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ABSTRACT. – We study in this work a special class of multidimensional random walk
random environment for which we are able to prove in a non-perturbative fashion both
of large numbers and a functional central limit theorem. As an application we provide
examples of diffusive random walks in random environment. In particular we construct exa
of diffusive walks which evolve in an environment for which the static expectation of the
does not vanish.
 2003 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – On étudie dans cet article une classe de marches aléatoires en milieu a
en dimension supérieure, pour lesquelles on prouve de manière non perturbative une
grands nombres et un théorème central limite fonctionnel. Comme application de ces r
on construit de nouveaux exemples de marches aléatoires diffusives en milieu aléato
particulier on présente des exemples de marches aléatoires diffusives qui évoluent d
environnement aléatoire pour lequel l’espérance statique de la dérive n’est pas nulle.
 2003 Éditions scientifiques et médicales Elsevier SAS

0. Introduction

Over the recent years there has been considerable interest in the study of r
walks in random environment. The asymptotic behavior of this canonical mod
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random motion in a random medium remains quite mysterious, especially in the
dimensional situation. Recent advances have mainly been concerned with the b
situation where the walk has a non-degenerate asymptotic velocity, see [15,12,
Diffusive behavior has remained largely unexplored, except for the the work of L
[7] when the walk has no local drift, and of Bricmont and Kupiainen [2], for sm
isotropic perturbations of the simple random walk in dimensiond � 3. The presen
article provides new examples of walks with diffusive behavior. It studies a sp
class of walks for which we are able to derive in a non-perturbative fashion th
of large numbers as well as central limit theorems. Interestingly, proofs are simple
compared to [2].

We now describe the setting. We consider two integersd1 � 5, d2 � 1, and writed =
d1+d2. We viewZd1 andZd2 as the respective subspaces ofZd of vectors with vanishing
lastd2 and vanishing firstd1 components. Throughout this work we study random w
in random environment for which theZd1-projection evolves according to a standa
random walk, and the random environment only affects theZd2-component. Specificall
we consider a numberκ ∈ (0, 1

2d1
) (the ellipticity constant for theZd1-component) and

(2d1+ 1)-vector governing the jump-distribution of theZd1-components of the walk:(
q(e)

)
|e|�1, e∈Z

d1 , with
∑

q(e)= 1, q(e)= q(−e) > 0, for |e|� 1, e ∈ Zd1,

andq(e) � κ, for e �= 0, (0.1)

and introduce

Pq(·) the set of(2d)-vectors
(
p(e)

)
|e|=1, with p(e) ∈ [0,1], for all e ∈ Zd , |e| = 1,∑

|e|=1p(e)= 1, andp(e)= q(e), for e ∈ Zd1, |e| = 1. (0.2)

The random environment is an elementω = (ω(x, ·))x∈Zd of  = PZd

q(·), endowed with

the productσ -algebra and the product measureP = µ⊗Z
d

, whereµ is a probability on
Pq(·) governing the distribution of the environment at a single site. The random wa
the random environmentω is the canonical Markov chain(Xn)n�0 on (Zd)N with state
spaceZd , and “quenched” lawPx,ω starting fromx ∈ Zd , under which

Px,ω[Xn+1=Xn + e |X0, . . . ,Xn] Px,ω-a.s.= ω(Xn, e), n � 0, |e| = 1,

Px,ω[X0= x] = 1.
(0.3)

The annealed laws are then defined as the semi-direct products on× (Zd)N:

Px = P× Px,ω, for x ∈ Zd . (0.4)

Our very choice of environmentsω in  forces theZd1-projection ofXn to evolve under
Px,ω as a random walk with jump distributionq(·). We assume symmetry ofq(·) for
otherwise we would be in a non-nestling situation where the law of large number
the central limit theorem have been proven in [15,12]. The assumptiond1 � 5, enables
to exploit the presence of cut times of the random walk, where loosely speaking pa
future of the random walk have no intersection, (for the precise definition, see (
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These cut times play a somewhat similar role to the regeneration times employed
12], although they do not provide a renewal structure.

In the above setting we are able to derive a law of large numbers:

P0-a.s.,
Xn

n
→ v (with a deterministicv). (0.5)

Further assuming that either the law of the environment is invariant under the ant
transformation (cf. (2.1), in this casev = 0), and d1 � 7, or without symmetry
assumption thatd1 � 13, we obtain a functional central limit theorem under
quenched measure:

P-a.s., underP0,ω, the Skorohod-space valuedBn
. = 1√

n

(
X[·n] − [·n]v)

converges in law to a Brownian motion with deterministic covariance.
(0.6)

One can of course replace the quenched measure by the annealed measureP0 in (0.6).
The above result in particular provides examples of diffusive behavior beyond c
knowledge. It can also be applied to certain small perturbations of the standard r
walk. Forε ∈ (0,1), following [14], we define

Sε = the set of(2d)-vectors
(
p(e)

)
|e|=1, with

∣∣p(e)− 1
2d

∣∣� ε
4d , for all e,

and
∑

e p(e)= 1, (0.7)

and writed(x,ω) for the local drift:

d(x,ω)=∑
e

ω(x, e)e. (0.8)

It is shown in [14], that forη > 0, and smallε depending ond andη, when the single sit
distribution is concentrated onSε, and the static expectation of the local driftE[d(0,ω)]
has size bigger thanε5/2−η, whend = 3, ε3−η, whend � 4, the walk has a non-vanishin
limiting velocity (much more is known, see [14]). One can wonder whether the
remains true for arbitrarily small non-vanishingE[d(0,ω)]. We show here that this
not the case and provide examples whend � 7, of single site distributions concentrat
on Sε, for arbitrarily smallε, with E[d(0,ω)] �= 0, but vanishing limiting velocityv,
and even with diffusive behavior, whend � 15. We also construct further examples
analogous behavior for walks which are not small perturbations of the simple ra
walk.

Let us now explain how this article is organized.
In Section 1, we provide an alternative representation of the law of the walk u

the annealed measure which takes advantage of the cut times. We then derive th
large numbers in Theorem 1.4.

In Section 2, we prove the functional central limit theorem under the ann
measure. The case with antipodal symmetry andd1 � 7 is covered by Theorem 2.
the general case withd1 � 13, is treated in Theorem 2.2.

Section 3 explains how the functional central limit theorem under the ann
measure can be strengthened to a similar statement under the quenched measur



530 E. BOLTHAUSEN ET AL. / Ann. I. H. Poincaré – PR 39 (2003) 527–555

imple

sense
nt.

ecial
ion
an
law

y

n

Section 4 provides examples of walks which are small perturbations of the s
random walk, for whichE[d(0,ω)] �= 0, but the limiting velocity vanishes,(d � 7), and
which behave diffusively,(d � 15).

Section 5 contains further examples of analogous behavior, which in a certain
are small perturbations of a one-dimensional random walk in a random environme

1. An alternative representation of P0 and a law of large numbers

In this section we first introduce some further notations and provide a sp
representation of the walk under the measureP0, see Proposition 1.2. This representat
will provide an easy comparison of the walk underP0 with a process constructed as
additive functional over a probability space with an ergodic shift. This will lead to a
of large numbers, cf. Theorem 1.4.

We begin with some notations. We denote by(ei)1�i�d the canonical basis ofRd , and
by | · | the Euclidean distance onRd . ForU a subset ofZd , |U | denotes the cardinalit
of U and∂U the boundary ofU : ∂U = {x ∈ Zd\U , ∃y ∈U , |x − y| = 1}. The drift will
be theRd -valued function onPq(·):

d(p)=∑
|e|=1

p(e)e=∑
i>d1

(
p(ei)− p(−ei)

)
ei, for p(·) ∈Pq(·). (1.1)

To represent the random walk governing the evolution of theZd1-projection of the
RWRE, we consider the product space

W∗ = {e ∈ Zd1, |e|� 1
}Z

,

endowed with the productσ -algebraW∗ and the product measureP = q⊗Z, (in the
notation of (0.1)). We denote by(θn)n∈Z the canonical shift onW∗ and by(In)n∈Z the
canonical coordinates. We then define, forw ∈W∗,

X1
n =X1

n(w)=


I1+ · · · + In, n � 1,
0, n= 0,
−(In+1+ · · · + I0), n �−1.

(1.2)

Observe thatX1
n, n � 0, andX1

n, n � 0, are two independent random walks onZd1 with
jump-distributionq, and that

X1
n ◦ θk =X1

n+k −X1
k, n, k ∈ Z. (1.3)

The set of cut times where “future” and “past” ofX1
. have no intersection will play a

important role in this article. Specifically, forw ∈W∗, we consider

D(w)= {n ∈ Z, X1
(−∞,n−1](w)∩X1

[n,∞)(w)= ∅}, (1.4)

as well as the stationary point process

N(w,dk)=∑ δn(dk)1
{
n ∈D(w)

}
. (1.5)
n∈Z
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It will be convenient to restrictP to the shift-invariant set of fullP -measure (cf
Lemma 1.1 below)

W = {w ∈W∗, N
(
w, (−∞,0])=N

(
w, [0,∞)

)=∞}. (1.6)

We will write W for the restriction ofW∗ to W . We collect some useful propertie
relative to the point processN in the following

LEMMA 1.1. –

P(0∈D) > 0. (1.7)

P(W)= 1, and onW, N(w,dk)=∑
m∈Z

δT m(w)(dk), (1.8)

whereT m(w),m ∈ Z are Z-valued variables onW , increasing withm and such tha
T 0 � 0< T 1.

