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CONGRUENCE MODULES RELATED TO
EISENSTEIN SERIES

By MAasami OHTA

ABSTRACT. — The purpose of this paper is to study the structure of congruence modules (or modules of
congruences) associated with Eisenstein series in various contextsArettiie theory of elliptic modular
forms. Under some assumptions, we explicitly describe such modules in terms of Kubota—L gegdilcit
L-functions.
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RESUME. — Le but de cet article est d'étudier la structure des modules de congruence qui, dans la théorie
A-adique des formes modulaires elliptiques, sont, de diverses maniéeres, associées aux séries d'Eisenstein.
Sous certaines conditions, nous décrivons explicitement de tels modules en termes des fdnctions
p-adiques de Kubota—Leopoldt.
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Introduction

The notion of congruence modules (or modules of congruences) was introduced by Hida [4,5]
to study congruence properties of modular forms in terms of Hecke algebras. In the works of
Hida, such modules are thus defined for rings, but one can consider similar modules replacing
rings by modules in an obvious way. For our purpose, it is convenient to formulate it in the
following manner: LetR be an integral domain with its quotient field We consider an exact
sequence of flaR-modules:

0—ALBELC—0

given with its splitting ovelL, i.e. when tensored with over R:

0—A®RrLLEBORLEC®pL—0.
The congruence module attached to this situation is defined by
C:=C/m(Bns(C)) 2t(B)/A.

The aim of this paper is to study the structure of such modules, which are naturally associated
with Eisenstein series in various contexts.

Since the exact statement of our main result requires rather lengthy preparation of terminolo-
gies, we would like to first illustrate what kind of problems we are going to consider, in the
following elementary situation:
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226 M. OHTA

Let I' = SLy(Z), and denote byM(I") (resp.Si(I")) the space of holomorphic modular
forms (resp. cusp forms) of weightwith respect tal’, for k > 4 even. Via theg-expansion at
the unique cuspoo of I', we consider this space as embedde@|fy]] and set:

My(I';Z) .= Mi(I')NZ[g] andMy(I; R):= My(I';Z) ®z R,
{ Sk(I Z) =Sk(I) N Z[[qﬂ andSy(I'; R) := Sk(I';Z) ®z R,

for any ringR. Let p > 5 be a prime number, and assume that 0 mod (p — 1). We takeZ,
for R. Itis easy to see that we have an exact sequence:

(i) 0— Si(I';Zy) — My(I';Zy) = Z,y — 0

wherer sends an element 8, (1"; Z,,) (— Z,[q]) to its constant term. LeX (resp.h) be the
Z,-algebra generated by the standard Hecke operators actifg,0f; Z,) (resp.Sk(I"; Z,)).
Then the exact sequence (i) splits uniguely-asnodules oveR,,, giving ¢ ands as above. In
this case, the associated congruence modweZ, /m (M (I';Z,) N s(Q,)) iS quite easy to
describe: Let

Ep= C(lgk) +Z( > d“)q"eMk(F;Q)
n=1

= 0<d|n

be the usual Eisenstein series, whéis Riemann’s zeta function, and note that
C(1—k)/2=—By/2keQ

is p-integral. Then it is clear that{,(I"; Z,) N s(Q,) is theZ,-module generated b§;; and
henceC =Z,/¢(1 —k)Z,.

Next, let us define the Eisenstein ideal7f(resp.h) by Z := Anny (F)) (resp.! := (the
image ofZ by H — h)). The moduleC above is arf{-module in an obvious manner, and
moreover the action oH factors throughH — H/Z — h/I. As a consequence, we have
a surjective ring homomorphisth/I — Z,/¢(1 — k)Z,. Here, the left-hand side may be
interpreted as the congruence module attached to the exact sequence

(i) 0—-2Z—H—-Z,—0

together with its unique splitting @8-modules ovef,,. Itis not difficult, but less trivial than the
case (i), to show that the surjection above is in fact an isomorphism (cf. Kurihara [9], Lemma 3.1).
A similar problem arises for the Eichler—Shimura cohomology groups: Let

Sk72(zp) — Z;I)B(kfl)

on whichI" acts via the symmetric tensor representation of defgre€. Then we have an exact
sequence of fre,-modules, considered by Harder and Pink [2]:

(iii) 0— Hp(T,5"2(Zy)) . — H (I',5*72(Z)) . — Zp — 0.

Ei

Here, H}, is the first parabolic cohomology, and the subscrigt™ means the localization

at the maximal idea(Z,p) of H. The Eichler—Shimura theory implies that the sequence (iii)
uniquely splits overQ, as Hgis-modules. In this case, the associated congruence module is
again isomorphic t&,/¢(1 — k)Z,. However, this determination of the congruence module (or

4€ SERIE— TOME 36 — 2003 -N° 2



CONGRUENCE MODULES RELATED TO EISENSTEIN SERIES 227

the “denominator of the Eisenstein cohomology class”), due to Harder, is by no means trivial,
and it was one of the starting point of the investigation by Harder and Pink.

One can also ask about the structure of the congruence module associated with the exact
sequence with canonical splitting ov@y,:

(iv) 0— Zp — Symb(S*2(Zy)) .. — Hp (1,5 %(Zy)) g, — 0

where Symb(S*~%(Z,)) is the group ofS¥~2(Z,)-valued modular symbols oveF (cf.
Greenberg and Stevens, [1], Theorem (4.3)). Once again, the answer is gigpd§y — k)Z,,.

This in fact follows from the above result of Harder, together with the Poincaré duality and
(1.1.12) in the text.

The purpose of this paper is to consider similar problems, repl&iniy the lwasawa algebra
A, over the ring of integers of a finite extension 0€),,, and the above classical objects by the
corresponding\-adic ones. For this, we fix a positive integ®r prime top. For each pair of
Dirichlet characterg6, ) such that the product of their conductors is eitbewor Np, 6v is
even, and the conductor gfis prime top, we can associate an ordinary (in the sense of Hida)
A-adic Eisenstein serie5(0, 1) of level N. We can then consider the Eisenstein ideal and the
(unique) maximal ideal containing it (the Eisenstein maximal ideal), in Hida's universal ordinary
p-adic Hecke algebra acting on the space of ordin#gdic modular forms of leveN. Also,
we have the Hecke algebra acting on the cohomology groups in (l1l) and (1V) below, which is
canonically isomorphic to the above one. (But in the text, we always put the supersttipt “
this algebra and the Hecke operators in it, to indicate that we are considering the covariant action
of Hecke correspondences, as in our previous works.) We have the corresponding Eisenstein
(maximal) ideal in this algebra.

Now our objectives of study are the exact sequences offffemodules replacing the objects
in (i)—(iv) by the following A-adic ones of levelV localizedat the above mentioned Eisenstein
maximal ideals, respectively:

() The spaces of ordinari-adic cusp forms and modular forms;
(I Hida’'s ordinaryp-adic Hecke algebra and its Eisenstein ideal;
(1) Ordinary p-adic Eichler—Shimura cohomology group and the ordinary generalizetic
Eichler—Shimura cohomology group studied in our previous works;

(IV) The group of ordinary-adic modular symbols and the ordinaradic Eichler—Shimura

cohomology group.

All such exact sequences uniquely split over the quotient field of the lwasawa algebra as
modules over the Hecke algebras. Our main result of this paper is Theorem (1.5.5) which
determines the precise structure of the congruence modules associated with the situations
(D—(IV) under the following assumptions:

{p does not dividep(N),
(B =) (p) #1,

where ¢ is the Euler function, and is the Teichmiller character. Indeed, the congruence
modules are all isomorphic, and described in terms of Iwasawa’s power series giving the Kubota—
Leopoldtp-adic L-function attached téy~'w?, multiplied by an elementary extra factor. (Here
and in the rest of the introduction, we exclude the special case Whete—2 andy’ is the trivial
character, in which case all the congruence modules vanish.)

