Ann. I. H. Poincaré – PR 39, 6 (2003) 1043–1055 © 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved 10.1016/S0246-0203(03)00028-1/FLA

SELF-INTERACTING DIFFUSIONS II: CONVERGENCE IN LAW

Michel BENAÏM^a, Olivier RAIMOND^{b,*}

^a Departement de mathématiques, Université Cergy-Pontoise, France ^b Laboratoire de modélisation stochastique et statistique Université Paris Sud, France

Received 28 May 2002, accepted 26 February 2003

ABSTRACT. – This paper concerns convergence in law properties of self-interacting diffusions on a compact Riemannian manifold. © 2003 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Cet article étudie les propriétés de convergence en loi des diffusions interagissantes sur une variété riemannienne compacte.

© 2003 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Self interacting diffusions (as considered here) are continuous time stochastic processes living on a Riemannian manifold M which can be typically described as solutions to a stochastic differential equation (SDE) of the form

$$dX_t = \sum_{\alpha} F_{\alpha}(X_t) \circ dB_t^{\alpha} - \frac{1}{t} \left(\int_0^t \nabla V_{X_s}(X_t) \, ds \right) dt, \tag{1}$$

where $(B^{\alpha})_{\alpha}$ is a family of independent Brownian motions, $(F_{\alpha})_{\alpha}$ is a family of smooth vector fields on M such that $\sum_{\alpha} F_{\alpha}(F_{\alpha}f) = \Delta f$ (for $f \in C^{\infty}(M)$), where Δ denotes the Laplacian on M and $V_{u}(x)$ a "potential" function.

^{*} Corresponding author.

E-mail addresses: michel.benaim@math.u-cergy.fr (M. Benaïm), olivier.raimond@math.u-psud.fr (O. Raimond).

These processes are characterized by the fact that the drift term in Eq. (1) depends both on the position of the process X_t , and its empirical occupation measure up to time t:

$$\mu_t = \frac{1}{t} \int_0^t \delta_{X_s} \, ds. \tag{2}$$

The asymptotic behavior of $\{\mu_t\}$ is the subject of a recent paper by Benaïm, Ledoux and Raimond [1]. This paper provides tools and results which allow to describe the long term behavior of $\{\mu_t\}$ in terms of the long term behavior of a certain deterministic semiflow $\{\Psi_t\}_{t\geq 0}$ defined on the space of probability measure on M. For instance, there are situations (depending on the shape of V) in which $\{\mu_t\}$ converges almost surely to an equilibrium point μ^* of Ψ and other situations where the limit set of $\{\mu_t\}$ coincides almost surely with a periodic orbit for Ψ (see the examples in Section 4 of [1] and below in Section 7). In the simple case where μ_t converges to μ^* one expects $(X_{t+s}, s \ge 0)$ to behave like a homogeneous diffusion of generator

$$L_{\mu^*} = \frac{1}{2} \Delta + \langle \nabla V_{\mu^*}, \nabla \rangle,$$

where $V_{\mu^*}(x) = \int V_y(x)\mu^*(dy)$ and $\langle \cdot, \cdot \rangle$ denotes the Riemannian inner product on M. The purpose of this note is to address this type of question.

In Section 2, following [1], self-interacting diffusions on a smooth compact manifold are defined. In Section 3, the basic tool of this paper is presented, namely the Girsanov transform.

In Section 4, we show that on the event " μ_t converges towards μ^* ", the law of $(X_{t+u}, u \ge 0)$ given $\mathcal{B}_t = \sigma(X_s, s \le t)$ is asymptotically equal to the law of the diffusion with generator L_{μ^*} and initial condition X_t .

In Section 5, we show that the law of $X_{t+s(t)}$ given \mathcal{B}_t is asymptotically equal to $\Pi(\mu_t)$, the invariant probability measure of the diffusion with generator L_{μ_t} ; provided $s(t) \to \infty$ at a convenient rate. Moreover the law of X_t given $\widetilde{\Omega} = \{\mu_t \to \mu^*\}$ converges towards $\mathsf{E}[\mu^*|\widetilde{\Omega}]$. In particular, when $\mathsf{P}(\widetilde{\Omega}) = 1$, X_t converges in law towards $\mathsf{E}[\mu^*]$.

Section 6 generalizes results of Section 5 to the law of the process $(X_{t+s(t)+v}, v \ge 0)$.

In Section 7, examples developed in [1] and [2], for which μ_t converges a.s. are presented.

2. Background and notation

The notation and definitions here are from [1].

Throughout we let M denote a d-dimensional, compact connected smooth (C^{∞}) Riemannian manifold. Without loss of generality (see Nash [4]) we shall assume that M is isometrically embedded in \mathbb{R}^N . We denote $C^r(M)$, $0 \leq r \leq \infty$, the space of C^r real valued functions on M.

Given a metric space E we let $\mathcal{P}(E)$ denote the space of Borel probability measures on E equipped with the topology induced by the weak convergence. Recall that a sequence

 $\{\mathsf{P}_n\}_{n\geq 0}$ of Borel probability measures on *E converges weakly* to P provided

$$\lim_{n \to \infty} \int f \, d\mathsf{P}_n = \int f \, d\mathsf{P} \tag{3}$$

for every bounded and continuous function $f: E \to \mathbb{R}$. When E is compact (e.g., E = M), $\mathcal{P}(E)$ is a compact metric space.