P̂
def= P [· | 0∈D] is invariant under̂θ def= θT 1. (1.9)∫
T 1dP̂ = P [0∈D]−1. (1.10)

∫
f dP =

∫ T 1−1∑
0

f ◦ θk dP̂
/∫

T 1dP̂ , (1.11)

for f bounded measurable onW .

P
[
T 1 > n

]
� c(logn)1+ d1−4

2 n−
(d1−4)

2 , n � 1, (1.12)

for a positive constantc depending only ond1 andq(·).
Proof. –The claim (1.7) follows from the fact thatX1

n, n � 0, andX1−n, n � 0, are
independent random walks onZd1, d1 � 5, with jump distributionq(·) using classica
estimates on the decrease of the transition probability, cf. Spitzer [11], p. 75, and s
arguments as in Section 3.2 of Lawler [8] or Section 4 of Erdös and Taylor [5]. U
the ergodicity ofθ and (1.7),P(W) = 1 follows and (1.8) is straightforward. Up to
different normalizationP̂ is the Palm measure attached to the stationary point proceN ,
cf. Neveu [9], Chapter II, (see in particular (10), p. 317). The statements (1.9), (
(Kac’s lemma), and (1.11) are then standard. We now turn to the proof of (1.12).

We consider an integerL � 1, and write:

kj = 1+Lj, for j � 0. (1.13)

Then forJ � 1:

P
[
T 1 > k2J

] = P
[
N
(
w, [1, k2J ])= 0

]
�

∑
0�j<2J+1

P
[
X1

(−∞,kj−1] ∩X1
[kj+1,∞) �= ∅

]
+P

[
for all 0 � j < 2J + 1, X1

(−∞,kj−1] ∩X1
[kj+1,∞) = ∅,

andN
(
w, [1, k2J ])= 0

]
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def= a1+ a2. (1.14)

We first bounda2. To this end note that whenN(w, [1, k2J ]) = 0 andX1
(−∞,kj−1] ∩

X1[kj+1,∞) = ∅ for 0 � j < 2J + 1, then for any 1� j � 2J ,

∅ �=X1
(−∞,kj−1] ∩X1

[kj ,∞) =X1
[kj−1,kj−1] ∩X[kj ,kj+1−1].

Hence using independence, we see that

a2 � P
[
X1
[−L,−1] ∩X1

[0,L−1] �= ∅
]J � P [0 /∈D]J . (1.15)

We now turn to the control ofa1. We observe that

a1 � (2J + 1)P
[
X1

(−∞,−1] ∩X1
[L,∞) �= ∅

]
� (2J + 1)

∑
i�1,j�L

P
[
X1

i+j = 0
]
� (2J + 1)

∑
k�L

kP
[
X1

k = 0
]

� (2J + 1)constL−
(d1−4)

2 , (1.16)

using [11], p. 75, in the last step. Choosing a large enoughγ depending ond1, q(·), and
settingJ = [γ logn], L= [ n

3J ], (1.12) now follows from (1.15), (1.16).✷
We will now provide an alternative representation of the law of the walk unde

annealed measureP0. We letW̃ = (Zd2)N stand for the space ofZd2-valued trajectories
(w̃(k))k�0 and

I(w)= {k � 0, X1
k (w)=X1

k+1(w)
}
, for w ∈W, (1.17)

denote the non-negative idle times ofX1. We specify a probability kernelK(w,dw̃dω)

from W to W̃ × through:

ω is P-distributed,
w̃(0)= 0,
for anyk � 0, conditionally onω, w̃(0), . . . , w̃(k),

w̃(k+ 1)− w̃(k) equals 0, whenk � T 1 or k /∈ I(w),

e, with probability
ω(X1

k + w̃(k), e)

q(0)
, for any

e=±ei, i > d1, if k < T 1 andk ∈ I(w).

(1.18)

We can then consider the spaces

.0=W × (W̃ ×)N and .s =W × (W̃ ×)Z, (1.19)

endowed with their productσ -fields, (the subscript “0” refers toP0 and the subscript “s”
to stationary) and the probabilities

Q0= P ×M0, Qs = P ×Ms, (1.20)
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whereM0 and Ms stand for the respective kernels fromW to (W̃ × )N andW to
(W̃ ×)Z defined by

M0(w, dγ0)=K(w,dw̃0dω0)⊗
⊗
m�1

K(θT mw,dw̃m dωm), (1.21)

(with γ 0= (w, γ0)= (w, (w̃m,ωm)m�0)), and similarly

Ms(w,dγs)=
⊗
m∈Z

K(θT mw,dw̃m dωm), (1.22)

(with γ s = (w, γs) = (w, (w̃m,ωm)m∈Z)). We will shortly see that(.0,Q0) is helpful
in providing a representation ofX. under P0, whereas(.s,Qs) possesses usef
stationarity properties.

We now define on.0 theZd2-valued processX2
k , k � 0, via{

X2
0 = 0, X2

k = w̃0(k), for 0 � k � T 1,

X2
(T m+k)∧T m+1 =X2

T m + w̃m

(
k ∧ (T m+1− T m

))
for m� 1, k � 0, (1.23)

in the notations of (1.21). In the sequel we will especially be interested in theZd -valued
process defined on.0:

Zk =X1
k +X2

k, k � 0, (1.24)

and by thePq(·)-valued process (see (0.2)):

σk =ω0(Zk, ·), when 0� k � T 1,

ωm(Zk −ZTm, ·), whenT m � k < T m+1,m � 1. (1.25)

The above processes will easily be compared with the processes defined on.s :

Zs
k =X1

k +X
2,s
k , k ∈ Z, (1.26)

σ s
k = ωm

(
Zs

k −Zs
T m, ·), for T m � k < T m+1, (1.27)

in the notations of (1.22), with

X
2,s
0 = 0 and X

2,s
(T m+k)∧T m+1 =X

2,s
T m + w̃m

(
k ∧ (T m+1− T m

))
, for m ∈ Z, k � 0.

(1.28)
The next two propositions clarify the interest of the above objects.

PROPOSITION 1.2. – UnderQ0, (Zk, σk)k�0 has the same law as(Xk,ω(Xk, ·))k�0

underP0.

Proof. –For ω ∈ , the Zd1-projection ofX. underP0,ω has same law as(X1
k )k�0

underP . Further forω ∈ if Yk, k � 0, is aZd2-valued process such thatY0= 0 and for
k � 0, conditionally onX1

. , Y0, . . . , Yk, the incrementYk+1− Yk is
0, whenk /∈ I(w),

takes the valuee with probability
ω(X1

k + Yk, e)

q(0)
, for e=±ei, i > d1,

whenk ∈ I(w),

(1.29)
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k + Yk,ω
(
X1

k + Yk, ·))k�0 is distributed as
(
Xk,ω(Xk, ·))k�0 underP0,ω. (1.30)

Letting (ω(x, ·))x∈Zd be i.i.d.µ-distributed (see below (0.2)), and replacingP0,ω with
P0 the above identity of laws holds true as well. But the subsets ofZd1: X1

[0,T 1−1],
X1
[T 1,T 2−1], . . . ,X

1
[T m,T m+1−1], . . . are disjoint. Hence if(ωm)m�0 is an i.i.d. sequence wit

common distributionP, and one replaces in (1.29), and in the first expression of (1
ω with ω0, if 0 � k < T 1 andωm(· − (X1

T m + YTm), ·), if T m � k < T m+1, the identity in
law is still preserved. Our claim now follows straightforwardly.✷

To take advantage of the stationarity property on(.s,Qs), we introduce on.s the
flow (4k)k∈Z via:

4k(γ )= (θkw, (w̃n+m,ωn+m)m∈Z

)
, onTn(w) � k < Tn+1(w), (1.31)

with γ as below (1.22). This is the natural flow extending(θk)k∈Z, if one views(wm,ωm)

as marks of theδT m , for m ∈ Z.