We remark that the assumptions above assure us that there is no congruence Gé\wegn
and otherA-adic Eisenstein series, and hence the localization allows us to istiéte). To
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228 M. OHTA

treat more general cases, it seems better to work with the language of components in the sense
of Mazur and Wiles [11]; but we do not do this in this paper which is already somewhat lengthy.

One of the motivation of this work was our desire to understand the “Eisenstein components”
of the aboveA-adic objects better. We were also directly motivated by a conjecture (resp. a
problem) of Hida (resp. Greenberg and Stevens). Namely, in [4], Hida conjectured that the
congruence module in the case (II) above should be expressed in terms of Kubota—Leopoldt
p-adic L-function. On the other hand, in [1], Greenberg and Stevens posed a problem of
analyzing the structure of the congruence module in the case (IV). Our result gives affirmative
answers to these problems for the local components described above.

Our strategy and the content of this paper is as follows. Section 1 is preliminary: In Section 1.1,
we state some general facts about congruence modules, modelled by Hida's account [5],
Section 1. In Section 1.2, we introduceadic objects we are going to consider. We then
give a Poincaré type duality between the group of ordinaadic modular symbols and the
ordinary generalizeg-adic Eichler—Shimura cohomology group in Section 1.3, and stueglic
Eisenstein series in Section 1.4. In Section 1.5, we state our main theorem (1.5.5).

Now among the four cases (1)-(1V), it may be apparent from our discussions in the classical
cases (i)—(iv) that the easiest is the case (I). Indeed, wherl, the trivial character, we applied
the same argument as in the classical case to determine the congruence module, in the course of
the proof of [15], (5.2.14) (under some restrictive assumptions). It was based on the fact that the
“constant term” of (6, ¢) is given by thep-adic L-function. However, wher # 1, the constant
term of £(0, ) vanishes. The classical theory of Eisenstein series then suggests that we should
look for the “constant term hidden at some cusp”. This is the content of Section 2.

To do this, we make use of a homomorphism of the space of ordikagtic modular forms
onto the ordinary f-adic) cuspidal group whose kernel consists of ordinegdic cusp forms.

Such a mapping, called thesidue mappingwas in fact constructed in our previous work [15]
(and complemented by [16]). This will be recalled in Section 2.4. Before this, in Sections 2.1-2.3,
we give a detailed study of the ordinary cuspidal group, especially the kernel of the Eisenstein
ideal in it. Under the assumptignt o(N), we give an explicit basis of this kernel, which is

a free module of rank one over the Iwasawa algebra. The main result of Section 2 is Theorem
(2.4.10), which describes the image&i®, «») under the residue mapping in terms of that basis.

Its proof, largely computational, is carried out in Sections 2.5-2.6. Via the specializations to
classical forms, this ultimately reduces to the computation of the constant tegrexpansions

of classical Eisenstein series (of weight 2) at various cusps.

In Section 3, we give the proof of our main theorem. We first settle the case (l) in Section 3.1.
The method is almost identical with the classical case (i) above, replacing the “constant term
mapping” by our residue mapping, after the key result (2.4.10). The proof for the case (ll) is
divided into two parts, both dependent on the result in the case (I): We treat the cases where (a)
¥ #1; and (b)dy—! £ w2, separately. The proof in the case (a), which is given in Section 3.2,
is completely elementary, and in fact the conclusion is derived from the case (1) via simple duality
argument (cf. (1.1.12) and (3.2.7) in the text). On the other hand, the proof in the case (b) is far
from being elementary. It makes use of the Iwasawa main conjectu€@ fartheorem of Mazur
and Wiles [11], for which we have given a simple proof in our previous work [16]). However,
the method itself is not new: It is an adaptation of the one initiated by Harder and Pink [2]
and Kurihara [9] to a slightly wideA-adic situation than in [15], 5.3, where we have already
settled the case (ll) whent = 1 under additional assumptions. We thus place this argumentin
Appendix A.

The key ingredient of the proof for the case (1) is th@dic Eichler—Shimura isomorphisms
established in our previous works. Such isomorphisms, together with some results on Galois
representations opradic Eichler—Shimura cohomology groups (3.4), easily reduce the problem
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CONGRUENCE MODULES RELATED TO EISENSTEIN SERIES 229

to the case (I). Finally, via the duality obtained in Section 1.3, and the duality between certain
space of ordinar\-adic modular forms and its Hecke algebra (3.3.1), the case (IV) is reduced
to the case (Il). These are given in Section 3.5.

In the appendix, we describe the above mentioned application of the method of Harder—Pink
and Kurihara, extending the consideration in [15] to gengra)) satisfying (b). We thus look
at the Galois representation on the local component, attach&@1@), of the p-adic Eichler—
Shimura cohomology group, and construct a prabelian extensiord. over the cyclotomic
Z,-extensionF,, of some abelian number field. A new feature here is that thig@etension
may ramify at primes dividingv. We analyze such ramifications, and show that the characteristic
power series of G4l /F,) coincides with (a twist of) the power series appearing in our main
theorem (cf. Theorem (A.2.2)). It is at this stage we need the Iwasawa main conject@e for
As a consequence, we find that the ramifications precisely correspond to the “extra factor” in our
description of the congruence modules, and that the exteAstontains the maximal unramified
pro-p abelian extension af,, satisfying certain Galois property. This also allows us to settle the
case (b) of (I1).

1. Congruence modulesand our main result

1.1. Congruence modules

We first give general facts about congruence modules associated with the following situation:
Let R be an integral domain with its quotient field Suppose we are given an exact sequence
of flat R-modules:

(1.1.1) 0—-A5BLC—0 (exac)
together withits splitting overL:

(1.1.2) 0—A®rLLBOrLEC@rL—0 (exac)
so that
(1.1.3) fo(i®R1L):1A®RL and (m®grlp)os=lcgnL.

We then clearly have(B) D A, and the mapping® = : B — t(B) @ C'is injective. ldentify
B with its image int(B) & C.

LEmMMA (1.1.4). -The notation being as above, we have the following canonical isomor-
phisms ofR-modules

B/(i(A) + BN s(C)) —— C/=x(BNs(C))

| |

t(B)/A = (t(B)®C)/B

Here, the right verticalresp. the lower horizontalarrow is induced from the inclusion @
(resp.t(B)) into the direct sumi(B) ¢ C.

The proof is direct, and left to the reader. We only note here that

(1.1.5) Bns(C®rL)=Bns(C).
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230 M. OHTA

DEFINITION (1.1.6). — We identify the modules in (1.1.4), and call it tomgruence module
(or themodule of congruencgsattached to the exact sequence (1.1.1) with the given splitting
(1.1.2). Denote this module lgyin the following.

WhenH is anR-algebra, and (1.1.1) and (1.1.2) are exact sequenddsrmabdules, it is clear
thatC is equipped with the obvious structure of Armodule.

In the following, for later use, we list some elementary properties. of

First, we note that the formation of congruence modules commutes with arbftedry
extensions of integral domaid® — R’: Let C’ be the congruence module attached to the base
extension of (1.1.1) td&’ with the obvious splitting over the quotient field Bf. Then it is easy
to see that we have a canonical isomorphism:

(2.1.7) C'=2C®rR.
In the rest of this subsection, we assume that:

R is noetherian and factorial
(1.1.8) A, B andC are finitely generated freB-modules
C'is a freeR-module of rank one

LEmmA (1.1.9). -If we assume the above conditions, tlieis isomorphic toR/a R with a
non-zero element € R.

Proof (cf. Hida [7], Theorem 4.3)-This is easy using (1.1.5): Identifyifgwith R, BNs(L)
is principal ins(R) & R, since itis reflexive. O

Next, let us indicate by the superscript*the R-dual: MV := Hompg (M, R) for an R-module
M. From our assumption (1.1.8), we have the exact sequence dual to (1.1.1):

(1.1.10) 0—CV™ BY 5 AY S0
together with the splitting dual to (1.1.2):

(1.1.11) 0 CVorLE B orLE AY @ L 0.

