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ABSTRACT. – We study in this paper a new type of anticipative transformation on the Po
space, which consist in adding and removing particles to an initial conditionω following a
Poisson conditional distribution. We give some sufficient criteria ensuring that the distribut
the transformed system is absolutely continuous with respect to the initial Poisson distri
Thanks to the independence properties of random Poisson measures, we split the transfo
into an adapted part and an anticipative part, which is made of an almost surely finite n
of modifications of the initial condition. The absolute continuity property for the ada
transformation is given by some ideas close to the ones used by Enchev and Strooc
the context of transformations on the Wiener space. The same property for the antic
part is solved thanks to some results coming from Picard [10]. As an application, we
an anticipative perturbation of a Lévy,β-stable isotropic process by another similarβ ′-stable
process and give sufficient conditions to have an absolute continuity property.
 2002 Éditions scientifiques et médicales Elsevier SAS
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RÉSUMÉ. – Nous étudions un nouveau type de transformation anticipante de l’espa
Poisson qui consiste à ajouter ou enlever certaine particules d’une condition initiale r
suivant la mesure de Poisson. Sachant la condition initialeω, les modifications sont aléatoire
régies par une mesure de Poisson dont l’intensité est fonction deω. La question principale
concerne l’absolue continuité de la loi du système transformé par rapport à la répartit
Poisson du système initial. Nous séparons de telles transformations en une partie ad
une partie anticipante : l’absolue continuité est obtenue pour la partie adaptée grâc
idées semblables à celles utilisées par Enchev et Stroock [4] dans le cadre de l’esp
Wiener. La partie anticipative de la transformation est résolue grâce au calcul de Ma
développé par Picard [10]. Nous appliquons ces résultats à létude de perturbations antic
d’un processus de Lévyβ-stable par un autre processus de Lévyβ ′-stable, donnant un critèr
d’absolue continuité pour de telles perturbations.
 2002 Éditions scientifiques et médicales Elsevier SAS
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Introduction. We first give an instance of the kind of problems we want to deal w

Original Problem. – Let d ∈ N
∗, {β,β ′}⊂ ]0;2[ and (�,F,P), (�′,F ′,P′) two

probability spaces. We consider aβ-stable, isotropic Lévy processX : [0;1] ×�→R
d .

We consider another Lévy processX′ : [0;1]×�′ →R
d isotropic,β ′-stable. Let give us

a measurable mapping	 :Rd →R. Can we find a sufficient condition onβ, β ′ and	 to
have that the distribution of{X̄t =Xt +	(X1)X

′
t , t ∈ [0;1]} underP⊗ P

′ is absolutely
continuous with respect to the one of{Xt, t ∈ [0;1]} underP?

The main difficulty of this kind of question is that we perturbate the path of the L
processX. by adding to it the jumps of an independent LévyX′ following an anticipative
way: the modification of the pathX.(ω) at time t does not only depend on the pa
{Xs(ω), s ∈ [0; t]}, but depends on the terminal value ofX.

The Brownian version of this kind of problem has been widely studied: let{Bt, t ∈
[0;1]} a standard Wiener process defined on some probability space(W,FW,PW) where
W is the set of continuous mapping from[0;1] to R

d andf : [0;1] × W → R some
measurable mapping such that

∫ 1
0 f

2
s (ω) ds <∞ PW -almost surely. Let us define th

process{B̄t , t ∈ [0;1]} by

B̄t (ω)=Bt(ω)+
t∫

0

fs(ω) ds. (1)

In this setup,B̄ :W →W may be seen as a transformation of the Brownian pathB by
adding to it the path of a finite variation process(t,ω) �→ ∫ t

0 fs(ω) ds. The classica
question asked in this context is: can we find sufficient conditions onf to have that the
distribution of the process̄B is absolutely continuous with respect to the one ofB, that
is,

PW ◦ B̄−1 � PW ◦B−1. (2)

This is the Brownian version of the Lévy original problem of the introduction, exce
that in this general setup, the perturbation of the pathB.(ω) may depend on mor
than the terminal valueB1(ω) as it does in our Lévy setup. The positive answer
this Wiener problem are known as Girsanov results, although the first ones are
Cameron and Martin [3] in the case of a deterministicf . The books of Nualart [8
and Ustunel and Zakai [12] give a good state of the art and an exhaustive bibliog
concerning this topic. The study of the anticipative case, wheref is not adapted with
respect to the filtration generated by(Bt)t needs tools such the Malliavin calculus a
most of approaches are based upon a finite dimensional approximation of the
dimensional structure of the Wiener measurePW ◦B−1.

However Enchev and Stroock initiate in [4] an original approach. They first stu
flow of transformationB̃ : [0;1] ×W→W given by:

B̃(t,ω)(.)= B.(ω)+
.∧t∫
hs
(
B̃(s,ω)

)
ds (3)
0
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for some good processh : [0;1] × W → R. Notice that the transformations (
where explicitly given, whereas the (3)-type ones are implicitly given. The (3)-
transformations were also widely studied, especially by Buckdahn (see [1], for ins
and Buckdahn and Enchev [2]. It was further developed by Ustunel and Zakai [13
technique used by Enchev and Stroock in [4] is to find sufficient conditions onh to have

PW ◦ [B̃(1, .)]−1� PW ◦B−1. (4)

Then they relate the (3)-type transformations with the (1)-type transformations
certain sense, allowing them to transfer the results obtained for the first transform
to the study of (2).

The type of absolute continuity problems that we are going to study in this pa
a priori slightly different from the one exposed in the first paragraph. In this pape
will not work on the processX himself. We will explain in Section 4.3 how sufficie
conditions to the Lévy original problem of the first paragraph may be deduced fro
ones that we give in the different context of this paper.

In our paper, we consider a Lusin space(U,U), that is, a measurable spa
homeomorphic to a measurable part of some Polish space and we equip it with a d
σ -finite measureλ−. We define� as, roughly speaking, the set integer-valued meas
(U,U) such thatω({u})� 1 for everyu, the sigma-fieldF and the Poisson probabilit
P with intensityλ− will be defined in Section 1 – the canonical example of Sectio
shows how to relate a Poisson space with a Lévy process. The obtained prob
space(�,F,P) is a Poisson space. We study in this framework some anticip
transformations consisting in, from an initial conditionω ∈�, picking a random subse
ω̃⊂U following a particular, stochastic way: we give us a processf :U×�→R

+ such
thatfu(ω)� 1 if ω({u})= 1 and pick a random subset – orcloud – ω̃ ⊂ U following:
each particleu of ω is taken in the cloud with probabilityfu(ω), we include in the cloud
the particles of a Poisson random measure onU with intensityf.(ω)λ−(.). Moreover,
each inclusion is made independently of the other selections. Then we modifyω at each
point of the cloud by adding a particle if there was not one at this point and removin
particle if there was one at this point: we obtain a final system which is also an in
valued measure. The presentation and the existence of thosedirect transformations ar
done in Section 2 – we saydirect since the cloud is chosen at once from the ini
condition. The absolute continuity question which we study here is to find suffi
conditions onf to ensure that the distribution of the final system is absolutely contin
with respect to the distributionP of the initial state – this Absolute Continuity questi
(AC) is detailed in Section 2.2. Notice that the stochastic nature of this transforma
a great difference with the deterministic transformations of the Brownian paths.

One of the main results of Picard [10] is that a large class of such transformations
associated with a more general cloud distribution, has the wished absolute con
property if the cloud is almost surely finite. This result uses a stochastic calc
developed around the finite difference gradient of Nualart and Vives [9] and Du
Formulae that we recall in Proposition A.1 of Appendix A. As a consequence, a
transformation having finite clouds has the absolute continuity property; Sectio
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investigates this easy case and we state Theorem 3.1 which gives a sufficient co
onf to be in this case and which solves the absolute continuity problem.

Then we turn to a more general case of direct transformation, where the clo
allowed to be infinite. As we know how to deal with the finite case, we interse
Section 3.2 the cloud with an increasing collection(Ut)t coveringU and satisfying
some properties, which we call adirection. This notion of direction has been alrea
used in [7] and was recalled in Section 1. Hence we obtain a collection of interm
transformations indexed byt ∈R

+, entering in the finite framework of Theorem 3.1 a
for which we know the absolute continuity property. This gives an explicit collec
(Lt)t of intermediate Radon–Nikodym derivatives. Following the strategy of Lemma
we could conclude if we were able to estimateE[L2

t ] or E[Lt logLt ] uniformly in t
but it is not possible because of the complex form ofLt . Thus we follow the idea o
Enchev–Stroock and try to relate the direct transformation with the Poisson ana
to the (3)-type transformations, that is, the Markovian transformations introduce
Picard [11] for which we have sufficient conditions for the absolute continuity prob
thanks to [7]. Proposition 3.2 shows that one can always relate in a certain sense
transformation with a Markovian one, thanks to a Bayes-type formula. Despite o
we are unable to use the results of [7] in a general anticipative context, mainly be
our transformations are stochastic – whereas this transfer of result was possible
Wiener context.

However, the representation property solves the case of an adapted intensityf : this
allows us to turn to another problem consisting in studying the case of an adapted
plus a finite, anticipative cloud. The result is formalized in Theorem 3.3, where we g
sufficient condition in the case of only adding particles. We outline that, even if this
theorem is given in the case of only adding particles, we are obliged to consider
paper direct transformations which also remove particles for the proof of the theor

We give then in Section 4 some applications to the anticipative Theorem 3.3 a
especially turn back to our original problem in Section 4.3. The next and last se
gives the results of Picard [10] which we need in this paper and a technical estim
result.

For a measurable space(X,X ), we will denote byEb(X,X ), or sometimesEb(X)
when there is no ambiguity the set of boundedX -measurable, real-valued mappin
onX. We will also denote byM1(X,X ), or sometimesM1(X) the set of probabilities
on (X,X ).