PROPOSITION 1.3. –

Zs
n =

n−1∑
k=0

Zs
1 ◦4k, for n � 1, (1.32)

σ s
n = σ s

0 ◦4n, for n ∈ Z, (1.33)

41 preservesQs and in fact(.s,41,Qs) is ergodic. (1.34)

Proof. –Both (1.32) and (1.33) follow by direct inspection using (1.26)–(1.28).
fact 41 preservesQs is checked by a straightforward calculation. Let us show
ergodicity of(.s,41,Qs). The Palm measure

Q̂s
def=Qs(· | 0∈D)= P̂ ×Ms (1.35)

attached to the stationary point processN preserves

4̂=4T 1 (1.36)

(see Neveu [9], p. 338), and the analogue of (1.11) with4, Qs, Q̂s in place ofθ,P, P̂

andf bounded measurable holds as well. Our claim is equivalent to the ergodic
(.s ∩ {0∈ D}, 4̂, Q̂s). Let A be measurable subset of.s ∩ {0∈ D} invariant under4̂
andε > 0. We can find an integermε � 1 and a measurable subsetAε depending only
onw, (w̃m,ωm)|m|�mε

, such that:

EQ̂s
[|1A − 1Aε |]� ε. (1.37)

Then forL � 0,

Q̂s(A)=EQ̂s [1A1A ◦ 4̂L] =EQ̂s [1Aε
1Aε

◦ 4̂L] + cε, (1.38)
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with |cε| � 2ε. On the other hand ifL > 2mε, conditioning on thew component and
using the fact that the(w̃m,ωm)m∈Z are independent conditionally onw (see (1.22)), the
above equals

EP̂
[
Q̂s(Aε |w)Q̂s(Aε |w) ◦ θ̂L]+ cε.

As a result

2ε � limN→∞

∣∣∣∣∣Q̂s(A)− 1

N

N−1∑
L=0

EP̂
[
Q̂s(Aε |w)Q̂s(Aε |w) ◦ θ̂L]

∣∣∣∣∣, (1.39)

but (W ∩ {0∈D}, θ̂ , P̂ ) is ergodic as a consequence of the ergodicity of(W, θ,P ) and
1
N

∑N−1
0 Qs(Aε |w) ◦ θ̂L L1(P̂ )−→ Q̂s(Aε). We thus find with (1.37) and the above that

∣∣Q̂s(A)− Q̂s(A)2∣∣� ∣∣Q̂s(A)− Q̂s(Aε)
2∣∣+ 2ε � 4ε.

Letting ε tend to 0, we see that̂Qs(A)= 0 or 1, and our claim follows. ✷
We will now apply the above to the derivation of a law of large numbers. In partic

this will prove the existence of a (possibly vanishing) asymptotic velocity for the
under the annealed measureP0, when the single site distributionµ is concentrated o
Pq(·), (see (0.1), (0.2), withd1 � 5, d2 � 1).

THEOREM 1.4. – Let7 be a bounded measurable function onPq(·), then

P0-a.s.,
1

n

n−1∑
k=0

7
(
ω(Xk, ·))−→

n→∞EQs
[
7
(
σ s

0

)]
, (1.40)

and moreover in the notation of(1.1),

P0-a.s.,
Xn

n
→ v

def= EQs
[
d
(
σ s

0

)]=EQs
[
Zs

1

]
. (1.41)

Proof. –In view of Proposition 1.2, it suffices to prove similar statements with(Zk)k�0

and(σk)k�0 in place of(Xk)k�0 and(ω(Xk, ·))k�0.
In the notations of (1.19), we consider the kernelM fromW to (W̃ ×)× (W̃ ×)Z:

M(w,dγ )=K(w,dw̃′
0dω

′
0)⊗

⊗
m∈Z

K(θT mw,dŵm dωm), (1.42)

for γ = (w, γ ) = (w, (w̃′
0,ω

′
0), (w̃m,ωm)m∈Z), and the probabilityQ on the space

. =W × (W̃ ×)× (W̃ ×)Z defined as the semi-direct productQ= P ×M . Then
the applications

γ ∈ .
80−→ γ 0=

(
w, (w̃′

0,ω
′
0), (w̃m,ωm)m�1

) ∈ .0

γ ∈ .
8s−→ γ s =

(
w, (w̃m,ωm)m∈Z

) ∈ .s,
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respectively mapQ ontoQ0 andQs . Moreover with a slight abuse of notations, we
that

Q-a.s., ZT 1+k −ZT 1 = Zs
T 1+k −Zs

T 1, σk+T 1 = σ s
k+T 1, k � 0. (1.43)

As a result we find that for7 as in (1.40)

Q-a.s.,
1

n

n−1∑
k=0

7(σk)− 1

n

n−1∑
k=0

7
(
σ s
k

)→ 0. (1.44)

In view of Proposition 1.3 we can apply the ergodic theorem to the second expres
(1.44), and (1.40) follows. By (1.43), we also see that

Q-a.s.,
∣∣Zn −Zs

n

∣∣� 2
(
T 1∧ n

)
, (1.45)

and from Proposition 1.3 and the ergodic theorem we conclude that

P0-a.s.,
Xn

n
→EQs

[
Zs

1

]
. (1.46)

Moreover by a martingale argument (underP0,ω),

E0[Xn] =E0

[
n−1∑
k=0

d
(
ω(Xk, ·))

]
, (1.47)

and by (1.40) we now conclude that

EQs
[
Zs

1

]=EQs
[
d
(
σ s

0

)]
,

finishing the proof of Theorem 1.4.✷
2. Central limit theorem under the annealed measure

In the setting of the previous sections, we now present two central limit theo
for the walk under the measureP0. Theorem 2.1 requires a symmetry assumption
the law of the environment, cf. (2.1) below, and holds whend1 � 7, on the other han
Theorem 2.2 makes no symmetry assumption, but holds whend1 � 13. We will later use
Theorem 2.2 when providing in Sections 4 and 5 examples of diffusive behavior
walk in biased environments.

For the first theorem, we assume the following “antipodal symmetry” of the s
site distribution (see below (0.2))

µ is invariant under
(
p(e)

)
|e|=1→

(
p(−e)

)
|e|=1. (2.1)

Note that when (2.1) holds,E0[Xn] = 0, for n � 0, and the limiting velocityv in
(1.41) necessarily vanishes. In what follows we denote byD(R+,Rd) the set ofRd -
valued functions onR+, which are right continuous with left limits, which is tacit
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endowed with the Skorohod topology and its Borelσ -algebra, (cf. Chapter 3 of Ethie
and Kurtz [6]).

THEOREM 2.1 (d1 � 7, under (2.1)). –UnderP0, theD(R+,Rd)-valued sequenc
Bn
. = 1√

n
X[·n] converges in law to a Brownian motion with covariance matrixA given

in (2.14).

Proof. –In view of Proposition 1.2 and (1.45), it suffices to show that

underQs,
1√
n
Zs[·n] converges in law to a Brownian motion with

covariance matrixA.
(2.2)

Define the non-decreasing sequencekn, n � 0, Qs -a.s. surely tending to infinity suc
thatT kn � n < T kn+1, and

:m = Zs
T m −Zs

T 0, for m � 0. (2.3)

Note thatQs-a.s., for anyT > 0:

sup
t�T

∣∣∣∣ 1√
n
Zs
[tn] −

1√
n
:k[tn]

∣∣∣∣� 2 sup
0�k�k[T n]

(T k+1− T k)√
n

. (2.4)

From (1.12) andd1 � 7, we see that forγ < 3
2,

EP
[(
T 1)γ ]<∞ (2.5)

and using (1.11) we conclude that forγ < 5
2,

EP̂
[(
T 1)γ ]=EQ̂s

[(
T 1)γ ]<∞. (2.6)

Using stationarity, we see that foru > 0,

P̂

(
sup

0�k�[T n]
(T k+1− T k)√

n
> u

)
� (T n+ 1)P̂

(
T 1 >

√
nu
)

� (T n+ 1)

n
EP̂
[(
T 1)2, T 1 >

√
nu
] (2.6)−→
n→∞0.

On the other hand sup0�k�[T n]
(T k+1−T k)√

n
is invariant underθT 0, and by (1.11) the imag

of P underθT 0 is T 1P̂ /
∫
T 1dP̂ , so that the above calculation also proves that

sup
0�k�[T n]

(T k+1− T k)√
n

−→
n→∞0 in P (or Qs )-probability. (2.7)

SinceQs -a.s.,kn � n for all n, we see from (2.4), (2.7) that our claim will follow if w
show (2.2) with 1√

n

∑
k[tn] in place of 1√

n
Zs[tn].
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sump-
Observe then that conditionally onw, underQ̂s , the variablesZs
T k+1 −Zs

T k , k � 0, are
independent, cf. (1.22), (1.26), (1.28), with zero mean thanks to (2.1). Further fro
ergodic theorem:

Q̂s-a.s.,
1

n

∑
0�k<n

(
Zs

T k+1 −Zs
T k

)(
Zs

T k+1 −Zs
T k

)t →EQ̂s
[(
Zs

T 1

)(
Zs

T 1

)t ] def= Ã. (2.8)

Using the martingale central limit theorem, see Durrett [4], p. 374, or Ethier
Kurtz [6], p. 340, it follows from (2.6), (2.8) that

for P̂ -a.e.w, conditionally onw underQ̂s, 1√
n
:·n converges in law

to a Brownian motion with covariance matrix̃A, provided:s, s � 0,

stands for the linear interpolation of:m, m � 0.