We denote by’V the congruence module associated with this situation.

LEMMA (1.1.12).-Assumd1.1.8)and moreover thaf" is generated by one element as an
R-module. Thei€" is isomorphic taC.

Proof. -We may assume tha® = R"™ andC' = R. Then the mapping (resp.s) is of the
form:

T1 C1

n
— Zpi:vi withp; e R (respax—xz | : | withe € L).
z, i=1 cn
We have)"" | pic; =1since(r ®g1r)os=lcguL-
Now we have
C1
m(BNs(C))=cz€R|z| | €R"},
Cn
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CONGRUENCE MODULES RELATED TO EISENSTEIN SERIES 231

so thatC =2 R/(R:(c1,...,¢n)), Where(cy,...,c,) is the R-submodule ofZ generated by
€1y..y¢n @Nd R : (c1,...,¢n) = {x € R | z(c1,...,¢n) € R}. By (1.1.9), we know that
R:(c1,...,¢n) =aR witha € R.

On the other hand, identifyin¥ andC" with R andR in a natural manner, we see that
is given by

T

n
= Zcixi'
T, i=1

Consequently, we havéY =~ sV(BY)/CY = (¢1,...,¢,)/R.

By our assumption, there is ane L such that(cy,...,¢,) = aR + R. If a =b/a’ with
coprimed’,b € R, thenR:(c1,...,¢,) = d’R, and hence we may assume that= a. We
conclude that

b
CcY = (ER + R) /R=bR/abR= R/aR. O
1.2. Basic cohomology groups, Hecke algebrasand A-adic modular forms

We henceforth fix a prime numbgr> 5. We also fix a complete subfield of C,, := ap, and
denote by its ring of integers.

Terminology(1.2.1). — For a positive integet, we write U, for the multiplicative subgroup
1+ p"Z, of Z;;. We denote by

Ao =01+ pZ,] = o[U4]

the lwasawa algebra over As usual, we fix a topological generatay of U; and identifyA,
with the formal power series ring[T'] by ug < 1+ T.

In the following, we fix our basic notation: For a positive intedér we let X; (M) be the
canonical model ove® of the (complete) modular curve associated with the groug@\/),
whose cusp at infinity i§-rational. LetY; (M) be its open subscheme consisting of non-cuspidal
points.

DEFINITION (1.2.2). — We fix a positive integéy prime top, and set:

ESy(N)o == (lim H!(X1(Np") ®q Q. Zp)) &2z, 0,
r>1
GES,(N)o == (lim H' (Y1(Np") ®q Q. Z,)) @z, 0,
r>1
MS,(N)o = (lim H! (Y1(Np") ®q Q. Zp) )&z, 0.

P
r>1

Here, all the cohomology groups in the right-hand side are étale cohomology groupsnzeah
the completed tensor products viewing the projective limits in the parentheses asipetian
groups.

The Galois group GalQ/Q) acts on these groupslinearly in a natural manner. On the
other hand, Hecke correspondencesXor{Np") or Y1(Np") give rise to endomorphisms of
individual first cohomology groups in the right-hand side. Precisely, in this paper, we will always
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232 M. OHTA

consider thecovariantaction (except in the proof of (1.3.3) below), and denotelliyn) and
T*(q,q) the endomorphisms attached to the usual Hecke correspondences (cf. e.g. [13], 7.3, 7.4).
T*(n) andT™ (g, ¢) on the first cohomology groups commute with the trace mappings, and hence
define endomorphisms of the groups in the left-hand side, which we denote by the same symbols.
Especially, we have Hida's idempotent

(1.2.3) e’ := lim T*(p)™
acting on the groups above.

The groupsksS,(N),, GES,(N), and MS,(N), are then naturally equipped with the
structure of modules over

o[ [lim (Z/Np"Z)*]| = o[(Z/NpZ)*][U1]

r>1

in such a way that (the image of) a positive integgarime toNp in lim,>,(Z/Np"Z)* acts
asT*(q,q). In particular, we can consider them as modules over the lwasawa alygh@ne
of the fundamental fact discovered by Hida ([6], Theorem 3.1, complemented by [15], (1.3.5))
is thatthe ordinary partse*ES (N ),, e*GES,(N), ande*MS,(N), are all free of finite rank
overA,.

We also know that*ES,(N), (resp.e* GES,(N),) are modules over Hida's universal
ordinaryp-adic Hecke algebras:

(1.2.4) {e*h*(N;O) — Ende* BS,(N),),

e H*(N;0) — Ende* GES,(N)a),

which are generated by all*(n) and T*(q,q) over A,. We can considee*h*(N;0) and
e*H*(N;o) as algebras oves[(Z/NpZ)*|[U,] in the same manner as above; and again by
Hida ([4], Theorem 3.1, cf. also [15], (1.5.7)), these are finite and flat dyer

On the other hand, there are notions of ordinAgyadic cusp forms and,-adic modular
forms, introduced by Hida [4] and Wiles [21]. We use the same notation and convention as
in [14], Section 2 and [15], Section 2, and denoteddy(N; A,) ande M (N; A,) the spaces
of such forms, respectively. We only recall here that they consist of formal power series
F =3 oan(T)q" € A[q] such that their specializations

(1.2.5) Fed = Z an (E(UQ)ug — 1) -q"
n=0

are ordinary cusp forms (resp. modular forms), with coefficients in the ring generater by the
values oft overo, of wightd+ 2 with prescribed level and thepart of the Nebentypus character.
Here, ¢ is any@x-valued character of finite order @f;, andd is any non-negative integer.
eS(N;A,) ande M (N;A,) areA,-modules in an obvious way; and are in fact finite and free
overA,. One can define the Hecke operatd(s.) andT (g, ¢) on these spaces in such a way that
they correspond to the usual ones via the specializations (1.2.5) to classical forms. The Hecke
algebras generated by &dl(n) andT'(¢, q) overA,

(1.2.6) {eh(N;U)%End(es(N;Ao)),

eH(N;0) — Ende M(N;A,)),
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are canonically\,-isomorphic toe*h*(N;0) ande*H*(N;0), respectively, via the correspon-
denceI'(n) < T*(n) andT'(q,q) < T*(q,q).

1.3. Duality between e* GES,(N), and e* MS,(N),

Let us denote by

(1.3.1) v:1im (Z/Np"Z)™ < o[[lim (Z/Np"Z)"]]
r>1 r>1

the natural inclusion, to distinguish the image of an element in the left-hand side in the completed
group algebra from a scalar. Also in what follows, let

1.3.2) k:Gal(Q/Q) — Z,

be thep-cyclotomic character.
The main result of this subsection is the following

THEOREM (1.3.3). —There is a canonicah,-bilinear form
{, }:e"MS,(N)o x e"GES,(N)o — A,

which enjoys the following properties

(i) It gives a perfect duality of frea,-modules.

(i) It commutes with the Hecke operatoFsr anyz € e* MS,(N), andy € e* GES,(N).,,
we have

{ {z|T"(n),y} ={z,y[T"(n)},
{zT"(¢,9),y} = {2,y T"(¢,0)}-

(iii) It has the following compatibility with the Galois actioFor o € Gal(Q/Q), let a(o)
be the unique element difin,>1(Z/Np"Z)* such that(” = ¢*@) for all Np"th roots of unity
(r = 1). Then we have

{2797} = k(o) "z, (a(o)") -y}

We studied similan\,-bilinear form one*ES,,(N), x e* ES,(N), in [14], Section 4; and the
proof in the present case is almost identical. So, we only sketch the method referring to [14], 4.1
and 4.2 for details.

