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ABSTRACT. – This paper concerns convergence in law properties of self-interacting diffu
on a compact Riemannian manifold.
 2003 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Cet article étudie les propriétés de convergence en loi des diffusions
agissantes sur une variété riemannienne compacte.
 2003 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Self interacting diffusions(as considered here) are continuous time stoch
processes living on a Riemannian manifoldM which can be typically described a
solutions to a stochastic differential equation (SDE) of the form

dXt =
∑
α

Fα(Xt) ◦ dBαt − 1

t

( t∫
0

∇VXs (Xt ) ds
)
dt, (1)

where(Bα)α is a family of independent Brownian motions,(Fα)α is a family of smooth
vector fields onM such that

∑
α Fα(Fαf ) = �f (for f ∈ C∞(M)), where� denotes

the Laplacian onM andVu(x) a “potential” function.
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These processes are characterized by the fact that the drift term in Eq. (1) depen
on the position of the processXt, and its empirical occupation measure up to timet :

µt = 1

t

t∫
0

δXs ds. (2)

The asymptotic behavior of{µt } is the subject of a recent paper by Benaïm, Led
and Raimond [1]. This paper provides tools and results which allow to describe th
term behavior of{µt } in terms of the long term behavior of a certain deterministic se
flow {�t}t�0 defined on the space of probability measure onM. For instance, there ar
situations (depending on the shape ofV ) in which {µt } converges almost surely to a
equilibrium pointµ∗ of � and other situations where the limit set of{µt} coincides
almost surely with a periodic orbit for� (see the examples in Section 4 of [1] and be
in Section 7). In the simple case whereµt converges toµ∗ one expects(Xt+s, s � 0) to
behave like a homogeneous diffusion of generator

Lµ∗ = 1

2
�+ 〈∇Vµ∗ ,∇〉,

whereVµ∗(x)= ∫
Vy(x)µ

∗(dy) and〈· , ·〉 denotes the Riemannian inner product onM .
The purpose of this note is to address this type of question.

In Section 2, following [1], self-interacting diffusions on a smooth compact man
are defined. In Section 3, the basic tool of this paper is presented, namely the G
transform.

In Section 4, we show that on the event “µt converges towardsµ∗”, the law of
(Xt+u, u� 0) givenBt = σ (Xs, s � t) is asymptotically equal to the law of the diffusio
with generatorLµ∗ and initial conditionXt .

In Section 5, we show that the law ofXt+s(t) given Bt is asymptotically equal to
�(µt), the invariant probability measure of the diffusion with generatorLµt ; provided
s(t)→ ∞ at a convenient rate. Moreover the law ofXt given�̃= {µt → µ∗} converges
towardsE[µ∗|�̃]. In particular, whenP(�̃)= 1, Xt converges in law towardsE[µ∗].

Section 6 generalizes results of Section 5 to the law of the process(Xt+s(t)+v, v � 0).
In Section 7, examples developed in [1] and [2], for whichµt converges a.s. ar

presented.

2. Background and notation

The notation and definitions here are from [1].
Throughout we letM denote ad-dimensional, compact connected smooth (C∞)

Riemannian manifold. Without loss of generality (see Nash [4]) we shall assum
M is isometrically embedded inRN . We denoteCr(M), 0 � r � ∞, the space ofCr

real valued functions onM .
Given a metric spaceE we letP(E) denote the space of Borel probability measure

E equipped with the topology induced by the weak convergence. Recall that a seq
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{Pn}n�0 of Borel probability measures onE converges weaklyto P provided

lim
n→∞

∫
f dPn =

∫
f dP (3)

for every bounded and continuous functionf :E → R. When E is compact (e.g.
E =M), P(E) is a compact metric space.

Throughout we assume given a measurable mapping

V :M ×M → R,

(u, x) �→ V (u, x)= Vu(x).
(4)

We furthermore assume that for allu ∈M, Vu :M → R is aC1 function whose firs
derivatives are bounded (in the variablesu andx). Forµ ∈ P(M) we letVµ ∈ C1(M)

denote the function defined by

Vµ(x)=
∫
M

V (u, x)µ(du), (5)

andLµ the operator defined onC∞(M) by

Lµf = 1

2
�f − 〈∇Vµ,∇f 〉, (6)

where 〈· , ·〉, ∇ and � stand, respectively, for the Riemannian inner product,
associated gradient and Laplacian onM .