(2.9)

Noting that 1√
n
:·n is invariant under4T 0 and the image ofQs under 4T 0 is

T 1Q̂s/
∫
T 1dP̂ , it follows that

underQs,
1√
n
:·n converges in law to a Brownian motion with

covariance matrix̃A.
(2.10)

From the ergodic theorem, we know that

T m

m
→EP̂

[
T 1] Q̂s-a.s., (2.11)

and by similar arguments as above the same holds trueQs -a.s. It then follows thatQs-
a.s.kn

n
→ 1/

∫
T 1dP̂ , and with the help of Dini’s theorem:

Qs -a.s., for allT > 0, sup
0�t�T

∣∣∣∣k[tn]n
− t

EP̂ [T 1]
∣∣∣∣= 0. (2.12)

From (2.10) and (2.12), we then conclude that

underQs,
1√
n
:k[·n] converges in law to a Brownian motion (2.1

with covariance matrix

A=EQ̂s
[(
Zs

T 1

)(
Zs

T 1

)t ]
/EP̂

[
T 1] (= Ã/EP̂

[
T 1]), (2.14)

which finishes the proof of our claim.✷
We now turn to the second theorem which does not require the symmetry as

tion (2.1), and covers situations with possibly non-vanishing limiting velocityv, see
(1.41).

THEOREM 2.2 (d1 � 13). – Under P0, the D(R+,Rd)-valued sequenceBn
. =

1√
n
(X[·n] − [·n]v) converges in law to a Brownian motion with covariance matrixA

given in(2.20).
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Proof. –By Proposition 1.2 and (1.45), it suffices to prove a similar result for
sequence

1√
n

(
Zs
[·n] − [·n]v

) (1.32)−(1.41)= 1√
n

[·n]−1∑
k=0

Y ·4k, (2.15)

with the notation

Y = Zs
1−EQs

[
Zs

1

]
. (2.16)

We now introduce on.s , see (1.19), the filtration

Gk = σ
(
Zs

n+1−Zs
n, n < k

)
, for k � 0,(= σ

(
Zs

n, n � k
)
, sinceZs

0= 0
)
. ✷ (2.17)

The main step in proving Theorem 2.2 is provided by an adaptation of Gor
method:

LEMMA 2.3. – There is aG ∈L2(.s,G0,Qs) such that

Mn
def= G ◦4n−G+Zs

n− nv =G ◦4n−G+
n−1∑
k=0

Y ◦4k is a (Gn)-martingale. (2.18)

Let us for the time being admit Lemma 2.3 and explain how we conclude the pro
Theorem 2.2. Observe that for anyε > 0:

Qs

(
sup

1�m�n

|G ·4m|> ε
√
n
)
� nQs

(|G|> ε
√
n
)

� ε−2EQs
[
G2, |G|> ε

√
n
]−→
n→∞0, (2.19)

so that it suffices to prove that1√
n
M[·n] converges in law to conclude that1√

n
(Zs[·n] −

[·n]v) converges in law to the same limit. However

Mn =
n−1∑
k=0

(G ◦41−G+ Y ) ◦4k

is a martingale with stationary increments and from the theorem of Billingsley
Ibragimov, see Durrett [4], p. 375, it follows that

underQs,
1√
n
M[·n] converges in law to a Brownian motion with

covariance matrixA=EQs
[
(G ◦41−G+ Y )(G ·41−G+ Y )t

]
,

(2.20)

which proves Theorem 2.2.

Proof of Lemma2.3. – To simplify notations, we drop the superscriptQs when writing
expectations or conditional expectations. It follows from (1.12) that

T 1 ∈L4(Qs)
(
or L4(P )

)
. (2.21)
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proves
As we now explain the claim will follow once we show that∑
p�0

∥∥E[(H1{0∈D}) ◦4p | G0
]∥∥

2 <∞, (2.22)

where we recall the notation (1.4) and

H =
T 1−1∑
k=0

Y ◦4k (note that|H |� 2T 1, since|Zs
1|� 1). (2.23)

Indeed, if we define form � 1,

Gm =E[H | G0] +
∑

1�p<m

E
[(
H1{0∈D}) ·4p | G0

]
, (2.24)

thenGm converges inL2(Qs) towardsG ∈L2(.s,G0,Qs). Moreover, form � 1, we can
define in the notation of (1.5),N =N(w, [1,m− 1])+ 1, so that forn � 0,

G ◦4n = lim
m→∞E

[(
T N−1∑
k=0

Y ◦4k

)
◦4n

∣∣∣ Gn

]
, (2.25)

where the limit holds inL2 and we have used stationarity. Hence

E

[
G ◦4n+1+

n∑
k=0

Y ◦4k −G ◦4n −
n−1∑
k=0

Y ◦4k

∣∣∣ Gn

]

= lim
m→∞E

[
E

[(
T N−1∑
k=0

Y ◦4k

)
◦4n+1

∣∣∣ Gn+1

]
+ Y ◦4n

−
(

T N−1∑
k=0

Y ◦4k

)
◦4n

∣∣∣ Gn

]

= lim
m→∞E

[(
T N−1∑
k=0

Y ◦4k

)
◦4n+1+ Y ◦4n −

(
T N−1∑
k=0

Y ◦4k

)
◦4n

∣∣∣ Gn

]
.

(2.26)

The quantity under the conditional expectation in the above expression equals

1{n+m ∈D}H ◦4n+m = (H1{0∈D}) ◦4n+m (2.27)

and using (2.22) and stationarity we see that the last line of (2.26) vanishes. This
thatMn, with the notation of (2.18), is a(Gn)-martingale.

We are thus reduced to proving (2.22). To this end, we considerB ∈ L2(.s,G0,Qs)

with unit L2-norm. Then forp � 1,

E
[(
H1{0∈D}) ◦4pB

]=∑
m�1

E

[( ∑
T m�k<T m+1

Y ◦4k

)
B, T m = p

]
. (2.28)



E. BOLTHAUSEN ET AL. / Ann. I. H. Poincaré – PR 39 (2003) 527–555 541

2),

e

eeping
Note thatB is G0-measurable and hence a function ofw and(w̃m,ωm)m�0, and∑
T m�k<T m+1

Y ◦4k = Zs
T m+1 −Zs

T m − (T m+1− T m
)
v

(1.26),(1.28)= X1
T m+1 −X1

T m + w̃m

(
T m+1− T m

)− (T m+1− T m
)
v.

Hence conditioning onw in the right member of (2.28), and using the notation of (1.2
we find that forp � 1:

E
[(
H1{0∈D}) ◦4pB

]=∑
m�1

EP
[
(MsH) ◦ θpMsB,T m = p

]
=EP

[(
(MsH)1{0∈D}) ◦ θpMsB

]
. (2.29)

Then observe that we can find measurable functionsψ andϕ such that

MsB =ψ
(
T 0,

(
X1

i

)
i�0

)
, (MsH)1{0∈D} = ϕ

(
T 1,

(
X1

i

)
i�0

)
1{0∈D}. (2.30)

To take advantage of decoupling effects, we define

L=
[
p

3

]
, (2.31)

and introduce two copies(X−
n ) and(X+

n ) of (X1
n), such thatX−

n coincides withX1
n for

n � L and then “evolves” independently, whereasX+
n coincides withX1

n+p − X1
p, for

n �−L, and forn <−L, “evolves” independently. We then define
U =MsB, U− =ψ(T −, (X−

i )i�0),

V = ((MsH)1{0∈D}) ◦ θp = ϕ
(
T 1 ◦ θp, (X1

i+p −X1
p

)
i�0

)
1{p ∈D},

V + = ϕ(T +, (X+
i )i�0)1{0∈D+},

(2.32)

whereT − andT + are respectively defined likeT 0 andT 1 relatively to(X−
. ) and(X+

. )
andD+ is defined analogously toD with (X+

. ) in place ofX.. We of course tacitly abus
the notations since the above objects are defined on an extension of the space(W,W,P ).
Note that

U
law= U−, V

law= V +. (2.33)

We now find that forp � 1:

E
[(
H1{0∈D}) ◦4pB

]
(2.29)= EP [VU ]
=EP [V +U−] +EP

[
V +(U −U−)

]+EP
[
(V − V +)U

]
. (2.34)

Note also that:

EP [V ] =EP [V +] =E
[
H1{0∈D}]=E[Y ]EP [T1] = 0, (2.35)

using the analogue of (1.11) forQs , Q̂s and (2.16) in the third equality. Note thatV + and
U− are independent. Hence the first term in the last member of (2.34) vanishes. K
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in mind thatB has unitL2-norm we find∣∣E[(H1{0∈D}) ◦4pB
]∣∣� ∥∥V +(U −U−)