1. Poisson space

1.1. Definitions

Let (U,U) be a Lusin space,λ− be aσ -finite, diffuse measure on(U,U). We note�
the set of integer-valued measures onU such that

– ω({u})� 1 for all u,
– ω(A) <∞ if λ−(A) <∞.
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For V ∈ U we noteω|V the restriction ofω to V , identified as an element of�. We
consider the canonical random measure onU defined by

λ+(ω,A)= ω(A)
and theσ -field F generated by the mappingsA �→ λ+(A), A ∈ U ; note that we donot
completeF with respect toP. It may be seen that(�,F) is a Lusin space. We consid
now the Poisson probabilityP on (�,F) such that

– forA ∈ U , λ+(A) is a Poisson variable with parameterλ−(A),
– for (Ai)⊂ U being disjoint sets, the random variables(λ+(Ai)) are independent.

Remark that an elementω may be seen as a particle system onU whose particles ar
{u,ω({u})= 1}. By a convenient abuse of notation we will sometimes identify a p
measure to its support. We call aprocesson U × � every measurable mapping fro
(U ×�,U ⊗F) to R. We denote byλ the compensated measure onU given by

λ(ω, du)= (λ+ − λ−)(ω, du).
We also define|λ| by

|λ|(ω, du)= (λ+ + λ−)(ω, du).
Foru ∈U we define the flip operatorεu :�→� by – δu stands for a Dirac mass inu:

εu(ω)=
{
ω+ δu if u /∈ ω,
ω− δu else.

This operator acts onω by removing the particle inu if there was one or adding a partic
if there was not one. Foru ∈U andF ∈ Eb(�) we will note

D̄uF = F ◦ εu − F.
Notice that this operator has at most a sign difference with the operatorDu used in [10,
11] and [7]. We also define the measures

µ±(du, dω)= λ±(ω, du)⊗ P(dω),

on (U ×�,U ⊗F) and we note

µ(du, dω)= λ(ω, du)⊗ P(dω), |µ|(du, dω)= |λ|(ω, du)⊗ P(dω).

We turn now to the notion ofdirection, introduced in [7]. Consider a non decreas
collection (Ut)t∈R+ ⊂ U of sets ofU , such that

⋃
t Ut = U . For t > 0, we noteUt− =⋃

s<t Us for t > 0,U0− =U0 andδUt =Ut\Ut− . We now define thegaugefunction as

G(u)= inf{t � 0, u ∈Ut}
and thegrowth measureof (Ut)t as the positive measureλ−(U) on (R+,B(R+)) given by

λ−(U) = λ− ◦G−1. (5)
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Such a collection will be called adirection if it satisfies both:

(RC): ⋂
s>t

Us =Ut (Right Continuity),

(GC): λ−(U) is diffuse and for everyt, λ−(Ut) <∞ (Growth Condition).

Remark thatu ∈ δUG(u) for all u and thatG : (U,U)→ (R+,B(R+)) is finite and
measurable. Up to a change of time variable, we will assume thatλ−(U)(dt) = dt .
Remark that (GC) implies thatλ−(δUt)= 0 for all t . The second part of (GC), name
λ−(Ut) <∞ is called thefinite volume assumption. For sake of clearness we will deno
byUI for I being a subset ofR+ the set ofu such thatG(u) ∈ I . We noteFt =FUt and
for V ⊂ U we noteVt = V ∩Ut . We now give an important example. We end this p
by giving the definition of an adapted/predictable process with respect to a dire
We say that a processh is adapted ifhu(.) is FG(u)-measurable for allu ∈ U and that it
is predictable ifhu(.) is FG(u)− -measurable for allu ∈ U : we outline that both notion
depend on the choice of a direction(Ut)t . Those definitions are not the classical ones
the reader may satisfythat, since we do not completeF , they coincide with the classica
ones for instance in the case of the canonical example.

1.2. The canonical example

SupposeU = [0;1] × (Rd\{0}) for somed � 1. We defineλ−(dt, dx) = dtµ(dx)

wheredt stands for the Lebesgue measure on[0;1] andµ is a positive,σ -finite measure
on R

d satisfying –| . | denotes the Euclidean norm onR
d :∫

Rd

(|x|2 ∧ 1
)
µ(dx) <∞. (6)

In this setup, the process

Xt(ω)=
∫

[0;t ]×{x: |x|�1}
xλ(ω, ds, dx)+

∫
[0;t ]×{x: |x|>1}

xλ+(ω, ds, dx) (7)

is a Lévy process with Lévy measureµ. The reader will easily satisfythat the collecti
(Us)s given by

Us = [0;1] × {x: |x|� 1/s
}

is a direction onU . We have in this case thatG(t, x)= 1/|x| andδUs = [0;1]×{x: |x| =
1/s}. Remember that we noteFt = FUt , hence(Ft )t is a filtration. Notice that it differs
from the classical filtration(F ′

s)s usually considered in this setup, whereF ′
s is defined by

F ′
s = σ

{
Xr, r ∈ [0; s]}.

In our context, the past at timet is considered by the events depending on the ju
of X. whose size is larger than 1/t .
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2. Definition of a direct transformation and objective

We give in Section 2.1 the definition and the properties of a direct transformation
objective of the paper is given in Section 2.2, whereas the technical Section 2.3 g
mathematical proof of the existence of such transformations. Before turning to all
points, we introduce some useful definitions.

We consider a triplet(U,U , λ−) as above, equipped with a direction(Ut)t . Fork ∈N

andV ⊂ U we introducePk(V ) = {W ⊂ V : |W | = k} and Sk(V ) = {(u1, . . . , uk) ∈
V k: ui �= uj for everyi �= j}; we noteP(V )= ⋃k Pk(V ) andS(V )= ⋃k Sk(V ). There
is a natural projectionπ :S(V )→ P(V ) and we endowP(V ) with the smallestσ -
field P(U) such thatπ is measurable. Ifm is a measure onU , we can considerm⊗k

the product measure onUk, with m⊗0
defined as a Dirac mass in∅; if we consider

the restriction ofm⊗k to Sk(U) we can obtain a measure onS(U), that we rewritem,
given by

m(dτ)=m(du1) . . . m(duk)

for τ = (u1, . . . , uk). One can extend this measure toP(U) – we will rewrite it m –
defined on eachPk(U) by

m(A)=m(π−1(A)
)
/k!.

If we apply this construction tom := |λ| we obtain a new measure|λ| onP(U) and we
consider the measureν onP(U)×� given by

ν(dA,dω)= |λ|(ω, dA)P(dω).
Thus we have ∫

Z d|λ| =∑
k

∫
Sk(U)

Z{u1,...,uk}|λ|(du1) . . . |λ|(duk)/k!

and ∫
Z dν =∑

k

E

[ ∫
Sk(U)

Z{u1,...,uk}|λ|(du1) . . . |λ|(duk)
]
/k!

for any processZ onP(U)×�. We can as well lift the measuresλ− andλ+ up onP(U).
Remark that the lifted measures areσ -finite: there will be no problem to use Fubini a
Lebesgue theorems. We now introduce the cloud set�̃= {V ⊂U : V ∩Ut ∈ P(Ut), t ∈
R
+}. We endow it with theσ -field F̃ = σ {ω̃ �→ ω̃t , t ∈R

+}. It may be seen that(�̃, F̃ )
is a Lusin space. For̃ω= {u1, u2, . . .} ∈ �̃ andω ∈� we note

εω̃(ω)= (εu1 ◦ εu2 ◦ · · ·)(ω).

By a convenient abuse of notation, we will sometimes identify an elementω̃ ∈ �̃ to a
point measure onU , the support of which being given bỹωwhereas an element of�may
also be seen as an element of�̃. Notice that the sets̃� and� are actually similar despit
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of a different transformation. However we prefer to use different notations to desig
Poisson set� and the set of clouds̃� in order to avoid confusions. Letf :U ×�→R

+
a measurable mapping satisfying

(H):
{
f is bounded on eachUt ×�,
For everyu ∈ ω, fu(ω)� 1.

2.1. Properties of the transformation

Let ω ∈ �. The first aim of the present work will be to build a collection
probabilities(P̃fω)ω ⊂M1(�̃, F̃) such that

(A) For V ∈ U such thatω(V )= 0, ω̃(V ) has a Poisson distribution with parame∫
V fu(ω)λ

−(du) underP̃fω ,
(B) For (V ,W)⊂ U being disjoint, theñω(V ) andω̃(W) are independent underP̃

f
ω ,

(C) Foru ∈ ω, u ∈ ω̃ with probabilityfu(ω),
(D) ω �→ P̃

f
ω[F ] is measurable for everyF ∈ Eb(�D).

The proof of the existence of such probabilities will be done in Section 2.3, but we
assume that we have such a collection(P̃fω)ω∈�.

2.2. Objective

We noteP
f
⊗ ∈M1(�× �̃,F ⊗ F̃) the probability defined by

P
f
⊗(dω, dω̃)= P̃

f
ω(dω̃)P(dω).

It is well defined thanks to (D). The aim of this paper is to find sufficient conditionsf
to have the existence ofL ∈ L1(�,F,P) such that

(AC): For everyF ∈ Eb(�), E
f
⊗
[
F
(
εω̃(ω)

)]= E[FL].

This is equivalent to ask that the distribution of the final systemY∞ = εω̃ω underPf⊗
is absolutely continuous with respect to the Poisson distributionP of the initial system
Y0= ω. Notice that the final systemY∞ is the initial system, the particles of which bei
in ω ∩ ω̃ have been removed, and the particles of which inω̃\ω have been added. W
end this section by proving in the following part the existence of the collection(P̃fω)ω.

2.3. Existence of the transformation

This section is devoted to the construction of the sequence(P̃fω)ω∈� satisfying the four
above points. We formulate this construction in the following proposition

PROPOSITION 2.1. – Let f satisfying (H) and ω ∈ �. There exists a uniqu
probability P̃

f
ω ∈M1(�̃, F̃) such that for everyt ∈R

+,

P̃
f
ω[ω̃t ∈A] =

∫
A

Zf,tω (A)|λ|(ω, dA) for everyA ∈P(U), (8)

where
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Zf,tω (A)= exp
( ∫
Ut\A

log
(
1− fu(ω))λ+(ω, du)− ∫

Ut

fu(ω)λ
−(du)

)

×
(∏
u∈A

fu(ω)

)
1{A⊂Ut }.

