SELF-INTERACTING DIFFUSIONS II: CONVERGENCE IN LAW

Michel BENAÏM ${ }^{\text {a }}$, Olivier RAIMOND ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Departement de mathématiques, Université Cergy-Pontoise, France
${ }^{\text {b }}$ Laboratoire de modélisation stochastique et statistique Université Paris Sud, France

Received 28 May 2002, accepted 26 February 2003

Abstract

This paper concerns convergence in law properties of self-interacting diffusions on a compact Riemannian manifold.

© 2003 Éditions scientifiques et médicales Elsevier SAS
Résumé. - Cet article étudie les propriétés de convergence en loi des diffusions interagissantes sur une variété riemannienne compacte.
© 2003 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Self interacting diffusions (as considered here) are continuous time stochastic processes living on a Riemannian manifold M which can be typically described as solutions to a stochastic differential equation (SDE) of the form

$$
\begin{equation*}
d X_{t}=\sum_{\alpha} F_{\alpha}\left(X_{t}\right) \circ d B_{t}^{\alpha}-\frac{1}{t}\left(\int_{0}^{t} \nabla V_{X_{s}}\left(X_{t}\right) d s\right) d t \tag{1}
\end{equation*}
$$

where $\left(B^{\alpha}\right)_{\alpha}$ is a family of independent Brownian motions, $\left(F_{\alpha}\right)_{\alpha}$ is a family of smooth vector fields on M such that $\sum_{\alpha} F_{\alpha}\left(F_{\alpha} f\right)=\Delta f$ (for $f \in C^{\infty}(M)$), where Δ denotes the Laplacian on M and $V_{u}(x)$ a "potential" function.

[^0]These processes are characterized by the fact that the drift term in Eq. (1) depends both on the position of the process X_{t}, and its empirical occupation measure up to time t :

$$
\begin{equation*}
\mu_{t}=\frac{1}{t} \int_{0}^{t} \delta_{X_{s}} d s \tag{2}
\end{equation*}
$$

The asymptotic behavior of $\left\{\mu_{t}\right\}$ is the subject of a recent paper by Benaïm, Ledoux and Raimond [1]. This paper provides tools and results which allow to describe the long term behavior of $\left\{\mu_{t}\right\}$ in terms of the long term behavior of a certain deterministic semiflow $\left\{\Psi_{t}\right\}_{t \geqslant 0}$ defined on the space of probability measure on M. For instance, there are situations (depending on the shape of V) in which $\left\{\mu_{t}\right\}$ converges almost surely to an equilibrium point μ^{*} of Ψ and other situations where the limit set of $\left\{\mu_{t}\right\}$ coincides almost surely with a periodic orbit for Ψ (see the examples in Section 4 of [1] and below in Section 7). In the simple case where μ_{t} converges to μ^{*} one expects $\left(X_{t+s}, s \geqslant 0\right)$ to behave like a homogeneous diffusion of generator

$$
L_{\mu^{*}}=\frac{1}{2} \Delta+\left\langle\nabla V_{\mu^{*}}, \nabla\right\rangle
$$

where $V_{\mu^{*}}(x)=\int V_{y}(x) \mu^{*}(d y)$ and $\langle\cdot, \cdot\rangle$ denotes the Riemannian inner product on M. The purpose of this note is to address this type of question.

In Section 2, following [1], self-interacting diffusions on a smooth compact manifold are defined. In Section 3, the basic tool of this paper is presented, namely the Girsanov transform.

In Section 4, we show that on the event " μ_{t} converges towards μ^{*} ", the law of $\left(X_{t+u}, u \geqslant 0\right)$ given $\mathcal{B}_{t}=\sigma\left(X_{s}, s \leqslant t\right)$ is asymptotically equal to the law of the diffusion with generator $L_{\mu^{*}}$ and initial condition X_{t}.

In Section 5, we show that the law of $X_{t+s(t)}$ given \mathcal{B}_{t} is asymptotically equal to $\Pi\left(\mu_{t}\right)$, the invariant probability measure of the diffusion with generator $L_{\mu_{t}}$; provided $s(t) \rightarrow \infty$ at a convenient rate. Moreover the law of X_{t} given $\widetilde{\Omega}=\left\{\mu_{t} \rightarrow \mu^{*}\right\}$ converges towards $\mathrm{E}\left[\mu^{*} \mid \widetilde{\Omega}\right]$. In particular, when $\mathrm{P}(\widetilde{\Omega})=1, X_{t}$ converges in law towards $\mathrm{E}\left[\mu^{*}\right]$.

Section 6 generalizes results of Section 5 to the law of the process $\left(X_{t+s(t)+v}, v \geqslant 0\right)$.
In Section 7, examples developed in [1] and [2], for which μ_{t} converges a.s. are presented.

2. Background and notation

The notation and definitions here are from [1].
Throughout we let M denote a d-dimensional, compact connected smooth $\left(C^{\infty}\right)$ Riemannian manifold. Without loss of generality (see Nash [4]) we shall assume that M is isometrically embedded in \mathbb{R}^{N}. We denote $C^{r}(M), 0 \leqslant r \leqslant \infty$, the space of C^{r} real valued functions on M.

Given a metric space E we let $\mathcal{P}(E)$ denote the space of Borel probability measures on E equipped with the topology induced by the weak convergence. Recall that a sequence
$\left\{\mathrm{P}_{n}\right\}_{n \geqslant 0}$ of Borel probability measures on E converges weakly to P provided

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int f d \mathrm{P}_{n}=\int f d \mathrm{P} \tag{3}
\end{equation*}
$$

for every bounded and continuous function $f: E \rightarrow \mathbb{R}$. When E is compact (e.g., $E=M), \mathcal{P}(E)$ is a compact metric space.

Throughout we assume given a measurable mapping

$$
\begin{align*}
& V: M \times M \rightarrow \mathbb{R}, \\
& (u, x) \mapsto V(u, x)=V_{u}(x) . \tag{4}
\end{align*}
$$

We furthermore assume that for all $u \in M, V_{u}: M \rightarrow \mathbb{R}$ is a C^{1} function whose first derivatives are bounded (in the variables u and x). For $\mu \in \mathcal{P}(M)$ we let $V_{\mu} \in C^{1}(M)$ denote the function defined by

$$
\begin{equation*}
V_{\mu}(x)=\int_{M} V(u, x) \mu(d u), \tag{5}
\end{equation*}
$$

and L_{μ} the operator defined on $C^{\infty}(M)$ by

$$
\begin{equation*}
L_{\mu} f=\frac{1}{2} \Delta f-\left\langle\nabla V_{\mu}, \nabla f\right\rangle \tag{6}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle, \nabla$ and Δ stand, respectively, for the Riemannian inner product, the associated gradient and Laplacian on M.

