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ABSTRACT. — Let X be a real Lévy process and I&t" be the process conditioned to stay
positive. We assume that 0 is regular feroo, 0) and (0, +00) with respect toX. Using
elementary excursion theory arguments, we provide a simple probabilistic description of the
reversed paths ok and X' at their first hitting time of(x, +oc0) and last passage time of
(—o00, x], on a fixed time intervdl0, ¢], for a positive levek. From these reversion formulas, we
derive an extension to general Lévy processes of Williams’ decomposition theorems, Bismut's
decomposition of the excursion above the infimum and also several relations involving the
reversed excursion under the maximum.
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RESUME. — SoitX un processus de Lévy &' le méme processus conditionné a rester positif.
On suppose que 0 est régulier pduroo, 0) et (0, +00) par rapport aX. Par des arguments
simples de théorie des excursions, nous décomposons la loi des trajectdiresXieretournées
aux temps d’entrée dér, +o0) et de sortie dg—oo, x]. De ces formules de reversion, on
déduit une extension au cas des processus de Lévy généraux, des théoremes de décomposi
de Williams, du théoréme de décomposition de Bismut de I'excursion au dessus du minimum
ainsi que plusieurs relations faisant intervenir I'excursion sous le maximum retournée.
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1. Introduction

Let (X,),>0 be a real Lévy process, that is a real valued process with homogeneous
and independent increments. The supremum (respectively infimuik) @i the time
interval [0, ] is denoted bys, (respectivelyl,). We assume that 0 is regular f@, +o0)
and(—o0, 0) with respect taX. A classical result says that — I (respectivelyX — §)
is a strong Markov process for which O is regular (see Bingham [5] or Bertoin [4]
Chapter 6 for a proof). Let us denote bhy(respectivelyL*) the local time at 0 o — [/
(respectivelyX — S): they are uniquely defined up to a multiplicative constant and their
normalization is specified in Proposition 2.3.

As Rogers noticed in [17], as soon as the Lévy measure charges the positive number
X — S may hit zero byX jumping across the level of its previous maximum. The classical
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It excursion measure of — X loses the information about this jump. Let us introduce
the relevant definition of the excursion measure under the maximum (respectively abov
the infimum) denoted byv* (respectivelyN). It has the property to record the final jump

of the excursion, which represents the amount the excursion overshootsivaitzins a

new maximum (respectively infimum). Le¢;, d;), i € T (respectively(g;, d;), j € Z%)

the excursion intervals of — I (respectivelyS — X) above 0. We define the excursions
above the infimum and under the supremum by

a)i(s)=X(gl‘+S)/\d,' _Xg,-a i GI;
a)f(s):X(ngrs)Adj —ng, ] el*.

Then, the point measures

Zg(l'g,"wi) and Z 6(L§j,wj)

ieT JET*

are distributed respectively dg<, N (dl dw) and1;<,«N*(dl dw), whereN and \*
are Poisson measures with respective intensitiéé(dw) anddl N*(dw), and where

n=inf{r > 0: N ([0, 1] x {¢(w) = 00}) > 1},
n* =inf{r > 0: N*([0, 1] x {¢(w) =00}) > 1}

(¢ (w) being the lifetime of the patl). The random variables andn* have the same
law as respectively.., andL? , that are exponentially distributed or infinite a.s.

In Section 3, Theorem 3.3 provides a decomposition of the law of the excursion undel
the supremum reversed at its final jump: More precisely, we decompose the law o
(W (w) — O (w)—s)—; 0 < s < ¢ (w)) underN*(-N{w, > 0}), in terms of the law ofX and
its Lévy measure. Theorems 3.2 and 3.1 give similar result&¥for— X _,)_; 0 < s <
T) underP(- | X;, > x) and(X,, ) — X (o, (1)—s)—; 0 < s < oy (2)) underP(- | X, ) > x),
where we have set for any, ¢ > O:

7, =inf{s >0: X, >x} and o,(r) =sup{s €[0,7]: X, <x}.

Williams in [19], and many authors after him, explored the connections between the
Brownian motion, the three-dimensional Bessel process and the Brownian excursion (se
for instance Pitman [16] and Bismut [6]). Many of these identities in the Brownian case
hold in a more general setting for totally asymetric Lévy processes: see Bertoin [2] for
a generalized Pitman theorem for spectrally negative Lévy processes and Chaumont [7
9] for Williams’ theorems and Bismut's decomposition in the spectrally positive case.
Let us mention that Chaumont has also explored the stable case in detail in [10
and [7], providing several path-constructions and identities concerning the stable
meander, the normalised excursion and the stable bridge. In these results the ro
of the three-dimensional Bessel process is played by the Lévy process conditione
to stay positive. This process, denoted ¥y, has been introduced by Bertoin in a
general setting (see [3]). Bertoin’s construction Xf is recalled in Section 2.2. We
use it in combination with Theorems 3.2 and 3.1 to get in Section 4.1 the generalizec
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first Williams’ decomposition theorem, then Bismut’s decomposition of the excursion
above the infimum in Section 4.2 and the second Williams’ decomposition theorem in
Section 4.3.

Let us explain more precisely these results: For asy0, we defineU;* = 11 if
L% >tandU; = +oc if not. The processU;"; t > 0) is a subordinator (see Bertom [4],
Chapter 6) and its drift coefficient is denoted &Y. A classical result due to Kesten
(see [11]) ensures th&(X, = x) > 0 iff 4* > 0. We assume that* > 0 and thatX
does not drift to—oo. Then, we can show that! = sup(s > 0: X! < x} is finite a.s.
Theorem 4.2 show that

P(X;T =x) =P(X, =x)
and that(x — X(;,_s—; 0< s < 7,) underP(- | X, = x) has the same law &% [;
<o) underP(- | XTT =Xx).

We also prove in Theorem 4.5 a path decomposition of the excursion above the
infimum similar to Bismut’s decomposition of the Brownian excursion: we show that
for any nonnegative measurable function@lsind D on the space of cadlag paths with
a finite lifetime and for any nonnegative measurable funcjion

t(@)
N( / dt G(w5;0< s <1) fw) D(wp45; 0 < s < E(w) — t))
0

= [ ax Feow WEIG(X]; 05 <o) | X], =a]E[DX 05 <),

wherez_, = inf{s > 0: X, < —x} and whereu* is the co-excessive version of the
density of the potential measure associated with the suborditi&tor

Section 4.3 is devoted to the proof of Theorem 4.10 that can be seen as an analogue f
general Lévy processes of the second Williams' decomposition theorem that originally
concerns the Brownian excursion split at its maximum. Let us describe our result: Fol
anyx >0, we setr! =inf{s > 0: X! > x}. Proposition 4.7 shows that

P(x!,=x)>0 iff 4*>0

Let us denote byX' the processX conditioned to stay negative (that is defined in
Section 2.2); we writeg(w) the instant when the excursian attains its maximum.
Theorem 4.10 shows the law of;,, underN admits a density with respect to Lebesgue
measure that we specify. Und8i(- | wg,) = x), the processego;; 0 < s < g(w)) and
(@543 0 < s < ¢ (w) — 2(w)) are mutually independent. Furthermore,

— the processw,; 0 < s < g(w)) is distributed agX[; 0 < s < t) underP(. | Xﬂ =
x);

—the law of(ws43(w); 0 < s < ¢(w) — g(w)) is absolutely continuous with respect to
the law of (X}; 0 < s < r,) (with an evident notation fot',) and the corresponding
density has the forrrp(Xj¢ ), where the functiow is specified.
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Let us mention that we provide two other path decompositions that concern the
excursion above the infimum (Theorem 4.6) and the pro(:HgsO <s < o,j) when

X', > x (Theorem 4.1).