First note that we may assume that- Z,, since then the general case follows by tensoring
A, overAz . Now for each integer > 1, we writeY,. := Y1 (Np") and indicate by bar the base

extension fronQ to Q for notational simplicity.
For eachr > 1, we recall that there is p-adic sheaffy,, = Fz [z,] on the étale sit&]

of Y,, and GES,,(N)z, (resp.MS,(N)z,) is canonically isomorphic téf! (Y, Fu,) (resp.
HX(Y ., Fr,)) ([14], 1.2). On the other hand, there is anotheadic sheaff'y, and a pairing
of sheaves:

Fm, X Fape, — Fz v,

onY, e ([14], 4.1), wheref'z [, is the constant sheaf corresponding to
Z,[U,] =Z,[1 +p"Zy].
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This then gives rise to the cup product pairing:
sUrt HY(Y g, Faq,) x HY(Y 5, Faq) = HX(Y 5, Fz,[1,7) = Zp[U-](—1)
for integerss > r > 1. The inclusions of modules

{ii:/\/lsg./\/lr,
/s . / /
0P M — M,

induce morphisms of sheaves ®1 &, and hence those of cohomology groups:

T%

ils ZHl(YS,FM/S) —>H1(75,FM;).

{z’s HY (Y 5, Fpn,) — HA(Y 5, Frn,),
Using the operator ;" (resp. “| o, '") given by the same formula as [14], (4.1.3) (resp.
(4.1.13)) onH! (Y, Foq,) = HY (I (Np"), M,) (the group cohomology) etc., we define

{, 3 HA(Y r Fam,) x HY(Y 1, Faq,) = Mg,

by the formula

{wytr= > @)U (TG ) loat)

acU; /U,

fixing an isomorphismZ,(—1) = Z,. With these definitions, it is an easy matter to obtain
the same result as in [14], 4.1 and 4.2. Especially, the pair{ngs}, are compatible with
the canonical isomorphismSES ,(N)z, = H' (Y, Fap,) and MS,(N)z, = HX(Y ., Fum,)
whenr > 1 varies, and define the pairing on the whole spaces

{ s } :MSp(N)Zp X GESP(N)Z

P _>AZP

which specializes to certain (“twisted”) cup product pairing
Hg (?r, FSd(Zp)) X Hl(?r, FSd(Zp)) — AZP/(Wr,d)

for eachr > 1 andd > 0, as in [14], (4.2.5) (cf. also [15], (1.4.2)). This } already satisfies the
compatibilities (i) and (iii) of the theorem (use [15], (3.3.4) and (4.2.4) for (iii)), and induces the
pairing in the theorem on the ordinary parts.

Finally, we show the assertion (i) of the theorem. Siet€ ES,(N)z, ande* MS,(N )z, are
finite and free ovenz,, it is sufficient to show that the pairing reduced mod(9 is perfect.
By the above mentioned compatibility with specializations, this is reduced to the perfectness of
the pairing between fre&,-modules:

e*H,(Y1,Z,) x €*H"(Y1,Z,) — Zp, (2 Zy(-1))
defined by(z,y) — z U (y | T*(p) | 7). However,y — y | T*(p) | 71 gives an isomorphism
of e*H'(Y,Z,) onto the ordinary part H'(Y1,Z,) with respect tol'(p), which is adjoint

to T*(p) with respect to the cup product. Our claim therefore follows from the usual Poincaré
duality theorem.
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For the same reason, the pairing
(1.3.4) {, }:e"ES,(N), x €"ESp(N)o — A,

studied in [14] is also perfect.
There is a natural injectioit e* ES,(N), — e* GES,(N), and a natural surjection

mie*MSp(N)o — e*ESp(N),.
It follows easily from the description df, } above that

(1.3.5) {m(2),y} ={z,i(y)}

forall x € e* MS,(N), andy € e* ES,(N),.

Note that, by the theorem above, the Hecke algebra defined similarly as (1.2.4) for
e*MS,(N), is canonically isomorphic te*H*(N;0); and that this makes*MS,(N), into
a faithful e*H*(NV; 0)-module.

1.4. A-adic Eisenstein series
In general, letv denote the Teichmuller character, and set
(1.4.1) (a) ==aw(a) " €Uy foracZy.

Let NV be as in previous subsections, and consider Dirichlet characterd) defined modulo
u andw, respectively. (Dirichlet characters will be assumed to be primitive unless otherwise
stated.) We will always assume thtat(—1) = 1, v is prime top, anduw is a divisor of Np.

Fix a finite extensiork of Q, which contains all the values éfand. We denote by its ring
of integers, and take a prime elemenbf t. The A-adic Eisenstein series to be considered is of
the following form (cf. [15], 2.3):

(142)  E(0.4:0) = 6(W)G(T, 007 +Z( > 9(t>¢(%)At(T))qm'
n=1 “0<t|n
pft

Here,c is a positive divisor ofVp/uv prime top,

(1.4.3) 5(up) = { 1+ if 4 =1:= (the trivial character),

0 otherwise,

(1.4.4) A(T) = t(1+T)*D =tu((t)) if (t) =us®

andG(T,0w?) is a twist of the Kubota—Leopolgt-adic L-function in the following sense: It
belongs taA, unlessfw? = 1, while (1 +T) — uy 2)G(T, 1) € Az,, and satisfies

(1.4.5) G(e(uo)uf — 1,0w?) = L, (—1 — s,0w’e)

for every charactet of finite order ofU; (which we identify with a Dirichlet character of the
second kind) L, being thep-adic L-function. We henceforth set

(1.4.6) £(0,9) == E(0,4;1).
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£(0,v;c) then belongs te M (N; A,) unlessd = w2 andw) = 1; while (1 +T) — ug ) x
E(w™2,1;¢) belongs toe M(N;Az,). The (e, d)-specializationf (6,v; ¢). 4 in the sense of
(1.2.5) is explicitly given by

—0(y) (1= (few™) ()p™*) ijf; +Z(Z (6w (t)w@)t‘”l)qm

0<t|n
pit

(1.4.7)
Whenc = 1, this gives a modular form of weight+ 2 with respect to the group; (uvp”/(u, p))
if Ker (¢) = U, Its Nebentypus character is the (possibly imprimitive) charater % defined

modulouvp” /(u,p), and it is @ common eigen function of &ll(n) of level uvp”/(u,p). One
then obtains the following lemma comparing the specializations:

LEMMA (1.4.8).-When(,) # (w=2,1), we have

0,¢;¢) | T(q,q) = (01)(q)((q))E(O, 5 ¢);
E(O,¢;¢) | T(1) = (O(D)1((1)) + ¥ (1)EO, ¥; c);
9 .

Here,q is any positive integer prime t&/p, and! is a prime number not dividing/p. Also, for
a € (Z/NpZ)*, the action of(a) on &(0,; ¢) is multiplication by(0)(a).

Whenuv = N or Np (and hence: = 1), the second formula above f6£0,v) | T(1) is valid
for all prime numbers # p.

The same holds fai(1 +T) — uy 2)E(w™2,1;¢) when(d,) = (w2,1).

LEMMA (1.4.9). -Assume thap does not divideo(N) (the Euler functioh Letd; and); be
Dirichlet characters defined modulg and v; satisfying the conditions at the beginning of this
subsectiopand letc; be positive divisors aVp/u;v; prime top (i = 1,2), respectively. Assume
thatt contains all the values df;, and ;.

(i) The eigenvalues &F (1) for £(01,11;¢1) and E(O2,12; c2) are congruent moduléeo, T')
for all prime numberg not dividing Np, if and only if

{91 = 0 andi)y = 1y; Or
0o = ’lf)lwil and1/)2 =bw.

(i) Assume moreover that,v;, = N or Np for i = 1,2. Then the eigenvalues @f(l) for
E(01,11) and&(h2,v2) are congruent moduléeo, T') for all prime numbers if and only if

{91 = 6 andipy = 1; Or
0o = 1ﬁ1w71,d)2 = 6w and(@lwd)fl)(p) =1.