We let Ω denote the space of continuous paths $w: \mathbb{R}_{+} \rightarrow M$, equipped with the topology of uniform convergence on compact intervals; $\mathcal{B}=\mathcal{B}(\Omega)$ the Borel σ-field of Ω, X_{t} the M-valued random variable defined by $X_{t}(w)=w(t)$; and \mathcal{B}_{t} the σ-field generated by the random variables $\left\{X_{s}: 0 \leqslant s \leqslant t\right\}$.

Since Ω is polish, $\mathcal{P}(\Omega)$ equipped with the weak convergence is metrizable. A distance d on $\mathcal{P}(\Omega)$ is given by

$$
\begin{equation*}
d(\mathrm{P}, \mathrm{Q})=\sum_{n=1}^{\infty} 2^{-n}\left|\int Z_{n} d \mathrm{P}-\int Z_{n} d \mathrm{Q}\right| \tag{7}
\end{equation*}
$$

for P and Q in $\mathcal{P}(\Omega)$ where $Z_{n}: \Omega \rightarrow \mathbb{R}$ is continuous, \mathcal{B}_{n}-measurable, and $\left\{Z_{n} ; n \geqslant 1\right\}$ is dense in $\left\{Z \in C^{0}(\Omega) ;\|Z\|_{\infty} \leqslant 1\right\}$.

For $r>0, \mu \in \mathcal{P}(M)$ and $w \in \Omega$, the empirical occupation measure of w with initial weight r and initial measure μ is the sequence $\left\{\mu_{t}(r, \mu, w) \in \mathcal{P}(M): t \geqslant 0\right\}$ defined by

$$
\begin{equation*}
\mu_{t}(r, \mu, w)=\frac{1}{r+t}\left(r \mu+\int_{0}^{t} \delta_{w(s)} d s\right) \tag{8}
\end{equation*}
$$

where $\int_{0}^{t} \delta_{w(s)} d s(A)=\int_{0}^{t} \mathbf{1}_{A}(w(s)) d s$, for every Borel set $A \subset M$. In the following we will denote by $\mu_{t}(r, \mu)$ the $\mathcal{P}(M)$-valued random variable $w \mapsto \mu_{t}(r, \mu, w)$.

A self-interacting diffusion associated to V is a family

$$
\begin{equation*}
\left\{\mathrm{P}_{x, r, \mu}: x \in M, r>0, \mu \in \mathcal{P}(M)\right\} \subset \mathcal{P}(\Omega) \tag{9}
\end{equation*}
$$

such that
(i) $\mathrm{P}_{x, r, \mu}\left(X_{0}=x\right)=1$.
(ii) For all $f \in C^{\infty}(M)$,

$$
M_{t}^{f}=f\left(X_{t}\right)-f(x)-\int_{0}^{t}\left(L_{\mu_{s}(r, \mu)} f\right)\left(X_{s}\right) d s
$$

is a $\mathrm{P}_{x, r, \mu}$-martingale relative to $\left\{\mathcal{B}_{t}: t \geqslant 0\right\}$.
Existence and uniqueness of the self-interacting diffusion associated to V is proved in [1], Proposition 2.5. More precisely, it is shown in this paper that $\mathrm{P}_{x, r, \mu}$ can be obtained as the law of $\left\{X_{t}\right\}$, a solution (unique in law) of the following SDE on M :

$$
\begin{equation*}
d X_{t}=\sum_{i=1}^{N} F_{i}\left(X_{t}\right) \circ d B_{t}^{i}-\nabla V_{\mu_{t}(r, \mu)}\left(X_{t}\right) d t, \quad X_{0}=x \tag{10}
\end{equation*}
$$

where $\left(F_{1}(x), \ldots, F_{N}(x)\right)$ denote the orthogonal projection of the canonical basis $\left(e_{1}, \ldots, e_{N}\right)$ of \mathbb{R}^{N} on $T_{x} M$ and $B_{t}=\left(B_{t}^{1}, \ldots, B_{t}^{N}\right)$ is an N-dimensional Brownian motion.

For $x \in M$ and $\mu \in \mathcal{P}(M)$ we let $\mathrm{P}_{x, \mu} \in \mathcal{P}(\Omega)$ denote the probability measure on Ω such that
(i) $\mathrm{P}_{x, \mu}\left(X_{0}=x\right)=1$.
(ii) For all $f \in C^{\infty}(M)$,

$$
M_{t}^{f}=f\left(X_{t}\right)-f(x)-\int_{0}^{t}\left(L_{\mu} f\right)\left(X_{s}\right) d s
$$

is a $\mathrm{P}_{x, \mu}$-martingale relative to $\left\{\mathcal{B}_{t}: t \geqslant 0\right\}$.
In other words, $\mathrm{P}_{x, \mu}$ is the law of the diffusion process $\left\{Y_{t}\right\}$ with initial condition x and generator L_{μ} solution to the SDE:

$$
\begin{equation*}
d Y_{t}=\sum_{i=1}^{N} F_{i}\left(Y_{t}\right) \circ d B_{t}^{i}-\nabla V_{\mu}\left(Y_{t}\right) d t, \quad Y_{0}=x \tag{11}
\end{equation*}
$$

In the following $\mathrm{E}_{x, r, \mu}$ and $\mathrm{E}_{x, \mu}$ will respectively denote the expectation with respect to $\mathrm{P}_{x, r, \mu}$ and to $\mathrm{P}_{x, \mu}$.