Throughout we assume given a measurable mapping

$$V: M \times M \to \mathbb{R},$$

(u, x) $\mapsto V(u, x) = V_u(x).$ (4)

We furthermore assume that for all $u \in M$, $V_u: M \to \mathbb{R}$ is a C^1 function whose first derivatives are bounded (in the variables u and x). For $\mu \in \mathcal{P}(M)$ we let $V_{\mu} \in C^1(M)$ denote the function defined by

$$V_{\mu}(x) = \int_{M} V(u, x)\mu(du), \qquad (5)$$

and L_{μ} the operator defined on $C^{\infty}(M)$ by

$$L_{\mu}f = \frac{1}{2}\Delta f - \langle \nabla V_{\mu}, \nabla f \rangle, \tag{6}$$

where $\langle \cdot, \cdot \rangle$, ∇ and Δ stand, respectively, for the Riemannian inner product, the associated gradient and Laplacian on M.

We let Ω denote the space of continuous paths $w : \mathbb{R}_+ \to M$, equipped with the topology of uniform convergence on compact intervals; $\mathcal{B} = \mathcal{B}(\Omega)$ the Borel σ -field of Ω , X_t the *M*-valued random variable defined by $X_t(w) = w(t)$; and \mathcal{B}_t the σ -field generated by the random variables $\{X_s: 0 \leq s \leq t\}$.

Since Ω is polish, $\mathcal{P}(\Omega)$ equipped with the weak convergence is metrizable. A distance d on $\mathcal{P}(\Omega)$ is given by

$$d(\mathsf{P},\mathsf{Q}) = \sum_{n=1}^{\infty} 2^{-n} \left| \int Z_n \, d\mathsf{P} - \int Z_n \, d\mathsf{Q} \right| \tag{7}$$

for P and Q in $\mathcal{P}(\Omega)$ where $Z_n : \Omega \to \mathbb{R}$ is continuous, \mathcal{B}_n -measurable, and $\{Z_n; n \ge 1\}$ is dense in $\{Z \in C^0(\Omega); \|Z\|_{\infty} \le 1\}$.

For r > 0, $\mu \in \mathcal{P}(M)$ and $w \in \Omega$, the *empirical occupation measure of* w *with initial weight* r *and initial measure* μ is the sequence { $\mu_t(r, \mu, w) \in \mathcal{P}(M)$: $t \ge 0$ } defined by

$$\mu_t(r,\mu,w) = \frac{1}{r+t} \left(r\mu + \int_0^t \delta_{w(s)} ds \right),\tag{8}$$

where $\int_0^t \delta_{w(s)} ds(A) = \int_0^t \mathbf{1}_A(w(s)) ds$, for every Borel set $A \subset M$. In the following we will denote by $\mu_t(r, \mu)$ the $\mathcal{P}(M)$ -valued random variable $w \mapsto \mu_t(r, \mu, w)$.

A self-interacting diffusion associated to V is a family

$$\left\{\mathsf{P}_{x,r,\mu}: x \in M, \ r > 0, \ \mu \in \mathcal{P}(M)\right\} \subset \mathcal{P}(\Omega) \tag{9}$$

such that

(i) $\mathsf{P}_{x,r,\mu}(X_0 = x) = 1.$ (ii) For all $f \in C^{\infty}(M)$,

$$M_t^f = f(X_t) - f(x) - \int_0^t (L_{\mu_s(r,\mu)} f)(X_s) \, ds$$

is a $\mathsf{P}_{x,r,\mu}$ -martingale relative to $\{\mathcal{B}_t: t \ge 0\}$.

Existence and uniqueness of the self-interacting diffusion associated to V is proved in [1], Proposition 2.5. More precisely, it is shown in this paper that $P_{x,r,\mu}$ can be obtained as the law of $\{X_t\}$, a solution (unique in law) of the following SDE on M:

$$dX_t = \sum_{i=1}^{N} F_i(X_t) \circ dB_t^i - \nabla V_{\mu_t(r,\mu)}(X_t) dt, \quad X_0 = x,$$
(10)

where $(F_1(x), \ldots, F_N(x))$ denote the orthogonal projection of the canonical basis (e_1, \ldots, e_N) of \mathbb{R}^N on $T_x M$ and $B_t = (B_t^1, \ldots, B_t^N)$ is an *N*-dimensional Brownian motion.

For $x \in M$ and $\mu \in \mathcal{P}(M)$ we let $\mathsf{P}_{x,\mu} \in \mathcal{P}(\Omega)$ denote the probability measure on Ω such that

- (i) $\mathsf{P}_{x,\mu}(X_0 = x) = 1.$
- (ii) For all $f \in C^{\infty}(M)$,

$$M_t^f = f(X_t) - f(x) - \int_0^t (L_{\mu}f)(X_s) \, ds$$

is a $\mathsf{P}_{x,\mu}$ -martingale relative to $\{\mathcal{B}_t: t \ge 0\}$.

In other words, $P_{x,\mu}$ is the law of the diffusion process $\{Y_t\}$ with initial condition x and generator L_{μ} solution to the SDE:

$$dY_t = \sum_{i=1}^{N} F_i(Y_t) \circ dB_t^i - \nabla V_\mu(Y_t) dt, \quad Y_0 = x.$$
(11)

In the following $\mathsf{E}_{x,r,\mu}$ and $\mathsf{E}_{x,\mu}$ will respectively denote the expectation with respect to $\mathsf{P}_{x,r,\mu}$ and to $\mathsf{P}_{x,\mu}$.