Moreover, the given collection(P̃fω)ω∈� satisfies the points(A) to (D).

We also defineZf,t
−

ω (A) by replacingUt byUt− in the expression ofZf,tω (ω̃).

Proof. –Observe that for anyt ∈R
+, andA, B being disjoint subsets ofUt we have

Zf,tω (A∪B)=
Zf,tω (A)Z

f,t
ω (B)

Kt(ω)
, (9)

where

Kt = exp
(∫
Ut

log
(
1− fu(ω))λ+(ω, du)− ∫

Ut

fu(ω)λ
−(du)

)
.

On the other hand, for	1 and	2 being two positive mappings onP(U), V andW being
a partition ofUt then one can show that∫

P(Ut )

	1(A∩ V )	2(A∩W)|λ|(ω, dA)

=
( ∫
P(V )

	1(A)|λ|(ω, dA)
)( ∫

P(W)

	2(A)|λ|(ω, dA)
)
.

By using the same notations and (9) this gives∫
P(Ut )

	1(A∩ V )	2(A∩W)Zf,tω (A)|λ|(ω, dA)

=K−1
t

( ∫
P(V )

	1(A)Z
f,t
ω (A)|λ|(ω, dA)

)( ∫
P(W)

	2(A)Z
f,t
ω (A)|λ|(ω, dA)

)
. (10)

We now show thatZf,tω (.) is a probability density with respect to the measure|λ| on
P(U) for everyt , that is, ∫

P(U)

Zf,tω (A)|λ|(ω, dA)= 1. (11)

Suppose first thatfu(ω)= 0 if u ∈ ω. In this case, we have thatZf,tω (A)= 0 if A∩ω �= ∅.
This leads to∫
P(U)

Zf,tω (A)|λ|(ω, dA)=
∫

P(U)

Zf,tω (A)λ
−(dA)
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sion
a

= exp
(
−
∫
Ut

fu(ω)λ
−(du)

)(∑
n�0

1

n!
∫

(Ut )n

n∏
i=1

(
fui (ω)λ

−(dui)
))

= 1.

On the other hand, suppose thatfu(ω)= 0 if u /∈ ω: we obtain thatZf,tω (A)= 0 if A �⊂ ω.
Sinceλ− is assumed to be diffuse, one can see in this case that:∫

P(U)

Zf,tω (A)|λ|(ω, dA)=
∫

P(U)

Zf,tω (A)λ
+(ω, dA)

= ∑
A⊂(ω∩Ut )

((∏
u∈A

fu(ω)

)
×
( ∏
u∈(ω∩Ut )\A

(
1− fu(ω))))

= ∏
u∈ω∩Ut

(
1− fu(ω)+ fu(ω))= 1

and we also have (11). Consider now a processf and setf 1
u (ω) = ω(u)fu(ω) and

f 2
u (ω)= (1− ω(u))fu(ω). By using (10) with	1 ≡ 	2 ≡ 1, V = Ut ∩ ω, W = Ut\V

we obtain∫
P(U)

Zf,tω (A)|λ|(ω, dA)

=K−1
t

( ∫
P(Ut∩ω)

Zf,tω (A)|λ|(ω, dA)
)
×
( ∫
P(Ut\ω)

Zf,tω (A)|λ|(ω, dA)
)
.

Sinceλ− is diffuse, we have that

Zf,tω (A)= Zf
1,t

ω (A)exp
(
−
∫
Ut

fu(ω)λ
−(du)

)

for A⊂Ut ∩ω and

Zf,tω (A)=Zf
2,t

ω (A)exp
(∫
Ut

log
(
1− fu(ω))λ+(ω, du))

for A⊂Ut\ω. Then we finally obtain that∫
P(U)

Zf,tω (A)|λ|(ω, dA)

=
( ∫
P(Ut )

Zf
1,t

ω (A)|λ|(ω, dA)
)( ∫

P(Ut )

Zf
2,t

ω (A)|λ|(ω, dA)
)

and we conclude by using both last cases applied tof 1 andf 2. We turn now to the
question of the existence of̃P

f
ω . This problem may be seen as a Kolmogorov exten

problem: let us notezt (ω̃) = ω̃t , where we recall that̃ωt = ω̃ ∩ Ut . This process is
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D) is
càd làg, piecewise constant process thanks to the (RC) assumption. We are look
a probabilityP̃

f
ω ∈M1(�̃, F̃ ) such that the finite-dimensional distributions ofz. would

be defined by: fort1 � · · ·� tn and(Ai)
n
i=1 ⊂ P(U) then

P̃
f
ω

[
(zt1, . . . , ztn) ∈A1× · · · ×An

]= ∫
P(U)

Zf,tnω (A)F (A)|λ|(ω, dA) (12)

with

F(A)=
n∏
i=1

1{Ati ∈Ai}.

One easily satisfies thanks to (10) that the right-side distributions of (12) are comp
z. takes its values in the Lusin space(P (U),P(U)), which may itself be embedded
some Polish space(P̄ (U), P̄(U)) for which we note(�̄, F̄ ) the space of càd làg path
taking their values inP̄ (U) – the topology onP̄ (U) does not matter since we wo
with piecewise constant processes. Thus, the extension problem may be embed
Polish framework and we obtain by the Kolmogorov’s extension theorem a proba
P̄
f
ω ∈M1(�̄, F̄ ) under which the finite-dimensional distributions of(t, ω̄) �→ ω̄t are

given by (12). This implies that

P̄
f
ω

[
ω̄t ∈ P(U),∀t]= 1

if we identify P(U) with their image in�̄ and one concludes by setting

P̃
f
ω[ . ] = P̄

f
ω

[{ω̄t ∈ P(U),∀t} ∩ .].
We now show that the given collection satisfies the claimed points (A) to (D). (
obvious from the definition of̃Pfω and we now prove (A). Letω ∈�, V ∈ U included in
someUt such thatω(V )= 0 andn ∈N. By using (10) we obtain that

P̃
f
ω

[
ω̃(V )= n]= ∫

P(Ut )

1{|A∩V |=n}Zf,tω (A)|λ|(ω, dA)

=K−1
t

( ∫
P(V )

1{|A|=n}Zf,tω (A)|λ|(ω, dA)
)

×
( ∫
P(Ut\V )

Zf,tω (A)|λ|(ω, dA)
)
. (13)

The second integral of the above product is equal to – we use thatω(V )= 0:( ∫
Ut\Vt

exp
( ∫
(Ut\V )\A

log
(
1− fu(ω))λ+(ω, du)− ∫

Ut\V
fu(ω)λ

−(du)
)

×
(∏
u∈A

fu(ω)

)
|λ|(ω, dA)

)
exp
(
−
∫
fu(ω)λ

−(du)
)

V
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r hand,

(B)

etimes

en

the

imple

s from
= exp
(
−
∫
V

fu(ω)λ
−(du)

)
since one shows that the first term is equal to 1 as we proved (11). On the othe
observe that

Zf,tω (A)|λ|(ω, dA)=Kt

(∏
u∈A

fu(ω)

)
λ−(dA)

if A⊂ V , hence the first integral of the (13) is equal to

(
∫
V fu(ω)λ

−(du))n

n! .

This gives (A). (C) comes from a similar computation and the independence
straightforward comes from (10).✷

We end this section by a technical integration result – remember that we som
identify an element̃ω ∈ �̃ to a point measure onU :

LEMMA 2.1. – Let g :Un ×�→ R
+, vanishing if two parameters are equal. Th

for everyω we have

Ẽ
f
ω

[ ∫
Un

gu1...un(ω)ω̃(du1) · · · ω̃(dun)
]
=
∫
Un

gu1...un(ω)

n∏
i=1

(
fui (ω)|λ|(ω, dui)

)
.

Proof. –We just show the relation in case of a simpleg having the form

n∏
i=1

(
1Vi (ui)

)
F(ω),

where(Vi)i is a collection ofλ−-finite subsets ofU with Vi ∩ Vj = ∅ if i �= j . Observe
that the property (B) implies the independence of the random variablesω̃(Vi) underP̃fω
thanks to an induction argument onn. Then we use the points (A) to (C) to compute
expectation and obtain the desired result.✷

3. Analysis of the (AC) problem

We turn back to the (AC) question. The first case we investigate is a rather s
situation where an additional assumption onf will imply that the cloudω̃ is almost
surely finite. In this case, the (AC) question is a direct consequence of the result
Picard [10].

3.1. The case of a finite cloud

We suppose in this part that the following assumption is in force:

(L1):
∫
fu(ω)|λ|(ω, du) <∞, P a.s.
U
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la
and we note�0 = {ω:
∫
U fu(ω)|λ|(ω, du) <∞}. It may be seen from Lemma 2.1 tha

Ẽ
f
ω

[
ω̃(U)

]= ∫
U

fu(ω)|λ|(ω, du)

hence the (L1) assumption implies that forω ∈�0, ω̃ is P̃
f
ω-almost surely finite. In this

case, the (AC) question may be considered as a particular result of Propositio
Picard [10]; this is what tells the following theorem. For any processX(A) indexed by
P(U), we define another processX′(A) defined byX′(A) = X(A) ◦ εA. We will also
noteY∞ :�× �̃→� defined by

Y∞(ω, ω̃)= εω̃(ω)
and we will noteZf,∞ω (.) the P(U) indexed process given in Proposition 2.1 w
t :=∞.

THEOREM 3.1. – Suppose thatf satisfies(H) and (L1). Then forω ∈�0 we have

dP̃
f
ω

d|λ|(ω, .) =Z
f,∞
ω (.).

Moreover,Pf⊗ ◦ Y−1∞ � P – that is,(AC) is in force – with

dP
f
⊗ ◦ Y−1∞
dP

=
∫

P(U)

(
Zf,∞ω

)′
(A)|λ|(ω, dA).