2. Preliminary results
2.1. Notation and basic assumptions

In this section we state our notation and the assumptions made at different stages of tt
paper. We also recall fondamental results of fluctuation theory that are our starting-poin
and we give some simple facts concerning excursion theory applied to Lévy processe:
that is the main tool we use.

We begin with some notations concerning the canonical spaceR s the space
of right-continuous functions with left limits frond0, +o0) to R (the so-called cadlag
functions space) endowed with the Skorokhod'’s topology.Eettand for its Boreb -
algebra. For any path in Q we define its lifetime; (w) by inf{r > 0: w(s) = w(¢),Vs >
t}, with the usual convention iff= co. For any times > 0, we denote the jump @b at
t by Aw(t) = w(t) — w(t—); we also define the path respectively stopped atopped
just beforer, reversed at and reversed just beforeby

w(-Nt)= (a)(s AL); s> 0), w(-ANt—)= (a)(s At) = Ao ()L 100 (s); s = O),
& =(w)—w(t—s5)-);s=0), & =& —Aw@),
with the conventionw (s—) = w(0) for any non-positive real numbetr When¢ (w) is
finite, ®*® is well defined and simply denoted ldy. We use a non-standard notation
for the shifted path at timedefined by

wob,=(w(s+1)—w(t);s >20).

For anyx > 0, we denote by, (w) and z_, (w) the first hitting time of respectively
(x, +o0) and(—o0, —x):

T (@) =inf{s > 0: w(s) > x}, T (@) =inf{s > 0: w(s) < —x}
(with the usual convention ifif = +o00). For any timer > 0, we also denote by, (7, w)
ando_, (¢, w) the last passage time in respectivelyoco, x] and[—x, +o0) on the time
interval [0, ¢]:
o, (t,w) =sup{0<s <t: w(s) <x}, o_(t,w)=sup{0< s <1: w(s) > —x}
(with the convention sufd = +o0). We writeo, (w) = lim;_, o, 0. (¢, ®), the limit being
taken in[0, +oc]. Next, we denote respectively tgyt(a)) andg,(w), the last infimum

time and the last supremum time ofbeforez:

g,(w) =sup(s €[0,1): [itl)”lf]a) =w(—)Aw(s)}
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and

g,(w) =sup{s €[0,1): supw = w(s—) VvV w(s)}.
[0.1]

We also write g(w) = Iim,_>+oogt(a)) and g(w) = lim,_, ,, g,(w) (note that these
guantities may be infinite).

We denote byX the canonical process d: X,(w) = w(¢t) and we consider the
probability measurd® on (2, ) under whichX is a Lévy process started at 0, with
characteristic exponeni:

E[¢* ] =e®, >0, 1eR.

By the Lévy—Khintchine theoremy; has the form
w@):um+4m?+/nahx1—a”+¢m¢ka, L eR,

whereq is a real number, is non-negative and the Lévy measurés a Radon measure
on R not charging 0, which satisfies

/numuAm5<+m.

If J ={s>0: AX, # 0}, then the point measur¥ (ds dr) = >",., 8¢.ax,) IS @ Poisson
measure with intensitys w (dr).
Let us recall some path-properties of Lévy processes. For a1y, we have

X (x,;0<s <)

(see Bertoin [4]). This identity is refered to as the “duality property”.
In the whole paper (Section 3 excepted), we make the following assumption:

Assumptior(A). — The point 0 is regular fo¢0, +00) and for (—oo, 0) with respect
to X.

(In particular X cannot be a subordinator or a compound Poisson process.) As 8
consequence of (A), we recall the following result (see Millar [15]): For anyO,
the Lévy process( reaches its infimum (respectively supremum)[0r¢] at a unique
instant that must bg (X) (respectivelyg, (X)).

For everyr > 0, we write

S,=supX,, I,= inf X,.
s€[0,1] s€[0,1]

It is well-known thatX — § and X — I are strong Markov processes (see Bertoin [4],
Chapter 6). Assumption (A) implies that O is regular for itself with respect to both these
processes. Rogers has shown in [17] that this implies

P(3r e (0,+00): X, =1,_<X,)=0 (1)
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and
P(3r € (0, 4+00): X, =8,_<S,)=0. 2

Let us recall briefly the proof: we only need to show for any 0

E {Z 1{x.<_—1s_}1(a,+oo>(AXS)} =0.

seJ

Apply the compensation formula (see Bertoin [4], p. 7) to get

+00
E |:Z 1{Xs_:1.c—}1(8,+oo)(AXs)] = 77((87 +OO)) / ds P(Xs = Is)
seJ 0
But the duality property implies for any> 0, P(X, = I,) = P(S, = 0) = 0, because 0
is regular for(0, +00). A similar argument proves (2).0

We denote the local times &f — 7 andX — S at the level 0 by(L,),>0 and(L}),>o.
They are uniquely determined up to a multiplicative constant specified in a forthcoming
lemma. The limit in[O, +-oc] of L, (respectivelyL’) whent goes to infinity is denoted
by L (respectivelyL? ). The quantityL ., (respectivelyL? ) is a.s. finite or a.s. infinite
according asy drifts or not to+oo (respectively—oo). If L, (respectivelyL? ) is finite
a.s., then it is exponentially distributed with parameter denoteg (rgspectivelyp*).

Eg. (1) and the dual resuR(3r € (0, +o0): X, = S,_ > X;) = 0 imply that P-
a.s. the setgs > 0: X, > I} and{s > 0: X, < S,} are open sets (we have denoted
(gi,di),i eTand(g;,d;), j € I* their respective connected components). Let m denote
the Lebesgue measure @& The duality property and Assumption (A) imply that
ms>0: X,=85)=m(s >0: X;,=1,)=0. Thus,

P-a.s. n‘(R\ U(g,-,d,-)) = m(R\ U (gj,dj)) =0. (3)

ieT JjeL*

Let N and N* be the excursion measures &f above its infimum and under its
supremum as defined in the first section. Observe that as soon as the Lévy measure
chargeg—o0, 0) (respectively(0, +00)), the set of excursions ending with a negative
jump (respectively positive jump) has a positivemeasure (respectively*-measure).

But thanks to (1) and the dual result, we see that excursions above the infimum and und
the supremum leave 0 continuously.

Let (L;1),>0 and(L¥~1),0 be the right-continuous inverses bfand L*:

L7t =inf(s >0: L, > 1}, Lt =inf{s >0: L* > 1}
(with the convention infl = co). Recall thatP-a.s.

UatLyh=U.d) and |J@: =L ™= (g.d). @)

s=>0 iel s>0 jeT*
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For anyt > 0 we defineU; = —XL71 if Lo >t andU, = +o0 if not. In a similar
way, we defineU; = X, .1 if L7, > andU = oo if not. The processe€l 1, U)
and(L*~, U*) are called the ladder processes. They are two-dimensional subordinator:
killed at respective rateg and p*; their bivariate Laplace exponents are denoted by
k(a, B) = —logE [exp(—a L' — BU1)] and
K*(a, B) = —logE[exp(—aL; ™t — BUT)]

(see Bertoin [4], Chapter 6 for a detailed account). Next, we define the two potential
measures/ andi/* associated witl/ andU*:

{ JaU(dx) f (x) =E[fy™ dv f(U,)],

JoU(dx) f (0) =E[fo ™ du f(U})].