3. The Girsanov transform and some lemmas

3.1. The Girsanov transform

Let $B_t = (B_t^1, \ldots, B_t^N)$ be a standard Brownian motion on \mathbb{R}^N , P the law of $(B_s; s \ge 0)$, E the associated expectation, \mathcal{F}_t the P-completion of $\sigma(B_s, 0 \le s \le t)$ and $\mathcal{F} = \mathcal{F}_{\infty}$. Let $\{W_t^x\}$ be the solution to the SDE

$$dW_t^x = \sum_{i=1}^N F_i(W_t^x) \circ dB_t^i, \quad W_0^x = x \in M.$$
 (12)

Then $W^x = (W_t^x, t \ge 0)$ is a Brownian motion on M starting at x. We denote its law P_x . Note that $W^x : C(\mathbb{R}^+ : \mathbb{R}^N) \to \Omega = C(\mathbb{R}^+ : M)$ is measurable. Let

$$M_{t}^{x,r,\mu} = \exp\left[\int_{0}^{t} \sum_{i} \left\langle \nabla V_{\mu_{s}^{x}(r,\mu)}(W_{s}^{x}), F_{i}(W_{s}^{x})\right\rangle dB_{s}^{i} - \frac{1}{2} \int_{0}^{t} \left\| \nabla V_{\mu_{s}^{x}(r,\mu)}(W_{s}^{x}) \right\|^{2} ds\right],$$
(13)

where

$$\mu_t^x(r,\mu) = \frac{1}{t+r} \left(r\mu + \int_0^t \delta_{W_s^x} \, ds \right), \tag{14}$$

and

$$M_{t}^{x,\mu} = \exp\left[\int_{0}^{t} \sum_{i} \left\langle \nabla V_{\mu}(W_{s}^{x}), F_{i}(W_{s}^{x}) \right\rangle dB_{s}^{i} - \frac{1}{2} \int_{0}^{t} \left\| \nabla V_{\mu}(W_{s}^{x}) \right\|^{2} ds \right].$$
(15)

Then $\{M_t^{x,r,\mu}\}$ and $\{M_t^{x,\mu}\}$ are $(\mathsf{P}, \{\mathcal{F}_t\})$ -martingales. By the transformation of drift formula (see [3], Section IV 4.1 and Theorem IV 4.2),

$$\begin{cases} \mathsf{E}_{x,r,\mu}[Z_t] = \mathsf{E}[M_t^{x,r,\mu}(Z_t \circ W^x)], \\ \mathsf{E}_{x,\mu}[Z_t] = \mathsf{E}[M_t^{x,\mu}(Z_t \circ W^x)] \end{cases}$$
(16)

for every bounded \mathcal{B}_t -measurable random variable Z_t . Note that this implies in particular that P_x , $\mathsf{P}_{x,\mu}$ and $\mathsf{P}_{x,r,\mu}$ are equivalent.

3.2. Some lemmas

The next lemma is a basic tool to estimate quantities such as

$$\mathsf{E}_{x,r,\mu^r}[Z_t] - \mathsf{E}_{x,\mu}[Z_t],$$

for large r and μ^r close to μ .

LEMMA 3.1. – For a = 1, 2 let $A_t^a = (A_t^{a,1}, \ldots, A_t^{a,N})$ be a \mathbb{R}^N -valued bounded $\{\mathcal{F}_t\}$ -previsible process. Suppose that for all $0 \leq s \leq t$

$$\left\|A_s^1 - A_s^2\right\| \leqslant \delta(t) \tag{17}$$

for some deterministic function $\delta : \mathbb{R}_+ \to \mathbb{R}_+$. Let

$$M_t^a = \exp\left[\int_0^t \sum_i A_s^{a,i} \, dB_s^i - \frac{1}{2} \int_0^t \|A_s^a\|^2 \, ds\right], \quad a = 1, 2.$$

Then there exists a positive constant C such that for any \mathcal{F}_t -measurable random variable Z_t bounded by 1 in absolute value,

$$\left|\mathsf{E}\left[M_{t}^{1}Z_{t}\right]-\mathsf{E}\left[M_{t}^{2}Z_{t}\right]\right|\leqslant \mathrm{e}^{Ct}\delta(t).$$
(18)

The constant C depends only on $\sup_{a,s} ||A_s^a||_{\infty}$.

Lemma 3.1 will be proved in Section 8. Note that Lemma 3.1 and the Girsanov transforms given in Section 3.1 imply that $P_{x,r,\mu}$ converges weakly towards $P_{x,\mu}$ as $r \to \infty$. More precisely

LEMMA 3.2. – There exists a positive constant C (depending only on $\sup_{x,y} \|\nabla V_y(x)\|$) such for any \mathcal{B}_t -measurable random variable Z_t bounded by 1 in absolute value,

$$\left|\mathsf{E}_{x,r,\mu}[Z_t] - \mathsf{E}_{x,\mu}[Z_t]\right| \leqslant \frac{\mathrm{e}^{Ct}}{r+t}.$$
(19)

Proof. – There exists a constant *C* such that $\|\nabla V_{\mu}\|_{\infty} \leq C$ and $\|\nabla V_{\mu_s(r,\mu)} - \nabla V_{\mu}\|_{\infty} \leq Ct/(r+t)$, for all $0 \leq s \leq t$. The result then follows from Girsanov formulas (16) and Lemma 3.1 applied with

$$\begin{cases} A_s^{1,i} = \langle \nabla V_{\mu_s(r,\mu)}(W_s^x), F_i(W_s^x) \rangle, \\ A_s^{2,i} = \langle \nabla V_{\mu}(W_s^x), F_i(W_s^x) \rangle. \end{cases}$$

$$(20)$$

4. The asymptotic of $P_{X_t,r+t,\mu_t(r,\mu)}$

Here we shall prove:

THEOREM 4.1. – Let $\mu^* : \Omega \to \mathcal{P}(M)$ denote a $\mathcal{P}(M)$ -valued random variable. Let $\widetilde{\Omega} = \{w \in \Omega: \lim_{t \to \infty} \mu_t(r, \mu, w) = \mu^*\}$. Then $\mathsf{P}_{x,r,\mu}$ -a.s. on $\widetilde{\Omega}$,

$$\lim_{t \to \infty} d(\mathsf{P}_{X_t, r+t, \mu_t(r, \mu)}, \mathsf{P}_{X_t, \mu^*}) = 0.$$
(21)

COROLLARY 4.2. – For every bounded and continuous function $Z: \Omega \to \mathbb{R}, \mathsf{P}_{x,r,\mu}$ -a.s.

$$\lim_{r \to \infty} \left| \mathsf{E}_{x,r,\mu} [Z \circ \theta_t | \mathcal{B}_t] - \mathsf{E}_{X_t,\mu^*} [Z] \right| \mathbf{1}_{\widetilde{\Omega}} = 0,$$
(22)

where $\theta_t : \Omega \to \Omega$ is the shift on Ω defined by $\theta_t(w)(s) = w(t+s)$.

Proof. - By the Markov property, we have

$$\mathsf{E}_{x,r,\mu}[Z \circ \theta_t | \mathcal{B}_t] = \mathsf{E}_{X_t,t+r,\mu_t(r,\mu)}[Z], \tag{23}$$

and the result follows from Theorem 4.1. \Box

Proof of Theorem 4.1. – Follows directly from the following estimate:

PROPOSITION 4.3. – Let $\{\mu^r: r > 0\} \subset \mathcal{P}(M)$. Assume that

$$\lim_{r \to \infty} \mu^r = \mu^*$$

in $\mathcal{P}(M)$. Let Z_t be a random variable \mathcal{F}_t -measurable and bounded by 1 in absolute value. Then

$$\lim_{r \to \infty} \mathsf{E}_{x,r,\mu^r}[Z_t] = \mathsf{E}_{x,\mu^*}[Z_t]$$
(24)

uniformly in $x \in M$.

More precisely, there exists C > 0 (depending only on $\sup_{x,y} \|\nabla V_y(x)\|$) such that

$$\left|\mathsf{E}_{x,r,\mu^{r}}[Z_{t}]-\mathsf{E}_{x,\mu^{*}}[Z_{t}]\right| \leqslant \mathrm{e}^{Ct}\left(\frac{1}{r}+\varepsilon(r)\right),\tag{25}$$

where $\varepsilon(r) = \sup_{x} \|\nabla V_{\mu^r}(x) - \nabla V_{\mu^*}(x)\|.$

Note that $\lim_{r\to\infty} \varepsilon(r) = 0$ (since $x \mapsto \nabla V_{\mu^r}(x) - \nabla V_{\mu^*}(x)$ is equicontinuous in x and converges towards 0 for every x).

Proof. - Lemma 3.1 applied with

$$\begin{cases} A_s^{1,i} = \langle \nabla V_{\mu^r}(W_s^x), F_i(W_s^x) \rangle, \\ A_s^{2,i} = \langle \nabla V_{\mu^*}(W_s^x), F_i(W_s^x) \rangle \end{cases}$$
(26)

implies

$$\left|\mathsf{E}_{x,\mu^{r}}[Z_{t}] - \mathsf{E}_{x,\mu^{*}}[Z_{t}]\right| \leqslant \mathrm{e}^{Ct}\varepsilon(r).$$
(27)

The conclusion follows from this last inequality combined with Lemma 3.2 and the triangle inequality. \Box

5. The convergence in law of X_t

For every $\mu \in \mathcal{P}(M)$ let $\Pi(\mu) \in \mathcal{P}(M)$ denote the invariant probability measure of the diffusion process with generator L_{μ} . That is

$$\Pi(\mu)(dx) = \frac{e^{-2V_{\mu}(x)}}{Z(\mu)}\lambda(dx),$$
(28)

where $Z(\mu)$ is the normalization constant.

Let us first remark that as $r \to \infty$, the law of X_t under $\mathsf{P}_{x,r,\mu}$ converges weakly towards the law of X_t under $\mathsf{P}_{x,\mu}$ (see Lemma 3.2). We also have the convergence $\lim_{t\to\infty}\mathsf{E}_{x,\mu}[g(X_t)] = \Pi(\mu)g^1$ for all $g \in C^0(M)$. The next proposition shows that

¹ For a measure μ and $f \in L^1(\mu)$ we let μf denote $\int f d\mu$.

 $\mathsf{E}_{x,r,\mu}[g(X_{t+s})|\mathcal{B}_t] = \mathsf{E}_{X_t,r+t,\mu_t(r,\mu)}[g(X_s)]$ and $\Pi(\mu_t(r,\mu))g$ are close when s and t tends to ∞ at a certain rate.

