),

x′
n(s)

1+ αn(s)
)]

= −
[ |x′

n(s)|
ν̄

− 1
]
L∗

(
xn(s),∇ξL

(
xn(s),

x′
n(s)

1+ αn(s)
))

for everys ∈ Sν̄n .
(f) Since both|ν̄x′

n(s)/|x′
n(s)|| � ν̄ and |x′

n(s)|/(1 + αn(s)) � ν̄, by the definition of
M(ν̄) we obtain

∫

Sν̄n

L

(
xn(s), ν̄

x′
n(s)

|x′
n(s)|

) |x′
n(s)|
ν̄

ds −
∫

Sν̄n

L
(
xn(s), x

′
n(s)

)
ds � −εν̄nM(ν̄),

hence our estimate becomes:n� n1 implies that

b∫
a

L

(
xn(s),

x′
n(s)

t ′n(s)

)
t ′n(s)ds −

b∫
a

L
(
xn(s), x

′
n(s)

)
ds � εν̄n

[−M(ν̄)+ (1+ δ)µ]
� 0.

(g) The conclusion of (f) proves the theorem; in fact, definingx̄n = xn ◦ sn, wheresn
is the inverse of the functiontn, we obtain, by the change of variable formula [7], t
{x̄n}n�n1 = {xn ◦ sn}n�n1 is a minimizing sequence, since

b∫
a

L
(
x̄n(t), x̄

′
n(t)

)
dt =

b∫
a

L

(
x̄n

(
tn(s)

)
,

dx̄n
dt

(
tn(s)

))
t ′n(s)ds

=
b∫
a

L

(
xn(s),

x′
n(s)

t ′n(s)

)
t ′n(s)ds �

b∫
a

L
(
xn(s), x

′
n(s)

)
ds.

Moreover, we claim that̄xn are Lipschitzian functions, with the same Lipschitz cons
� = (1 + 1/δ)ν̄. In fact, consider the equalitȳx′

n(tn(s)) = x′
n(s)/t

′
n(s) and fix s where

t ′n(s) exists; we obtain

∣∣∣∣dx̄ndt

(
tn(s)

)∣∣∣∣



= ν̄, s ∈ Sν̄n ,
� (1+ 1/δ)ν̄, s ∈)Hn ,

� ν̄, otherwise;

hence, at almost every pointtn(s), the norm of the derivative of̄xn is bounded by�. This
completes the proof. ✷



A. CELLINA, A. FERRIERO / Ann. I. H. Poincaré – AN 20 (2003) 911–919 919

in the

case:
for

rcive

the

ster-

riable
REFERENCES

[1] A. Cellina, Reparametrizations and the non-occurrence of the Lavrentiev phenomenon
autonomous case of the calculus of variations, Preprint, 2001.

[2] A. Cellina, The classical problem of the calculus of variations in the autonomous
Relaxation and Lipschitzianity of solutions, Trans. Amer. Math. Soc., submitted
publication.

[3] A. Cellina, G. Treu, S. Zagatti, On the minimum problem for a class of non-coe
functionals, J. Differential Equations 127 (1996) 225–262.

[4] L. Cesari, Optimization, Theory and Applications, Springer-Verlag, New York, 1983.
[5] F.H. Clarke, R.B. Vinter, Regularity properties of solutions to the basic problem in

calculus of variations, Trans. Amer. Math. Soc. 289 (1985) 73–98.
[6] I. Ekeland, R. Temam, Convex Analysis and Variational Problems, North-Holland, Am

dam, 1976.
[7] J. Serrin, D.E. Varberg, A general chain rule for derivatives and the change of va

formula for the Lebesgue integral, Amer. Math. Monthly 76 (1969) 514–520.