Proof. —We first treat the case (i). If we have the congruence for the eigenvalues as stated, then
by (1.4.8) above, we have

01(D)1e((1)) + (1) = O2(D1u({1)) +2(1) mod(w, T)
or equivalently,

(0:10)(1) + 1 (1) = (62) (1) + (1) Mod (@) = o
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for all prime numbergt Np. Then by Artin’s lemma on the linear independence of characters,
we have either

{ 1 =19 andhiw = faw mod (w); or
1[)1 =6Oow ande =bw mod (w)

In the first case, our assumption dhimplies thaty; = 15, andf; = 6. In the second case, we
havey; = 6w andiy, = ,w. Note that, since the conductorsof andi, are prime top, we
must have; | (z,,z)x = w~!in this case. The converse is obvious.

We turn to the case (ii). For the “only if” part, we note that the assumption implies that
Y1 (p) = 12(p) by (1.4.8). Thus in the case whefle = ¢;w ™! andi, = 6w, we must have
(01097 1) (p) = 1. The “if” part is clear. O

Note that(6;wv; ') (p) = 1 if and only if thep-adic L-function L, (s, 61¢; 'w?) has the so-
called trivial zero (or exceptional zero) at= 0.

Terminology (1.4.10). — We say that the pdit, ) as above igxceptionaif 0|z /,z)« =w™"
and(fwyp—1)(p) = 1.

1.5. Main result

We keep the notation of previous subsections. Especially, wedind+ of conductors, and
v whose values are containedias in Section 1.4.

DEFINITION (1.5.1). — Assume thatv = N or Np. We define th&isenstein ideadssociated
with (6,), denoted byZ(6,1)), as the annihilator of (6,v) in e H(N;t). We set

M0, ) := (I(@, V), @, T).

We denote by (0, 1) (resp. m( 1)) the image ofZ(6,v) (resp.9%t(6,v)) by the canonical
surjection:e H(V; )—»eh( ;t).

We also denote b¢* (9,1/;) andot*(0,v) (resp,I*(0,v) andm*(6,)) the corresponding
ideals ofe*H*(N;t) (resp.e*h*(N;t)) via the canonical isomorphism stated at the end of
Section 1.2.

Itis easy to see th&k(f, ) is in fact the ideal ot H(N; ) generated by

- ¥ o3 )t

0<t|n
pit

for all n > 1; or by such elements for prime numberdogether withT(q q) — (6¥)(q)e({q))
for all ¢ prime to Np. Clearly,9(6,v) is a maximal ideal ok H(N;t); but note that/ (6, )
andm(#, ) may not be proper ideals efh(V;t) in general.

We now make the following assumption:

(15.2) {p does not dividep(N);

o uv = N or Np, and(6,) is not exceptional (1.4.10).
We put
(1.5.3) E=0yp L.
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When(,1) # (w=2,1), we set:

(1.5.4) A(T;G,w):_< 1T ((1+T)S(l)—(§w2)1(Z)<l>_2)>G(T,§w2)
N
11 cond(&)

where the product ranges over all prime humbeds/iding N but not dividing the conductor
cond¢) of €. s(I) € Z,, (resp.G(T,£w?)) is defined in (1.4.4) (resp. (1.4.5)). It is easy to see
that our assumptio(¥, 1)) # (w=2,1) ensures us that this in fact belongstpeven iféw? = 1.

Finally, setht := 9(0, ) and9t* := M*(0, ) for simplicity, and indicate by the subscript
“on” or “ o= " the localization at that maximal ideal.

THEOREM (1.5.5). -Assum€1.5.2) We have the following exact sequences of frgenod-
ules

(N:0—eS(V;Ac)om — e M(N; Ao — A — 0

() :0—=Z(0,%)m — eH(N;t)om — Ay — 0;

(M) :0 — e*ESp(N)e,onr — €*GESp(N)eonx — Ar — 0;
(IV):0 = Ay — e*MS (N ), onr — €*ESp(N)e om- — 0.

When tensored with the quotient field af over A, (I) and (ll) (resp. (Ill) and (IV))
split uniquely as modules overH(N;t)gn (resp.e*H*(N;t)om-). The associated congruence
moduleq1.1.6)are all isomorphic to

A/ (A(T;0,4))

unless(f,v) = (w=2,1); while the congruence modules all vanish wtién)) = (w=2,1).

2. Residues of A-adic Eisenstein series
2.1. Cuspidal groups
We first consider the cuspidal groups ovepr the curvesX; (Np") and the Hecke operators
on them; and will turn to their projective limit in Section 2.3. We note that such groups already
appeared in a work of Kubert and Lang [10] in their study of cuspidal divisor class groups, and
also in Mazur and Wiles [11]. We begin by the description of the cusps, 6}/) following

Shimura [18], 1.6.
Now for a positive integed/, we set

(2.1.1) Ay = { [z] €(Z/MZ)¥? | (z,y) =1in Z/MZ} / ~
where ‘~" is the equivalence relation defined by
x x! ) .
(2.1.2) [ ] ~ { ,} if and only if y =1’ andz =2’ mody(Z/MZ).
Y Yy

We denote by :],, the equivalence class iA,; of [?] € (Z/MZ)®? such that(z,y) =1 in
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Z/MZ,or[*] € Z9? such tha(z,y, M) = 1. In the following, we le{Z /M Z)* act onA, by

T a lz «
(2.1.3) a- [yL{ ::[ oy ]M fora e (Z/MZ)".

If M = M; x M, with mutually coprime positive integer®&/; and M,, there is a natural
bijection
(214) AM = AM1 X A]uz

sending ;],, to ([}],,:[5],,), Which is of course compatible with the action of
(Z/MZ)* = (Z/MZ)* x (Z/MZ)*

on both sides.
As in Section 1, we fix a positive integ@f prime top, and let

(2.1.5) N=]]d’

be its prime decomposition. We write
(2.1.6) N,:=Np" forr>1

for simplicity. For any finite sef, we denote by|[S] the frees-module generated by the elements
of S, o being as in Section 1. Then by (2.1.4) above, we have an isomorphism:

k
(2.17) olAn,] = (®0[Aq;j1> ®o[A,]

compatible with the action of

k
o[(Z/N,Z)* %(@0 (Z/q; Z)" >®0[(Z/pTZ)X].
j=1

We recall that
(2.1.8) C, := (the set of cusps ak1(N,)(Q))

is canonically identified withdy, /{+1}, and hence[C,] with the quotient ofo[Ay, ] by its
o-submodule generated By: — (—1) - z | € A, }. For our computational purpose, it is rather
convenient to work with[Ay;, ].

We now consider the Hecke operatorsadA 5]. For this, put

n{fy s}

U :_{[g H c GLQ(Q)|a,d>O}.
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Then there is a bijectionl’; (M)\SLz2(Z)/Us = Ay sending an elemerit® '] € SLy(Z)
to [2],,. On the other hand, the natural mappifigz(Z)/Us — GLF (Q)/U is bijective.
Consequently, we may identifyf A ;] with o[, (M)\ GL3 (Q)/Us]. We can then consider the
action of the abstract Hecke algebra attachefhtd\/) and GL3 (Q) (cf. Shimura [18], 3.1) on
this module. Namely, for any € GL3 (Q), we let a double coset

Fl(M)gpl(M):HH(M)gi

actas: (the class of € GL3 (Q) in Axr) — Y, (the class ofy;7).

For any prime numbet, we denote byr'*(!) the endomorphism of[A,,] determined by
the double coset containirig ], to be consistent with the terminology of [15], 3.4. A simple
calculation shows that the actionf (/) on[:],, (a,c € Z, (a, c) = 1) is given by the following
formulas:

e When! does not divide\/, let!’ be an integer such thét = 1 mod M. Then we have:

(2.1.10) (1) [‘C’]Mzz L“C]M+ [lﬂM.

e When! dividesM but does not divide, let iy be the unique integer such tha ip <7 —1
anda + igc =0 mod!{. Then

(2.1.11) ) [Z] s [aﬂ'c}MJr {(a—i—iOC)/l}M.

c

(2.1.12) (1) m _li {";LC"C}M.