3. The Girsanov transform and some lemmas

3.1. The Girsanov transform

Let $B_{t}=\left(B_{t}^{1}, \ldots, B_{t}^{N}\right)$ be a standard Brownian motion on $\mathbb{R}^{N}, \mathrm{P}$ the law of $\left(B_{s} ; s \geqslant 0\right), \mathrm{E}$ the associated expectation, \mathcal{F}_{t} the P -completion of $\sigma\left(B_{s}, 0 \leqslant s \leqslant t\right)$ and $\mathcal{F}=\mathcal{F}_{\infty}$. Let $\left\{W_{t}^{x}\right\}$ be the solution to the SDE

$$
\begin{equation*}
d W_{t}^{x}=\sum_{i=1}^{N} F_{i}\left(W_{t}^{x}\right) \circ d B_{t}^{i}, \quad W_{0}^{x}=x \in M \tag{12}
\end{equation*}
$$

Then $W^{x}=\left(W_{t}^{x}, t \geqslant 0\right)$ is a Brownian motion on M starting at x. We denote its law P_{x}. Note that $W^{x}: C\left(\mathbb{R}^{+}: \mathbb{R}^{N}\right) \rightarrow \Omega=C\left(\mathbb{R}^{+}: M\right)$ is measurable. Let

$$
\begin{equation*}
M_{t}^{x, r, \mu}=\exp \left[\int_{0}^{t} \sum_{i}\left\langle\nabla V_{\mu_{s}^{x}(r, \mu)}\left(W_{s}^{x}\right), F_{i}\left(W_{s}^{x}\right)\right\rangle d B_{s}^{i}-\frac{1}{2} \int_{0}^{t}\left\|\nabla V_{\mu_{s}^{x}(r, \mu)}\left(W_{s}^{x}\right)\right\|^{2} d s\right] \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu_{t}^{x}(r, \mu)=\frac{1}{t+r}\left(r \mu+\int_{0}^{t} \delta_{W_{s}^{x}} d s\right) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{t}^{x, \mu}=\exp \left[\int_{0}^{t} \sum_{i}\left\langle\nabla V_{\mu}\left(W_{s}^{x}\right), F_{i}\left(W_{s}^{x}\right)\right\rangle d B_{s}^{i}-\frac{1}{2} \int_{0}^{t}\left\|\nabla V_{\mu}\left(W_{s}^{x}\right)\right\|^{2} d s\right] \tag{15}
\end{equation*}
$$

Then $\left\{M_{t}^{x, r, \mu}\right\}$ and $\left\{M_{t}^{x, \mu}\right\}$ are $\left(\mathrm{P},\left\{\mathcal{F}_{t}\right\}\right)$-martingales. By the transformation of drift formula (see [3], Section IV 4.1 and Theorem IV 4.2),

$$
\left\{\begin{array}{l}
\mathrm{E}_{x, r, \mu}\left[Z_{t}\right]=\mathrm{E}\left[M_{t}^{x, r, \mu}\left(Z_{t} \circ W^{x}\right)\right] \tag{16}\\
\mathrm{E}_{x, \mu}\left[Z_{t}\right]=\mathrm{E}\left[M_{t}^{x, \mu}\left(Z_{t} \circ W^{x}\right)\right]
\end{array}\right.
$$

for every bounded \mathcal{B}_{t}-measurable random variable Z_{t}. Note that this implies in particular that $\mathrm{P}_{x}, \mathrm{P}_{x, \mu}$ and $\mathrm{P}_{x, r, \mu}$ are equivalent.

3.2. Some lemmas

The next lemma is a basic tool to estimate quantities such as

$$
\mathrm{E}_{x, r, \mu^{r}}\left[Z_{t}\right]-\mathrm{E}_{x, \mu}\left[Z_{t}\right]
$$

for large r and μ^{r} close to μ.
LEMMA 3.1. - For $a=1,2$ let $A_{t}^{a}=\left(A_{t}^{a, 1}, \ldots, A_{t}^{a, N}\right)$ be a \mathbb{R}^{N}-valued bounded $\left\{\mathcal{F}_{t}\right\}$ previsible process. Suppose that for all $0 \leqslant s \leqslant t$

$$
\begin{equation*}
\left\|A_{s}^{1}-A_{s}^{2}\right\| \leqslant \delta(t) \tag{17}
\end{equation*}
$$

for some deterministic function $\delta: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$. Let

$$
M_{t}^{a}=\exp \left[\int_{0}^{t} \sum_{i} A_{s}^{a, i} d B_{s}^{i}-\frac{1}{2} \int_{0}^{t}\left\|A_{s}^{a}\right\|^{2} d s\right], \quad a=1,2 .
$$

Then there exists a positive constant C such that for any \mathcal{F}_{t}-measurable random variable Z_{t} bounded by 1 in absolute value,

$$
\begin{equation*}
\left|\mathrm{E}\left[M_{t}^{1} Z_{t}\right]-\mathrm{E}\left[M_{t}^{2} Z_{t}\right]\right| \leqslant \mathrm{e}^{C t} \delta(t) \tag{18}
\end{equation*}
$$

The constant C depends only on $\sup _{a, s}\left\|A_{s}^{a}\right\|_{\infty}$.
Lemma 3.1 will be proved in Section 8. Note that Lemma 3.1 and the Girsanov transforms given in Section 3.1 imply that $\mathrm{P}_{x, r, \mu}$ converges weakly towards $\mathrm{P}_{x, \mu}$ as $r \rightarrow \infty$. More precisely

Lemma 3.2. - There exists a positive constant C (depending only on $\sup _{x, y}\left\|\nabla V_{y}(x)\right\|$) such for any \mathcal{B}_{t}-measurable random variable Z_{t} bounded by 1 in absolute value,

$$
\begin{equation*}
\left|\mathrm{E}_{x, r, \mu}\left[Z_{t}\right]-\mathrm{E}_{x, \mu}\left[Z_{t}\right]\right| \leqslant \frac{\mathrm{e}^{C t}}{r+t} \tag{19}
\end{equation*}
$$

Proof. - There exists a constant C such that $\left\|\nabla V_{\mu}\right\|_{\infty} \leqslant C$ and $\left\|\nabla V_{\mu_{s}(r, \mu)}-\nabla V_{\mu}\right\|_{\infty} \leqslant$ $C t /(r+t)$, for all $0 \leqslant s \leqslant t$. The result then follows from Girsanov formulas (16) and Lemma 3.1 applied with

$$
\left\{\begin{align*}
A_{s}^{1, i} & =\left\langle\nabla V_{\mu_{s}(r, \mu)}\left(W_{s}^{x}\right), F_{i}\left(W_{s}^{x}\right)\right\rangle \tag{20}\\
A_{s}^{2, i} & =\left\langle\nabla V_{\mu}\left(W_{s}^{x}\right), F_{i}\left(W_{s}^{x}\right)\right\rangle
\end{align*}\right.
$$