Proof. –Remember that for everyt ∈ R
+ and V ⊂ U we noteVt = V ∩ Ut . Let

ω ∈ �0. Then ω̃ ∈ P(U), P̃
f
ω-almost surely; by using (A), (B) and (C) we have th

for everyA ∈P(U),

P̃
f
ω[ω̃ ∈A] = lim

n
P̃
f
ω[ω̃n ∈A, ω̃\Un = ∅]

= lim
n

(
P̃
f
ω[ω̃n ∈A] P̃fω[ω̃\Un = ∅]

)
= lim

n

(∫
A

Zf,nω (A)|λ|(ω, dA)exp
(
−
∫

U\Un
fu(ω)λ

−(du)

+
∫

U\Un
log
(
1− fu(ω))ω(du)))

the exponential term tends to 1 asn→∞ sinceω ∈�0 and by a Lebesgue dominat
convergence theorem we can show that the first integral tends to

∫
AZ

f,∞
ω (A)|λ|(ω, dA).

It remains to prove (AC). LetF ∈ Eb(�). We have by using the multiple Duality Formu
– see Proposition A.1 in Appendix A – and what we proved above that

E
f
⊗
[
F(Y∞)

]= ∫
P(U)×�

F(εAω)Z
f,∞
ω (A)ν(dω, dA)
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at
to
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this

3.1 is
Hence
=
∫

P(U)×�
F(ω)

(
Zf,∞ω

)′
(A)ν(dω, dA)

=E

[
F(ω)

( ∫
P(U)

(
Zf,∞ω

)′
(A)|λ|(dω, dA)

)]
.

This concludes. ✷
3.2. Absolute continuity for the stopped transformations

In the general case of our framework, where we have only (H), the cloudω̃ is allowed
to be almost surely infinite and then has no longer density with respect to|λ|. Let give
us a direction(Ut)t and fixt ∈R

+. The assumption (H) and the definition (8) imply th
the stopped cloudω̃t = ω̃ ∩ Ut is P̃

f
ω-almost surely finite: the idea is, in a first step,

apply the above results to thestopped transformationsgiven by:

Yt(ω, ω̃)= εω̃t (ω).

PROPOSITION 3.1. – For everyt ∈R
+, P

f
⊗ ◦Y−1

t � P, P
f
⊗ ◦Y−1

t− � P with respective
densities

Lt =
∫

P(U)

(
Zf,tω

)′
(A)|λ|(ω, dA), L−t =

∫
P(U)

(
Zf,t

−
ω

)′
(A)|λ|(ω, dA).

Moreover,L. is càd làg andL−t = Lt− .

Notice that the collection of direct transformations(Yt)t enters in the genera
framework of Section 2.2 of [7].

Proof. –The existence and the expression ofLt may be seen as a result of the l
lemma used withfu := fu1Ut (u) which satisfies (L1) for everyt . The expression ofL−t
comes from the same theorem used withfu := fu1Ut− (u). The question of continuity
may be solved thanks to the expressions ofLt andL−t and dominated convergen
theorems. ✷

The problem is now to link the last result with the (AC) question. The follow
lemma gives one way to conclude – remember that we noteFt for FUt .

LEMMA 3.1. – Let us noteL̄t = E[Lt |Ft ]. Then{L̄t , t ∈R
+} is a (Ft )t -martingale.

Moreover, we have(AC) iff {L̄t , t ∈R
+} is uniformly integrable.

The lemma and its proof are similar to the basic Lemma 2.2 in [7]. Following
strategy, we could for instance try to estimateE[L2

t ] or E[Lt logLt ] uniformly in t in
order to conclude for the (AC) question. But the expression given by Proposition
too much complex and we are actually unable to estimate both last expressions.
we turn to another approach inspired by Enchev and Stroock [4].
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3.3. Markovian representation

In Gyongy [5], the following question is investigated: letξ be a Ito process. Is
possible to find a processX satisfying a simpler SDE, the one-dimensional distributi
of which being the same as the ones ofξ? The answer depends on further assumpti
but the method – the use of conditional expectations – is very close to the one we w
In Enchev and Stroock [4], a similar question concerning the study of transforma
on the Wiener space is asked: let a processf : [0;1] × �→ R be given and letB̄ the
process given by (1). Is it possible to find a processh : [0;1] × �→ R such that the
transformation (3) associated withh satisfies:

PW ◦ [B̃(1, .)]−1 = PW ◦ (B̄.)−1.

In this case, the absolute continuity questions (2) and (4) concerning both trans
tions are equivalent: this is interesting because they know how to deal with for s
one – up to regularity assumptions onh.

In both cases, the authors aim at representing, or mimicking some characteris
complex systems by the ones of better known systems: we will call this arepresentation
property. The problem we discuss here is the Poisson analogue of the En
Stroock problem in the Wiener case. We first give the transformation which i
Poisson analogue of the (3)-type transformation. This transformation, theMarkovian
transformation, is defined in Section 3.3.1 and was originally introduced by Picard
and the related (AC)-type problem was studied in [7]. We will show in Section 3.3.2
we have a similar representation property for the direct transformations by a Mark
one in the Poisson case, without restrictions onf . On the other hand, we will not be ab
to use the results concerning the Markovian transformations unless we are in the a
case – that is, the case of an adaptedf with respect to the direction(Ut)t . Despite of
its lack of generality, the related Theorem 3.2 is a first success for two reasons: t
one is that we do not havea priori an easier method to deal with the adapted case.
second one is that the adapted Theorem 3.2 obtained by the Markovian represen
essential in obtaining the anticipative Theorem 3.3.

Before turning to the definition of a Markovian transformation, we give two techn
lemmas. We introduce the subset�1 of � given by

�1= {ω: ω(δUt)� 1 for everyt ∈R
+}.

It is shown in [7] thatP[�1] = 1 – see Proposition 2.1. We now state – remember
we note forD̄uF = F ◦ εu −F for u ∈U andF ∈ Eb(�):

LEMMA 3.2. – Letω ∈�1. Then for allF ∈ Eb(�) and t ∈R
+ we have

Ẽ
f
ω

[
F(Yt)

]= F(ω)+ Ẽ
f
ω

[ ∫
Ut

D̄uF (YG(u)−)fu(ω)|λ|(ω, du)
]
. (14)

Proof. –Remember that we assume that the growth measure given by (5) onR
+ is

the Lebesgue measure. Letω ∈ �1 and F having the formF(ω) = 5(ω(V )) with
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ing
nce
5 ∈ Eb(R+) andV ∈ U . It is easy to show that, for everya < b with ω(U]a;b]) = 0,
we have by using the point (A) given in Section 2.1 that

Ẽ
f
ω

[
F(Yb)

]= Ẽ
f
ω

[
5
(
Ya(V )+ ω̃|U|]a;b](V )

)]
= Ẽ

f
ω

[
5
(
Ya(V )

)(
1−

∫
V∩U[a;b]

fu(ω)λ
−(du)

)]
+ o(b− a)

+ Ẽ
f
ω

[
5
(
Ya(V )+ 1

)( ∫
V∩U[a;b]

fu(ω)λ
−(du)

)]

= Ẽ
f
ω

[ ∫
V∩U[a;b]

(
5(Ya(V )+ 1

)−5(Ya(V ))fu(ω)λ−(du)]

+ Ẽ
f
ω

[
F(Ya)

]+ o(b− a).
Now observe that (

5
(
ω′(V )+ 1

)−5(ω′(V )))1{u∈V } = D̄uF (ω
′)

for any(u,ω′) such thatω′({u})= 0. Then

Ẽ
f
ω

[
F(Yb)

]= Ẽ
f
ω

[
F(Ya)

]+ Ẽ
f
ω

[ ∫
U[a;b]

D̄uF (Ya)fu(ω)λ
−(du)

]
+ o(b− a).

Now we use that

P̃
f
ω[Ya �= YG(u)−]�M(b− a)

for everyu ∈U[a;b],M being a bound off onU[a;b]. We finally obtain that

Ẽ
f
ω

[
F(Yb)

]= Ẽ
f
ω

[ ∫
U[a;b]

D̄uF (YG(u)−)fu(ω)λ
−(du)

]
+ Ẽ

f
ω

[
F(Ya)

]+ o(b− a).

On the other hand, fora such thatω(δUa)= 1, then it is clear from (C) that

Ẽ
f
ω

[
F(Ya)

]= Ẽ
f
ω

[
F(Ya−)

]+ Ẽ
f
ω

[ ∫
δUa

D̄uF (YG(u)−)fu(ω)λ
+(ω, du)

]
.

The claimed result for suchF may be deduced from the last two equalities by tak
subdivisions of the interval[0; t]. By using the same ideas and the independe
property (B), we could as well show the result forF having the form

F(ω)=5(ω(V1), . . . ,ω(Vn)
)
, (15)

for disjoint subsets(Vi)i ; by using (H), (A) and (B) we have for every]a;b] such that
ω(U[a;b])= 0:
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comes

lass
Ẽ
f
ω

[
F(Yb)

]= Ẽ
f
ω

[(
5
(
Ya(V1)+ 1, Ya(V2), . . . , Ya(Vn)

)
− F(Ya))( ∫

V1∩U[a;b]
fu(ω)λ

−(du)
)]

+ · · ·

+ Ẽ
f
ω

[(
5
(
Ya(V1), Ya(V2), . . . , Ya(Vn)+ 1

)− F(Ya))
×
( ∫
Vn∩U[a;b[

fu(ω)λ
−(du)

)]
+ o(b− a)+ Ẽ

f
ω

[
F(Ya)

]
,

since the probability that̃ω has a particle in more than one setVi ∩U[a;b[ is a o(b− a).
From this equality, one concludes as above for functions (15) and the general case
from a monotone class argument.✷

LEMMA 3.3. – For every bounded processg onU ×� and t ∈R
+ we have

E
f
⊗
[ ∫
Ut

gu(YG(u)−)λ
+(ω, du)

]
= E

[ ∫
Ut

LG(u)−guλ
+(ω, du)

]
.