PROPOSITION 5.1. – For all $t \ge 1$, r > 0, s > 0 and $g \in C^0(M)$,

$$\left|\mathsf{E}_{x,r,\mu}\left[g(X_{t+s})|\mathcal{B}_{t}\right] - \Pi(\mu_{t})g\right| \leq \|g\|_{\infty}\left(\frac{\mathrm{e}^{Cs}}{r+s+t} + C\,\mathrm{e}^{-s/\kappa}\right),\tag{29}$$

where C and κ are positive constants depending only on V.

The proof of Proposition 5.1 is given in Section 8.

COROLLARY 5.2. – (i) For all positive s and all $g \in C^0(M)$,

$$\limsup_{t \to \infty} \left| \mathsf{E}_{x,r,\mu} \left[g(X_{t+s}) | \mathcal{B}_t \right] - \Pi(\mu_t) g \right| \leqslant C \|g\|_{\infty} \, \mathrm{e}^{-s/\kappa}. \tag{30}$$

(ii) Let s be a real valued positive function such that

$$1 \ll \exp(s(t)) \ll t^{1/C} \tag{31}$$

when t tends to ∞ . Then for all $g \in C^0(M)$,

$$\limsup_{t \to \infty} \left| \mathsf{E}_{x,r,\mu} \left[g(X_{t+s(t)}) | \mathcal{B}_t \right] - \Pi(\mu_t) g \right| = 0.$$
(32)

Proof. – Straightforward. \Box

Remark 5.3. – Let \mathcal{L}_t denote the law of $X_{t+s(t)}$ knowing \mathcal{B}_t . Then Corollary 5.2 means that \mathcal{L}_t is asymptotically equal to $\Pi(\mu_t)$. That is, $\lim_{t\to\infty} \text{dist}_w(\mathcal{L}_t, \Pi(\mu_t)) = 0$, where dist_w is a distance on $\mathcal{P}(M)$ for the weak topology.

Remark that Proposition 5.1 and Corollary 5.2 make no assumption on the asymptotic of $\{\mu_t\}$. Let $\tilde{\Omega} \in \mathcal{B}$ be the event that " μ_t converges towards μ^* ", where μ^* is a $\mathcal{P}(M)$ -valued random variable. In [1] and [2], several examples of self-interacting diffusions for which $\mathsf{P}_{x,r,\mu}(\tilde{\Omega}) = 1$ are given (these examples are shortly presented in Section 7). The following theorem describes the law of $X_{t+s(t)}$ knowing \mathcal{B}_t on $\tilde{\Omega}$.

THEOREM 5.4. – Let s(t) be as in Corollary 5.2. Then, the law of $X_{t+s(t)}$ knowing \mathcal{B}_t converges weakly towards $\mu^* \mathsf{P}_{x,r,\mu}$ -a.s. on $\widetilde{\Omega}$. That is, for all $g \in C^0(M)$,

$$\lim_{t \to \infty} \mathsf{E}_{x,r,\mu} \big[g(X_{t+s(t)}) | \mathcal{B}_t \big] = \mu^* g \tag{33}$$

 $\mathsf{P}_{x,r,\mu}$ -a.s. on $\widetilde{\Omega}$.

Proof. – It follows from Theorem 3.8 in [1] that μ^* is (almost surely on $\overline{\Omega}$) a fixed point of Π , i.e., $\Pi(\mu^*) = \mu^*$. The proof now follows from Corollary 5.2(ii) and the fact that $\Pi : \mathcal{P}(M) \to \mathcal{P}(M)$ is continuous. \Box

COROLLARY 5.5 (Convergence in law). – For all $g \in C^0(M)$,

$$\lim_{t \to \infty} \mathsf{E}_{x,r,\mu} \big[g(X_t) \mathbf{1}_{\widetilde{\Omega}} \big] = \mathsf{E}_{x,r,\mu} \big[(\mu^* g) \mathbf{1}_{\widetilde{\Omega}} \big].$$
(34)

In particular, if $\mathsf{P}_{x,r,\mu}(\widetilde{\Omega}) = 1$ then for all $g \in C^0(M)$,

$$\lim_{t \to \infty} \mathsf{E}_{x,r,\mu} \big[g(X_t) \big] = \mathsf{E}_{x,r,\mu} [\mu^* g], \tag{35}$$

i.e., X_t converges in law towards $\mathsf{E}_{x,r,\mu}[\mu^*]$ when t tends to ∞ .

Proof. – In view of Theorem 5.4

$$\lim_{t \to \infty} \mathsf{E}_{x,r,\mu} \big[\mathsf{E}_{x,r,\mu} \big[g(X_{t+s(t)}) | \mathcal{B}_t \big] \mathbf{1}_{\widetilde{\Omega}} \big] = \mathsf{E}_{x,r,\mu} \big[(\mu^* g) \mathbf{1}_{\widetilde{\Omega}} \big].$$
(36)

It then suffices to prove that $\lim_{t\to\infty} a_t = 0$ where

$$a_{t} = \mathsf{E}_{x,r,\mu} \big[\mathsf{E}_{x,r,\mu} \big[g(X_{t+s(t)}) | \mathcal{B}_{t} \big] \mathbf{1}_{\widetilde{\Omega}} - \mathsf{E}_{x,r,\mu} \big[g(X_{t+s(t)}) \mathbf{1}_{\widetilde{\Omega}} | \mathcal{B}_{t} \big] \big].$$
(37)