4. The asymptotic of $\mathrm{P}_{X_{t}, r+t, \mu_{t}(r, \mu)}$

Here we shall prove:
THEOREM 4.1. - Let $\mu^{*}: \Omega \rightarrow \mathcal{P}(M)$ denote a $\mathcal{P}(M)$-valued random variable. Let $\widetilde{\Omega}=\left\{w \in \Omega: \lim _{t \rightarrow \infty} \mu_{t}(r, \mu, w)=\mu^{*}\right\}$. Then $\mathrm{P}_{x, r, \mu}-$ a.s. on $\widetilde{\Omega}$,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} d\left(\mathrm{P}_{X_{t}, r+t, \mu_{t}(r, \mu)}, \mathrm{P}_{X_{t}, \mu^{*}}\right)=0 \tag{21}
\end{equation*}
$$

COROLLARY 4.2. - For every bounded and continuous function $Z: \Omega \rightarrow \mathbb{R}, P_{x, r, \mu}$-a.s.

$$
\begin{equation*}
\lim _{r \rightarrow \infty}\left|\mathrm{E}_{x, r, \mu}\left[Z \circ \theta_{t} \mid \mathcal{B}_{t}\right]-\mathrm{E}_{X_{t}, \mu^{*}}[Z]\right| \mathbf{1}_{\widetilde{\Omega}}=0, \tag{22}
\end{equation*}
$$

where $\theta_{t}: \Omega \rightarrow \Omega$ is the shift on Ω defined by $\theta_{t}(w)(s)=w(t+s)$.
Proof. - By the Markov property, we have

$$
\begin{equation*}
\mathrm{E}_{x, r, \mu}\left[Z \circ \theta_{t} \mid \mathcal{B}_{t}\right]=\mathrm{E}_{X_{t}, t+r, \mu_{t}(r, \mu)}[Z], \tag{23}
\end{equation*}
$$

and the result follows from Theorem 4.1.
Proof of Theorem 4.1. - Follows directly from the following estimate:
PROPOSITION 4.3. $-\operatorname{Let}\left\{\mu^{r}: r>0\right\} \subset \mathcal{P}(M)$. Assume that

$$
\lim _{r \rightarrow \infty} \mu^{r}=\mu^{*}
$$

in $\mathcal{P}(M)$. Let Z_{t} be a random variable \mathcal{F}_{t}-measurable and bounded by 1 in absolute value. Then

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \mathrm{E}_{x, r, \mu^{r}}\left[Z_{t}\right]=\mathrm{E}_{x, \mu^{*}}\left[Z_{t}\right] \tag{24}
\end{equation*}
$$

uniformly in $x \in M$.
More precisely, there exists $C>0$ (depending only on $\left.\sup _{x, y}\left\|\nabla V_{y}(x)\right\|\right)$ such that

$$
\begin{equation*}
\left|\mathrm{E}_{x, r, \mu^{r}}\left[Z_{t}\right]-\mathrm{E}_{x, \mu^{*}}\left[Z_{t}\right]\right| \leqslant \mathrm{e}^{C t}\left(\frac{1}{r}+\varepsilon(r)\right) \tag{25}
\end{equation*}
$$

where $\varepsilon(r)=\sup _{x}\left\|\nabla V_{\mu^{r}}(x)-\nabla V_{\mu^{*}}(x)\right\|$.
Note that $\lim _{r \rightarrow \infty} \varepsilon(r)=0$ (since $x \mapsto \nabla V_{\mu^{r}}(x)-\nabla V_{\mu^{*}}(x)$ is equicontinuous in x and converges towards 0 for every x).

Proof. - Lemma 3.1 applied with

$$
\left\{\begin{array}{l}
A_{s}^{1, i}=\left\langle\nabla V_{\mu^{r}}\left(W_{s}^{x}\right), F_{i}\left(W_{s}^{x}\right)\right\rangle, \tag{26}\\
A_{s}^{2, i}=\left\langle\nabla V_{\mu^{*}}\left(W_{s}^{x}\right), F_{i}\left(W_{s}^{x}\right)\right\rangle
\end{array}\right.
$$

implies

$$
\begin{equation*}
\left|\mathrm{E}_{x, \mu^{r}}\left[Z_{t}\right]-\mathrm{E}_{x, \mu^{*}}\left[Z_{t}\right]\right| \leqslant \mathrm{e}^{C t} \varepsilon(r) \tag{27}
\end{equation*}
$$

The conclusion follows from this last inequality combined with Lemma 3.2 and the triangle inequality.

5. The convergence in law of X_{t}

For every $\mu \in \mathcal{P}(M)$ let $\Pi(\mu) \in \mathcal{P}(M)$ denote the invariant probability measure of the diffusion process with generator L_{μ}. That is

$$
\begin{equation*}
\Pi(\mu)(d x)=\frac{\mathrm{e}^{-2 V_{\mu}(x)}}{Z(\mu)} \lambda(d x) \tag{28}
\end{equation*}
$$

where $Z(\mu)$ is the normalization constant.
Let us first remark that as $r \rightarrow \infty$, the law of X_{t} under $\mathrm{P}_{x, r, \mu}$ converges weakly towards the law of X_{t} under $\mathrm{P}_{x, \mu}$ (see Lemma 3.2). We also have the convergence $\lim _{t \rightarrow \infty} \mathrm{E}_{x, \mu}\left[g\left(X_{t}\right)\right]=\Pi(\mu) g^{1}$ for all $g \in C^{0}(M)$. The next proposition shows that

[^1]$\mathrm{E}_{x, r, \mu}\left[g\left(X_{t+s}\right) \mid \mathcal{B}_{t}\right]=\mathrm{E}_{X_{t}, r+t, \mu_{t}(r, \mu)}\left[g\left(X_{s}\right)\right]$ and $\Pi\left(\mu_{t}(r, \mu)\right) g$ are close when s and t tends to ∞ at a certain rate.