Proof. –We can prove the relation forg smaller than one and having the form

gu(ω)= 1V (u)F (ω)

whereV ∈ U andF ∈ Eb(�). The general results then comes from a monotone c
argument. Let(aNk )

N

k=0 be a subdivision of[0; t]. We have that

E
f
⊗
[ ∫
Ut

gu(YG(u)−)λ
+(ω, du)

]

=
N−1∑
k=0

E
f
⊗
[ ∫
U]aN

k
;aN
k+1

]

(
gu(YG(u)−)− gu(YaN

k
)
)
λ+(ω, du)

]

+
N−1∑
k=0

E
f
⊗
[
F(YaN

k
)ω(U]aN

k
;aN
k+1] ∩ V )

]
. (16)

On the one hand we have for anyu ∈U]aN
k
;aN
k+1] andω that

P̃
f
ω[YG(u)− �= YaN

k
]�M|λ|(ω,U]aN

k
;G(u)[), (17)

whereM is a bound off onUt ×�. Hence the first sum of (16) is bounded by

N−1∑
k=0

2ME

[ ∫
U]aN ;aN ]

|λ|(ω,U]aN
k
;G(u)[)λ

+(ω, du)
]

k k+1
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(16)
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and it may be seen by a classical argument each term of the sum is a o(aNk+1 − aNk ).
Hence this first sum of (16) goes to 0 asN →∞. On the other hand, by using th
ω(U]aN

k
;aN
k+1])= YaNk (U]aNk ;aNk+1]), P̃

f
ω-almost surely, one finds that the second sum of

is equal to

N−1∑
k=0

E
f
⊗
[
F(YaN

k
)× YaN

k
(U]aN

k
;aN
k+1] ∩ V )

]
=

N−1∑
k=0

E
f
⊗
[(
F ×ω(U]aN

k
;aN
k+1] ∩ V )

)
LaN

k

]
= E

f
⊗

[ ∫
Ut

(
N−1∑
k=0

1U]aN
k
;aN
k+1

](u)guLaNk

)
λ+(ω, du)

]
.

We can now easily show that this Riemann sum goes to the claimed right-side asN→∞
thanks to a dominated convergence argument based upon the bound

Ls(ω)� exp
(
2M|λ|(ω,Ut))

for everys ∈ [0; t] – this bound is obvious from Proposition 3.1.✷
3.3.1. Definition of a Markovian transformation

We now quickly recall what a Markovian transformation is. Leth be a proces
satisfying (H) andω ∈ �1. We consider on an auxiliary space(�′,F ′) a non
homogeneous Markov process9 :R+ × �′ → �, càd làg, the transition probabilitie
being given as follows: for[t; t +:t] ⊂R

+ such thatω(U]t;t+:t ])= 0 then

P
′[9t+:t = ω |9t = ω] = 1−

∫
U]t;t+:t]

hu(ω)λ
−(du)+ o(:t),

P
′[9t+:t ∈ {εuω,u ∈ V ∩U]t;t+:t ]} |9t = ω]= ∫

V∩U]t;t+:t]
hu(ω)λ

−(du)+ o(:t)

for V ∈ U and if ω(δUt) = 1, by notingu the uniqueparticle inδUt – remember tha
ω ∈�1 – then

P
′[9t = ω |9t− = ω] = 1− hu(ω),
P
′[9t = εuω |9t− = ω] = hu(ω).

Thus, starting from an initial condition90 = ω ∈ �1, we add at timet such that
ω(δUt) = 0 a particle inu ∈ δUt with intensity hu(9t−) with respect toλ−. On the
other hand, a particle ofω in u ∈ δUt is removed at timet with probability hu(9t−).
SinceP [�1] = 1, we can define such a Markov process havingP for initial distribution
and we noteP′ its distribution. In terms of martingale problem, this means that for
g ∈ Eb(�),

(PM′): Mg
t = g(9t)−

∫
U

(
(g ◦ εu)hu)(9G(u)−)|λ|(90, du)
t
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ay be
is a martingale under the probabilitiesP
′[. |90 = ω]. It is shown in Picard [11] that, i

we note

Pt (dω)=
∫

P
′[9t ∈ dω |90 = ω0]P(dω0)

thenPt � P, the corresponding densityLt being a càd làg solution to the Fokker–Plan
equation:

Lt(ω)= 1+
∫
Ut

D̄u[huLG(u)−]|λ|(ω, du). (18)

It is also shown that this equation has an unique càd làg solution ifh satisfies (H).

3.3.2. Representation property
We ask here the following question: forf being given, satisfying (H), is it possib

to find some processh satisfying (H) such that for everyt ∈ R
+, the distribution of

the stopped Markovian transformation9t is the same as the one ofYt underPf⊗? The
following proposition shows that finding such aMarkovian representationis always
possible by a Bayes-type formula. We introduce the additional assumption

(HM): (u,ω) �→ (
1− ω({u})fu(ω))−1

is bounded on eachUt ×�.
PROPOSITION 3.2 (Markovian representation). –Assume thatf satisfies(H) and

(HM). Leth :U ×�→R be given by

hu(ω)= 1

LG(u)−(ω)

∫
P(U)

fu(εAω)
(
Zf,G(u)

−
ω

)′
(A)|λ|(ω, dA),

thenh is measurable, satisfies(H), (HM) and we have

hu(YG(u)−)= E
f
⊗
[
fu(ω) | YG(u)−]. (19)

Let us consider the Markovian transformation9 defined on(�′,F ′,P′), associated
with h. Then

∀t, ∀F ∈ Eb(�), E
′[F(9t)

]=E
f
⊗
[
F(Yt)

]
. (20)

Proof. –Notice that the additional assumption (HM) implies thatLt−(ω) > 0 for every
t,ω, then the givenh is well defined. The fact thath fulfills (H) and (HM) may be seen
from its expression. The measurability of the given process is not obvious, but m
proved by using monotone class arguments. We now show (19). LetG ∈ Eb(�) and
u ∈U . We have

E
f
⊗
[
fu(ω)G(YG(u)−)

]=E

[
fu

∫
P(U)

G(εAω)Z
f,G(u)−
ω (A)|λ|(ω, dA)

]

=E

[( ∫
P(U)

fu(εAω)
(
Zf,G(u)

−
ω

)′
(A)|λ|(ω, dA)

)
G(ω)

]
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=E[LG(u)−huG]
=E

f
⊗
[
hu(YG(u)−)G(YG(u)−)

]
where we have used the multiple Duality Formula of Proposition A.1 for the se
equality, jointly with the fact thatεA ◦ εA = Id. This proves (19). Now we prove (20
Consider nowF ∈ Eb(�). We obtain from Lemma 3.3 and from the given express
of h that

E
f
⊗
[∫
Ut

D̄uF (YG(u)−)hu(YG(u)−)|λ|(ω, du)
]

= E

[∫
Ut

D̄uFhuLG(u)−|λ|(ω, du)
]

= E

[∫
U

D̄uF

( ∫
P(U)

fu(εAω)
(
Zf,G(u)

−
ω

)′|λ|(ω, dA))|λ|(ω, du)]

= E

[∫
Ut

( ∫
P(U)

D̄uF (εAω)Z
f,G(u)−
ω (A)|λ|(ω, dA)

)
fu(ω)|λ|(ω, du)

]

= E
f
⊗
[∫
Ut

D̄uF (YG(u)−)fu(ω)|λ|(ω, du)
]

by using again the multiple Duality Formula of Proposition A.1 for the third equa
Hence, by using Lemmas 3.2 and 3.3, we obtain that for everyF ∈ Eb(�),

E
f
⊗
[
F(Yt)

]= E[F ] +E
f
⊗
[∫
Ut

(D̄uFhu)(YG(u)−)|λ|(ω, du)
]

⇒ E[FLt ] = E[F ] +E

[∫
Ut

D̄uF (huLG(u)−)|λ|(ω, du)
]

⇒ E[FLt ] = E[F ] +E

[
F

∫
Ut

D̄u[huLG(u)−]|λ|(ω, du)
]

by using the single Duality Formula for the last line. We can deduce from this
(Lt)t satisfies the Fokker–Planck equation (18) associated withh. As we told above, this
equation has an unique solution and this concludes the proof.✷

Notice that it is obvious from our definitions thath is adapted (respective
predictable) if f is so. This possibility of having a Markovian representation
any f looks like powerful and we tried to use the results of [7] concerning the (
question for Markovian transformation. Unfortunately, the main result of this p
needs assumptions on the Malliavin kernelDh, and we are unable to relate it with t
one ofDf . However, the Markovian representation is useful in the case of an adapf .
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THEOREM 3.2 (Adapted case for direct transformations). –Suppose thatf is an
adapted process satisfying(H), (HM) and

(L2):
∫
U

(D̄ufu)
2
(ω)λ−(du) <∞, P -a.s.

Then we have(AC).

Proof. –We first show (AC) in the case of

E

[∫
U

(D̄ufu)
2
λ−(du)

]
<∞. (21)

We recall now the definition of the finite difference gradientD taken from Picard [10]
We introduce the operatorsε±u on� defined by

∀V ∈ U ,
(
ε−u (ω)

)
(V )= ω(V \{u}), (

ε+u (ω)
)
(V )= (ε−u (ω))(V )+ 1V (u).

Those operators are used in [10,11,7]; they give the finite difference gradieD
introduced by Picard [10], given by

DuF = F ◦ ε+u −F ◦ ε−u
for everyu ∈U andF ∈ Eb(�). Notice that for everyF , u andω we have∣∣DuF(ω)

∣∣= ∣∣D̄uF (ω)
∣∣. (22)

Remark now thatD̄uLG(u)−(ω) = 0 and D̄uZ
f,G(u)−
ω (A) = 0 for everyA sincef is

adapted. We obtain then from the definition ofh that

hu ◦ εu(ω)= 1

LG(u)−(ω)

∫
P(U)

fu ◦ εu(εAω)(Zf,G(u)−A

)′
(ω)|λ|(ω, dA),

sinceεu ◦ εA = εA ◦ εu for everyA ∈UG(u)−. We could show from this relation that

(D̄uhu)(YG(u)−)= E
f
⊗
[
D̄ufu(ω) | YG(u)−] (23)

as we showed (19). On the other hand, one can see from the Fokker–Planck equat
thatLt satisfies

Lt = 1−
∫
Ut

LG(u)−(Duhu)λ(ω, du),

that is,Lt is the stochastic exponential of the locally square-integrable martingale

Xt(ω)=−
∫
U

Duhuλ(ω, du).
t
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This may also be seen as a consequence of the classical Girsanov theory –
instance Jacod and Shyryaev [6]. Notice that the processDuhu is a predictable proces
whereas the process̄Duhu is only adapted. By using an estimation of [7] concerning
Markovian transformations – see Theorem 3.2 and its proof – and (22), we obtain

E[Lt logLt ]�
∫
U

E
′[(Duhu)

2(9G(u)−)
]
λ−(du)

=
∫
U

E
′[(D̄uhu)

2(9G(u)−)
]
λ−(du).