Let $\Delta_t = \mathbf{1}_{\widetilde{\Omega}} - \mathsf{E}_{x,r,\mu}[\mathbf{1}_{\widetilde{\Omega}}|\mathcal{B}_t]$. Then

$$a_{t} = \mathsf{E}_{x,r,\mu} \big[\mathsf{E}_{x,r,\mu} \big[g(X_{t+s(t)}) | \mathcal{B}_{t} \big] \Delta_{t} - \mathsf{E}_{x,r,\mu} \big[g(X_{t+s(t)}) \Delta_{t} | \mathcal{B}_{t} \big] \big].$$
(38)

Hence $|a_t| \leq 2 \|g\|_{\infty} \mathsf{E}_{x,r,\mu}[|\Delta_t|]$ and consequently $\lim_{t\to\infty} a_t = 0$ because $\lim_{t\to\infty} \Delta_t = 0$ a.s. \Box

6. The convergence in law of $(X_{t+u}, u \ge 0)$

In the previous section we were only interested by the asymptotic of the law of X_{t+s} knowing \mathcal{B}_t . These results can be extended to the law of $(X_{t+s+u}; u \ge 0)$ knowing \mathcal{B}_t . The following proposition is analogous to Proposition 5.1 (and implies Proposition 5.1).

PROPOSITION 6.1. – For all $t \ge 1$, s > 0, u > 0 and Z_u a \mathcal{B}_u -measurable random variable bounded by 1 in absolute value, then

$$\left|\mathsf{E}_{x,r,\mu}[Z_{u}\circ\theta_{t+s}|\mathcal{B}_{t}]-\mathsf{E}_{\Pi(\mu_{t}),\mu_{t}}[Z_{u}]\right| \leqslant \left(\frac{\mathrm{e}^{C(s+u)}}{r+s+u+t}+C\,\mathrm{e}^{-s/\kappa}\right),\tag{39}$$

where C and κ are positive constants depending only on V.

The proof of Proposition 6.1 is given in Section 8.

COROLLARY 6.2. – For any positive u and Z_u a \mathcal{B}_u -measurable random variable bounded by 1 in absolute value, we have

(i) For any positive s,

$$\limsup_{t \to \infty} \left| \mathsf{E}_{x,r,\mu} [Z_u \circ \theta_{t+s} | \mathcal{B}_t] - \mathsf{E}_{\Pi(\mu_t),\mu_t} [Z_u] \right| \leqslant C \, \mathrm{e}^{-s/\kappa}. \tag{40}$$

(ii) Let s be a function like in Corollary 5.2, then

$$\limsup_{t \to \infty} \left| \mathsf{E}_{x,r,\mu} [Z_u \circ \theta_{t+s(t)} | \mathcal{B}_t] - \mathsf{E}_{\Pi(\mu_t),\mu_t} [Z_u] \right| = 0.$$
(41)

Proof. – Straightforward. \Box

This corollary shows that the law of $(X_{t+s(t)+\nu}; \nu \ge 0)$ knowing \mathcal{B}_t is asymptotically equal to the law of a diffusion with generator L_{μ_t} and initial distribution $\Pi(\mu_t)$. In particular, (ii) says that

$$\lim_{t \to \infty} d(\mathsf{P}_t, \mathsf{P}_{\Pi(\mu_t), \mu_t}) = 0, \tag{42}$$

where P_t is the law of $(X_{t+s(t)+u}; u \ge 0)$ knowing \mathcal{B}_t .

Like in the previous section, we now focus on $\hat{\Omega}$. The following theorem shows that on $\tilde{\Omega}$, given \mathcal{B}_t , $(X_{t+s(t)+u}; u \ge 0)$ converges in law towards a diffusion with generator L_{μ^*} and initial distribution μ^* (note that μ^* satisfies $\mu^* = \Pi(\mu^*)$ so that μ^* is the invariant probability measure of this diffusion).

THEOREM 6.3. – For any positive u and Z_u a bounded \mathcal{B}_u -measurable random variable,

$$\lim_{t \to \infty} \mathsf{E}_{x,r,\mu}[Z_u \circ \theta_{t+s(t)} | \mathcal{B}_t] = \mathsf{E}_{\mu^*,\mu^*}[Z_u]$$
(43)

almost surely on $\tilde{\Omega}$, where s(t) is as in Corollary 5.2.

Proof. – The proof is the same as the one of Theorem 5.4. \Box

Note that Theorem 6.3 implies that on Ω , P_t converges weakly towards P_{μ^*,μ^*} .

COROLLARY 6.4 (Convergence in law). – For any positive u and Z_u a bounded \mathcal{B}_u -measurable random variable,

$$\lim_{t \to \infty} \mathsf{E}_{x,r,\mu} \big[(Z_u \circ \theta_t) \mathbf{1}_{\widetilde{\Omega}} \big] = \mathsf{E}_{x,r,\mu} \big[\mathsf{E}_{\mu^*,\mu^*} [Z_u] \mathbf{1}_{\widetilde{\Omega}} \big].$$
(44)

In particular, if $\mathsf{P}_{x,r,\mu}(\widehat{\Omega}) = 1$ then

$$\lim_{t \to \infty} \mathsf{E}_{x,r,\mu}[Z_u \circ \theta_t] = \mathsf{E}_{x,r,\mu}[\mathsf{E}_{\mu^*,\mu^*}[Z_u]].$$
(45)

Proof. – The proof is the same as the one of Corollary 5.5. \Box

Note that (44) and (45) respectively imply that the law of $(X_{t+u}; u \ge 0)$ given $\widetilde{\Omega}$ converges weakly towards $\mathsf{E}_{x,r,\mu}[\mathsf{P}_{\mu^*,\mu^*}|\widetilde{\Omega}]$ and that $\mathsf{E}_{x,r,\mu}[\mathsf{P}_{X_t,r+t,\mu_t(r,\mu)}]$ converges weakly towards $\mathsf{E}_{x,r,\mu}[\mathsf{P}_{\mu^*,\mu^*}]$ provided $\mathsf{P}_{x,r,\mu}(\widetilde{\Omega}) = 1$.