Proposition 5.1. - For all $t \geqslant 1, r>0, s>0$ and $g \in C^{0}(M)$,

$$
\begin{equation*}
\left|\mathrm{E}_{x, r, \mu}\left[g\left(X_{t+s}\right) \mid \mathcal{B}_{t}\right]-\Pi\left(\mu_{t}\right) g\right| \leqslant\|g\|_{\infty}\left(\frac{\mathrm{e}^{C s}}{r+s+t}+C \mathrm{e}^{-s / \kappa}\right), \tag{29}
\end{equation*}
$$

where C and κ are positive constants depending only on V.
The proof of Proposition 5.1 is given in Section 8.
Corollary 5.2.-
(i) For all positive s and all $g \in C^{0}(M)$,

$$
\begin{equation*}
\limsup _{t \rightarrow \infty}\left|\mathrm{E}_{x, r, \mu}\left[g\left(X_{t+s}\right) \mid \mathcal{B}_{t}\right]-\Pi\left(\mu_{t}\right) g\right| \leqslant C\|g\|_{\infty} \mathrm{e}^{-s / \kappa} \tag{30}
\end{equation*}
$$

(ii) Let s be a real valued positive function such that

$$
\begin{equation*}
1 \ll \exp (s(t)) \ll t^{1 / C} \tag{31}
\end{equation*}
$$

when t tends to ∞. Then for all $g \in C^{0}(M)$,

$$
\begin{equation*}
\limsup _{t \rightarrow \infty}\left|\mathrm{E}_{x, r, \mu}\left[g\left(X_{t+s(t)}\right) \mid \mathcal{B}_{t}\right]-\Pi\left(\mu_{t}\right) g\right|=0 \tag{32}
\end{equation*}
$$

Proof. - Straightforward.
Remark 5.3. - Let \mathcal{L}_{t} denote the law of $X_{t+s(t)}$ knowing \mathcal{B}_{t}. Then Corollary 5.2 means that \mathcal{L}_{t} is asymptotically equal to $\Pi\left(\mu_{t}\right)$. That is, $\lim _{t \rightarrow \infty} \operatorname{dist}_{w}\left(\mathcal{L}_{t}, \Pi\left(\mu_{t}\right)\right)=0$, where dist $_{w}$ is a distance on $\mathcal{P}(M)$ for the weak topology.

Remark that Proposition 5.1 and Corollary 5.2 make no assumption on the asymptotic of $\left\{\mu_{t}\right\}$. Let $\widetilde{\Omega} \in \mathcal{B}$ be the event that " μ_{t} converges towards μ^{*} ", where μ^{*} is a $\mathcal{P}(M)$ valued random variable. In [1] and [2], several examples of self-interacting diffusions for which $\mathrm{P}_{x, r, \mu}(\widetilde{\Omega})=1$ are given (these examples are shortly presented in Section 7). The following theorem describes the law of $X_{t+s(t)}$ knowing \mathcal{B}_{t} on $\widetilde{\Omega}$.

THEOREM 5.4. - Let $s(t)$ be as in Corollary 5.2. Then, the law of $X_{t+s(t)}$ knowing \mathcal{B}_{t} converges weakly towards $\mu^{*} \mathrm{P}_{x, r, \mu}-$ a.s. on $\widetilde{\Omega}$. That is, for all $g \in C^{0}(M)$,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \mathrm{E}_{x, r, \mu}\left[g\left(X_{t+s(t)}\right) \mid \mathcal{B}_{t}\right]=\mu^{*} g \tag{33}
\end{equation*}
$$

$\mathrm{P}_{x, r, \mu}$-a.s. on $\widetilde{\Omega}$.
Proof. - It follows from Theorem 3.8 in [1] that μ^{*} is (almost surely on $\widetilde{\Omega}$) a fixed point of Π, i.e., $\Pi\left(\mu^{*}\right)=\mu^{*}$. The proof now follows from Corollary 5.2(ii) and the fact that $\Pi: \mathcal{P}(M) \rightarrow \mathcal{P}(M)$ is continuous.

Corollary 5.5 (Convergence in law). - For all $g \in C^{0}(M)$,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \mathrm{E}_{x, r, \mu}\left[g\left(X_{t}\right) \mathbf{1}_{\tilde{\Omega}}\right]=\mathrm{E}_{x, r, \mu}\left[\left(\mu^{*} g\right) \mathbf{1}_{\tilde{\Omega}}\right] . \tag{34}
\end{equation*}
$$

In particular, if $\mathrm{P}_{x, r, \mu}(\widetilde{\Omega})=1$ then for all $g \in C^{0}(M)$,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \mathrm{E}_{x, r, \mu}\left[g\left(X_{t}\right)\right]=\mathrm{E}_{x, r, \mu}\left[\mu^{*} g\right], \tag{35}
\end{equation*}
$$

i.e., X_{t} converges in law towards $\mathrm{E}_{x, r, \mu}\left[\mu^{*}\right]$ when t tends to ∞.

Proof. - In view of Theorem 5.4

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \mathrm{E}_{x, r, \mu}\left[\mathrm{E}_{x, r, \mu}\left[g\left(X_{t+s(t)}\right) \mid \mathcal{B}_{t}\right] \mathbf{1}_{\widetilde{\Omega}}\right]=\mathrm{E}_{x, r, \mu}\left[\left(\mu^{*} g\right) \mathbf{1}_{\widetilde{\Omega}}\right] . \tag{36}
\end{equation*}
$$

It then suffices to prove that $\lim _{t \rightarrow \infty} a_{t}=0$ where

$$
\begin{equation*}
a_{t}=\mathrm{E}_{x, r, \mu}\left[\mathrm{E}_{x, r, \mu}\left[g\left(X_{t+s(t)}\right) \mid \mathcal{B}_{t}\right] \mathbf{1}_{\widetilde{\Omega}}-\mathrm{E}_{x, r, \mu}\left[g\left(X_{t+s(t)}\right) \mathbf{1}_{\widetilde{\Omega}} \mid \mathcal{B}_{t}\right]\right] . \tag{37}
\end{equation*}
$$

Let $\Delta_{t}=\mathbf{1}_{\widetilde{\Omega}}-\mathrm{E}_{x, r, \mu}\left[\mathbf{1}_{\widetilde{\Omega}} \mid \mathcal{B}_{t}\right]$. Then

$$
\begin{equation*}
a_{t}=\mathrm{E}_{x, r, \mu}\left[\mathrm{E}_{x, r, \mu}\left[g\left(X_{t+s(t)}\right) \mid \mathcal{B}_{t}\right] \Delta_{t}-\mathrm{E}_{x, r, \mu}\left[g\left(X_{t+s(t)}\right) \Delta_{t} \mid \mathcal{B}_{t}\right]\right] . \tag{38}
\end{equation*}
$$

Hence $\left|a_{t}\right| \leqslant 2\|g\|_{\infty} \mathrm{E}_{x, r, \mu}\left[\left|\Delta_{t}\right|\right]$ and consequently $\lim _{t \rightarrow \infty} a_{t}=0$ because $\lim _{t \rightarrow \infty} \Delta_{t}=$ 0 a.s.