Let 4* be the drift coefficient of the subordinatdr*: d* = limg_ . «*(0,8)/B.

We recall the following result, due to Kesten [11] (see also Bertoin [4], Chapter 3,
Theorem 5): assume thét is positive, and let:* : (—oo, +00) —> [0, +00) be the co-

excessive version of the density@f. Thenu* is continuous and positive aif), +o0),
u*(0") = 1/d*, and

P(X. =x)=d*u*(x), x>0,

where for convenience we write, instead ofz, (X). We prove the following simple
lemma that will be used in Section 4.

LEMMA 2.1.— AssumégA) and suppose that* is positive. Then for any nonnegative
measurable functional’ on €2,

E

L%, +0oo
/du F(XA/\Lzl)‘| = /dx W (X)E[F(Xar) | Xp, = x].
0 0

Proof. —SetA = f0+°° dx E[F (X .Ar,); X;, = x] and for any positive number define
H, = L} . Thanks to (A), we check path by path that
P-as. on {r,<oo}, Li‘=rt,.
Thus

+00
A= /de[F(X_/\LZ—l);XrX=X].
0 X

Denote byC the random sefx > 0: X, = x} and define the measurgsandv by

{u(dX) = lc(x)m(dx),
Jv(duw) f(u) = [ u(dx) f(Hy).
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Then,

A= E[ / M(dx)F(XAALZl)} = E{ / V(du)F(X , «1)|. (5)
[0.500) [0,L%)
For any positive number,
U([O, a]) = m({x = 0: er =X; Hx < Cl})
=m({x >0: X, =x; 7. <L) =m(C N[0, U}].
Let us first consider the casl) < oo: If there exists some in [0, a] such that
x e (Ur Uy, then,t, = L*tandU; = X,, > x. Thus,

U wi. uHceonio vyl

0<s<a

Letx beinC° N[0, U}]. Then,X, > x. By (2), it follows thatr, must be the end-point
of some excursion interval & — X above 0 that is included if0, L*~]. Then, by (4)
there exists somein [0, a] such that

Lt<prt=1, and S, =U' <x<U’=X,,.

Hence,
cnloulc |J W uH.

0<s<a
By combining this with the previous inclusion we get@iN [0, U;]) = > o<,<, AU
But the Lévy—Itd representation &f* guarantees thd-a.s.

Ur=d*a+ > AU}, 0<a<L}.

0<s<a

Then,P-a.s. for every: in [0, LY)), v([0, a]) = d*a. Next, observe that for any> L% _,
v([0,a]) =m(C) =d*L}, . Thus,P-a.s.

v(dx) =d* 10 1) (x)m(dx).

The desired result follows from (5) and the iden®yX, = x) =d*u*(x). O

Let us introduce some notations: for any positive timend any pathw, we denote
the pre-infimum and the post-infimum path on the intef@at] by:

o =o(-Ag, ),

g = (a) o Qgt(w))(' A (t - g,(w)))
We also denote the pre-supremum and post-supremum process@stproy &'
and@’:

{?U’ =w(-Ag (W),
B = (0007w (A —5 ).
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We often use the following lemma in Section 4:

LEMMA 2.2.—AssumdA). LetT be independent of and exponentially distributed
with parameterx > 0. Then,(}iTandg T are mutually independent and the following

identities hold for any nonnegative measurable functiafian :
() ELF(XT)]=k(e OE[f;™dve ™ F(X 0],

(i) E[F(X D= @5 NUp dsae™ F(w.n)).-

Proof. —Let G be any nonnegative measurable functionakbiVe have
T T\1 __ —at t t
E[F(x")G(x )] = [ draeE[F(X")G(x")].
0

By (3) and by the definition of the excursions above the infimum, we Razes.

00 gi
/dtoze“’”F((}it)G(i()t) = ;e_“g"F(XAAg[) /ds ae G (' (- AS)).
0 1€ 0

Apply the compensation formula to get

Loo ¢
E[F((;g)c(g N = E[ /dv e_“LvlF(X.ALgl)] N(/ds ae—“G(wm)>
0 0

and the following identities yield (i) and (ii):

¢
N( /ds oze“’”) =N(1-e*)=k(a,0)
0

and

L
E /dv et | = 1 ) O
" K (a, 0)

We now specify the normalization @ andL* thanks to the following proposition.

PROPOSITION 2.3. — AssumdA). Fix the normalization of.. Then, the normaliza-
tion of L* can be chosen in order to have for any nonnegative measurable funcfional

onQ
: 3

N( dsF(c?f)) —E [ du F(XAALzl)]
/ /
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and the dual identity

¢ Lo
N*( dsF(c?)‘Y)> = E[ dvF(X.ALgl)].
/ /

Proof. —We denote byg the path Zﬁ T reversed at its lifetimg .. Observe that

/\T_ .
(}i - 9§T(XT)

(we use the fact that the minimum &f over [0, T'] is attainedP-a.s. at a unique time).
We also denote bg T the pathg) T reversed at its lifetim@ — g, Similarly, we see

that
i() =X AZr(XT)’

The duality property implies that
)

Let G be any nonnegative measurable functionakbrse Lemma 2.2 to get:

E[F((;(_\T)G(ig N = [/dve_‘“t F XL 1 (/dsoze “G (@ >

On the other hand, by replacirigwith — X, we see that Lemma 2.2 also implies

Ly ¢
E[F(X)G(X')] =E[ / du e—“LTIG(X_AL;l)] N*( / dsoze_‘”F(a).M))
0 0

Thus, for anyx > 0

L¥ ¢
E[ / due—“Li‘lG(X_ALzl)] N*( / dse_‘”F(a).M)>

0

_E[/dve_‘“t F(XY" ]N(/{dse—‘“G ) (6)
0

By letting « go to 0, we see that the ratio

N*([5 ds F(w.x))
ELJo™dv F(XH)]
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does not depend oA, provided it is well-defined (that is the denominator is positive and
finite). Furthermore this ratio coincides with

N(fg ds G(@%))
E[J&>du G(X. NS

for any G such that the denominator is positive and finite. We can choose the
normalization ofN*, or equivalentlyL*, so that both ratios are equal to 10

In the spectrally positive case, the first identity of Proposition 2.3 has been proved by
Le Gall and Le Jan in [12] by a different method.

Immediate applications of Proposition 2.3 are the following identities due to
Silverstein (see [18]), also mentioned in Rogers’ paper [17]:

{ N(fg dse =P ) = 1/ic* (. B),
N*([s ds e=*Hbo) = 1/ic(a, B).