We let � denote the space of continuous pathsw :R+ → M , equipped with the
topology of uniform convergence on compact intervals;B = B(�) the Borelσ -field
of �, Xt theM-valued random variable defined byXt(w) = w(t); andBt theσ -field
generated by the random variables{Xs: 0� s � t}.

Since� is polish,P(�) equipped with the weak convergence is metrizable. A dista
d onP(�) is given by

d(P,Q)=
∞∑
n=1

2−n
∣∣∣∣ ∫ Zn dP −

∫
Zn dQ

∣∣∣∣ (7)

for P andQ in P(�) whereZn :�→ R is continuous,Bn-measurable, and{Zn; n� 1}
is dense in{Z ∈ C0(�); ‖Z‖∞ � 1}.

For r > 0, µ ∈P(M) andw ∈�, theempirical occupation measure ofw with initial
weightr and initial measureµ is the sequence{µt(r,µ,w) ∈P(M): t � 0} defined by

µt(r,µ,w)= 1

r + t
(
rµ+

t∫
0

δw(s) ds

)
, (8)

where
∫ t

0 δw(s) ds(A)= ∫ t
0 1A(w(s)) ds, for every Borel setA⊂M . In the following we

will denote byµt(r,µ) theP(M)-valued random variablew �→ µt(r,µ,w).
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A self-interacting diffusion associated toV is a family

{
Px,r,µ: x ∈M, r > 0, µ ∈ P(M)

}⊂ P(�) (9)

such that
(i) Px,r,µ(X0 = x)= 1.
(ii) For all f ∈ C∞(M),

Mf
t = f (Xt)− f (x)−

t∫
0

(Lµs(r,µ)f )(Xs) ds

is aPx,r,µ-martingale relative to{Bt : t � 0}.
Existence and uniqueness of the self-interacting diffusion associated toV is proved

in [1], Proposition 2.5. More precisely, it is shown in this paper thatPx,r,µ can be
obtained as the law of{Xt}, a solution (unique in law) of the following SDE onM :

dXt =
N∑
i=1

Fi(Xt ) ◦ dBit − ∇Vµt (r,µ)(Xt) dt, X0 = x, (10)

where (F1(x), . . . , FN(x)) denote the orthogonal projection of the canonical b
(e1, . . . , eN) of R

N on TxM and Bt = (B1
t , . . . ,B

N
t ) is anN -dimensional Brownian

motion.
For x ∈M andµ ∈ P(M) we let Px,µ ∈ P(�) denote the probability measure on�

such that
(i) Px,µ(X0 = x)= 1.
(ii) For all f ∈ C∞(M),

Mf
t = f (Xt)− f (x)−

t∫
0

(Lµf )(Xs) ds

is aPx,µ-martingale relative to{Bt : t � 0}.
In other words,Px,µ is the law of the diffusion process{Yt} with initial conditionx and
generatorLµ solution to the SDE:

dYt =
N∑
i=1

Fi(Yt) ◦ dBit − ∇Vµ(Yt) dt, Y0 = x. (11)

In the followingEx,r,µ andEx,µ will respectively denote the expectation with resp
to Px,r,µ and toPx,µ.
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3. The Girsanov transform and some lemmas

3.1. The Girsanov transform

Let Bt = (B1
t , . . . ,B

N
t ) be a standard Brownian motion onRN , P the law of

(Bs; s � 0), E the associated expectation,Ft the P-completion ofσ (Bs, 0 � s � t)

andF = F∞. Let {Wx
t } be the solution to the SDE

dWx
t =

N∑
i=1

Fi(W
x
t ) ◦ dBit , Wx

0 = x ∈M. (12)

ThenWx = (Wx
t , t � 0) is a Brownian motion onM starting atx. We denote its lawPx .