6. The convergence in law of $\left(X_{t+u}, u \geqslant 0\right)$

In the previous section we were only interested by the asymptotic of the law of X_{t+s} knowing \mathcal{B}_{t}. These results can be extended to the law of ($X_{t+s+u} ; u \geqslant 0$) knowing \mathcal{B}_{t}. The following proposition is analogous to Proposition 5.1 (and implies Proposition 5.1).

Proposition 6.1. - For all $t \geqslant 1, s>0, u>0$ and Z_{u} a \mathcal{B}_{u}-measurable random variable bounded by 1 in absolute value, then

$$
\begin{equation*}
\left|\mathrm{E}_{x, r, \mu}\left[Z_{u} \circ \theta_{t+s} \mid \mathcal{B}_{t}\right]-\mathrm{E}_{\Pi\left(\mu_{t}\right), \mu_{t}}\left[Z_{u}\right]\right| \leqslant\left(\frac{\mathrm{e}^{C(s+u)}}{r+s+u+t}+C \mathrm{e}^{-s / \kappa}\right), \tag{39}
\end{equation*}
$$

where C and κ are positive constants depending only on V.
The proof of Proposition 6.1 is given in Section 8.
COROLLARY 6.2.- For any positive u and Z_{u} a \mathcal{B}_{u}-measurable random variable bounded by 1 in absolute value, we have
(i) For any positive s,

$$
\begin{equation*}
\limsup _{t \rightarrow \infty}\left|\mathrm{E}_{x, r, \mu}\left[Z_{u} \circ \theta_{t+s} \mid \mathcal{B}_{t}\right]-\mathrm{E}_{\Pi\left(\mu_{t}\right), \mu_{t}}\left[Z_{u}\right]\right| \leqslant C \mathrm{e}^{-s / \kappa} \tag{40}
\end{equation*}
$$

(ii) Let s be a function like in Corollary 5.2, then

$$
\begin{equation*}
\limsup _{t \rightarrow \infty}\left|\mathrm{E}_{x, r, \mu}\left[Z_{u} \circ \theta_{t+s(t)} \mid \mathcal{B}_{t}\right]-\mathrm{E}_{\Pi\left(\mu_{t}\right), \mu_{t}}\left[Z_{u}\right]\right|=0 \tag{41}
\end{equation*}
$$

Proof. - Straightforward.
This corollary shows that the law of $\left(X_{t+s(t)+v} ; v \geqslant 0\right)$ knowing \mathcal{B}_{t} is asymptotically equal to the law of a diffusion with generator $L_{\mu_{t}}$ and initial distribution $\Pi\left(\mu_{t}\right)$. In particular, (ii) says that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} d\left(\mathrm{P}_{t}, \mathrm{P}_{\Pi\left(\mu_{t}\right), \mu_{t}}\right)=0 \tag{42}
\end{equation*}
$$

where P_{t} is the law of $\left(X_{t+s(t)+u} ; u \geqslant 0\right)$ knowing \mathcal{B}_{t}.
Like in the previous section, we now focus on $\widetilde{\Omega}$. The following theorem shows that on $\widetilde{\Omega}$, given $\mathcal{B}_{t},\left(X_{t+s(t)+u} ; u \geqslant 0\right)$ converges in law towards a diffusion with generator $L_{\mu^{*}}$ and initial distribution μ^{*} (note that μ^{*} satisfies $\mu^{*}=\Pi\left(\mu^{*}\right)$ so that μ^{*} is the invariant probability measure of this diffusion).

THEOREM 6.3. - For any positive u and Z_{u} a bounded \mathcal{B}_{u}-measurable random variable,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \mathrm{E}_{x, r, \mu}\left[Z_{u} \circ \theta_{t+s(t)} \mid \mathcal{B}_{t}\right]=\mathrm{E}_{\mu^{*}, \mu^{*}}\left[Z_{u}\right] \tag{43}
\end{equation*}
$$

almost surely on $\widetilde{\Omega}$, where $s(t)$ is as in Corollary 5.2.
Proof. - The proof is the same as the one of Theorem 5.4.
Note that Theorem 6.3 implies that on $\widetilde{\Omega}, \mathrm{P}_{t}$ converges weakly towards $\mathrm{P}_{\mu^{*}, \mu^{*}}$.
COROLLARY 6.4 (Convergence in law). - For any positive u and Z_{u} a bounded \mathcal{B}_{u} measurable random variable,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \mathrm{E}_{x, r, \mu}\left[\left(Z_{u} \circ \theta_{t}\right) \mathbf{1}_{\widetilde{\Omega}}\right]=\mathrm{E}_{x, r, \mu}\left[\mathrm{E}_{\mu^{*}, \mu^{*}}\left[Z_{u}\right] \mathbf{1}_{\widetilde{\Omega}}\right] \tag{44}
\end{equation*}
$$

In particular, if $\mathrm{P}_{x, r, \mu}(\widetilde{\Omega})=1$ then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \mathrm{E}_{x, r, \mu}\left[Z_{u} \circ \theta_{t}\right]=\mathrm{E}_{x, r, \mu}\left[\mathrm{E}_{\mu^{*}, \mu^{*}}\left[Z_{u}\right]\right] \tag{45}
\end{equation*}
$$

Proof. - The proof is the same as the one of Corollary 5.5.
Note that (44) and (45) respectively imply that the law of ($X_{t+u} ; u \geqslant 0$) given $\widetilde{\Omega}$ converges weakly towards $\mathrm{E}_{x, r, \mu}\left[\mathrm{P}_{\mu^{*}, \mu^{*}} \mid \widetilde{\Omega}\right]$ and that $\mathrm{E}_{x, r, \mu}\left[\mathrm{P}_{X_{t}, r+t, \mu_{t}(r, \mu)}\right]$ converges weakly towards $\mathrm{E}_{x, r, \mu}\left[\mathrm{P}_{\mu^{*}, \mu^{*}}\right]$ provided $\mathrm{P}_{x, r, \mu}(\widetilde{\Omega})=1$.