We can also derive from Proposition 2.3 the Wiener—Hopf factorisation of the ladder
exponents:

k(o iB)k* (o, —if) = + Y (B).
Indeed, (3) gives the following decomposition:

+00

/dl —ar+ipX: /dl e—at+zﬁX, Ze—ag,ﬂﬁXgl /dS e—as+zﬁw,(s)
0 IEI

Taking the expectations and using the compensation formula, we get

¢
/(0( n w(ﬂ) [ /d —aly +lﬂXL 1] (/ds e—as—i—iﬁwx)’
0

which yields the Wiener—Hopf factorization thanks to Proposition 2.3.
2.2. The Lévy process conditioned to stay positive or negative

We introduce now the process conditioned to stay positive, respectively negative
denoted byx ", respectivelyX . Bertoin in [3] provides a pathwise constructionof
and X from concatenation of the excursions Xfin (0, +-00), respectively(—oo, 0).
Let us recall briefly this construction whose details can be found in [3], Section 3.
Although Bertoin’s construction holds in a general setting,assumé@A). We denote
by (F:):>0 the natural filtration ofX completed with theP-null sets of 7. Then, X
is a semimartingale. Its continuous local martingale part is proportional to a standarc
Brownian motion and is independent of the non-continuous part. Let us denétasoy
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semimartingale local time at 0. We consider
1 t
Aj_ :/ds l{x$>0} and At_ :/ds 1{X3<0}~
0 0

Let us denote by, respectivelyx—, the right-continuous inverse of", respectively
A~
o =inf{s >0: AT >1} and o, =inf{s >0: A; >1}

(with the usual convention iff = co). Let x be a real number. We denote its positive
part, respectively negative part, by, respectivelyx_. We define a new process' by

1 .
XtT = Xa;f’ + éfa:r + Z 1{X_(<O}(XS_)+ + 1{XS>O}(XS_)_ if r < A;_o
0<s<at+

and by X; = +oo if not. When X has no Brownian partX' can be viewed as the
concatenation of the excursions Xfin (0, +00). Similarly, we defineX* by

1 , _
X} = Xo — éﬁat— - Y Lx<oX)s + Lxa0(Xo)— ifr <A
O<s<a,
and by X} = —oo if not. The laws ofX" and X' can be recovered by a harmonic

transform: Denote by, (x, dy) andg,” (x, dy) the semigroup of the Lévy process killed
respectively in(—oo, 0] and [0, +00). One can show (see Silverstein in [18]) that the
functions&/*([0, x]) and/([0, x]) are superharmonic respectively fgt and forg~
and that the following kernels

+ _u([07y]) +
p[ (x7d)’)— u([o’x] q[ (x7dy)a x>05
and
) U0,y _
pt ('x’dy)_u*([o’ _x])qt (x7dy)a x<05

define two sub-markovian semigroups. Bertoin has shown in [3], Theorem 3.4 that
and X are Markov processes started at 0 with respective semigreti@dp~. If X
does not drift to—oo, respectively+oo, then, p*, respectivelyp—, is markovian and
X1, respectivelyX ¥, has an infinite lifetime. More precisely, ¥ does not drift to—oo,
then, we can show that

X! <00, 120 and lmX]=oco. 7

Proof. —If X does not drift to—oo, it is easy to check that lim.., A" = oo, P-a.s.
and then, X, < oo, t > 0. If X drifts to +o0, we haveaj+A+ =09+ 1, t >0, where
0
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og=sups > 0: X; <0} <oo. Thus,

t .
X + = XUO+ (0, ¢]

If X oscillates, we must consider to cases: Suppose firstitba0, then,

lim. X! 2 Lx <o (Xo0) s + Lix,0(X0) - = 0.
s>0

If r is null, then by assumption (A) there is a Brownian component and.ig¥, = co
that yields the desired result.0

In particular cases, we recover “classical” definitions of the process conditioned to

stay positive:
— In the Brownian casé/*([0, x]) = U ((—x, 0]) = x and p* is the semigroup of the
three-dimensional Bessel process started at 0.

— In the spectrally positive case and the stable case, Chaumont has shown in [7

and [9] that if the Lévy process does not drift tooo and if O is regular for
(0, +00), then, for any boundedr, measurable functionak’ that is continuous
for the Skorokhod topology ofe:

e
E[F(XD] =lim _lim E.[F(X)|Ir>0].

— In the spectrally negative case, Bertoin (see [3]) gives another constructioh of
that generalizes Pitman’s theorem for Brownian motion (see Pitman [16]).

Let us denote b@ the path()i’ reversed at its Iifetimgt. We denote b)(Xsi; 0<

s < A;) (respectively(X[; 0 <s < A)) the processxt (respectivelyX ) stopped at
the random timed” (respectivelyA;"). We need the following theorem due to Bertoin
that links the process conditioned to stay positive with excursion theory:

THEOREM 2.4 (Bertoin [3], Theorem 3.1). +or everyr > 0, the following identity
holds

— |
(gﬁt’ E)I) (ﬂl)((xsi)ogxm;’ (X‘j)og‘KA,*)-

Remark— If X drifts to +o0, then, the previous identity holds with= co as to say
that X' has the same law as the post-infimum process (see Millar in [14]).

In Section 4, we use another identity that is proved in [1] (see also [13]). From now

on until the end of this section, we assume tKatloes not drift to—co. For anyr > 0
we set

s€ft,00)
and

d, =inf{s >: S, = X,}.
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LEMMA 2.5 (Bertoin [1], Lemme 4). —

(law)
(S@+7,-0- = X@1g,-n— ST)iz0 = (X] = Ji, J)i0.

Proof. —Although Bertoin in Lemma 4 of [1] only considers the caseXof> +oo
(taking X' as the post-infimum process), the proof can be adapted whescillates
thanks to Theorem 2.4 and the arguments are exactly the same.

The procesx ' — J is a strong Markov process and 0 is a regular value. We denote by
K its local time at 0 normalized in order it is distributed/as Let us denote byg;, d;),
i € I' the excursion intervals of ' — J above O:

{s=20:x!> U= (g d).
ieTt
We define
w'(s) =AJg + (X" = Dsrennags $=0, i€l
Then, Lemma 2.5 implies that

N dkdw) =" 8k, i) (8)

iel?

is a Poisson point process with intensitiy N*(dw), whereN* is the law of&¢ under
N*(dw). We use this result in Section 4.

3. Reversion formulas

Letx ands be two positive real numbers. We first decompose the larof’ on the
event{X, (), > x} in terms of the law ofX, the Lévy measure and the functiom\ that
is defined on0, +00) x (0, +00) by A(s, a) = P(I; > —a). From classical fluctuation
identities we have

k(A,0)

dsdaexp(—is — ua)A(s,a) = ————.
Ak Ay 1)

(0,4+00) x (0,4+00)
We also writeA (a) for the limit lim,_, . ., A(s, @) that is positive if and only ifX drifts

to +o0o (or equivalentlyp > 0). To simplify notations, we writd, for the law of the
Lévy process started at We prove the first reversion formula:

THEOREM 3.1. — Assume that charges(0, +o¢). Then for any positive numbexs
and, and for any bounded measurable functiofabn €2,

E[F()A("“(’)); 0, (1) < 00; Xogo(r) > X|

t
= / n(dr)/du E [F(XA)A@ —u, X,y —x);x < X, <x+r].
(0,400) 0
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Consequences. (i) If X drifts to 400, thenA (a) > 0 for any positive real number.
Thanks to Theorem 3.1 we get

So. A(Xo (1) — X)
E[F(X .x(t)) N (Z)(t)X 5 ;0x(t) <00; Xg (1) > X
t
= / n(dr)/duEr[F(X.W)A(Xu—x);x<Xu§x+r]. 9)

(0,+00) 0
Observe thaP-a.s.o, (1) = o, for all ¢ sufficiently large. ThusP-a.s.