Note thatWx :C(R+ : R
N)→�= C(R+ :M) is measurable. Let

Mx,r,µ
t = exp

[ t∫
0

∑
i

〈∇Vµxs (r,µ)(Wx
s

)
,Fi
(
Wx
s

)〉
dBis − 1

2

t∫
0

∥∥∇Vµxs (r,µ)(Wx
s

)∥∥2
ds

]
,

(13)
where

µxt (r,µ)=
1

t + r
(
rµ+

t∫
0

δWx
s
ds

)
, (14)

and

Mx,µ
t = exp

[ t∫
0

∑
i

〈∇Vµ(Wx
s

)
,Fi
(
Wx
s

)〉
dBis − 1

2

t∫
0

∥∥∇Vµ(Wx
s

)∥∥2
ds

]
. (15)

Then {Mx,r,µ
t } and {Mx,µ

t } are (P, {Ft})-martingales. By the transformation of dr
formula (see [3], Section IV 4.1 and Theorem IV 4.2),{

Ex,r,µ[Zt ] = E
[
M
x,r,µ
t

(
Zt ◦Wx

)]
,

Ex,µ[Zt ] = E
[
M
x,µ
t

(
Zt ◦Wx

)] (16)

for every boundedBt -measurable random variableZt . Note that this implies in particula
thatPx, Px,µ andPx,r,µ are equivalent.

3.2. Some lemmas

The next lemma is a basic tool to estimate quantities such as

Ex,r,µr [Zt ] − Ex,µ[Zt ],
for larger andµr close toµ.

LEMMA 3.1. – For a = 1,2 letAat = (Aa,1t , . . . ,Aa,Nt ) be aR
N -valued bounded{Ft}-

previsible process. Suppose that for all0� s � t∥∥A1 −A2∥∥� δ(t) (17)
s s
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for some deterministic functionδ : R+ → R+. Let

Ma
t = exp

[ t∫
0

∑
i

Aa,is dBis − 1

2

t∫
0

∥∥Aas ∥∥2
ds

]
, a = 1,2.

Then there exists a positive constantC such that for anyFt -measurable random variabl
Zt bounded by1 in absolute value,∣∣E[M1

t Zt
]− E

[
M2
t Zt

]∣∣� eCtδ(t). (18)

The constantC depends only onsupa,s ‖Aas ‖∞.

Lemma 3.1 will be proved in Section 8. Note that Lemma 3.1 and the Girs
transforms given in Section 3.1 imply thatPx,r,µ converges weakly towardsPx,µ as
r → ∞. More precisely

LEMMA 3.2. – There exists a positive constantC (depending only onsup
x,y

‖∇Vy(x)‖)

such for anyBt -measurable random variableZt bounded by1 in absolute value,

∣∣Ex,r,µ[Zt ] − Ex,µ[Zt ]
∣∣� eCt

r + t . (19)

Proof. –There exists a constantC such that‖∇Vµ‖∞ �C and‖∇Vµs(r,µ)−∇Vµ‖∞ �
Ct/(r + t), for all 0� s � t . The result then follows from Girsanov formulas (16) a
Lemma 3.1 applied with{

A1,i
s = 〈∇Vµs(r,µ)(Wx

s

)
,Fi
(
Wx
s

)〉
,

A2,i
s = 〈∇Vµ(Wx

s

)
,Fi
(
Wx
s

)〉
. ✷ (20)

4. The asymptotic of PXt,r+t,µt (r,µ)

Here we shall prove:

THEOREM 4.1. – Letµ∗ :�→ P(M) denote aP(M)-valued random variable. Le
�̃= {w ∈�: lim t→∞µt(r,µ,w)= µ∗}. ThenPx,r,µ-a.s. on�̃,

lim
t→∞d(PXt ,r+t,µt (r,µ),PXt ,µ∗)= 0. (21)

COROLLARY 4.2. –For every bounded and continuous functionZ :�→ R, Px,r,µ-a.s

lim
r→∞

∣∣Ex,r,µ[Z ◦ θt |Bt ] − EXt ,µ∗[Z]∣∣1
�̃

= 0, (22)

whereθt :�→� is the shift on� defined byθt (w)(s)=w(t + s).
Proof. –By the Markov property, we have

Ex,r,µ[Z ◦ θt |Bt ] = EXt ,t+r,µt (r,µ)[Z], (23)
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Proof of Theorem4.1. – Follows directly from the following estimate:

PROPOSITION 4.3. – Let {µr : r > 0} ⊂ P(M). Assume that

lim
r→∞µ

r =µ∗

in P(M). LetZt be a random variableFt -measurable and bounded by1 in absolute
value. Then

lim
r→∞ Ex,r,µr [Zt ] = Ex,µ∗[Zt ] (24)

uniformly inx ∈M .
More precisely, there existsC > 0 (depending only onsupx,y ‖∇Vy(x)‖) such that

∣∣Ex,r,µr [Zt ] − Ex,µ∗[Zt ]
∣∣� eCt

(
1

r
+ ε(r)

)
, (25)

whereε(r)= supx ‖∇Vµr (x)− ∇Vµ∗(x)‖.

Note that limr→∞ ε(r) = 0 (sincex �→ ∇Vµr (x) − ∇Vµ∗(x) is equicontinuous inx
and converges towards 0 for everyx).

Proof. –Lemma 3.1 applied with{
A1,i
s = 〈∇Vµr (Wx

s

)
,Fi
(
Wx
s

)〉
,

A2,i
s = 〈∇Vµ∗

(
Wx
s

)
,Fi
(
Wx
s

)〉 (26)

implies ∣∣Ex,µr [Zt ] − Ex,µ∗[Zt ]
∣∣� eCtε(r). (27)

The conclusion follows from this last inequality combined with Lemma 3.2 and
triangle inequality. ✷

5. The convergence in law of Xt

For everyµ ∈ P(M) let �(µ) ∈ P(M) denote the invariant probability measure
the diffusion process with generatorLµ. That is

�(µ)(dx)= e−2Vµ(x)

Z(µ)
λ(dx), (28)

whereZ(µ) is the normalization constant.
Let us first remark that asr → ∞, the law ofXt under Px,r,µ converges weakly

towards the law ofXt under Px,µ (see Lemma 3.2). We also have the converge
lim t→∞ Ex,µ[g(Xt)] = �(µ)g 1 for all g ∈ C0(M). The next proposition shows th

1 For a measureµ andf ∈ L1(µ) we letµf denote
∫
f dµ.
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Ex,r,µ[g(Xt+s)|Bt ] = EXt ,r+t,µt (r,µ)[g(Xs)] and�(µt(r,µ))g are close whens and t
tends to∞ at a certain rate.

PROPOSITION 5.1. – For all t � 1, r > 0, s > 0 andg ∈C0(M),

∣∣Ex,r,µ[g(Xt+s)|Bt]−�(µt)g∣∣� ‖g‖∞
(

eCs

r + s + t +C e−s/κ
)
, (29)

whereC andκ are positive constants depending only onV .

The proof of Proposition 5.1 is given in Section 8.

COROLLARY 5.2. –
(i) For all positives and all g ∈C0(M),

lim sup
t→∞

∣∣Ex,r,µ[g(Xt+s)|Bt]−�(µt)g∣∣�C‖g‖∞ e−s/κ . (30)

(ii) Let s be a real valued positive function such that

1 � exp
(
s(t)

)� t1/C (31)

whent tends to∞. Then for allg ∈C0(M),

lim sup
t→∞

∣∣Ex,r,µ[g(Xt+s(t))|Bt]−�(µt)g∣∣= 0. (32)

Proof. –Straightforward. ✷
Remark5.3. – LetLt denote the law ofXt+s(t) knowingBt . Then Corollary 5.2 mean

thatLt is asymptotically equal to�(µt). That is, limt→∞ distw(Lt ,�(µt))= 0, where
distw is a distance onP(M) for the weak topology.

Remark that Proposition 5.1 and Corollary 5.2 make no assumption on the asym
of {µt }. Let �̃ ∈ B be the event that “µt converges towardsµ∗”, whereµ∗ is aP(M)-
valued random variable. In [1] and [2], several examples of self-interacting diffu
for which Px,r,µ(�̃) = 1 are given (these examples are shortly presented in Sectio
The following theorem describes the law ofXt+s(t) knowingBt on �̃.