7. Examples

$\operatorname{Set} \delta_{V}(x, y)=\sup _{u \in M}\left(V_{u}(x)-V_{u}(y)\right)-\inf _{u \in M}\left(V_{u}(x)-V_{u}(y)\right)$. In [1], Corollary 4.4, it is proved that when $\sup _{(x, y) \in M^{2}} \delta_{V}(x, y)<1$, then Π has a unique fixed point μ^{*}
and $\lim _{t \rightarrow \infty} \mu_{t}(r, \mu)=\mu^{*} \mathrm{P}_{x, r, \mu^{-}}$-a.s. The associated self-interacting diffusions produce examples for which $\mathrm{P}_{x, r, \mu}(\widetilde{\Omega})=1$, but the limit μ^{*} is not random.

From the different interactions, we distinguish those such that V is symmetric and defines a positive or a negative self-adjoint operator acting on $L^{2}(\lambda)$, that can be written in the form $V=\alpha \int_{C} G(u, x) G(u, y) v(d u)$, where C is compact, v is a Borel probability measure, $G: C \times M \rightarrow \mathbb{R}$ is continuous and $\alpha \in \mathbb{R}$. We call them gradient interactions. These interactions produce examples for which $\mathrm{P}_{x, r, \mu}(\widetilde{\Omega})=1$ and the limit μ^{*} may be random (see [2]).

When α is positive, we say it is a self-repelling interaction and when α is negative, we say it is a self-attracting interaction. It can be proved (see [2]) that, if $V 1$ is a constant function, for all repelling cases or weakly attracting cases ($\alpha>-\alpha_{G}$, with $\alpha_{G}>0$), the empirical occupation measure of the associated self-interacting diffusion converges towards λ a.s. But, when $\alpha<-\alpha_{G}$, this is not the case, and μ_{t} may converge towards $\mu^{*} \neq \lambda$.

The interaction, on the n-dimensional sphere \mathbf{S}^{n},

$$
\begin{equation*}
V(x, y)=2 \alpha \cos (d(x, y)) \tag{46}
\end{equation*}
$$

is a gradient interaction. This example is developed in [1], Section 4.2. When $\alpha \geqslant-(n+$ $1) / 4, \mu_{t}$ converges towards λ a.s. and when $\alpha<-(n+1) / 4$, there exists a \mathbf{S}^{n}-valued random variable v such that μ_{t} converges a.s. towards $\exp \left[\beta_{n}(\alpha) \cos (d(x, v))\right] \lambda(d x) / Z_{n, \alpha}$, where $Z_{n, \alpha}$ is the normalization constant and $\beta_{n}(\alpha)$ is a constant depending only on n and α. In [1], Section 4.2, an example of interaction on \mathbf{S}^{n} (which is not a gradient interaction) for which $\mathrm{P}_{x, r, \mu}(\widetilde{\Omega})=0$ is given.

8. Proofs

8.1. Proof of Lemma 3.1

Let C be a constant such that both $\left\|A_{t}^{a}\right\|^{2}$ and $\left\|A_{t}^{a}\right\|$ are lower than C. Let

$$
\begin{equation*}
E_{t}=\exp \left[\int_{0}^{t}\left\langle A_{s}^{1}, A_{s}^{1}-A_{s}^{2}\right\rangle d s\right], \tag{47}
\end{equation*}
$$

and $N_{t}=M_{t}^{2}\left(M_{t}^{1} E_{t}\right)^{-1}$. Observe that M_{t}^{a} and N_{t} are exponential martingales solutions of the SDEs

$$
\left\{\begin{array}{l}
d M_{t}^{a}=M_{t}^{a}\left(\sum_{i} A_{t}^{a, i} d B_{t}^{i}\right), \tag{48}\\
d N_{t}=N_{t}\left(\sum_{i}\left(A_{t}^{2, i}-A_{t}^{1, i}\right) d B_{t}^{i}\right) .
\end{array}\right.
$$

Therefore

$$
\left\{\begin{array}{l}
\frac{d}{d s} \mathrm{E}\left[\left(M_{s}^{a}\right)^{2}\right]=\mathrm{E}\left[\left(M_{s}^{a}\right)^{2}\left\|A_{s}^{a}\right\|^{2}\right] \leqslant C \mathrm{E}\left[\left(M_{s}^{a}\right)^{2}\right], \tag{49}\\
\frac{d}{d s} \mathrm{E}\left[\left(N_{s}\right)^{2}\right]=\mathrm{E}\left[\left(N_{s}\right)^{2}\left\|A_{s}^{1}-A_{s}^{2}\right\|^{2}\right] \leqslant \delta^{2}(t) \mathrm{E}\left[\left(N_{s}\right)^{2}\right],
\end{array}\right.
$$

for $s \leqslant t$. Hence, by Gronwall's lemma, for $a \in\{1,2\}$

$$
\left\{\begin{array}{l}
\mathrm{E}\left[\left(M_{t}^{a}\right)^{2}\right] \leqslant e^{C t} \tag{50}\\
\mathrm{E}\left[\left(N_{t}\right)^{2}\right] \leqslant \exp \left(t \delta^{2}(t)\right)
\end{array}\right.
$$

Notice that we also have

$$
\begin{equation*}
\left|E_{t}-1\right| \leqslant \exp (C t \delta(t))-1 \tag{51}
\end{equation*}
$$

Using these estimates and Schwartz inequality, we get

$$
\begin{aligned}
\mid \mathrm{E} & {\left[M_{t}^{2} Z_{t}\right]-\mathrm{E}\left[M_{t}^{1} Z_{t}\right]\left|=\left|\mathrm{E}\left[Z_{t}\left(N_{t} E_{t}-1\right) M_{t}^{1}\right]\right|\right.} \\
& \leqslant \mathrm{E}\left[\left(N_{t}\left(E_{t}-1\right)+N_{t}-1\right)^{2}\right]^{1 / 2} \mathrm{E}\left[\left(M_{t}^{1}\right)^{2}\right]^{1 / 2} \\
& \leqslant \mathrm{e}^{C t / 2}\left[(\exp (C t \delta(t))-1) \exp \left(\frac{t \delta^{2}(t)}{2}\right)+\left(\exp \left(t \delta^{2}(t)\right)-1\right)^{1 / 2}\right]
\end{aligned}
$$

Since $\mathrm{e}^{u}-1 \leqslant u \mathrm{e}^{u}$ we easily obtain

$$
\begin{equation*}
\left|\mathrm{E}_{x, r, \mu}\left[Z_{t}\right]-\mathrm{E}_{x, \mu}\left[Z_{t}\right]\right| \leqslant \mathrm{e}^{C t} \delta(t) \tag{52}
\end{equation*}
$$

for C large enough. This proves the lemma.