A Xo, (1) — X)
At —o,(t), X, (1) — X)

F(XGX(I)) Liory<oco: Xoxy>x) 52 F( ) Lo, >0

Since A (Xo, ) — x)/A({t — 0. (t), X5, 1) — x) IS smaller than 1, dominated convergence
applies and we deduce from (9) that

E[F()A("x); Xo, > x]

= [ 7@ [ B [FOX)AK, = 0ix < X, <x o],
(0,+00) 0

(ii) By the duality property applied in the right side of Theorem 3.1, we see that under
PC | Xop@) > X)

(Iaw) _
X-/\U.x - Xo"((t)

Proof of Theorem3.1 —Let ¢ be a positive real number and lét,),>o be the
increasing sequence of the jump times> 0: AX, > ¢}. Recall that) ", ;8. ax,) IS
a Poisson measure with intensityy (dr). Let f be a bounded function dR. Consider
the eventA, = {0, (1) < 00; iNfscio, (). Xs > € + x} and set

a(e) =E[F (X7 f(AXq,0); A
Observe that

a(e) =Y E[F(X™) f(AXo,); 00 <13 Xo,— <X; Xo, + Itnfg ]X 00y, > €&+ x|.
n>0 "

Apply the Markov property at,, in order to get

a(e) = Z E[F X"” VF(AXo At — 0y, X, — € —X); 0, <13 Xq,— < X].
n=>0

Then,

a(e) = E[ S Laxeeexe <o F(X) FIAX)AG =5, X, + AX, — & —x)|.

sel:s<t
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Apply the compensation formula to get:

a(e) = / n(dr)f(r)/duE[F()A(”)A(t—u,Xu+r—8—x);x+8—r<Xu<x]
0

(g,400)

and by duality

a(e) = / n(dr)f(r)/du E[F(XAAu)A(t—u, X,+r—e—x);x+e—r <X, <x].
(¢,400) 0

(10)
Next, observe tha®-a.s.

M 14, = Lioy () <00 Xy}
and complete the proof by lettinggo to 0 and using dominated convergence in the left
side of (10) and monotone convergence in the right side.
We get a similar result for the reversed path,abn the even{X, > x}:

THEOREM 3.2. — Assume thatr charges (0, +o0). Then, for any positive real
numberx and for any bounded measurable functiodabn €2,

E[F(X™); 7, < 00; Xy, > x]

+00
= / 7 (dr) /duEr[F(XA/\u);x<Xu<x+lu]-
(0,400) 0
Remark — In the subordinator case we get immediately the well-known formula:

E[f(er_,er);Xfx >x] = / V(da) / w(dr)f(a,a+r),
[0,x] (x—a,+00)
whereV denote the potential measure associated With
Proof of Theoren8.2 —Let f be a bounded measurable functionRnObserve that
E[F()A(’-"_)f(AX,X); T, < 00; X7, > x|
- E[ S L cxanex oo F(X7) £(AXD)].
s>0

Apply the compensation formula to get
E[F()A(f“_)f(AXH); T, < 00; Xg, > x|

+00
= / w(dr)f(r) / du E[F()A(”); Sy <x;r + X, > x]
(0,400) 0

and the result follows by the duality property
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Recall that if the Lévy measure chargés+o0), the excursion under the supremum
may end with a jump. We now give a decomposition of the law of the excursion under
the supremum reversed at its final jump time.

THEOREM 3.3. — AssumdA) and thatr charges(0, +o00). Then, for any nonnega-
tive measurable functiondl on €2,

Lo
N*(F(c?)g);a)( >0) = / n(dr)Erl /dvF(X'ALgl)l{XL71>Q} .
0,%00) 0 '

Remark—In the spectrally positive case, if we tale= —1I, then, L;l =1_,.
Theorem 3.3 shows that undadr(- N {w, > 0}), the law ofw,_ admits a density with
respect to Lebesgue measure that is given by

x = 10,0 (X)P(Iso < x)7 ((—2x, +00)).

Furthermore, undeWN*(- | w,— = —x), the path@‘~ is distributed asX.., . under
P(- | T, < 00). This result has been used by Bertoin in [2] and [1].

Proof of Theorem 3.3. For any nonnegative measurable functipron R, we have
the following decomposition:

N*(F (&) f(Awy); wp > 0) = (Zl{% +Awy>0) (d"?_)f(Aws))

s=>0

Observe thatv under N* is markovian with the transition kernel of the Lévy process
killed in [0, +00). We can apply the compensation formula to get

N () o= 0 = /dsF Ty

(0,+00)

that yields the theorem thanks to Proposition 2.81

4. Applications
4.1. First Williams decomposition theorem

From now on until the end of the present article, we ass@#)eand we suppose that
X does not drift to—oco. Let x be a positive real number. Williams has shown in [19]
that the standard real Brownian motion reversed at the first hitting time,efoo)
is distributed as the three-dimensional Bessel process up to its last passageitime at
In this section, we extend Williams' result to general Lévy processes, the role of the
three-dimensional Bessel process being played by the Lévy process conditioned to stz
positive. In order to avoid cumbersome notation, we set for any positive real numbers
andz
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gL = (g)_sup{se[Ot 8,1t Xorg — I <x},
ol =0, (X" =sups > 0: X! <x},
z " =rx(£(>’) =inf{s € 0.t —g 1 Xopg — 1, > x},

=7, (X" =inf{s >0: X! > x}

(with inf@ = supd = +o00). Observe thatg; may be infinite if X, — infp ;X < x.
UnderP(- N {g ' < oo}) we define
Y=Xx"00
_)

t.,
X

2
Similarly we denote

Y=X"00
that is well-defined thanks to (7) and our assumptions. NoticethandY rely onx

although it does not appear in the notations. We recall (u_hamnd Y are respectively

the pre-infimum process and the post-infimum procesg.ofhe following theorems
describe the law of the patki’ reversed at time [: the first theorem concerns the case

of ajump:AXZT > 0; the second theorem deals with the process leaving continuously
level x. '

THEOREM 4.1. — Assume thatr charges(0, +00). Letx > 0.

—~o!
() (XT", y) underP( | X(:T >x) ‘=2 (AXy, + Xz, X5

X >x).
(i) UnderPc. | X;T > Xx), X) is independent o(fXTAGT, (K) and distributed as(".

(Iaw)

7. )) under P(- |

/\(r

THEOREM 4.2. — Assume tha#* > 0. Then, f9r any > 0,
(i) P(XZ . =x) =P(X, =x)=d*u*(x) and X™ underP(- | X,, = x) is distributed

asXT 1 underP(: | XTT = x).
(i) UnderP( | XTT =Xx), XT 00,1 andX of are mutually independent and' 06
is distributed asx .

Remark— We assume that chargeg—oo, 0). Then, the excursion under the infimum
may end with a negative jump. The dual form of the reversion formula of Theorem 3.3
gives

L5

N(F(w.peo); wp <0) = / n(dr)El/dul{XL*_l<_,}F()?L?71). (11)
0

(=00,0)
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We assume moreover thét > 0. By Lemma 2.1, it follows that undey¥ (- N {w, < 0}),
w,— admits a density with respect to Lebesgue measure given by

N(w— €dx; o, <0) =u*(x)7 ((—00, —x)) M(dx).

By combining (11) with Lemma 2.1, Theorem 4.2 implies that for any O,

(law)

x" ., underP( | XZT =x) = ., underN(- | w,_ = x).

Aoy
This result is due to Chaumont in the stable case (see [7]).