THEOREM 5.4. – Let s(t) be as in Corollary5.2. Then, the law ofXt+s(t) knowing
Bt converges weakly towardsµ∗ Px,r,µ-a.s. on�̃. That is, for allg ∈C0(M),

lim
t→∞ Ex,r,µ

[
g(Xt+s(t))|Bt]= µ∗g (33)

Px,r,µ-a.s. on�̃.

Proof. –It follows from Theorem 3.8 in [1] thatµ∗ is (almost surely oñ�) a fixed
point of�, i.e.,�(µ∗)= µ∗. The proof now follows from Corollary 5.2(ii) and the fa
that� :P(M)→ P(M) is continuous. ✷
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COROLLARY 5.5 (Convergence in law). –For all g ∈C0(M),

lim
t→∞ Ex,r,µ

[
g(Xt)1�̃

]= Ex,r,µ
[
(µ∗g)1

�̃

]
. (34)

In particular, if Px,r,µ(�̃)= 1 then for allg ∈C0(M),

lim
t→∞ Ex,r,µ

[
g(Xt)

]= Ex,r,µ[µ∗g], (35)

i.e.,Xt converges in law towardsEx,r,µ[µ∗] whent tends to∞.

Proof. –In view of Theorem 5.4

lim
t→∞ Ex,r,µ

[
Ex,r,µ

[
g(Xt+s(t))|Bt]1�̃]= Ex,r,µ

[
(µ∗g)1

�̃

]
. (36)

It then suffices to prove that limt→∞ at = 0 where

at = Ex,r,µ
[
Ex,r,µ

[
g(Xt+s(t))|Bt]1�̃ − Ex,r,µ

[
g(Xt+s(t))1�̃|Bt]]. (37)

Let�t = 1
�̃

− Ex,r,µ[1�̃|Bt ]. Then

at = Ex,r,µ
[
Ex,r,µ

[
g(Xt+s(t))|Bt]�t − Ex,r,µ

[
g(Xt+s(t))�t |Bt]]. (38)

Hence|at | � 2‖g‖∞Ex,r,µ[|�t |] and consequently limt→∞ at = 0 because limt→∞�t =
0 a.s. ✷

6. The convergence in law of (Xt+u,u � 0)

In the previous section we were only interested by the asymptotic of the law ofXt+s
knowingBt . These results can be extended to the law of(Xt+s+u; u� 0) knowingBt .
The following proposition is analogous to Proposition 5.1 (and implies Proposition

PROPOSITION 6.1. – For all t � 1, s > 0, u > 0 andZu a Bu-measurable random
variable bounded by1 in absolute value, then

∣∣Ex,r,µ[Zu ◦ θt+s|Bt ] − E�(µt ),µt [Zu]
∣∣�( eC(s+u)

r + s + u+ t +C e−s/κ
)
, (39)

whereC andκ are positive constants depending only onV .

The proof of Proposition 6.1 is given in Section 8.

COROLLARY 6.2. – For any positiveu andZu a Bu-measurable random variabl
bounded by1 in absolute value, we have

(i) For any positives,

lim sup
t→∞

∣∣Ex,r,µ[Zu ◦ θt+s|Bt ] − E�(µt ),µt [Zu]
∣∣� C e−s/κ . (40)
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lim sup
t→∞

∣∣Ex,r,µ[Zu ◦ θt+s(t)|Bt ] − E�(µt ),µt [Zu]
∣∣= 0. (41)

Proof. –Straightforward. ✷
This corollary shows that the law of(Xt+s(t)+v; v � 0) knowingBt is asymptotically

equal to the law of a diffusion with generatorLµt and initial distribution�(µt). In
particular, (ii) says that

lim
t→∞d(Pt ,P�(µt ),µt )= 0, (42)

wherePt is the law of(Xt+s(t)+u; u� 0) knowingBt .
Like in the previous section, we now focus on�̃. The following theorem shows th

on �̃, givenBt , (Xt+s(t)+u; u� 0) converges in law towards a diffusion with genera
Lµ∗ and initial distributionµ∗ (note thatµ∗ satisfiesµ∗ = �(µ∗) so thatµ∗ is the
invariant probability measure of this diffusion).