By using (23) jointly with the Jensen inequality, we obtain that

sup
t

E[Lt logLt ]� E

[∫
U

(D̄ufu)
2λ−(du)

]
<∞.

This concludes for the (AC) question in the case of (21), thanks to Lemma 3.1. W
turn to the general case (L2) and introduce fork ∈N:

τk = inf
{
t ∈R

+:
∫
Ut

(D̄ufu)
2λ−(du)� k

}
.

We considerf ku (ω)= fu(ω)× 1{G(u)�τk}. Thenf k is an adapted process satisfying (2
(H) and (HM). On the other hand, if we notẽωk(ω)= ω̃ ∩Uτk(ω) and

Y kt (ω, ω̃)= ε(ω̃k(ω))t (ω),

one easily shows thatP
f
⊗◦(Y kt )−1 = P

f k

⊗ ◦Y−1
t . Consider nowB ∈F such thatP [B] = 0.

The above case used withf := f k implies that

P
f k

⊗ [Y∞ ∈ B] = 0

for everyk, then we obtain that

P
f
⊗[Y∞ ∈ B] = P

f
⊗
[
(Y∞ ∈ B)∩ (τk =∞)]+ P

f
⊗
[
(Y∞ ∈ B)∩ (τk <∞)]

� P
f k

⊗
[
(Y∞ ∈ B)]+ P

[
(τk <∞)]

= P

[∫
U

(D̄ufu)
2λ−(du)� k

]
k→∞−→ 0.

This concludes. ✷
3.4. The main anticipative result

From now until the end of the paper we will assume for technical reasons tf
satisfies the additional assumption

(H′): fu(ω)= 0 for everyu: ω({u})= 1
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which implies (HM). Note that if we apply Lemma 2.1 withgu(ω) := ω({u}), then we
obtain that̃Pfω[ω ∩ ω̃ �= ∅] = 0 for everyω ∈�; this means that the transformation on
adds particles. We now turn to the anticipative part of the paper. We begin with an
lemma.

LEMMA 3.4. – Let f a process satisfying(H) and (H′). Suppose that f has
decomposition

f = f 1+ f 2, (24)

wheref 1 is a nonnegative process satisfying(L1) andf 2 is a non negative process su
that the direct transformation associated tof 2 is absolutely continuous with respe
to P. Then we have(AC).

Remark. – This lemma roughly says that if we are in case of such an a
decomposition, we do not have to worry about thef 1 part off – which gives an almos
surely finite cloud – and the (AC) problem related tof turns to an (AC)-type problem
related tof 2, which may be simpler. Hence a finite perturbation of an absolute conti
situation is still an absolute continuity situation. Notice also thatf i satisfies also(H′)
for i ∈ {1,2} since they are nonnegative processes.

Proof. –We define fori ∈ {1,2} the probabilityP̃
f i

ω ∈M1(�̃, F̃) by (8), where we
replacef by f i . We note

L2 = dP
f 2

⊗
dP

,

which exists by our assumptions. The proof of the theorem will use two remarks.✷
Remark1. – By using Theorem 3.1,̃ω is P̃

f 1

ω -almost surely finite and has a dens
{Zf 1,∞

ω (A), A ∈ P(U)} with respect to the measure|λ| onP(U) for P-almost everyω.
The additional assumption(H′) implies that this density is in fact a density with resp
to the measureλ− onP(U).

Remark2. – Remember now that the sum of two independent Poisson variab
still a Poisson variable associated with the sum of the intensities; this remark lea
for everyω ∈� andG ∈ Eb(�), we have

Ẽ
f
ω

[
G(ω̃)

]= ∫
�̃2

G(ω̃ ∪ ω̃′)P̃f 1

ω (dω̃)P̃
f 2

ω (dω̃
′).

We now turn back to the proof of the lemma. We obtain by using Remark 1 that

E
f
⊗
[
F(Y∞)

]=E

[ ∫
�̃

(∫
�̃

F (εω̃∪ω̃′ω)P̃f
2

ω (dω̃)

)
P̃
f 1

ω (dω̃
′)
]

=E

[ ∫
P(U)

(∫
F(εω̃∪Aω)P̃f

2

ω (dω̃)

)
Zf

1,∞
ω (A)λ−(dA)

]
.

�̃
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Observe now that, for anyω ∈� andA ∈ P(U), then

P̃
f 2

ω [ω̃ ∩A �= ∅] = 0

thanks to(H′). Moreover, for anyA and ω̃ such thatω̃ ∩ A = ∅, we have thatεω̃∪A =
εA ◦ εω̃. Therefore we finally come to

E
f
⊗
[
F(Y∞)

]= ∫
P(U)

E
f 2

⊗
[
F(εAY∞)Zf

1,∞
ω (A)

]
λ−(dA)

thanks to Fubini’s theorem. Now denote by{GA, A ∈ P(U)} a process satisfying

GA(Y∞)= E
f 2

⊗
[
Zf

1,∞
ω (A) | Y∞], ∀A ∈ P(U).

We obtain that

E
f
⊗
[
F(Y∞)

]= ∫
P(U)

E
f 2

⊗
[
F(εAY∞)GA(Y∞)

]
λ−(dA)

=
∫

P(U)

E
[
F(εAω)GA(ω)L2

]
λ−(dA)

=E

[
F

( ∫
P(U)

(GAL2)
′λ+(dA)

)]

by using Remark 2 for the second equality and the multiple Duality Formul
Proposition A.1 for the third one. This concludes.✷

The lemma we state now is a generalization of the last lemma, claiming (AC)
the processf 1 is no longer positive. The argument given for the last proof is the
longer applicable, since we cannot give a sense to a Poisson random measure
intensity may eventually be negative. However, we can write the decompositionf 1

into its positive/negative parts following

f 1= f 1,+ − f 1,−.

The idea of the next lemma is the following: adding particles with an intensityf is the
same as considering two successive transformations: we first add particles with in
f 1,+ + f 2 and we then kill a finite number of particles with some rateǩ to compute.
Those two steps will respectively use the results of the last lemma and Theorem 3

LEMMA 3.5. – Suppose thatf satisfies(H) and(H′) and admits a decomposition
the form(24)wheref 1 is a process satisfying(H), (H′) and(L1) andf 2 is a nonnegative
process satisfying

P
f 2

⊗ � P.

Then we have(AC).
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Proof. –We fix for a momentω such that∫
U

∣∣f 1
u (ω)

∣∣λ−(du) <∞ (25)

and consider̂Pω ∈M1(�,F) such thatλ+ is underP̂ω a Poisson random measure
(U,U) with intensity

λ̂−ω (.)=
(
f 1,+
. (ω)+ f 2

. (ω)
)
λ−(.).

We now define

ǩωu =
(
f 1,−
u (ω)

)
/
(
f 2
u (ω)+ f 1,+

u (ω)
) ∈ [0;1]

and the procesšf ω :U ×�→[0;1] given by

f̌ ωu (ω
′)= ω′({u})ǩωu ,

which satisfies (H). It may be seen that the direct transformation associated withf̌ ω. kills
a particle of an initial conditionω′ in u with the deterministic ratěkωu – remember thatω
is fixed – and almost surely never adds particles. Remark that∫

�

(∫
U

f̌ ωu (ω
′)
(
ω′(du)+ λ̂−ω (du)

))
P̂ω(dω

′)

= Êω

[∫
U

ǩωu ω
′(du)

]
+ Êω

[∫
U

f̌ ωu (ω
′)λ̂−ω (du)

]

and it may be easily seen that the second expectation is null sinceλ̂−ω is a diffuse measure
Hence the last expression is equal to∫

U

ǩωu λ̂
−
ω (du)=

∫
U

f 1,−
u (ω)λ−(du) <∞.

This implies thatf̌ ω satisfies (L1) withP := P̂ω andλ−(du) := λ̂−ω (du). Consequently
by using Theorem 3.1 in the setup of the Poisson space(�,F, P̂ω), we obtain that ther
exists a positive, measurableĽω ∈L1 (�,F, P̂ω) such that for everyF ∈ Eb(�):∫

ω′∈�

(∫
�̃

F (εω̃ω
′)P̃f̌

ω

ω′ (dω̃)

)
P̂ω(dω

′)= Êω

[
FĽω

]
.

On the other hand, we can show by standard arguments thatω′ is underĽωP̂ω(dω
′) a

Poisson random measure with intensity(
1− ǩω.

)
λ̂ω(.)= (f 2

. (ω)+ f 1,+
. (ω)− f 1,−

. (ω)
)
λ−(.)= f.(ω)λ−(.).

This roughly says that if you kill the particles of a Poisson random measure with inte
m(du)with a deterministic ratek, one independently of each others, then the final sys
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has the distribution of a random Poisson measure with intensity(1− k)m(du). This
remark implies that for everyF ∈ Eb(�), then∫

�

F(ω′)Ľω(ω′)P̂ω(dω′)= Ẽ
f
ω

[
F(ω̃)

]
, (26)

whereω̃ ∈ �̃ is identified to an element of� in the last expression. All what we told un
now is true forω satisfying (25), that is, forP-almost everyω thanks to the hypothesi
Let us now introduce the probabilitŷP⊗ ∈M1(�

2,F ⊗F) defined by

P̂⊗(dω′, dω)= P̂ω(dω
′)P(dω).

An application of Lemma 3.4 withf := f 1,+ + f 2 gives that

P̂⊗ ◦ (εω′ω)−1� P (27)

and we noteL the associated density. LetG a random variable such that

G(εω′ω)= Ê⊗[Ľω(ω′) | εω′ω],
we conclude by using (26) and then (27) following

E
f
⊗
[
F(Y∞)

]=E

[∫
�

F(εω′ω)Ľ
ω(ω′)P̂ω(dω′)

]
= Ê⊗[F(εω′ω)G(εω′ω)]
=E

[
F(GL)

]
.