7. Examples

Set $\delta_V(x, y) = \sup_{u \in M} (V_u(x) - V_u(y)) - \inf_{u \in M} (V_u(x) - V_u(y))$. In [1], Corollary 4.4, it is proved that when $\sup_{(x,y) \in M^2} \delta_V(x, y) < 1$, then Π has a unique fixed point μ^*

and $\lim_{t\to\infty} \mu_t(r,\mu) = \mu^* \mathsf{P}_{x,r,\mu}$ -a.s. The associated self-interacting diffusions produce examples for which $\mathsf{P}_{x,r,\mu}(\widetilde{\Omega}) = 1$, but the limit μ^* is not random.

From the different interactions, we distinguish those such that *V* is symmetric and defines a positive or a negative self-adjoint operator acting on $L^2(\lambda)$, that can be written in the form $V = \alpha \int_C G(u, x)G(u, y)\nu(du)$, where *C* is compact, ν is a Borel probability measure, $G: C \times M \to \mathbb{R}$ is continuous and $\alpha \in \mathbb{R}$. We call them gradient interactions. These interactions produce examples for which $\mathsf{P}_{x,r,\mu}(\widetilde{\Omega}) = 1$ and the limit μ^* may be random (see [2]).

When α is positive, we say it is a self-repelling interaction and when α is negative, we say it is a self-attracting interaction. It can be proved (see [2]) that, if V1 is a constant function, for all repelling cases or weakly attracting cases ($\alpha > -\alpha_G$, with $\alpha_G > 0$), the empirical occupation measure of the associated self-interacting diffusion converges towards λ a.s. But, when $\alpha < -\alpha_G$, this is not the case, and μ_t may converge towards $\mu^* \neq \lambda$.

The interaction, on the *n*-dimensional sphere \mathbf{S}^n ,

$$V(x, y) = 2\alpha \cos(d(x, y))$$
(46)

is a gradient interaction. This example is developed in [1], Section 4.2. When $\alpha \ge -(n + 1)/4$, μ_t converges towards λ a.s. and when $\alpha < -(n+1)/4$, there exists a \mathbf{S}^n -valued random variable v such that μ_t converges a.s. towards $\exp[\beta_n(\alpha)\cos(d(x, v))]\lambda(dx)/Z_{n,\alpha}$, where $Z_{n,\alpha}$ is the normalization constant and $\beta_n(\alpha)$ is a constant depending only on n and α . In [1], Section 4.2, an example of interaction on \mathbf{S}^n (which is not a gradient interaction) for which $\mathsf{P}_{x,r,\mu}(\tilde{\Omega}) = 0$ is given.

8. Proofs

8.1. Proof of Lemma 3.1

Let *C* be a constant such that both $||A_t^a||^2$ and $||A_t^a||$ are lower than *C*. Let

$$E_t = \exp\left[\int_0^t \left\langle A_s^1, A_s^1 - A_s^2 \right\rangle ds\right],\tag{47}$$

and $N_t = M_t^2 (M_t^1 E_t)^{-1}$. Observe that M_t^a and N_t are exponential martingales solutions of the SDEs

$$\begin{cases} dM_{t}^{a} = M_{t}^{a} \left(\sum_{i} A_{t}^{a,i} dB_{t}^{i} \right), \\ dN_{t} = N_{t} \left(\sum_{i} (A_{t}^{2,i} - A_{t}^{1,i}) dB_{t}^{i} \right). \end{cases}$$
(48)

Therefore

$$\frac{d}{ds} \mathsf{E}[(M_s^a)^2] = \mathsf{E}[(M_s^a)^2 ||A_s^a||^2] \leqslant C\mathsf{E}[(M_s^a)^2],$$

$$\frac{d}{ds} \mathsf{E}[(N_s)^2] = \mathsf{E}[(N_s)^2 ||A_s^1 - A_s^2||^2] \leqslant \delta^2(t) \mathsf{E}[(N_s)^2],$$
(49)

for $s \leq t$. Hence, by Gronwall's lemma, for $a \in \{1, 2\}$

$$\begin{cases} \mathsf{E}[(M_t^a)^2] \leqslant e^{Ct}, \\ \mathsf{E}[(N_t)^2] \leqslant \exp(t\delta^2(t)). \end{cases}$$
(50)

Notice that we also have

$$|E_t - 1| \leq \exp(Ct\delta(t)) - 1.$$
(51)

Using these estimates and Schwartz inequality, we get

$$|\mathsf{E}[M_t^2 Z_t] - \mathsf{E}[M_t^1 Z_t]| = |\mathsf{E}[Z_t (N_t E_t - 1)M_t^1]| \leq \mathsf{E}[(N_t (E_t - 1) + N_t - 1)^2]^{1/2} \mathsf{E}[(M_t^1)^2]^{1/2} \leq \mathsf{e}^{Ct/2} \Big[(\exp(Ct\delta(t)) - 1) \exp\left(\frac{t\delta^2(t)}{2}\right) + (\exp(t\delta^2(t)) - 1)^{1/2} \Big].$$

Since $e^u - 1 \leq u e^u$ we easily obtain

$$\left|\mathsf{E}_{x,r,\mu}[Z_t] - \mathsf{E}_{x,\mu}[Z_t]\right| \leqslant \mathrm{e}^{Ct}\delta(t),\tag{52}$$

for *C* large enough. This proves the lemma. \Box

8.2. Proof of Propositions 5.1 and 6.1

Let $P^{\mu} = (P_t^{\mu})_{t \ge 0}$ denote the semigroup of the diffusion with generator L_{μ} .