Proof of Theorend.1 —First observe that,(J) = o a.s., then by Lemma 2.5

()'xT (IgN)inf{t > 0: SE[ > )C} = grx‘

Set
y=0ol+g@)=inf{t >0l X! = J,}.
Then,
y & (12)
We define the functional by
2(X) = (SG,+3,-n- = X@+g,-n—53)» 120

Deduce from (12) and from the fact thét = z, that

(law)

((XT - J)y—Ha Jy+t - Jy),}o = (EI(X Oerx)),>o- (13)
Since
_Y)t = (XT - J)J/+t + (Jy+t - Jy)

we deduce from the Markov property appliedzatin the right member of (13) that
X) is independent oﬁ(.TM, and thatz) has the same distribution &', which proves

Theorem 4.1(ii) and also Theorem 4.2(ii) because

1 — T
X 09%7 —_Y) on {ngT =x}.

Next, we denote byK~! the right-continuous inverse ok (recall notation from
Section 2.2):

Ku_1=inf{t>0: K, >u}, u>=0.

We need the following lemma:
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LEMMA 4.3.—Foranyx >0

| ~ %=1
(law) XL

Proof. —~We first index the excursions &f' — J above 0 by the corresponding local
time: for anyr > 0, we set

T ((x?
€ = ((X - J)(K;_1+s)AK;1)s>o

(note thate] =0 if AK ! =0). We do the same thing for the excursionsXofinder its
supremum and we set

e = ((X — S)(L;*_—1+s)AL;‘—1)s>0'
We also writel,! = X1T<—1' We deduce from Lemma 2.5 th& %, U") is a subordinator

with the same distribution ad.*~*, U*). There exists a measurable functioakuch
that

F(e!, UNoci<e) = X!

L1 as.

Let us explain more precisely how to recovt from thee; andU,', ¢ > 0: For any
s € [0, K11, we define

g(s) =sup{u €[0,s): X! =J,}.

The Lévy-Ito decomposition for the subordinafor! implies that

K, :Sup{a € [0, x]: d*a—l—zg(ef) gs}

and
gs)=d*K,+ > _ ¢(eh.

t<Kjg
Then,
X! =ej (s —g(s) + U,
In order to simplify notations, we set for any> O:

é[ = éf(ez)_.

Lemma 2.5 implies

(law)

(e}, UNo<i<x = @1, Uo<i<y- (14)
Since (e;; t > 0) is a Poisson process arid* a subordinator, a simple time-reversal
argument show that

=X (law)
(ex—l‘v U*t )Oétéx = (el‘v U,*)Ogtg)w
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Thus
(law) X

(etT’ U;)Ogtgx = (éx—ta U*t )Ogtgx' (15)

Applying the Lévy—Ito decomposition for the subordinafor reversed at time, it is
easy to check that

~7r*x—1
F((éey, U, )O<t<x) Xt as.
and we conclude thanks to (15)0

Let us prove now Theorem 4.1(i): Let and G be two nonnegative measurable
functionals andf be a nonnegative measurable function. Set

o= E[F(XTAGXT_)f(AXZXT>G((Z)§ X;T > x].
It is sufficient to show that
a =E[F(X%) f(AX:)G (X, 5. )); Xeo > x]. (16)

First observe that

o= |:Z 1{X; <x<XT +w! (O)}F‘()(T )f(wl(0)>G(wl - wl(0)>]

iel?

Then by (8), we get
= 7du E[F( K_l)ﬁ (f(w(0)G(w—w(0); U <x < U} +w(0))].
0
The previous lemma implies that
/°° N*(f(Aw)G (@' ") Uy <x < Uy +w(©)].  (17)
0

But we have a.s.

]_{XHM}F(ngx)f(AX,‘)G( Alt— g”)>

=D Ly, <xexyrai@n F (X4) f (A0, )G (o ).
iel*

Then, the compensation formula combined with (17) achieve the proof of (16).
Proof of Theorend.2 —We only need to show (i). From Theorem 4.1, we deduce that

P(XZT > x) =P(X,, > x).

X
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So, we have for any > O:
du*(x) =P(X!, =x). (18)

We need the following lemma:

LEMMA 4.4. — Under the assumptions of Theordn2, we have for any nonnegative
measurable functional

E[/duF(XTAKul)] =/dxu*(x)E[F(X_TMJ)|X;J=x].
0 0

Proof. —~We argue exactly as in Lemma 2.1 replacingby X', L* by K andz, by
ol. O

X

Lemmas 2.1 and 4.4 imply that for any honnegative measurable funciiqriaé set

Ap={x>0: E[F(X_TMXT); X2¢ =x| = E[F()?ﬁ»); X, =x]}

X

is of full Lebesgue measure. We have to show that actuglly= (0, +00): Let xo > 0,
let G be such that for any > 0:

G(X! 1) =Luooo (x)F(XTMJO)l{XTT o
UXO

Observe that 01{1X7T = xp}, we have for any > xg
Oxp
ol =0 (X' o 96.§0> + 0):0.

Then, Theorem 4.1(ii) (already proved) implies that

E[G(X_TMT); X;T =x|=d"u*(x — xo)E[F(X_TM¢ ); X;T = Xo.

X X0 X0

Sinceis is a set of full Lebesgue measure we can assumexthatyg is in A and
consequently
1 .yt _ V). _
E[G(X] 1) Xy =x] =E[G(X™); Xy, =x].

But
Lix, =G (X™) = F(Z™0 ) Lz, sy=x0 and ., =v—vo):

whereZ = X o6,

x—xo "

Applying the Markov property at time,_,,, we get that

E[G(XT 0 x' =x|=d"u*(x —xo)E[F()?TXO); X, = Xo

A0y oy

which implies the desired result.co



T. DUQUESNE / Ann. I. H. Poincaré — PR 39 (2003) 339-370 361

4.2. Bismut’s decomposition

As a consequence of Theorem 4.2 and Lemma 2.1, we extend to real Lévy processe
Bismut’'s decomposition of the excursion above the infimum.

THEOREM 4.5. — Assume that/* is positive. Then for any nonnegative measurable
functionalsG and D on 2 and any nonnegative measurable functijon

¢
N( / dsG(wmf(ws)D(woev))
0

+00
_ / dx foouw @E[G(X! )IX], =x]E[D(X 1)),
0

Remark — The spectrally positive case is due to Chaumont (see [9]).
Proof. —Apply Markov property unden in order to get:

¢ ¢
N( / dsG(wmf(ws)D(woes)) =N< / dsG(w.M)f(wod(ws)),
0 0

where, for any positive number, d(x) stands forE[D(X..._,)]. Then, by Proposi-
tion 2.3, we have

¢
N( / dsG(wmf(ws)D(woev))
0

Lt
) E[ |/ au G@”‘l)f(XL;od(XL;”]
0

and we use Lemma 2.1 and Theorem 4.2 to complete the prgof.

We have seen in Section 3 that the excursion under the supremum may end with a jum
if = chargeg0, +00). Theorem 3.3 provides a reversion formula for the excursion under
the supremum at its final jump time. If we assume tiais positive, then, the excursion
may end continuously, as to say = 0. More precisely it is clear thaV* (v, =0) =0
if d* =0; let us show thalN*(w, = 0) = +o0 if d* > O:

+o0
N*(l—e ™0, =0) =2 / dse ™ N*(¢ > s; 0, =0)
0
~+00
=\ / dse ™ N*([P(X,, = )]y C>8)
0

+00
:A/dse_“N*(d*u*(—wsﬁf > ).
0
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By a change of variable, we have
A / dse ™ N*(d*u* (—wy); £ > 5) = / ds e *N*(d*u*(—ws3); § > s/A).