THEOREM 6.3. – For any positiveu and Zu a boundedBu-measurable random
variable,

lim
t→∞ Ex,r,µ[Zu ◦ θt+s(t)|Bt ] = Eµ∗,µ∗[Zu] (43)

almost surely oñ�, wheres(t) is as in Corollary5.2.

Proof. –The proof is the same as the one of Theorem 5.4.✷
Note that Theorem 6.3 implies that oñ�, Pt converges weakly towardsPµ∗,µ∗ .

COROLLARY 6.4 (Convergence in law). –For any positiveu andZu a boundedBu-
measurable random variable,

lim
t→∞ Ex,r,µ

[
(Zu ◦ θt )1�̃

]= Ex,r,µ
[
Eµ∗,µ∗ [Zu]1�̃

]
. (44)

In particular, if Px,r,µ(�̃)= 1 then

lim
t→∞ Ex,r,µ[Zu ◦ θt ] = Ex,r,µ

[
Eµ∗,µ∗[Zu]]. (45)

Proof. –The proof is the same as the one of Corollary 5.5.✷
Note that (44) and (45) respectively imply that the law of(Xt+u; u � 0) given

�̃ converges weakly towardsEx,r,µ[Pµ∗,µ∗ |�̃] and thatEx,r,µ[PXt ,r+t,µt (r,µ)] converges
weakly towardsEx,r,µ[Pµ∗,µ∗] providedPx,r,µ(�̃)= 1.

7. Examples

SetδV (x, y)= supu∈M(Vu(x)−Vu(y))− infu∈M(Vu(x)−Vu(y)). In [1], Corollary 4.4,
it is proved that when sup(x,y)∈M2 δV (x, y) < 1, then� has a unique fixed pointµ∗
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and limt→∞µt(r,µ)= µ∗ Px,r,µ-a.s. The associated self-interacting diffusions prod
examples for whichPx,r,µ(�̃)= 1, but the limitµ∗ is not random.

From the different interactions, we distinguish those such thatV is symmetric and
defines a positive or a negative self-adjoint operator acting onL2(λ), that can be written
in the formV = α ∫C G(u, x)G(u, y)ν(du), whereC is compact,ν is a Borel probability
measure,G :C ×M → R is continuous andα ∈ R. We call them gradient interaction
These interactions produce examples for whichPx,r,µ(�̃)= 1 and the limitµ∗ may be
random (see [2]).

Whenα is positive, we say it is a self-repelling interaction and whenα is negative, we
say it is a self-attracting interaction. It can be proved (see [2]) that, ifV 1 is a constan
function, for all repelling cases or weakly attracting cases (α > −αG, with αG > 0),
the empirical occupation measure of the associated self-interacting diffusion con
towardsλ a.s. But, whenα <−αG, this is not the case, andµt may converge toward
µ∗ �= λ.

The interaction, on then-dimensional sphereSn,

V (x, y)= 2α cos
(
d(x, y)

)
(46)

is a gradient interaction. This example is developed in [1], Section 4.2. Whenα � −(n+
1)/4,µt converges towardsλ a.s. and whenα <−(n+1)/4, there exists aSn-valued ran-
dom variablev such thatµt converges a.s. towards exp[βn(α)cos(d(x, v))]λ(dx)/Zn,α ,
whereZn,α is the normalization constant andβn(α) is a constant depending only o
n andα. In [1], Section 4.2, an example of interaction onSn (which is not a gradien
interaction) for whichPx,r,µ(�̃)= 0 is given.

8. Proofs

8.1. Proof of Lemma 3.1

LetC be a constant such that both‖Aat ‖2 and‖Aat ‖ are lower thanC. Let

Et = exp

[ t∫
0

〈
A1
s ,A

1
s −A2

s

〉
ds

]
, (47)

andNt =M2
t (M

1
t Et)

−1. Observe thatMa
t andNt are exponential martingales solutio

of the SDEs 
dMa

t =Ma
t

(∑
i

Aa,it dBit

)
,

dNt =Nt
(∑(

A2,i
t −A1,i

t

)
dBit

)
.