8.2. Proof of Propositions 5.1 and 6.1

Let $P^{\mu}=\left(P_{t}^{\mu}\right)_{t \geqslant 0}$ denote the semigroup of the diffusion with generator L_{μ}.
LEmmA 8.1.- Let $g: M \rightarrow \mathbb{R}$ be a bounded continuous function, then for $t \geqslant 1$,

$$
\begin{equation*}
\left|P_{t}^{\mu} g(x)-\Pi(\mu) g\right| \leqslant C\|g\|_{\infty} \mathrm{e}^{-t / \kappa}, \tag{53}
\end{equation*}
$$

for some constant C and κ depending only on $\|V\|_{\infty}$.
Proof. - Let $\|\cdot\|_{2}$ be the L^{2}-norm defined by

$$
\begin{equation*}
\|f\|_{2}^{2}=\int_{M} f^{2}(x) \Pi(\mu)(d x) \tag{54}
\end{equation*}
$$

Then, by standard semigroup inequalities (see [1], Section 5.2)

$$
\begin{align*}
& \left\|P_{t}^{\mu} g-\Pi(\mu) g\right\|_{2} \leqslant \mathrm{e}^{-t / \kappa}\|g-\Pi(\mu) g\|_{2}, \quad t>0 \tag{55}\\
& \left\|P_{t}^{\mu} g-\Pi(\mu) g\right\|_{\infty} \leqslant C t^{-n / 2}\|g-\Pi(\mu) g\|_{2}, \quad 0<t \leqslant 1 \tag{56}
\end{align*}
$$

for some constant $\kappa>0$ and $0<C<\infty$ depending only on $\|V\|_{\infty}$. Combining (55) and (56) leads to

$$
\begin{aligned}
\left\|P_{s}^{\mu} g-\Pi(\mu) g\right\|_{\infty} & =\left\|P_{1}^{\mu}\left(P_{s-1}^{\mu}(g-\Pi(\mu) g)\right)\right\|_{\infty} \\
& \leqslant C \mathrm{e}^{-(s-1) / \kappa}\|g-\Pi(\mu) g\|_{2} \\
& \leqslant 2 C \mathrm{e}^{-(s-1) / \kappa}\|g\|_{\infty}
\end{aligned}
$$

for all $s>1$.
Proof of Proposition 5.1. - By the Markov property

$$
\begin{equation*}
\mathrm{E}_{x, r, \mu}\left[g\left(X_{t+s}\right) \mid \mathcal{B}_{t}\right]=\mathrm{E}_{X_{t}, r+t, \mu_{t}(r, \mu)}\left[g\left(X_{s}\right)\right] . \tag{57}
\end{equation*}
$$

Hence

$$
\begin{aligned}
& \left|\mathrm{E}_{x, r, \mu}\left[g\left(X_{t+s}\right) \mid \mathcal{B}_{t}\right]-\Pi\left(\mu_{t}\right) g\right| \\
& \quad \leqslant\left|\mathrm{E}_{X_{t}, r+t, \mu_{t}(r, \mu)}\left[g\left(X_{s}\right)\right]-\mathrm{E}_{X_{t}, \mu_{t}}\left[g\left(X_{s}\right)\right]\right|+\left|\mathrm{E}_{X_{t}, \mu_{t}}\left[g\left(X_{s}\right)\right]-\Pi\left(\mu_{t}\right) g\right|
\end{aligned}
$$

and the result follows from Lemmas 3.2 and 8.1.
Proof of Proposition 6.1. - This is almost the same proof. By the Markov property

$$
\mathrm{E}_{x, r, \mu}\left[Z_{u} \circ \theta_{t+s} \mid \mathcal{B}_{t}\right]=\mathrm{E}_{X_{t}, r+t, \mu_{t}(r, \mu)}\left[Z_{u} \circ \theta_{s}\right] .
$$

Hence

$$
\begin{aligned}
& \left|\mathrm{E}_{x, r, \mu}\left[Z_{u} \circ \theta_{t+s} \mid \mathcal{B}_{t}\right]-\mathrm{E}_{\Pi\left(\mu_{t}\right), \mu_{t}}\left[Z_{u}\right]\right| \\
& \quad \leqslant\left|\mathrm{E}_{X_{t}, r+t, \mu_{t}(r, \mu)}\left[Z_{u} \circ \theta_{s}\right]-\mathrm{E}_{X_{t}, \mu_{t}}\left[Z_{u} \circ \theta_{s}\right]\right|+\left|\mathrm{E}_{X_{t}, \mu_{t}}\left[Z_{u} \circ \theta_{s}\right]-\mathrm{E}_{\Pi\left(\mu_{t}\right), \mu_{t}}\left[Z_{u}\right]\right| .
\end{aligned}
$$

The first term of the right-hand side of preceding equation can be dominated using Lemma 3.2. For the domination of the second term, let $\varphi(x)=\mathrm{E}_{x, \mu_{t}}\left[Z_{u}\right]$, then

$$
\left\{\begin{array}{l}
\mathrm{E}_{X_{t}, \mu_{t}}\left[Z_{u} \circ \theta_{s}\right]=P_{s}^{\mu_{t}} \varphi\left(X_{t}\right), \tag{58}\\
\mathrm{E}_{\Pi\left(\mu_{t}\right), \mu_{t}}\left[Z_{u}\right]=\Pi\left(\mu_{t}\right) \varphi
\end{array}\right.
$$

We then conclude using Lemma 8.1.

REFERENCES

[1] M. Benaïm, M. Ledoux, O. Raimond, Self-interacting diffusions, Probab. Theory Related Fields 122 (2002) 1-41.
[2] M. Benaïm, O. Raimond, On self attracting/repelling diffusions, C.R. Acad. Sci. Paris, Ser. I 335 (2002) 541-544.
[3] N. Ikeda, S. Watanabe, Stochastic Differential Equation and Diffusion Processes, NorthHolland, 1981.
[4] J. Nash, The embedding theorem for Riemannian manifolds, Ann. Math. 63 (1956) 20-63.

[^0]: * Corresponding author.

 E-mail addresses: michel.benaim@math.u-cergy.fr (M. Benaïm), olivier.raimond@math.u-psud.fr (O. Raimond).

[^1]: ${ }^{1}$ For a measure μ and $f \in L^{1}(\mu)$ we let μf denote $\int f d \mu$.