Then for anyx > 0, we have

d
N*(1—e ™0, =0) > — inf “ *ON*( sup (—wy) <1;¢ > 1/2).
e xe(, se[0,1/A]

But
H * P YN —
klerooN (1-e;0,=0)

=N*(w,=0)> d— |nf K *(x) _lim N*( sup (—w,) <Li¢>1/A)=
A—> 400 s€[0,1/A]

The following theorem complements Theorem 3.3 by providing a reversion identity
for the excursion under the supremum ending continuously.

THEOREM 4.6. — Assume thaidd* > 0. Then, for any nonnegative measurable
functional F on €2,

dN*(F(&°); w; =0) =d*N(F(0); w, =0).

Remark— The theorem remains truedfd = 0: in that case, it just means that either

Proof. —We prove the following identity:

(/dsF a);_0> =d*N (/dsF(a)M) a);_0> (29)

which easily leads to the statement of the theorem. First, observe that
c?),;m = a)jQT_s.

After the change of variable — ¢ — s, the Markov property undeN* combined with
the latter observation give

(/dsF ); o¢ —O> dN*( /dsE X”‘”‘),Xf_ws =—a)s]>.

By Proposition 2.3 and the dual version of Lemma 2.1, it follows that

¢ +00
N*(/dsF(cAo?As);w;:0> :d/dxu(—x)E[F()A(”);X,x =x|
0 0
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+00
=dd* / dx u*(x)u(—x)E[F()A(’*) | X;, =x].
0

Use Proposition 2.3 and Lemma 2.1 to get

+00 ¢
dd* / dx u*(x)u(—x)E[F()A(f") | X, = x| =d*N< /ds F(w.ps); ¢ =O>
0 0

that is the desired result.C
4.3. Thesecond Williams decomposition theorem

Williams has shown in [19] that the Brownian excursion splits at its maximum in two
three-dimensional Bessel processes stopped at a certain hitting time. In this section, v
extend this result to general Lévy processes. To simplify, we set

ZT=x"T06,runderP(-N{z T <oco})andZ =X"06 ;.
— - Tx

T
%
We first prove the following proposition.

PrRoPOSITION 4.7. — (i) For any bounded measurable functioralon €2,

E[F(X )] = N(F(@ e @)U (0w, 01); T(@) < 00).

X

Thus,P(X:T = x) > 0if and only ifd* > 0.

(i) If d*x> 0, then, underP(- | XIXT =X), g and_z) are mutually independenthe
process_z) has the same law a¥' and the law ofg is characterized by the following
identity that holds for any nonnegative measurable functighain Q:

1

Loo
E[F((g)] = mE[ b/dv F(X-AL;I)l{XL;l>_X} .

Remark— Recall from Section 2.1, that undBx- | X:T = x), the process + Z is
markovian with a transition kernel given by ’

U((=z,0D

— gt ad ) 207
u((_y’o])qf (»y,dz), 'y

pi(y,dz) =

whereg;" stands for the semigroup of the Lévy process killed+#vo, 0]. Then, the
latter proposition combined with Lemma 2.1 gives the following corollary.

COROLLARY 4.8.— Assume thatdd* > 0. Let X"(x) denote the Lévy process
started atx > 0 and conditioned to stay positive. The pati (x) has the following
decomposition at its infimum
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(i) The pre-infimum proces)(sé_T (x) and the post-infimum proceé_s)T (x) are mutually
independent andﬁ)T (x) is distributed as the Lévy process conditioned to stay positive

started ato.
(i) The law of the infimum oX'(x) admits a density with respect to Lebesgue
measure that is given by

u(y —x)
U((—x,0D

and underP(- | inf X (x) = y), )(Q(x) is distributed ast + X.,,,_, underP(- | X

y = 10

Ty_x
y—Xx).

Remarks— (i) We can actually show that the corollary remains true evéi i 0.
(i) When X does not drift to—oo the result is Theorem 5 of Chaumont [9] (see
also [7] and [8]).

Proof of Propositiond.7. —Let T be independent ok and exponentially distributed
with parametere. Recall from Lemma 2.2 that for any nonnegative measurable
functional H defined ong2,

¢
T\ — o —as
E[H(i() )]_K(a’O)N<O/dse H(a).m)>.

Let G and D be nonnegative measurable functionalsnrirake

H(a)) =S 1{rx(w)<oo}G(0)(’ A\ rx(a))))D(a) o er(w)), we .

Then,
E[G(i{) .TA_I)_{)D(X)T 09_1););_@5 < 0]
o =Ty ()
= K(o{, O) N (1{Tx (w)<oo}G(0)./\fX(w))e—afx (w) dse D ((a) o er_x(a)))-/\s)> .

0

Apply the Markov property unde¥ in order to get

E[G(X . 1)D(X " o0

T
T X
— —

{);_r> < 0]

= N (L, (wy<o0je” ™ G (. rr, () e (W1, @) (20)

where for anyz > 0,

dy(a) =

1
/{(O[, 0) E[D(X/\T), IT > —a].
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Take D =1 in (20). We get

Pr > —w¢ (0
citx o> )

)] =N (1{rx(w)<oo}€_””(”’) Gl ) =5

Next we need the following lemma:

LEMMA 4.9. - Leta > 0andT, be independent of and exponentially distributed
with parametera. Let F, G and K be three bounded measurable functionals<en
Under the same assumptions as Theodeinwe have

- To(
OI,ILHOE[F(gM?)G(g

K (y ™) g < oo] = E[F(X_TM;)G(X)K(!))].

Y
—

Proof. —It is sufficient to show the limit

)K(

im E[F(x* )G(

s—>—+00
+ N
5

Y )i gy <00l =E[F(X! )G(Y)K(Y)].

We use the notation of Section 2.2. Recall tAdt= [ du 1(x,-0. From Theorem 2.4,
we have

K (law)
(2() u)0<14<5—§s = (XLI)O<L¢<A:T' (21)

SetB =0 + g(¥). By (7), B < oo. In order to avoid cumbersome notations, we
denote byW and W’ respectively the pre-infimum process and the post-infimum process
of X o Oy (x1,.a+)- Let M > 0 be an upper bound fof, G and K. Observe that on
{A} > B}, we haver, (X', A}) =0 and
T N T
F(X JGW)K(W) =F(X] )G(Y)K(Y). (22)

Aoy (X1, AD) Ao

Then by (21) and (22), we have

E[F(X %, :)G(Y*)K(Y")] =E[F(X] )GW)K (W) A < §]

Aoy (XT,AT)

+E[F(XT )G(Y)K(X): Al > .

gl

Consequently,

K (

s s ) 3
(K )] —E[F(X )G((X)K(_Y))”éZM P(ﬁ}Af)

’E[F(i()f/\_o');)G( X ol

But lim;_.o, A = 00. So lim,_, . P(8 > A}) = 0 which yields the lemma. O
Let us achieve the proof of the proposition: Lemma 4.9 implies

lim E[G(X .TALXT)] = E[G(XTMXT)].

a—0 —
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Next, we deduce from Lemma 2.2 that for any 0

P(IT > —Cl)
=0 k(a,0)