∥∥
1+‖V − V +‖2. (2.36)

In view of (2.32) and the inequality|H |� 2T 1, we find

|V |� 2
∣∣T 1 ◦ θp

∣∣, |V +|� 2|T +|,
|V − V +|� 2

(
1
{
T + �= T 1 ◦ θp}+ ∣∣1{p ∈D} − 1{0∈D+}∣∣)(T + + T 1 ◦ θp). (2.37)

Using Cauchy–Schwarz’s inequality and stationarity, we find

‖V − V +‖2 � 4
∥∥T 1∥∥

2

(
P
[
T + �= T 1 ◦ θp]1/2+ 2P

[{p ∈D}\{0∈D+}]1/2)
. (2.38)

SinceX+
n andX1

n+p −X1
p coincide forn �−L, we see that:{

T 1 ◦ θp �= T +
}

⊆ {X+
(−∞,−L] ∩X+

[0,∞) �= ∅} ∪
{(

X1 ◦ θp)(−∞,−L] ∩
(
X1 ◦ θp)[0,∞)] �= ∅

}
, (2.39)

and by a similar argument{p ∈D}\{0∈D+} is included in the right-hand side of (2.39
As a result we obtain:

‖V − V +‖2 � 24
∥∥T 1∥∥

2P
[
X1

(−∞,−L] ∩X1
[0,∞)] �= ∅

]1/2
. (2.40)

By analogous arguments we also have

|U −U−|� (|U | + |U−|)1{T 0 �= T −
}

�
(|U | + |U−|)(1{X1

(−∞,0] ∩X1
[L,∞) �= ∅

}
+ 1{X−

(−∞,0] ∩X−
[L,∞) �= ∅}

)
. (2.41)

Using Hölder’s inequality and‖U‖2= ‖U−‖2 � 1, we find∥∥V +(U −U−)
∥∥

1 � 4
∥∥T 1∥∥

4P
[
X1

(−∞,0] ∩X1
[L,∞)

]1/4
. (2.42)

Collecting (2.36), (2.40), (2.42), and using the fact that(X1
n) and(X1−n) have same law

(see (1.2)), we find∥∥E[(H1{0∈D}) ◦4p | G0
]∥∥

2 � 28
∥∥T 1∥∥

4P
[
X1

(−∞,−L] ∩X1
[0,∞) �= ∅

]1/4
. (2.43)

By the calculation in (1.16) we know that the rightmost expression is bounded by
p−(d1−4)/8, (recall (2.31)), and hence summable inp sinced1 � 13. This concludes th
proof of (2.22) and consequently of Lemma 2.3.✷

3. Central limit theorem under the quenched measure

In this section we will explain how the central limit theorems of the previous se
can be strengthened into statements under the quenched measureP0,ω, for P-a.e.ω.
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THEOREM 3.1. – Assumed1 � 7 and(2.1)or d1 � 13. Then forP-a.e.ω, underP0,ω,
theD(R+,Rd)-valuedBn

. = 1√
n
(X[·n] − [·n]v) converges in law to a Brownian motio

with covarianceA given in Theorems2.1and2.2 respectively.

Proof. –The claim will follow from a variance calculation. It is convenient
introduce the spaceC(R+,Rd) of continuousRd -valued functions onR+, and the
C(R+,Rd)-valued variable

βn
. = the polygonal interpolation ofk

n
→Bn

k
n

, k � 0. (3.1)

It will also be useful to consider the analogously defined spaceC([0, T ],Rd), of
continuousRd -valued functions on[0, T ], for T > 0, which we endow with the distanc

dT (v, v
′)= sup

s�T

∣∣v(s)− v′(s)
∣∣∧ 1. (3.2)

From Lemma 4.1 of [1], the claim will follow once we show that for allT > 0, for all
bounded Lipschitz functionsF onC([0, T ],Rd) andb ∈ (1,2]:∑

m

varP
(
E0,ω

[
F
(
β[b

m])])<∞ (3.3)

(with a slight abuse of notations).
Before proving (3.3) we still need to introduce some further notations. Givenω ∈,

we consider two independent copies(Xk)k�0 and(X̃k)k�0 evolving according toP0,ω.
The respectiveZd1-projections(X1

k)k�0 and (X̃1
k )k�0 are then independent and w

distribution given in (1.2). We then denote byC the set of one-sided cut-times ofX1
. :

C = {k � 1, X1
[0,k−1] ∩X1

[k,∞) = ∅
}
, (3.4)

with an analogously defined̃C attached tõX1. We then pick:

b ∈ (1,2], 0<µ< ν < 1
2, (3.5)

and form � 1, we definen= [bm],
τm = inf

{
C ∩ [nµ,∞)}<∞, P0,ω-a.s. (cf. Lemma 1.1), (3.6)

as well as the corresponding variableτ̃m attached tõX1. We will also need the event:

Am = {τm ∨ τ̃m � nν andX1
[τm,∞) ∩ X̃1

[̃τm,∞)
= ∅}. (3.7)

We now prove (3.3). Without loss of generality, we assume that|F |� 1 and the Lipschitz
constant ofF is smaller than 1. Then form � 1:

varP
(
E0,ω

[
F
(
βn
.
)])=E

[
E0,ω ⊗E0,ω

[
F
(
βn
.
)
F
(
β̃n
.
)]]−E0⊗E0

[
F
(
βn
.
)
F
(
β̃n
.
)]

=E
[
E0,ω ⊗E0,ω

[
F
(
βn
.
)
F
(
β̃n
.
)
,Am

]]
−E0⊗E0

[
F
(
βn
.
)
F
(
β̃n
.
)
,Am

]+ dm, (3.8)
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last
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ty
of
and with a slight abuse of notations

|dm|� 2(P × P)
(
Ac

m

)
. (3.9)

Moreover observe thatP0-a.s.

sup
s�0

∣∣(βn
s+ τm

n
− βn

τm
n

)− βn
s

∣∣� 2√
n
(τm + 1), and (3.10)

βn
.+ τm

n
− βn

τm
n
= the polygonal interpolation of

k

n
→ 1√

n
(Xk+τm −Xτm − kv). (3.11)

From the Lipschitz property ofF and (3.7) we see that the first two terms of the
member of (3.8) equal

E
[
E0,ω ⊗E0,ω

[
F
(
βn
.+ τm

n
− βn

τm
n

)
F
(
β̃n

.+ τ̃m
n

− β̃n
τ̃m
n

)
,Am

]]
(3.12)

−E0⊗E0
[
F
(
βn
.+ τm

n
− βn

τm
n

)
F
(
β̃n

.+ τ̃m
n

− β̃n
τ̃m
n

)
,Am

]+ em, with

|em|� 8√
n

(
nν + 1

)
. (3.13)

Keeping in mind the definition ofAm in (3.7), we see by conditioning onX1
. and X̃1

.
that the difference of the first two terms of (3.13) vanishes. Since clearly

∑
m |em|<∞,

(recalln= [bm]), we only need to observe that∑
m

(P × P)
(
Ac

m

)
<∞. (3.14)

By a similar calculation as in (1.16), we see that

P × P
[
X1
[nµ,∞) ∩ X̃1

[nµ,∞) �= ∅
]
� constn−µ

(d1−4)
2 , (3.15)

moreoverτm−nµ is stochastically dominated byT 1 (under theP -measure) so that from
(1.12), for largem:

P
[
τm > nν

]
� const

(
lognν

)1+ d1−4
2 n

−ν(d1−4)
2 � e−constm. (3.16)

Combining (3.15) and (3.16) we deduce (3.14).✷
4. Diffusive behavior in a slightly biased environment

As explained in the introduction, it was shown in [14], that when the single
distribution is concentrated onε-perturbations of thed-dimensional simple random wa
and E[d(0,ω)] has size bigger thanε5/2−η, whend = 3, ε3−η, whered � 4, then for
small ε, depending ond andη ∈ (0,1), the walk has non-vanishing limiting veloci
(in fact much more is known, see [14]). In this section we provide examplesε-
perturbations of the simple random walk for whichE[d(0,ω)] �= 0, but the ballistic
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behavior is lost, whend � 7, and the diffusive behavior is even demonstrated w
d � 15. We keep the notations of the previous sections, and specialize hereκ to 1

8d , and
q(·) in (0.1) to

q(e) = d2

d
, if e= 0,

= 1

2d
, if e=±ei, 1� i � d1.