It is over. ✷
The main result is an exploitation of the above Lemma 3.5 in the case of an ad

processf 2, whose related absolute continuity problem is solved thanks to Theorem

THEOREM 3.3 (Anticipative theorem). –Assume thatf satisfies(H) and (H′) and
has a decomposition

f = f 1+ f a
wheref 1 is a process satisfying(H), (H′) and (L1) and f a is a nonnegative adapte
process satisfying(L2). Then we have(AC).

The proof is a direct implication of Lemma 3.5 and of the adapted Theorem 3
tells that a system perturbated by an adapted cloud – which may be infinite – a
independent, almost surely finite anticipative cloud has the wished absolute con
property. We give now an example. Remember that our notion of adaptation is r
with the initial choiceof our direction; the fact that it is a choice may be useful.
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4. Example and sufficient conditions to solve the original problem

We study in this section some examples of applications of the anticipative T
rem 3.3 in the particular setup of the canonical example of Section 1.2. in this
we haveU = [0;1] × (Rd\{0}) for somed ∈ N

∗. This space is equipped with a me
sureλ− having the product formdt µ(dx) for someσ -finite, positive measure onRd

satisfying (6). The direction is chosen following

Ut = {[0;1] × {x: |x|� 1/t}}
and we can define a Lévy processX : [0;1] × � → R

d with Lévy measureµ
following (7). We are interested with a particular type of applications: let give
bounded, measurable mappinĝf :U × R

d → R
+. We consider a processZ : [0;1] ×

�→R
d and define an intensity processf :U ×�→R

+ following

fu(ω)= f̂u(Z1(ω)
)(

1−ω(u)). (28)

It obviously fulfills (H′) and, by assuming that̂f is bounded on eachUt , it satisfies
also (H). The question that we will investigate in this section is: letZ be a given process
can we find sufficient conditions on̂f to have that the direct transformation associa
with the processf given by (28) satisfies the (AC) problem?

The study of this example is divided into three parts. The first one gives a suffi
condition for a general processZ, up to some restrictions on̂f . In the second part
Section 4.2, we will study the sophisticated example of a processZ which is the solution
of an SDE driven by the jumps of the Lévy processX given by (7) and we will deduc
a sufficient condition thanks to the anticipative Theorem 3.3. For sake of clearnes
section is made in aL2 framework. In the last Section 4.3 we turn back to the orig
problem of our introduction and find some sufficient conditions to solve it in a largeLp

context forp � 1.

4.1. General framework of the example

From now,C will denote a finite, positive constant which may change from one
to another. We do not assume here thatZ has a special shape and then we have to
with a direct,a priori anticipative transformation. Hence we want to use the anticipa
Theorem 3.3 and find a decomposition off into a positive, adapted process satisfy
the (L2) assumption and a processf 1 satisfying (L1).

We assume that there exists a collection(Zt)t∈R+ of processes on[0;1]×� satisfying
(i) for every t , Zt1 is aFt -measurable random variable,
(ii) (t,ω) �→Zt1(ω) is measurable.

We outline that(Zt)t may be arbitrary chosen provided that it satisfies both last po
We define

f asx(ω)= f̂sx
(
Z

1/|x|
1 (ω)

)(
1− ω(u)). (29)

It is obvious that it is a non negative,(Ft )t -adapted process since the gauge functioG
of the direction(Ut)t is given byG(s, x) = 1/|x|. Let us introduce a first assumptio
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on f̂ :

u �→ (
sup
x

∣∣f̂u(x)∣∣) ∈L2(U,U , λ−). (30)

This assumption implies thatf a fulfills the (L2) assumption. We now definef 1 =
f − f a which obviously satisfies (H),(H′) and aim at finding sufficient condition t
ensure that it satisfies (L1). Notice that this process has no reason to be non nega
this illustrates why Lemma 3.5 is actually an improvement of Lemma 3.4. We intro
a new Lipschitz assumption on̂f : we assume that there exists a measurable mapp̂c
onU such that for everyu in U , f̂u is a Lipschitz function with constant̂c(u). We will
assume that̂c satisfies the (p-Lip) assumption given by

(p-Lip): ĉ ∈Lp(U,λ−)
for somep� 1. In the following,q will denote the conjugate ofp given by

1

p
+ 1

q
= 1.

Thanks to Hölder’s inequality, we obtain thatf 1 satisfies (L1) if∫
Rd

E
[∣∣Z1−Z1/|x|

1

∣∣q]µ(dx) <∞. (31)

In the two following examples of Sections 4.2 and 4.3, we will give us the processZ. By
choosing a good collection(Zt)t , we will give sufficient conditions for the (AC) proble
by proving that (30), (p-Lip) and (31) assumptions are in force for somep � 1.

4.2. The case of Z satisfying an SDE

In this example,Z is a solution to a SDE driven by the jumps ofX: we give us two
measurable mappingsg :U ×R

d →R
d andh : [0;1] ×R

d →R
d such that:

(i) There existsc ∈ L2(U,λ−) such that for every(u, a, b) ∈U ×R
d ×R

d , then∣∣g(u, a)− g(u, b)∣∣� c(u)|a − b|,
where|.| stands for the Euclidean norm inRd .

(ii) There existsd ∈ L1([0;1], dt) such that for every(s, a, b) ∈ U ×R
d ×R

d , then∣∣h(s, a)− h(s, b)∣∣� d(s)|a − b|.

(iii)
∫
U |g|2(u,0)λ−(du) <∞ and

∫ 1
0 |h|(s,0) ds <∞.

We consider the SDE given by

(E): Zr(ω)= 1+
r∫ ∫

g(s, x,Zs−)λ(ω, ds, dx)+
r∫
h(s,Zs−) ds, r ∈ [0;1].
0 x∈E 0
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Under the assumptions (i) and (ii), one can show by a Picard iteration that this eq
has an unique càd làg solution satisfying

E
[

sup
0�s�1

|Zs |2]�C <∞. (32)

Let give usf̂ . The question is to solve the (AC) problem related with the processf given
by (28). We will here restrict our study to the case off̂ satisfying (30) and checkin
(2-Lip). For t ∈ R

+ we introduce the processZt : [0;1] × �→ R
d solution to the

equation

Ztr(ω)= 1+
r∫

0

∫
|x|� 1

t

g
(
s, x,Zts−

)
λ(ω, ds, dx)+

r∫
0

h
(
s,Zts−

)
ds, r ∈ [0;1].

Notice that for everyr, t , the random variableZtr is Ft -measurable, that is, it depen
of the jumps ofX having a size greater than 1/t . One sees easily that such a collect
(Zt)t satisfies the points (i) and (ii) of Section 4.1 and we finally definef a by (29). The
last thing to prove is the (31) sufficient condition in the case ofq = 2. Letr ∈ [0;1] and
t ∈R

+; we set

V t
r = E

[∣∣Zr −Ztr ∣∣2]
we have

V t
r �C

(
E

[∣∣∣∣ ∫
([0;r]×Rd)∩Ut

(
g(s, x,Zs−)− g(s, x,Zts−))λ(ω, ds, dx)∣∣∣∣2]

+E

[∣∣∣∣ ∫
([0;r]×Rd)\Ut

g(s, x,Zs−)λ(ω, ds, dx)

∣∣∣∣2]+E

[( r∫
0

d(s)
∣∣Zs −Zts∣∣ds

)2])

=C(E1+E2+E3)

whereE1 toE3 are the respective expectations of the above sum. By using the isom
nature of the Ito stochastic integral and the Lipschitz assumption (i) we obtain tha

E1=
∫

([0;r]×Rd)∩Ut
E
[∣∣g(s, x,Zs−)− g(s, x,Zts−)∣∣2]λ−(ds, dx)

�
∫

([0;r]×Rd)∩Ut
c2(s, x)E

[∣∣Zs− −Zts−∣∣2]λ−(ds, dx)
=

r∫
0

( ∫
{x: |x|�1/t}

c2(s, x)µ(dx)

)
V t
s ds.

By using (i) and (iii) we obtain that
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. We
E2 �C

( r∫
0

( ∫
{x: 0<|x|<1/t}

c2(s, x)µ(dx)

)
E
[

sup
0�s�1

|Zs|2]ds
+

∫
[0;1]×{x: 0<|x|<1/t}

∣∣g(u,0)∣∣2λ−(du))

�CP(1/t)

where for anyT ∈R
+ we note

P(T )=
( ∫
[0;1]×{x: 0<|x|<T }

(
c2(s, x)+ ∣∣g(s, x,0)∣∣2)ds µ(dx)).

By using the Cauchy–Schwarz inequality with respect to the finite measured(s) ds on
[0;1] we obtain that

E3 � C

r∫
0

d(s)V t
s ds.

We deduce from those estimations that for everyr ∈ [0;1] we have

V t
r � CP(1/t)+C

r∫
0

(
d(s)+

∫
Rd

c2(s, x)µ(dx)

)
V t
s ds

and by a Gronwall argument this gives by using the assumptions onc andd that

V t
1 �CP(1/t).

Finally, the sufficient condition (31) giving (AC) is implied by∫
Rd

P
(|x|)µ(dx) <∞. (33)

We give a short example in which we may explicit the above sufficient condition
consider thatµ has the form

µ(dx)= 1{|x|�1}
dx

|x|d+β

for someβ ∈]0;2[. In this case, the processX given by (7) is a truncated,β-stable
isotropic Lévy process. We assume moreover thatd ≡ 0 and

sup
∣∣c(s, x)∣∣+ sup

∣∣g(s, x,0)∣∣� C|x|α

s s
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for someα ∈R. The assumptions (i) and (iii) of the beginning of this section are in f
if

α >
β

2
.

On the other hand a short computation gives that

P
(|x|)�C

(|x| ∧ 1
)2α−β

and then (33) is in force if

α > β.