:E[ /dU 1{XL1>—G}] :L{((—a,O]),

0

which yields (i) by dominated convergence.
Assume now that the drift coefficiedt is positive. LetD; and D, be two nonnegative
measurable functionals dn. Take,
D(w) = D1(@)Da(®) and G (@) = Lz, (w)<oo: 0 (t: ()=x}»

in (20). From Lemma 2.2, we note that

dy(a) = E[Dy(x"): Ir > —a]E[Da(X )]

k (o, 0)

Lo
=E[/dve_aL"lDl(X-/\Lvl)l{XLvl>—a} E[DZ(i() Il

0

Thus, (20) gives
E[F(

X r)D(X"0b, 1)z <00 X'y =1]

S ATk E) 3
N

x")]

la ™

= E[Da(

(e—arx(a)); Tx (w) < O] Wy (w) = x)

Loo
x E [ /dU e_aL”1D1(X.AL1—71)1{XL_1>_X}‘| . (23)
0 v

To get (ii), pass to the limi& — 0 in (23) using Lemma 4.9 to write:

liLnOE[D(i()Toe_E;);_gf<oo;i(>TrT:x]

—

= E[F(XTM;)Dl((g)Dx_z)); X:; =x].

and
- T _ T
lanoE[Dz(ig )] =E[Da(Xh)]. O

We are now able to state the second Williams’ decomposition theorem.

THEOREM 4.10. — Assume thatr charges(0, +o¢). Suppose also that* > 0 and
that X oscillates.

(i) The law ofwg,,, under N admits a density with respect to Lebesgue measure that
is given by

1 *
x — EN (T-x(@) < 00) N (T, (@) < 00; Wy, () = X).
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(i) Under N(- | wgw = x), the processesv. .z, and o o b5, are mutually
independent. Furthermore,
—the proces®. .z, Is distributed asX_TMT underP(- | X:T =Xx);

— the law ofw o 05, is absolutely continuous with respect to the Ia\/\D(dIrl and

the corresponding density q'zs(Xj¢ ), Where

1
—— =U*([0, —y) ) N*(t_,(w) < 00), € (—00,0).
o) ([0, =) N*( ).y
Remark— The spectrally positive case is due to Chaumont in [9] or [7].

Proof. —Let G and D be two nonnegative measurable functionals @n From
Proposition 4.7(i) and the corresponding dual equality, we get fonany,

E[G(X! 1)] = N(G(@ nry)U ((—@r 0, 01); T (@) < 00)

and
E[D(X' )] =N*(D@re @)U (10, —0r_,)): T-x (@) < 00).

The various assertions of the theorem then follow from the identity

N (G (@.n3(0)) D(@ 0 O5()))
400
1
== / dx N (G(@.pr,(0); Dr. 0 = X) N (D(@.pr (o) Tr(@) < 00),  (24)
0

which we now prove.
Leta andb be two positive real numbers. Observe that

{a < wzw <a+b}={t.(w) <oo}N{SUpw o O, () <b+a— w,w}

On this eventp o 64, is the post-supremum process«o$ 6, ). Hence, by the Markov
property undeV at t, (w), we have

N(G(@.rry () D(@ 0 05(0); @ < 05wy <a + D)
= N (G (0. pry(0)d (@1, (1)) Ta(@) < 00),

where for any positive number,
d(x)=E[D(X"): S, <b+a—x].

Let us writed (x) in a more suitable form. First, observe that

— J _
d(x) =E |:XI: l{xg_/' <b+a_X;[gj >_X}D (a)-/\r,x,xg/_ (w/)) 1{T—x—Xg/. (w/)<oo} | -
JET* ’
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Then, apply the compensation formula to get

o
d(x) = E[ / dulix,, y<prasit >N (D(@nc oy @) leox, @< |-
0 u u

Set for any real numbersandy,

(X, ¥) = 110,400) () 10, 400) M (V)P > —x | Xz = ).

Then, for anyu < x <a + b, Lemma 2.1 implies

a+b—x
d(x) = / dy u*(y)E[l{IT)_>_X}N* (D(a).m_x_y(w)); T_y_y(w) < 00) | X, = y]
0
a+b

_ /dy DX,y = XIN* (D(@.pry(@); Ty (@) < 00).

Thus,

N (G (0. pry(w) D(@ 0 Ogw)); a < 0gw) <a +Db)
a+b

= / dy N (Liz, (@) <00} V(@ry(@)> Y = @ry(0) G(@.pry ()

a

x N* (D(a).m_y(w); T_y(w) < 00)). (25)

Next, set for any positive integer,

2’1
and y":[zny]’ y=0.

[2" 0 g(w)]
2n

my, =

We apply (25) witha =i27" andb = 27" for every integet > 0, and we sum ovar. It
follows that

N (G (@.pz,, () D (@ 0 O5())
~+00
= / dy N (1iz,, (0)<00) V(@1 (), Y — @1, () G(@.n1,, ()
0
x N* (D(a).m_y(a,); 7_y(w) < 00)). (26)
Lete, A > 0. Itis sufficient to prove (24) for
G(®) = Lig(w)=s:supo<a} F (@)  and  D(w) = 1z (w)>e) K (@)

where F (w) and K (w) depend continuously on the valueswfat some finitely many
positive times. Assumption (A) implies that attains continuously its supremum on any
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finite time interval (see Millar [15]). So does the excursion above the infimum. Thus,
T, (w) iNCreases t@(w) whenn goes to infinityN -almost everywhere. Then,

M L, @>em<a) = Lgw>esupo<a),  N-a.€.
SinceN (g(w) > ¢; supw < A) < N(¢(w) > €) < oo, dominated convergence applies in
the left side of (26) and we get:
lim N(G(C()./\-[mn (a,))D(a) o 95(@))

n—o0

= N(F(CO./\E(Q,))K(CO o Qg(w)); Supw < A; ({ — §(a))) A\ g(a)) > 8). (27)
We now turn to the limit of the right hand side of (26): Recall (2) from Section 2.1

It implies that for any positive number, N(w. ()~ =y < w,)) = 0. We also recall
thatw (0) =0, N-a.e. Thus,

N_ae nll)rorg) 1{(4)1)-” (w) gy} = 1{(01—}, (u)):y} * (28)

Next, for anyx > 0, lim,_.ov(x, &) = u*(0+) = = because

0<d*u*(e) —d*v(x,e) =d*u*(e)P(I,, < —x | X, = ¢) < P(I, < —x) — 0.

e—0

Thanks to (28) we geV-a.e.

. 1
M Lz, @<V (@1, @00 Y = @r, @) = 8O o= = 5 o w=n-

Observe thatV-a.e. on{w ) = ¥}, 1y,(w) increases towards, (w). Therefore, by
dominated convergence

nII—>mOO N (l{f)'n (w) <Oo} v (wr)'n (a)) ’ y - a)r}'n (a)) ) G (a)‘/\r}'ll (w))>
1
= d—*1<o,A1(y)N(F(wNyw)); £ < Ty(w) < 00; W (@) = ).
However, for anyy > 0, we have
N(l{r).n (a))<oo}v(a)ryn (@)Y — Wy, (w))G(a)%\ry,l (a))))l\'ﬂ< (D(w-/\r,y(a)); Ty (w) < OO))

<M*Loa(y) Sup u*(x)N( >e)N*({ > ¢),
x€(0,271]

whereM is a bounding constant df and K. Then, dominated convergence applies in
the right side of (26), which yields the desired identity (24) thanks to (25).
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