(4.1)

Recall the definition ofSε in (0.7). Note that whenp(·) ∈ Sε, p(e) � κ , for all e, andκ
is a global ellipticity constant. The main object of this section is the following

THEOREM 4.1. – Assumed � 7, then for allε ∈ (0,1), we can findµ concentrated
onSε such that

E
[
d(0,ω)

] �= 0, but (4.2)

P0-a.s.,
Xn

n
→ 0, asn→∞. (4.3)

In addition whend � 15, we can make sure that forP-a.e.ω,

underP0,ω, 1√
n
X[·n] converges in law towards a Brownian motion

with covariance matrixA (independent ofω).
(4.4)

Proof. –With the help of Theorem 1.4 and Theorem 3.1, it suffices to show tha
any ε ∈ (0,1), d1 � 5, d2 � 2, we can findµ concentrated onPq(·) ∩ Sε, for which
the limiting velocityv of (1.41) vanishes, but

∫
d(p) dµ(p) �= 0, (see (1.1), and reca

d = d1+ d2).
Let us denote byPs

q(·) the set of symmetric vectors inPq(·):

Ps
q(·) =

{
p(·) ∈Pq(·), such thatp(e)= p(−e) for all e

}
, (4.5)

and define0= (Ps
q(·) ∩ S ε

2
)Z

d
. We will use the following

LEMMA 4.2. – Supposeϕ is a measurable function onPs
q(·) ∩ S ε

2
with values in

[−1,1], andµ0 a probability onPs
q(·) ∩ S ε

2
such that:∫

ϕ(p) dµ0(p)= 0, and (4.6)

EQ0
s
[
ϕ
(
σ s

0

)] �= 0, (4.7)

whereQ0
s denotes the probability constructed in(1.20)when the single site distributio

isµ0. Then one can find aµ concentrated onPq(·)∩Sε for which
∫
d(p) dµ(p) �= 0, but

v = 0.

Proof. –We will look for environments of the form

ωρ,λ(x, e)= ω0(x, e)+ ρ
(
ϕ
(
ω0(x, ·))+ λ

)
ed · e, x ∈ Zd, |e| = 1, (4.8)
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with ρ ∈ [0, ε
16d ], λ ∈ [−1,1], two parameters andω0 distributed according toP0 =

µ⊗Z
d

0 . The distributionµ will correspond to the single site distributionµρ,λ of the
aboveωρ,λ for smallρ and an appropriate choice ofλ. Note thatµρ,λ is automatically
concentrated onPq(·) ∩ Sε.

For ρ,λ as above, we consider the kernelKρ,λ from W to W̃ × 0, defined as in
(1.18) with the difference thatω is replaced byωρ,λ, and denote byvρ,λ the asymptotic
velocity corresponding to the single site distributionµρ,λ, see (1.41). We now find tha

vρ,λ = EP̂×Kρ,λ

[
T 1−1∑
k=0

d
(
ωρ,λ

(
X1

k + w̃(k), ·))]/EP̂
[
T 1]

(4.8)= 2ρ

(
EP̂×Kρ,λ

EP̂ [T 1]

[
T 1−1∑
k=0

ϕ
(
ω0
(
X1

k + w̃(k), ·))]+ λ

)
ed . (4.9)

From the above formula one deduces that

(ρ, λ)∈
[
0,

ε

16d

]
× [−1,1] → vρ,λ is a continuous function. (4.10)

Indeed given(ρ0, λ0) and (ρ1, λ1), one can couple the two kernelsKρ0,λ0 andKρ1,λ1

so that when both walks are at timek < T 1 in the same locationx, they simultaneously
jump tox+e with probabilityωρ0,λ0(x, e)∧ωρ1,λ1(x, e). The asserted continuity follow
then from dominated convergence. Note also by direct inspection of the last line o
that

vρ,1 · ed � 0 and vρ,−1 · ed � 0, for 0< ρ � ε

16d
. (4.11)

We can hence define for 0< ρ � ε
16d :

λρ
def= the largest zero of the continuous functionλ→ vρ,λ. (4.12)

We see that for 0< ρ � ε
16d :

vρ,λρ = 0,

λρ =−EP̂×Kρ,λ

[
T1−1∑
k=0

ϕ
(
ω0
(
X1

k + w̃(k), ·))]/EP̂
[
T 1],∫

d(p) dµρ,λρ = 2ρ
(∫

ϕ(p) dµ0(p)+ λρ

)
ed

(4.6)= 2ρλρed.

(4.13)

On the other hand a similar coupling argument as above shows that

lim
ρ→0

EP̂×Kρ,λρ [∑T 1−1
k=0 ϕ(ω0(X

1
k + w̃(k), ·))]

EP̂ [T 1]

= EP̂×K0[∑T 1−1
k=0 ϕ(ω0(X

1
k + w̃(k), ·))]

EP̂ [T 1] =EQ0
s
[
ϕ
(
σ s

0

)]
. (4.14)
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As a result, we obtain that

lim
ρ→0

λρ =−EQ0
s
[
ϕ
(
σ s

0

)] (4.7)�= 0, (4.15)

so that for smallρ, µρ,λρ satisfies the claims of Lemma 4.2.✷
Remark4.3. – (1) With minor modifications one obtains a similar statement fo

Rd2-valuedϕ, with |ϕ| � 1, and analogous assumptions as in (4.6), (4.7). One
chooses for 0� ρ � ε

16d andλ in the closed unit ball ofRd2,

ωρ,λ(x, e)= ω0(x, e)+ ρ
(
ϕ
(
ω0(x, ·))+ λ

) · e,
in place of (4.8), and uses Brouwer’s fixed point theorem, cf. Dugundji [3], p. 34
find λρ for 0 < ρ � ε

16d , satisfying the second equality of (4.13). This remark may
helpful if one wishes that the distributionµ of Theorem 4.1 accommodates a genuin
vector-valued local drift.

(2) Analogously with a slight change in the proof of Lemma 4.2, under the s
assumptions, settingλ = 0 in (4.8), one constructsµ concentrated onPq(·) ∩ Sε such
that

∫
d(p) dµ(p) = 0, but v �= 0. Thus Theorem 4.1 holds as well when (4.2), (4

(4.4) are respectively replaced by:

E
[
d(0,ω)

]= 0, (4̃.2)

P0-a.s.
Xn

n
→ v �= 0, (v deterministic), (4̃.3)

underP0,ω, 1√
n

(
X[·n] − [·n]v) converges in law towards a Brownian

motion with covariance matrixA (independent ofω). (4̃.4)

We now proceed with the proof of Theorem 4.1. We are reduced to checkin
assumptions of Lemma 4.2. To this end we will use the general

LEMMA 4.4 (under the assumptions of Section 1). –For 7 bounded measurable o
Pq(·)

EQs
[
7
(
σ s

0

)]= lim
n→∞

1

n

∑
x∈Zd

E

[
en(x,0,ω)

7(ω(0, ·))∑
|e|=1ω(0, e)Pe,ω[H0=∞]

]
, (4.16)

with

en(x, y,ω)=Ex,ω

[
uHy ,Hy <∞], for x, y ∈ Zd , ω ∈, n � 1, where

u= 1− 1

n
andHz = inf{k � 0, Xk = z}, for z ∈ Zd. (4.17)

Proof. –We writeSm =∑m
k=07(ω(Xk, ·)), for m � 0, andS−1= 0, so that

∞∑
um7

(
ω(Xm, ·))= ∞∑

um(Sm − Sm−1)= 1

n

∞∑
umSm.
m=0 m=0 m=0
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Noting that 1
n2

∑∞
m=0mum = 1− 1

n
, it follows from (1.40) that:

lim
n→∞

1

n
E0

[ ∞∑
m=0

um7
(
ω(Xm, ·))

]
=EQs

[
7
(
σ s

0

)]
. (4.18)

On the other hand forω ∈, setting

gn(x, y,ω)=Ex,ω

[∑
m�0

um1{Xm = y}
]
, (4.19)

we find

E0,ω

[ ∞∑
m=0

um7
(
ω(Xm, ·))

]
=∑

x∈Zd

gn(0, x,ω)7
(
ω(x, ·))

=∑
x∈Zd

en(0, x,ω)
7(ω(x, ·))

1−Ex,ω[uH̃x ] , (4.20)

by a classical Markov chain calculation, provided

H̃z = inf{k � 1, Xk = z} for z ∈ Zd . (4.21)

Since theZd1-projection ofX. underP0,ω is distributed asX1
. underP , we have:

1−E0,ω
[
uH̃x

]
� 1−P0,ω[H̃x <∞]� P

[
X1

k �= 0, for all k � 1
]
> 0. (4.22)

Moreover for any|e| = 1,

lim
n→∞sup

ω

∣∣Ee,ω

[
uH0

]− Pe,ω[H0 <∞]
∣∣= 0, (4.23)

since forM > 0,

0� Pe,ω[H0 <∞]−Ee,ω

[
uH0

]=Ee,ω

[(
1− uH0

)
,H0 <∞]

� 1− uM +Pe,ω[M <H0 <∞]� 1− uM +P
[
X1

n = 0, for somen � M
]
,

from which (4.23) follows by lettingn and thenM tend to infinity. From (4.20) we se
by choosing7 = 1, that forω ∈,

∑
x∈Zd

1

n
en(0, x,ω) � 1. (4.24)