4.3. The case of Z = X: coming back to the original problem

Let us come back to our original motivation exposed in the introduction and we
here use the notation of this first paragraph of the paper. Notice that one may ch
triplet (�,F,P) equal to the Poisson space of the canonical example with a measµ
given by

µ(dx)= dx

|x|d+β (34)

and the processX may be chosen as the one given by (7): it is a Lévy, isotropic
β-stable process. We now show how some sufficient conditions to this original pro
may be deduced from our study of the (AC)-type problem examinated in Sectio
thanks to Proposition 4.1, we will simulate the perturbation of the paths ofX.(ω) by the
path of	(X1(ω))X

′
.(ω

′) thanks to an anticipative perturbation of the Poisson spac
a direct transformation associated with some processf . This intensityf will have the
form (28) withZ ≡X therefore we will use the preliminary results of Section 4.1.

Let us note

µ′(dx)= dx

|x|d+β ′
the Lévy measure ofX′. We will assume that 0< β ′ < 1 and that	 is a bounded
Lipschitz function for the rest of the paper. The assumption onβ ′ implies thatX′ is a
finite variation process and in fact it is the convergent sum of its jumps. The distrib
of the processX′ is defined by the characteristic function

E
′[exp

(
i〈λ,X′

1〉
)]= exp

( ∫
Rd

(
ei〈λ,x〉 − 1

)
µ′(dx)

)
(35)

for everyλ ∈ R
d . Letω ∈�. For s ∈ R

+ we denote byH(s) the scalar multiplicator by
s on R

d . It is obvious that for everyz ∈ R
d , the process{	(z)×X′

t , t ∈ [0;1]} is under
P
′ a Lévy process with a Lévy measure equal to

µ′z = µ′ ◦
[
H
(
	(z)

)]−1
. (36)
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Now we define the measureλ−z on U by λ−z (ds, dx) = ds µ′z(dx) and for z ∈ R
d we

definef̂.(z) following

f̂sx(z)= λ−z (ds, dx)
λ−(ds, dx)

= ∣∣	(z)∣∣β ′ × |x|β−β ′ . (37)

We then define the processf by (28) with Z ≡ X. The next proposition links th
original problem and the (AC) problem – the processX̄ is given in the first part o
the introduction:

PROPOSITION 4.1. – Then we have the following distribution equality:

P
f
⊗ ◦

{
Xt(εω̃ω), t ∈ [0;1]}−1 = P

′ ◦ {X̄t , t ∈ [0;1]}−1
.

In particular, sufficient conditions to the original problem may be given by
sufficient conditions to the (AC) problem of Section 4.1. This proposition may be qu
proven since conditionally onω, we add in the right side a finite variation Lévy proce
having a Lévy measureµ′	1(ω)

. In the left side, we include – and never remove, tha
to the(H′) assumption – the particles of a Poisson random measureω̃ associated with
the intensity

λ−	1(ω)
(ds, dx)= ds µ′	1(ω)

(dx)

in the set {
(s, x) ∈ [0;1] × (Rd\{0}): :Xs(ω)= x}.

This is the same than adding to the pathX.(ω) the jumps of a (finite variation) Lév
process having a Lévy measureµ′	1(ω)

and this concludes. Observe now that for everω∫
(s,x): |x|>1

fsx(ω)λ
−(ds, dx) <∞.

By using Lemma 3.4 with

f 1
sx := 1{|x|>1}fsx (38)

andf 2 := f − f 1 we obtain that the (AC) problem may be reduced to the case
truncatedf := f 2: this philosophically tells that the large jumps ofX′ – which are
almost surely finite – are not involved in the absolute continuity question and from
we study the (AC) problem associated withf := f 2, which is null if |x|> 1. This comes
back to consider that̂fsx and its Lipschitz factor̂c(s, x) are null if |x|> 1. For t ∈ R

+,
we introduce the process:

Zts(ω)=
∫

[0;s]×{1/t�|x|�1}
xλ(ω, ds, dx)+

∫
[0;s]×{|x|>1∨(1/t)}

xλ+(ω, ds, dx). (39)

We will use the results of Section 4.1 in the following order:
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– We satisfythat the sequence(Zt)t given by (39) satisfies both points (i) and (ii)
Section 4.1.

– We give sufficient conditions on	, β andβ ′ to have the condition (30).
– We give sufficient conditions on the same objects to have the (p-Lip) assum

for somep� 1.
– We discuss the last condition (31) with the values ofq given by the last point.

The first point is easily checked.
Second point.A simple computation shows that (30) is in force if

β ′ <
β

2
(40)

since	 is bounded.
Third point. We now have for which values ofp the Lipschitz factorĉ of f̂ is in

Lp(U,λ−). We now assume that

z �→ ∣∣	(z)∣∣β ′ is a Lipschitz function. (41

A simple computation shows that one can set

ĉ(s, x)= C|x|β−β ′1{|x|�1}.

Henceĉ satisfies (p-Lip) if

p >
β

β − β ′ . (42)

Note that (40) implies that the right side term is smaller than 2.
Fourth point.Notice that, thanks the truncation argument (38), the integral of the

condition (31) shall be considered on the domain{(s, x): |x|� 1}. For |x|� 1 we have

E
[∣∣Z1−Z1/|x|

1

∣∣q]=E

[∣∣∣∣ ∫
[0;1]×{|y|�|x|}

yλ(ω, ds, dy)

∣∣∣∣q]

�CE

[( ∫
[0;1]×{|y|�|x|}

|y|2λ+(ω, ds, dy)
)q/2]

by using the Burkholder–Davis–Gundy estimates for the last inequality. We
Lemma 5.1 witha := 1, b := q/2 andf (s, x)= |x|2 to estimate the above expectatio
We obtain that it is smaller than –[ . ]2 is given by (A.2) and we convent th∑−1

0 (. . .)= 0:

C

( [q/2]2−1∑
k=0

( ∫
{|y|�|x|}

|y|2k+1
µ(dy)

) q

2k+1 +
∫

{|y|�|x|}
|y|qµ(dy)

)

=C
(( [q/2]2−1∑ |x|(1− β

2k+1 )×q
)
+ |x|q−β

)

k=0
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provided thatq > β to ensure the existence of the above integrals. A simple comput
of those terms shows that the necessary condition (31) giving (AC) is satisfied if

β <

(
2q

q + 2
∧ q

2

)
. (43)

Conclusion.Remind that we are free to chosep provided that it satisfies (42) and w
actually have to do the best choice implying that (43) is the weakest possible, that
best value ofp to have the biggest right side term of (43). Note that the functionsq
of the right side of this relation are continuous, increasing functions. On the other
we have

p ↓ β

β − β ′ ⇔ q ↑ β

β ′
> 2,

the last inequality is due to (40). This implies that

2q

q + 2
↑ 2β

β + 2β ′
and

q

2
↑ β

2β ′
.

By using those approximations in the (40) and (43) relations, we respectively obta
relations

β ′ <
β

2
, β < 2(1− β ′), β ′ <

1

2
.

It may be easily seen that the two first conditions imply the third one ifβ ∈]0;2[. We
formulate all the work of this section in the following proposition.

PROPOSITION 4.2 (Sufficient conditions for the original problem). –Assume tha
	 :Rd → R is a bounded function satisfying the Lipschitz assumption(41). Assume
that

β ′ <
(
β

2

)
∧
(

1− β

2

)
, (44)

then the original problem is solved and we have the wished absolute continuity re

We conclude by some comments:
– in an adapted context, for instance if	 is a constant function, the only need

condition is the first half (40) of (44) thanks to the adapted Theorem 3.2. It sh
be possible that it is also a necessary condition in this case.

– The domain ofβ for which our conditions are the best possible is forβ ∈]0;1]. In
this case, the (44) system turn simply to (40), as in the adapted case.

– The second part of the (44) condition is a purely anticipative one. It is a d
consequence of our method, namely of the necessity to have an almost sure
anticipative part of the cloud. It illustrates the limit of our method because the c
we are to the Brownian caseβ = 2, the smallerβ ′ should be. It may be possible th
this condition could be relaxed.
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Appendix A

A.1 Duality Formulae

We give here without proof the Duality Formulae of [10].

PROPOSITION A.1 (Duality Formula). – Single version: Let Z :U × � → R a
positive process, then

E

[∫
U

zu|λ|(ω, du)
]
= E

[∫
U

zu ◦ εu|λ|(ω, du)
]
.

Multiple version: Let ZA, A ∈ P(U) be a positive process; we denote byZ′A the
P(U)-indexed processZA ◦ εA. Let5 the mapping fromP(U) × � in itself defined
by5(A,ω)= (A, εAω). Then we have∫

P(U)×�
(G ◦5)(A,ω)ZA(ω)ν(dA,dω)=

∫
P(U)×�

G(A,ω)Z′A(ω)ν(dA,dω).

By using the single version, one easily satisfies that for every|λ|-integrable
processesz andg, one has

E

[∫
U

guD̄uzu|λ|(ω, du)
]
= E

[∫
U

D̄uguzu|λ|(ω, du)
]
.

A.2 Moment estimation

We will here use that for anyα � 1 we have(∑
i

xi

)α
�
(∑

i

xαi

)
(A.1)

for any sum of positive(xi)i . Forq ∈R
+, we note

[q]2 = inf
{
n ∈N: q/2n � 1

}
. (A.2)

LEMMA A.1. – Letf :U→R
+ a measurable mapping. Let us note fora, b ∈R

+

I±(a, b)= E

[(∫
U

f a(u)λ±(du)
)b]

.

Then – we convent that
∑−1

0 (. . .)= 0:

I+(a, b)�C

( [b]2−1∑
k=0

I−
(

2ka,
b

2k

)
+ I−(ab,1)

)
.
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Proof. –We have thanks to the Burkholder–Davis–Gundy estimations that for
a, b ∈R

+,

I+(a, b)� C

(
E

[(∫
U

f a(u)λ(ω, du)

)b]
+ I−(a, b)

)

� C
(
I+(2a, b/2)+ I−(a, b)). (A.3)

Observe now that for anyc ∈R
+ andd ∈ [0;1] we have

I+(c, d)� I+(cd,1)= I−(cd,1). (A.4)

This is a direct consequence of (A.1). The result is obtained by iterating
until having the second exponent of theI+ term smaller than 1. One conclud
with (A.4). ✷
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