Via the canonical mappingi[Ay,.] — o[C,] above, these operators induce the operators on
0[C,] denoted by the same symbols in [15], loc. cit.

2.2. Eisenstein elementsin cuspidal groups

We fix Dirichlet characterg and+) of conductors: andwv, respectively, satisfying the same
conditions as in Section 1.4. We assume that N or Np, and thab contains all the values of
6 and.

For each prime factay; of N, we set

ordy; (u) := f;,

(2.2.1) {ordqj (v) = hy,

so thatorg, (N) = ¢; = f; + h;.
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DEFINITION (2.2.2).— Denote by:; the least common multiple af andp. Identifying the
both sides of (2.1.7), we defirg € o[Ax, ] by

i v 5wl )e Ly

a€(Z/vZ)* BE(Z/uiZ)* Jj=1

It is easy to see that. is a well-defined element. We again writé for Hida's idempotent
attached td™*(p) acting ono[ Ay, ]. For the same reason as [15], (4.3.4), if we denot®byhe
o-submodule ob[Ay, | generated by: ], with p | c, then
(2.2.3) e*D.={0} and e*o[An ]| o[An,.]/D..

Now we have that!. is non-zero. In fact, it is easy to see that

(©lup],) o Lial, <

Jj=1

are all different whemx € (Z/vZ)* and 8 € (Z/u,Z)* vary. Consequently, by the remark
above, we see that e/, is also non-zero.

In the following, we denote bythe inclusion mapping ofZ/N,Z)* into o[(Z/N,Z)*], the
latter acting orv[Ay, ] by the rule (2.1.3). It follows from the definition that

(2.2.4) L(q)e; = (04)(q)((a))e;

for any integer prime toNp, where.({(¢)) € o[U1/U,] C 0[(Z/N,Z)*].
PROPOSITION (2.2.5). —The notation being as above, we have

O)L({D)) + (D)) (ever) if 1F#p,

v(p)(ever) ifl=p.

Proof. -We first treat the case where| N so that! = ¢;, with some indexj,. Take
a € (Z/vZ)* andg € (Z/u1Z)*, and choose coprime integersand ¢ such thata = o and

c= ﬁq;.” modg;’ (1 <j <k); a=0andc=w(3) modp", so that

mm - (é [ﬁ?L) ¢ [w(oﬁ)]p;

j=1

T (0ee;) = {

Assume that;, = 0. In this case, we havg,, = ¢;, andl = g;, { c. Using the same notation
asin (2.1.11), we have

Zlra4ic o %o 1 i 0
= ) =:Xu3.
2 [ le ]N,‘ (@ {lﬂqﬁ’]q;a‘) ¥ ( 2 [6qjoL;go> N [Zw(mL o

i£ig

We clearly haveX,, s = X, g» whenevers = 5/ modu, /q;,, and so

> ST 08 (@) Xas =0.

a€(Z/vZ)* Be(Z/unZ)*

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



242 M. OHTA

On the other hand, we have
+1 l U 0 0
@] B e L
¢ N Ny LG 1 Blgp  Lw(B ) pr

wherell’ =1 mod N. We conclude thal™(1)e]. = ¢ (I)e]., which gives our formula, since*
commutes withl™* (1), andd(l) = 0.
Next assume that;, > 0, i.e.l = gj, | c. In this case, we apply (2.1.12). Far and[:]

as above, we have
9jo—1 L
a « a+i3q; 0
T*(l){ } —< { hj:| )®< ) 70 ] )@{ } = Ya,B-
)y = (@ s 2 Bagett | o) L),
9
Whenh;, = ej,, the sum in the middle term 'qg-o[‘g]qem , and we easily obtain
Jo

J#Jo

T*(1)e!, = 0(1)1({1))e.

On the other hand, whem;, # ¢, so thatf;, > 0 andé(l) = (I) =0, we see thatt = 3’ mod
u1/qj, impliesY, s =Y, 3. We therefore conclude th@t*(/)e]. = 0.

We have thus settled the case whigr&. When! { Np, the proofis similar and in fact simpler.
Finally assume that= p. It is in this case we have to considete,. rather thare).: Using the
same convention as in (2.1.11), (2.2.3) implies that

e HN e[

c C

r

wheneverp { c. One then easily derives* (p)(e*e]) =¥ (p)(e*e]). O
DEFINITION (2.2.6). — We denote by, the image ok.. in o[C,].

2.3. Eisenstein elementsin A-adic cuspidal groups

We keep the notation of the previous subsection. When 1 varies, there are natural
surjectionsAy, — Ay, sending[t], to[:], fors>r. We can therefore form the projective

L N,
limits:
o[Anpe] := lim o[An,] = o[AN] @ 0[Ape-],
r>1
2.3.1 ~
( ) 0[Cus] := lim o[C;].
r>1

These are modules oveflim >, (Z/N,Z)*] in the manner described in Section 2.1. Especially

they are modules ovey,. As in [15], we set
(2.3.2) Cp(N)o :=€e"0[Cx].

Via the action of Hecke operators described in Section 2.1, we can corsjtlsn, as an
e*H*(N;0)-module ([15], 4.3), the resulting[lim,>1(Z /N, Z)*]-module structure being the

one described above. We then recall gtV ), is a freeA,-module of finite rank (loc. cit.).
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It is clear from the definitions that| ande, give rise to elements of the projective limits
above, and we set

(2.3.3) {eéo = (e))r>1 € o[ Anp=],

€ = (er)r>1 € 0[Cx]-
We now assume thatdoes not divideo(V). Set

For anyo[(Z/N,Z)*]-module)M, we denote byl X) its y-eigenspace, i.e. the maximum direct
summand of\/ on which(Z/N,.Z)* acts through the (possibly imprimitive) characterThen
sincey is even, we have canonical isomorphisms:

(2.3.5) { 0[An, |00 = o[C,] 00,

0[Anp]X) = 0[Co]X).

We see from (2.2.4) that,, lies in o[C, ],

THEOREM (2.3.6). —Assume thagt { (V). ThenA,(e*e) is a freeA,-module of rank one,

and it is a direct summand of the frée,-moduleC, (N), or Cp(N)S,X). Moreover, it coincides
with the kernel of the Eisenstein ideal definedlirb.1):

Ao(e'ex) = Cp(N)o [Z(0,9)].

Proof. —We fix anr > 1 for the moment. Lef\/,. be theo-submodule 0b[A v, ] generated by

all
k (e%
<® Lfﬂ”Ljﬁ) ’ [w(;)er

Jj=1

fora € (Z/vZ)*, p € (Z/urZ)* and~ € U1 /U,. As noted in the previous subsection, these
are well-defined elements ofy,, and are in fact all different. Evidently, as af{Z/N,Z)*]-
module,o[Ay, ] is a direct sum of\/,. and theo-submodule generated by the elementsigf.
not contained in/,..

On the other hand, we can maké. into a module ovefZ/vZ)* x (Z/u1Z)* x (U1/Uy)
by letting an elementa’, 3’,~") in this group send the element above to

k o a 0
<(§) [6’6#‘ } ) ¢ L}(ﬁ’ﬁ)v’v]pr |

Itis then clear thafl/, is a freeo[(Z/vZ)* x (Z/u1Z)* x (U1 /U,)]-module of rank one with

a basis
k
1 0
( 45" Jqp L

Jj=1

By our assumption, the orderof the group(Z/vZ)* x (Z/u,1Z)* is prime top. Therefore,
the elemente] is nothing but the one obtained by applying the idempotent attached to the
charactery =t x 6:(a, 3) — 0(B8)¢Y~1(a) of (Z/vZ)* x (Z/u1Z)*, to a basisgp,. Thus
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o[U1/U,lel. = MT(WIXG), which is ane[U; /U, ]-module direct summand afAy, ], and free

of rank one oven[U; /U, ]. Note thatMr(W] *%) is contained iM/Z™ in the previous sense.