Integrating over the environment in (4.20) and using translation invariance, as w
(4.22), (4.23), we obtain:

lim
n→∞

1

n
E0

[ ∞∑
m=0

um7
(
ω(Xm, ·))

]
= lim

n→∞
1

n

∑
d

E

[
en(x,0,ω)

7(ω(0, ·))
1−E0,ω[uH̃0]

]

x∈Z
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= lim
n→∞

∑
x∈Zd

1

n
E

[
en(x,0,ω)

7(ω(0, ·))
P0,ω[H̃0=∞]

]
,

(4.25)

which together with (4.18), finishes the proof of (4.16).✷
The distributionµ0 of Lemma 4.2, that we now construct, will be concentrated

small perturbations of

pν(e)= 1

2d
, for e=±ei, i � d − 2,

ν

2d
, for e=±ed−1,

2− ν

2d
, for e=±ed.

with ν = 1− ε

8
, (4.26)

Note thatpν(·) ∈ Ps
q(·) ∩ S ε

4
. We denote byP ν

x , for x ∈ Zd , the canonical law of th
random walk with jump distributionpν(·), starting fromx. Let us admit for the time
being the fact that for smallε,

M(ε)
def= P ν

ed
[H0 <∞]−P ν

ed−1
[H0 <∞]> 0, (4.27)

and explain how we complete the construction ofµ0 andϕ of Lemma 4.2. We choos
µ0 concentrated onPs

q(·) ∩ S ε
2

such that

µ0-a.s., p(e)= pν(e), for e=±ei, 1� i � d − 2, and

δ̃
def= p(ed)− pν(ed)=−(p(ed−1)− pν(ed−1)

)
is such that (4.28

0< ‖δ̃‖∞ � ε

64d
,

∫
δ̃ dµ0= 0,

∫
δ̃2dµ0 � ‖δ̃‖2∞

2
. (4.29)

Such a choice is of course possible. We then define

ϕ(p)= δ̃, (4.30)

so that|ϕ| � 1, and (4.6) is satisfied. Writing̃δ(x) for ω(x, ed) − pν(ed), x ∈ Zd , we
deduce from (4.16) that

EQ0
s
[
ϕ
(
σ s

0

)]= lim
n→∞

1

n

∑
x

E

[
en(x,0,ω)

δ̃(0)

P0,ω[H̃0=∞]
]
, (4.31)

whereE stands for theµ⊗Zd

0 -expectation. Note that

P0,ω[H̃0=∞]= P 0,ω[H̃0=∞]
(

1+∑
|e|=1

(
ω(0, e)− pν(e)

) Pe,ω[H0=∞]
P 0,ω[H̃0=∞]

)
,

whereP 0,ω denotes the probability corresponding to the environmentω, which coincides
with ω outside 0 and such thatω(0, ·)= pν(·). Note that the sum inside the parenthe
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1)

s, and

n:
in the above expression is a.s. bounded by4‖̃δ‖∞
κ

(4.29)
� 1

2 (see also the remark below (4.
aboutκ). Using the inequality| 1

1+γ
− 1+ γ |� 2γ 2, for |γ |� 1

2, we see that forx ∈ Zd ,

E

[
en(x,0,ω)

δ̃(0)

P0,ω[H̃0=∞]
]

=E

[
en(x,0,ω)

δ̃(0)

P 0,ω[H̃0=∞]
]

−E

[
en(x,0,ω)

P 0,ω[H̃0=∞]2
δ̃(0)

∑
|e|=1

(
ω(0, e)− pν(e)

)
Pe,ω[H0=∞]

]

+E

[
en(x,0,ω)

P 0,ω[H̃0=∞]
B(x,ω)

]
, with

∣∣B(x,ω)
∣∣� 32‖δ̃‖3∞

κ2
. (4.32)

Using independence we see the first term in the right-hand side of (4.32) vanishe

1

n

∑
x∈Zd

E

[
en(x,0,ω)

δ̃(0)

P0,ω[H̃0=∞]
]

=−2

n

∑
x∈Zd

E

[
en(x,0,ω)

P 0,ω[H̃0=∞]2
(
Ped ,ω[H0=∞]− Ped−1,ω[H0=∞])]E[ δ̃ 2]

+C, with |C|� 32‖δ̃‖3∞
κ2

1

n

∑
x∈Zd

[
en(x,0,ω)

P 0,ω[H̃0=∞]
]
. (4.33)

Note that by choosing‖δ̃‖∞ sufficiently small, we can make sure thatµ⊗Z
d

0 -a.s.

Ped,ω [H0 <∞]−Ped−1,ω[H0 <∞]� 1

2
M(ε), cf. (4.27), (4.34)

so that using (4.29) as well, the first term in the left member of (4.33) is bigger tha

1

2
M(ε)‖δ‖2

∞
1

n

∑
x∈Zd

E

[
en(x,0,ω)

P 0,ω[H̃0=∞]2
]
. (4.35)

Observe that

κP 0,ω[H̃0=∞]� P0,ω[H̃0=∞]� 1

κ
P 0,ω[H̃0=∞]

and

lim
n

1

n

∑
x

E

[
en(x,0,ω)

P0,ω[H̃0=∞]
]

(4.16)= 1.

As a result we see that

EQ0
s
[
ϕ
(
σ s

0

)]
� κ

M(ε)‖δ̃‖2
∞ −

32‖δ̃‖3∞
3

> 0, when‖δ̃‖∞ is small. (4.36)

2 κ
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Hence (4.7) holds as well and Theorem 4.1 follows.
There now remains to prove (4.27). Let us denote bygν(· , ·) the Green function o

the random walk with jump distributionpν(·) and byϕν(·) the characteristic function o
pν(·). Then for|e| = 1 or 0,

P ν
e [H0 <∞]= gν(e,0)

gν(0,0)
, and (4.37)

gν(e,0)=
∫
T

e−it ·e

1− ϕν(t)

dt

(2π)d
, with t = (t1, . . . , td ) ∈ T = (−π,π)d. (4.38)

Using the symmetry ofϕν we find:

∂

∂ν
gν(e,0) =

∫
T

∂ϕν

∂ν

e−it ·e

(1− ϕν)
2

dt

(2π)d
symmetry=

∫
∂ϕν

∂ν

cos(t · e)
(1− ϕν)

2

dt

(2π)d

(4.26)= 1

d

∫
T

(costd−1− costd )
cos(t · e)
(1− ϕν)2

dt

(2π)d
. (4.39)

Note in particular that∂
∂ν
gν(0,0)|ν=1= 0, so that by (4.37)

∂

∂ν

(
P ν
ed
[H0 <∞]− P ν

ed−1
[H0 <∞])∣∣ν=1

=− 1

gν=1(0,0)

∫
(costd−1− costd)2

d(1− ϕν=1)2

dt

(2π)d
< 0. (4.40)

On the other handP ν=1
ed

[H0 <∞] − P ν=1
ed−1
[H0 <∞] = 0, by symmetry, and the claim

(4.27) follows. ✷
Remark4.5. – We know from Lawler [7], that forµ⊗Z

d

0 -a.e.ω, P0,ω-a.s. 1√
n
X[n·]

converges in law to a Brownian motion with diagonal covariance matrixA = diag(ai),
where

ai = 2
∫
0

ω(0, ei) dQ(ω), for 1� i � d, (4.41)

andQ is the unique invariant measure for the Markov chain of the environment vi
from the particle, which is absolutely continuous with respect toµ⊗Z

d

0 . The measureQ
is known to be an ergodic invariant measure and from (1.40), we see thatω(0, ·) under
Q has same law asσ s

0 underQ0
s . As a by-product of the above example, cf. the cho

(4.30), we see that one cannot in general replace the dynamic measureQ with the static
measureµ⊗Z

d

0 when calculating the limiting diffusion coefficient in (4.41).

5. Perturbations of one-dimensional RWRE and velocity reversal

We construct in this section another class of examples of multidimensional
that satisfy the law of large numbers with a velocity which has an opposite direct
the expected local drift, or can vanish even if the latter does not vanish. The exa
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in this section can be considered as perturbations of one-dimensional random w
random environment, as opposed to the examples in Section 4 which were obta
perturbation of the simple random walk in dimensiond.

It is useful to first recall some known facts about one-dimensional random wa
random environment. Let̄µ denote a Borel probability measure on(0,1), set  :=
(0,1)Z, and define the measure P = µ̄⊗Z on the environment . For everyω̄ ∈  ,
the one-dimensional walk Xn under the law P0 = P × P0,ω̄ is defined as in (0.3). Se
ρz = (1− ω̄z)/ω̄z, defined0= 2E P(ω̄0)−1 andt0=E P(logρ0). The following facts are
well known:

LEMMA 5.1. – (1)If t0 > 0 then P0-a.s.,lim  Xn =−∞. Further, if in addition there
exists a constantκ > 0 such thatµ̄[ω̄0 ∈ (κ,1−κ)] = 1, then E0( Xn) < 0 for all n large
enough.