(48)
i
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Therefore 
d

ds
E
[(
Ma
s

)2]= E
[(
Ma
s

)2∥∥Aas ∥∥2]� CE
[(
Ma
s

)2]
,

d

ds
E
[
(Ns)

2]= E
[
(Ns)

2∥∥A1
s −A2

s

∥∥2]� δ2(t)E
[
(Ns)

2], (49)

for s � t . Hence, by Gronwall’s lemma, fora ∈ {1,2}{
E
[(
Ma
t

)2]� eCt ,
E
[
(Nt)

2
]
� exp

(
tδ2(t)

)
.

(50)

Notice that we also have

|Et − 1| � exp
(
Ctδ(t)

)− 1. (51)

Using these estimates and Schwartz inequality, we get∣∣E[M2
t Zt

]− E
[
M1
t Zt

]∣∣= ∣∣E[Zt(NtEt − 1)M1
t

]∣∣
� E

[(
Nt(Et − 1)+Nt − 1

)2]1/2
E
[(
M1
t

)2]1/2
� eCt/2

[(
exp
(
Ctδ(t)

)− 1
)

exp
(
tδ2(t)

2

)
+ (exp

(
tδ2(t)

)− 1
)1/2

]
.

Since eu − 1� ueu we easily obtain∣∣Ex,r,µ[Zt ] − Ex,µ[Zt ]
∣∣� eCtδ(t), (52)

for C large enough. This proves the lemma.✷
8.2. Proof of Propositions 5.1 and 6.1

Let Pµ = (P µt )t�0 denote the semigroup of the diffusion with generatorLµ.

LEMMA 8.1. – Letg :M → R be a bounded continuous function, then fort � 1,∣∣Pµt g(x)−�(µ)g∣∣�C‖g‖∞ e−t/κ , (53)

for some constantC andκ depending only on‖V ‖∞.

Proof. –Let ‖ · ‖2 be theL2-norm defined by

‖f ‖2
2 =

∫
M

f 2(x)�(µ)(dx). (54)

Then, by standard semigroup inequalities (see [1], Section 5.2)∥∥Pµt g−�(µ)g∥∥2 � e−t/κ∥∥g−�(µ)g∥∥2, t > 0, (55)∥∥Pµt g−�(µ)g∥∥∞ � Ct−n/2
∥∥g−�(µ)g∥∥2, 0< t � 1, (56)

for some constantκ > 0 and 0<C <∞ depending only on‖V ‖∞. Combining (55) and
(56) leads to
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using

lated

aris,

North-

–63.
∥∥Pµs g−�(µ)g∥∥∞ = ∥∥Pµ1 (Pµs−1

(
g−�(µ)g))∥∥∞

�C e−(s−1)/κ∥∥g−�(µ)g∥∥2

� 2C e−(s−1)/κ‖g‖∞
for all s > 1. ✷

Proof of Proposition5.1. – By the Markov property

Ex,r,µ
[
g(Xt+s)|Bt]= EXt ,r+t,µt (r,µ)

[
g(Xs)

]
. (57)

Hence∣∣Ex,r,µ[g(Xt+s)|Bt]−�(µt)g∣∣
�
∣∣EXt ,r+t,µt (r,µ)[g(Xs)]− EXt ,µt

[
g(Xs)

]∣∣+ ∣∣EXt ,µt [g(Xs)]−�(µt)g∣∣
and the result follows from Lemmas 3.2 and 8.1.✷

Proof of Proposition6.1. – This is almost the same proof. By the Markov property

Ex,r,µ[Zu ◦ θt+s|Bt ] = EXt ,r+t,µt (r,µ)[Zu ◦ θs].
Hence∣∣Ex,r,µ[Zu ◦ θt+s|Bt ] − E�(µt ),µt [Zu]

∣∣
�
∣∣EXt ,r+t,µt (r,µ)[Zu ◦ θs] − EXt ,µt [Zu ◦ θs]

∣∣+ ∣∣EXt ,µt [Zu ◦ θs] − E�(µt ),µt [Zu]
∣∣.

The first term of the right-hand side of preceding equation can be dominated
Lemma 3.2. For the domination of the second term, letϕ(x)= Ex,µt [Zu], then{

EXt ,µt [Zu ◦ θs] = Pµts ϕ(Xt),
E�(µt ),µt [Zu] =�(µt)ϕ. (58)

We then conclude using Lemma 8.1.✷
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