We deduce from this and (2.2.3) thgt/; /U, |(e*e,) is free of rank one oves[U; /U, ], and
that it is a direct summand of thélU; /U,.]-modulee*o[C,.|X). The first assertion follows from
this.

Now it follows from (2.2.4) and (2.2.5) that*e., € Cp(N)o[Z2%(6,v)]. Let L be the
quotient field ofA,. Then sinceC,(N),/A.(e*e,) is free overA,, it is enough to show that
(Cp(N)o @n, LK)[Z*(0,v)] is a one-dimensional x -vector space, to finish the proof. For this,
one easily reduces the problem to the case whéontains all the roots of unity. In this case,
by the main results of [15] and [16] (cf. also (2.4.6) belo@)(N), ®, Lx is canonically
isomorphicto the i -vector space generated by theadic Eisenstein series given in Section 1.4,
and via this isomorphismi™*(—) on the former corresponds B6(—) on the latter. Thus by
(1.4.8), the space above is one-dimensional.

2.4. Residue mapping for A-adic modular forms

Assume thab contains all the roots of unity. We first recall some results from our previous
works. We writel’, for I'y (Np"), andSz(I;0) (resp.M2(I;0)) for the space of cusp forms
(resp. modular forms) of weight 2 with respect fp with coefficients ino. We then denote
by S3(I.;0) (resp.M;(I'-;0)) the space obtained from the above by applying the operator
‘I with 7= [ '] (See [14], (2.1.3), (2.3.4) and [15], (1.5.8), (2.2.1) for more details.)
Denoting bye* Hida's idempotent attached 6*(p) acting on the latter spaces, we recall that
there is an exact sequence for each 1

Res,.

(2.4.1) 0—e"S5(Ir;0)— e My(L;0) =" e"o[Cr] — 0,

where Res sendsf € e* M5 (I';0) to the formal sum obtained by taking residues at cusps:

(2.4.2) Res, . (f) := Z Resc(wy) - ¢ withwy := f%q
ceCyr

Indeed, in [15], 4.4, we have established this for certain subspaces, and the general case is covered
by the argumentin [16], 2.2.
Whens > r > 1, we have the following commutative diagram:

0 —> "S5 (Iy;0) —= e* Mg (I3 0) —= ¢*0[Cy] —— 0

(243) traccl ltracc l

0——= "85 (I';0) —= e* Mz (I'v;0) — e*o[C,] —= 0

where the left two vertical arrows are the natural trace mappings (i.e. they correspond to the
traces of differentials vigf < wy), and the right vertical one is induced from the projection:

C, — C,.. Then taking the projective limit, using the same terminology as [14], (2.3.5) and [15],
(2.2.2), we obtain the exact sequence

(2.4.4) 0— e*&3(N;0) — e* M (N;0) "5 C,(N), — 0.
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(To check the surjectivity of Res directly, it is enough to show that this mapping is surjective
when reduced modul@'A,, since its domain and range are both finitely generated free
A,-modules ([15], (2.4.10)). By [15], (2.5.4) and (4.3.14), this amounts to the surjectivity of
Res.)

On the other hand, there are canonical isomorphisms:

(2.4.5) {e*GS(N;O) =~ e S(N;A,),
e*M5(N;0) e M(N;A,)

([14], (2.3.6), [15], (2.2.3)). Combining these with (2.4.4), we obtain the exact sequence

(2:40) 0— eS(N: o) — e M(N: Ag) B €, (V) —0.

We callRes theresidue mappindor A-adic modular forms. Let us make this mapping explicit:
An elementF € eM (N; A,) corresponds, via (2.4.5), {¢;)r>1 € e*95(N; 0) defined by

> FeolT(p)™ |n1)

ecU, /U-

1

(2.4.7) fr=—
P

Wherem is the set of(QX-valued) characters @f; /U,.. Thus if we set

1 —r
(2.4.8) gT:=pH( > FeolT(p) )
EEUT/\UT

we see that the composite @¥/ (V; A,) Res Cp(N), — e*0[C,] sendsF to

(2.4.9) Z Res, (¢)(wg,) - c.

ceC,

Now let¢ and be Dirichlet characters as in Section 2.2, and assumétha} # (w=2,1).
SinceRes commutes with the Hecke operators in the sensefigat) on the domain commutes
with T*(—) on the range, we see thBes(£(0,)) lies in C,(N)o[Z*(6,v)], in general. The
following is the main result of this section:

THEOREM (2.4.10). -Let the notation and the assumption be a§ar8.6)with

(0,9) # (qu,l).

Then the image df (0,1)) € eM (N; A,) underResis a multiple ofA(T;6,v)(e*e) by a unit
in A,. Here, A(T'; 0,) is the power series defined f.5.4)

To prove this theorem, we will study the classical Eisenstein series in the next subsection.
2.5. Classical Eisenstein series of weight 2

Let M be a positive integer. In [3], Hecke studied (not necessarily holomorphic) Eisenstein
series for the principal congruence subgrdi@/ ). When the weight i€, they are given by
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/ 1
Ga(zya1,a2, M) := Z

2

-7 . a1 / 1
—M—zy”(ﬁ) 2.

mo=ag (M)

47T2 E 222 o L z
(251) — W |m|e M (§ M
mmi>0
mi1=ai (1\{)

Here,a; anday are integersz = x + yi is a variable on the complex upper half plane; and
8’ (a1 /M) is equal tol (resp.0) whena,/M is an integer (resp. otherwise). The superscripts
prime for the sum indicate the exclusion of the termn = mo = 0 or my = 0. For

=| b esn

the Eisenstein series above satisfy the transformation law

GQ(Z;idvaha?aM)
(cz +d)?

(2.5.2) = Gy(z;aa1 + caz,bay + daz, M).

Gg(z;al,ag,M) |’}/Z:

Now let & and+) be Dirichlet characters of conductarsandv, respectively. We assume that
01 is even, and that one éfor ¢ is non-trivial. In the following, we sef\f := uv. The Eisenstein
series

(2.5.3) Ba(0,0) := 6 () L(1 — 2,0) +Z( S 6 t)w(%)t)qn
0<t|n

(notation as in (1.4.3)) fof; (M) can be expressed in terms of Hecke’s Eisenstein series above
by the following formula of Hida:

LEMMA (2.5.3) (cf. [6], p. 577). The series

v

M
):ZZ B)G2(z; au, B, M)

is equal to
_ [2m\?
_27(9) 7 EQ(eauj)a
wherer(0) :=Y""_, 0(a)e* @/ is the usual Gauss sum.

Proof. —Hida noted that’, (6, 1) is a constant multiple o (¢, ), and there is no doubt that
he knew its explicit form. Since this is not stated in [6], we give the calculation: We consider the
“non-constant term” ofz} (6, v) divided by—472/M?. We see from (2.5.1) that it is equal to

v M
Z 21/)(04)9(5) Z | |e?™ Gt e2mists

a=1p=1 mk>0
k=au (M)
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Here,k must be divisible by:, and thus putting: = ru, this reads:

Z Z ’l/J |m|€27”7627”mz

B=1 mr>0

Whenv 1 m, the sungi1 ?(ﬁ)eQ’”%—T vanishes, and hence we only need to consider the terms
with m divisible byv. Then settingn = vs, we see that the above is equal to

i ( > 1/](7”)9(5)’07'(5)|U3|)62ﬂ'inz.

n=1 “n=rs

Sincew is even, this is equal to the non-constant term2etr () E,(6,4). (Of course, one
easily checks that the “constant terms” also agree: See the proposition betow.)

We next want to calculate the constant termdf6, 1)) at various cusps. For this, we take
and fixy =[2 ;] € SLz(Z), so thaty(ico) = a/c € P'(Q) gives the cusp:],, mod {+1} in
the notation of Section 2.1.