(2) One may construct a law̄µ with d0 > 0, κ > 0, but t0 > 0.

Proof. –(1) That lim Xn =−∞ is a consequence of [10]. Next, an application of [
Proposition 2.6] shows that ift0 > 0 andκ > 0 then, withL0=max{Xn: n � 0}, it holds
that for some constantc2 > 0,

 P0(L0 > k)� exp(−c2k). (5.1)

In particular,Xn ∨ 0 is dominated byL0. Sincet0 > 0 implies thatXn→−∞,  P0-a.s.,
the above yields that E0(Xn)→−∞, completing the proof of the first part of the lemm

(2) Takeδ ∈ (0,1) small enough such that

1

5
log

1− δ

δ
− 4

5
log 2> 0,

and defineµ̄({δ})= 1/5 andµ̄({2/3})= 4/5. ✷
Fix a µ̄ as in part 2 of Lemma 5.1, and anε0 > 0 small enough such that, ifGε denotes

a modified geometric random variable of parameterε independent of{ Xn}, then

A0 :=  E0( XGε0
) < 0 (5.2)

(this is always possible due to part 1 of Lemma 5.1). For every 1> ε � ε0 andd1 � 5,
set d2 = 1, q(e) = ε/2d1, e ∈ Zd1, andµ ∈ Pq(·) such thatµ̄ governs the law of the
single site jump distribution conditioned on non-vanishing of theZd2-component. Le
Xn denote the random walk in random environment corresponding to the lawP= µ⊗Z

d

,
and letv = v(µ̄, d1, ε) be the limiting velocity appearing in Theorem 1.4. Note t
v · e = 0 for everye ∈ Zd1. Let v2 = v · ed denote the projection ofv into the direction
corresponding to theZd2 subspace. We now claim the following:

THEOREM 5.2. – Fix µ̄ and ε̄0 as above. Then, there exists an integerd̄ = d̄(µ̄, ε0)

such that for anyd1 > d̄, it holds thatv2(µ̄, d1, ε0) < 0 while limε→1v2(µ̄, d1, ε)/(1−
ε)= d0 > 0.

By the continuity ofv2(µ̄, d1, ε) in ε, which follows from similar considerations as
(4.10), we see that for everyd1 > d̄ one may find anε > ε0 such thatv(µ̄, d1, ε)= 0.
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Moreover, whend1 > d̄ ∨ 13, Theorem 2.2 implies that the corresponding walkXn

exhibits a diffusive behavior.
It is interesting to comment on the nature of the phenomenon described in

rem 5.2: forε close to 1, between consecutive cut points of theZd1 walk, Xn does
not spend much time moving in thedth direction, and with high probability makes
most one step in that direction. This then averages out to give a positive displac
sinced0 > 0. On the other hand, whend1 is large, most moves in theZd1-walk are cut
points. If alsoε is small enough, the walker effectively executes in thed-direction a
one-dimensional random walk in random environment between cut points, for a
metric time of mean 1/ε. That one-dimensional random walk in random environme
constructed such that while it does not have a negative speed (this is impossibl
d0 > 0), it is transient to−∞ and hence leads to a negative displacement.

Proof. –Recall the cut timesT i . From (1.41) and similar considerations as in (4.9

v2(µ̄, d1, ε0)= EQ̂s [Zs
T 1 · ed ]

EP̂ [T 1] .

Hence, the first part of the theorem follows as soon as we show that forε = ε0 andd1

large enough it holds that

EQ̂s
[
Zs

T 1 · ed]< 0. (5.3)

Define J = {n: X1
n �= X1

n−1}, and let · · · < j−1 < j0 � 0 < j1 < · · · denote the
elements ofJ . SetV 1

n = X1
jn

, and note that underP = q⊗Z, {V 1
n } is ad1-dimensional

simple random walk, independent of the i.i.d., geometric(ε0) random variables{ji+1−
ji}i∈Z\0, j1,−j0+1. Recall the cut timesT i , note thatT i ∈ J , and writeJi = jci for the
element ofJ corresponding toT i . Note that theci are precisely the cut times for th
walk {V 1

n }.
Call a cut timeT i good if X1

n =X1
T i for n ∈ [T i, T i+1− 1], that is ifJi+1= jci+1. To

prove (5.3), note first that

EQ̂s
[
Zs

T 1 · ed]=EQ̂s
[
Zs

T 1 · ed1{T 0 is good}
]+EQ̂s

[
Zs

T 1 · ed1{T 0 is good}
]=:A+B.

We claim that under the measurêP [· | T 0 is good], T 1 is geometric (ε0). Indeed, with
DV = {ci}i∈Z denoting the cut times of{V 1

n },
P
[
T 1= k,0∈D, T 0 is good

]=P
[
0∈DV , 1∈DV , j0= 0, j1= k

]
=P

[
0∈DV ,1∈DV

]
(1− ε0)

k−1ε2
0,

implying that

P̂
[
T 1= k | T 0 is good

]= (1− ε0)
k−1ε0.

On the other hand, under the laŵQs , on the event{T 0 is good}, X2
n performs, forn ∈

[0, T 1− 1], a one dimensional random walk in random environment, with environm
generated bȳµ (cf. (1.22)). Hence,
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,

A= Q̂s

[
T 0 is good

]
EQ̂s

[
Zs

T 1 · ed | T 0 is good
]

= P̂
[
T 0 is good

] ∞∑
k=1

Q̂s

[
T1= k | T 0 is good

]
EQ̂s

[
Zs

T 1 · ed | T 0 is good, T1= k
]

= P̂
[
T 0 is good

] ∞∑
k=1

 E0[ Xk−1]P̂ [T1= k | T 0 is good
]

=A0P̂
[
T 0 is good

]
whereA0 < 0 is as in (5.2). We next note that

P̂
[
T 0 is good

]= P [0∈D,1∈DV ]
P [0∈D] � 1− P [1 /∈DV ]

P [0∈D] →d1→∞ 1, (5.4)

because (see [5], Remark 3, p. 248)P [1∈DV ] = P [0∈DV ]→d1→∞ 1 while

P [0∈D] = P
[
0∈DV , j0= 0

]= ε0P
[
0∈DV

]
is uniformly bounded below ford1 � 5. Thus,A→d1→∞ A0 < 0. On the other hand
a repeat of the proof of (1.12), using the fact thatP [X1

n = 0] decreases withd1

as can be checked via characteristic functions, shows that, as a function ofd1 � 9,
EP [(T 1)2] is uniformly bounded. Hence,EQ̂s [(T 1)2] is uniformly bounded ford1 � 9.
The estimate (5.4) and the Cauchy–Schwarz inequality imply then that

|B|� EQ̂s
[
T 11{T 0 is not good}

]→d1→∞ 0.

Choosingd1 large enough such thatA+B < 0, the first part of the theorem follows.
The second part is actually easier: with the notations of (1.2),

EQ̂s
[
Zs

T 1 · ed]= Q̂s

[∣∣{n ∈ [1, T 1]: In = 0
}∣∣= 1

]
d0

+EQ̂s
[
1{|{n∈[1,T 1]: In=0}|>1}Zs

T 1 · ed]=: d0C +D.

But, settingj̃i = ji for i � 1 andj̃0= 0,

P̂
[∣∣{n ∈ [1, T 1]: In = 0

}∣∣= 0
]

= P [∑c1−1
i=0 (j̃i+1− j̃i − 1)= 0; j0= 0; 0∈DV ]

P(0∈D)
=EP̂

[
εc1
]
,

while, similarly,

P̂
[∣∣{n ∈ [1, T 1]: In = 0

}∣∣> 1
]

� P̂
[∃0� i < k � c1− 1: j̃i+1− j̃i − 1= 1, j̃k+1− j̃k − 1= 1

]
+ P̂

[∃0 � i � c1− 1: j̃i+1− j̃i − 1 � 2
]

� (1− ε)2EP̂
[
(c1)

2+ c1
]
.
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Note that the lawP̂ [c1 ∈ ·] does not depend onε. Since for d1 � 7 it holds that

EP̂ (c2
1) <∞, we conclude thatD/(1− ε)→ε→1 0. Further, we also get

lim
ε→1

C

1− ε
= lim

ε→1

1−EP̂ (εc1)

1− ε
=EP̂ [c1].

Since also limε→1P(c1 �= T 1)= 0, one has thatEP̂ (T 1)→ε→1 E
P̂ (c1), and the theorem

follows. ✷
Remark5.3. – One easily adapts part 2 of Lemma 5.1 to construct a lawµ̄ with

d0 = 0, κ > 0 and t0 > 0 (take simplyδ small enough withµ̄({δ}) = 1/(4− 2δ) and
µ̄({2/3})= (3−2δ)/(4−2δ)). A rerun of the proof of Theorem 5.2 then yields examp
where the static expectation of the drift vanishes, but the limiting speed of the R
does not.
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