LEMMA 8.1. – Let $g: M \to \mathbb{R}$ be a bounded continuous function, then for $t \ge 1$,

$$\left|P_t^{\mu}g(x) - \Pi(\mu)g\right| \leqslant C \|g\|_{\infty} e^{-t/\kappa},$$
(53)

for some constant *C* and κ depending only on $||V||_{\infty}$.

Proof. – Let $\|\cdot\|_2$ be the L^2 -norm defined by

$$\|f\|_{2}^{2} = \int_{M} f^{2}(x) \Pi(\mu)(dx).$$
(54)

Then, by standard semigroup inequalities (see [1], Section 5.2)

$$\left\|P_{t}^{\mu}g - \Pi(\mu)g\right\|_{2} \leqslant e^{-t/\kappa}\left\|g - \Pi(\mu)g\right\|_{2}, \quad t > 0,$$
(55)

$$\|P_t^{\mu}g - \Pi(\mu)g\|_{\infty} \leqslant Ct^{-n/2} \|g - \Pi(\mu)g\|_2, \quad 0 < t \leqslant 1,$$
(56)

for some constant $\kappa > 0$ and $0 < C < \infty$ depending only on $||V||_{\infty}$. Combining (55) and (56) leads to

1054

$$\|P_{s}^{\mu}g - \Pi(\mu)g\|_{\infty} = \|P_{1}^{\mu}(P_{s-1}^{\mu}(g - \Pi(\mu)g))\|_{\infty}$$

$$\leq C e^{-(s-1)/\kappa} \|g - \Pi(\mu)g\|_{2}$$

$$\leq 2C e^{-(s-1)/\kappa} \|g\|_{\infty}$$

for all s > 1. \Box

Proof of Proposition 5.1. – By the Markov property

$$\mathsf{E}_{x,r,\mu}\big[g(X_{t+s})|\mathcal{B}_t\big] = \mathsf{E}_{X_t,r+t,\mu_t(r,\mu)}\big[g(X_s)\big]. \tag{57}$$

Hence

$$\begin{aligned} \left| \mathsf{E}_{x,r,\mu} \big[g(X_{t+s}) | \mathcal{B}_t \big] - \Pi(\mu_t) g \right| \\ \leqslant \left| \mathsf{E}_{X_t,r+t,\mu_t(r,\mu)} \big[g(X_s) \big] - \mathsf{E}_{X_t,\mu_t} \big[g(X_s) \big] \right| + \left| \mathsf{E}_{X_t,\mu_t} \big[g(X_s) \big] - \Pi(\mu_t) g \right| \end{aligned}$$

and the result follows from Lemmas 3.2 and 8.1. $\hfill\square$

Proof of Proposition 6.1. - This is almost the same proof. By the Markov property

$$\mathsf{E}_{x,r,\mu}[Z_u \circ \theta_{t+s} | \mathcal{B}_t] = \mathsf{E}_{X_t,r+t,\mu_t(r,\mu)}[Z_u \circ \theta_s].$$

Hence

$$\begin{aligned} \left| \mathsf{E}_{x,r,\mu} [Z_u \circ \theta_{t+s} | \mathcal{B}_t] - \mathsf{E}_{\Pi(\mu_t),\mu_t} [Z_u] \right| \\ \leqslant \left| \mathsf{E}_{X_t,r+t,\mu_t(r,\mu)} [Z_u \circ \theta_s] - \mathsf{E}_{X_t,\mu_t} [Z_u \circ \theta_s] \right| + \left| \mathsf{E}_{X_t,\mu_t} [Z_u \circ \theta_s] - \mathsf{E}_{\Pi(\mu_t),\mu_t} [Z_u] \right|. \end{aligned}$$

The first term of the right-hand side of preceding equation can be dominated using Lemma 3.2. For the domination of the second term, let $\varphi(x) = \mathsf{E}_{x,\mu_1}[Z_u]$, then

$$\begin{cases} \mathsf{E}_{X_t,\mu_t}[Z_u \circ \theta_s] = P_s^{\mu_t}\varphi(X_t), \\ \mathsf{E}_{\Pi(\mu_t),\mu_t}[Z_u] = \Pi(\mu_t)\varphi. \end{cases}$$
(58)

We then conclude using Lemma 8.1. \Box

REFERENCES

- M. Benaïm, M. Ledoux, O. Raimond, Self-interacting diffusions, Probab. Theory Related Fields 122 (2002) 1–41.
- [2] M. Benaïm, O. Raimond, On self attracting/repelling diffusions, C.R. Acad. Sci. Paris, Ser. I 335 (2002) 541–544.
- [3] N. Ikeda, S. Watanabe, Stochastic Differential Equation and Diffusion Processes, North-Holland, 1981.
- [4] J. Nash, The embedding theorem for Riemannian manifolds, Ann. Math. 63 (1956) 20-63.