PROPOSITION (2.5.5). —The constant term of the-expansion ofF»(0,1) | v is 0 if u 1 c.
Whenu | ¢, it is given by

D (Y (o T (- 60 i -2.00)
l{coﬂé\?@)

where the product ranges over all primes satisfying the indicated conditions.

Proof. —We compute the constant term B% (0, ) | v. By (2.5.2), we have

V)| v= ZZUJ B)Ga(z; acqu + ¢, bau+ dB, M).

a=1 pB=1

By (2.5.1), a term in the right-hand side contributes to the constant term onlyawhen ¢ =0
(M), or equivalently, wher3 = 0 (u) andaa + ¢8/u =0 (v). Therefore, the constant term is
equal to

v M _ , 1
>3 wepe( X o)
a=1 B=1 m=bau+dS (M)

acu+cB=0 (M)

If u1c, thenc3 =0 (u) implies that(3, u) # 1, so thatd(3) = 0 and the above sum vanishes.
We henceforth assume that c. For a given integem, the condition

[acu + ¢B, bau + df] = [au, ] [a Z] =1[0,m] (M)

is equivalent to:

az—g (v) and f=am (M)
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and these conditions determineand 3 uniquely in the range considered above. It follows that
the constant term is equal to:

5w (= Yot — =20 (- J@reud) [T (- @)
M
ltcond(y0)

m

sinceyd is even. (Note that/(0) = 1 whenz is the trivial character.) The functional equation of
the L-function then implies that this is equal to

2w(-S)ow( I a-wmon) ol ),

1| M
ltcond(69)

from which our formula follows. O

Later, we will also need the following fact: Lptbe a prime not dividing/, and denote by,
the imprimitive Dirichlet character defined moduyle induced fromd. We can then consider the
Eisenstein series attached#pandq defined by the same formula as (2.5.3). We in fact have

(2.5.6) Ea(0y,v) = E2(0,9) — 0(p) E2(0, ) | {g (1)] '

COROLLARY (2.5.7). —Let the notation be as above, and assume ghat Then the constant
term of theg-expansion o, (6,,,v) | v is 0 if u{c. Whenu | ¢, it is equal to the constant term

of E5(6,+) multiplied byl — (8¢)(p)p.
Proof. —Noting that

waoon 1[5 3] ¢ b= [, 2[5 Y]

the result follows from (2.5.5) and (2.5.6)0

In the above discussions, we excluded the case wfterg) = (1,1). However, as is well
known (cf. [3], Math. Werke, p. 474), the serigs(1,,1) also gives the Eisenstein series
of weight 2 with respect td(p). Thus whenp | ¢ (i.e. v € I'v(p)), the constant term of
E»(1,,1) | vis given by(1 — p)¢(1 —2)/2, in accordance with (2.5.7).

2.6. Proof of (2.4.10)
We now return to the situation considered in Section 2.4, and keep the same assumption as
in (2.4.10). We already know th&es(£(6,1)) is contained irC,(N)o[Z* (0, )] = Ao (e*eco)

(2.3.6), and want to describe thg-submodule generated by it.
We fix an integer- > 1 for the moment. Setting

(2.6.1) wr=(1+TP  —1€A,
we recall that the projection induces an isomorphism
(2.6.2) Cp(N)o /wr = e*o[C]
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([15], (4.3.14)). Thus the image of,(e*e~) in e*o[C,] is the rank oneA,/(w,)-direct
summandA,/(w;))(e*e,) = o[U1 /U, |(e*e, ), and we can express the imageRés(E(6,v))
in e*o[C,] uniquely in the form

(2.6.3) > ey u)(eter) withe,, €0,
yeU1 /U,

We are going to compute the coefficients, .

Now set
Fro 0
(2.6.4) Ty 1= (@{ hj] )@[ } mod{+1} € C, fory € U1 /U,..
j=1 4; qjj Tdpr

Then it follows from the definition (2.2.2) of/. that e, is a sum of2r; and ano-linear
combination of elements of',. different from=,. Sincee*[:],, =[], mod D, whenever

c c

p1c(2.2.3), we conclude thak, ., is equal to the coefficient of the imageRks(£(6, 1)) with
respect tar.,.
In what follows, we put

k
(2.6.5) u = qufj
j=1

so thatu = v’ oru’p, andN = u/v.

LEMMA (2.6.6). —Take an element € U, /U, (C (Z/N,Z)*), and leto, be an element of
SLy(Z) such thatr, = [~," 7] modN.,. Letg, be defined frong (6, ) by the formula2.4.8)

If mp =[2]y mod{+£1} Withwcoprime integers andc, then we have

2¢,.4 = Resy (ng‘%ﬂ)

with 7 := [ —efv

i ]y mod {1},

Proof. -We haver, = o, 7:. So, by (2.4.9) and the discussion above, we have

2Cr,’y = Resn(ﬂw) (wgr) = Res‘l’r(ﬂ'l) (wgr|g;1 )

On the other hand, one checks easily thadtr;) =7. O
To calculater,  using this, we need the following two elementary facts:

LEMMA (2.6.7). -The “width” of the cuspr above isv; i.e. if ¢ is an element 0§ L (Z) such
thatd(ico) =, then we have

51{77€FT|77(7T)_7T}6-{:|:1}_{:|: [(1) i’]m ’mEZ}.

Proof. —Straightforward, and left to the readem

On the other hand, in general, lgt andy, be Dirichlet characters of conductofsandg,
respectively. Then it is well known (and easy to see) that:

(2.6.8) T(X1X2) = X1(9)X2(f)T(X1)T(X2) if (f,9)=1.
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Recall that we have sét= 6y~ = 6y (1.5.3). We are now ready to prove the following

PROPOSITION (2.6.9). —Let the notation be as above, and write= §yw? with p not dividing
the conductor of)y. Then there is @-adic unitC' contained in a finite cyclotomic extension of
Q, and dependent only ahand+, with whiche, ., can be expressed as

1 -1 N
Cxpr—l Z () 5(%)

EGU1/7\EJT

X ( H (1- (fwzs)_l(l)<l)_2))G(s(uo) —1,&w?)

IN
lfcond(&)

whereG (T, £w?) is defined in Sectioh.4.

Proof. —Using the definition (2.4.8) and the description (1.4.7) of specializatiodghf)),
we first note thay,. above is given by

% Z EQ((ef)padj)'

sem

Here, (<), is the (possibly imprimitive) Dirichlet character modulo LCM(cd#él), p) induced
from 0e (hence(fe), = ¢ unlesss = 1), and E»((0e),, ¢) is defined by the same formula as
(2.5.3). By (2.6.6), combined with (2.6.7) and [15], (4.5.4), we seeithakc, ., is equal to the
constant term of the-expansion of

wzgf)lr > ) E((09)p,9)

56U1/U7‘

at the cuspr.
But by (2.5.5), (2.5.7) and the remark after it, the constant terf.¢té<),, ) atr is given

by
<>< i) (5
x 11 (1— DI72) x L(1—2,(0),%).

I|cond(fe )CCﬁd(d’)
Ycond(¢(0e))

If cond(we) = p*, we see from (2.6.8) above that

T("/’(%)) _ T("/’(%)) T(wi‘g) ("/’ O) ( s) ) (wis)( COnd(?O) )

7(02)  r(wie) 7(0e)  7(Bo) cond (49

~—

On the other hand, it is easy to see that
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(-t s (5) ()

It is clear that these four terms are athdic units in a finite cyclotomic extension @f,. Also,
their product is a product of gradic unit which depends only ghand+, and

06)e (22 o )e(-0 = vlo)e (- o )

Now the range of indicated under the product above is for théseich that | w'v = N and
It cond(&). We also have

L(1-2,(0e),0) = G(e(uo) — 1,&w?).

Thus combining what we have said, the proposition follows.

We now prove (2.4.10): IRes (£(0, 1)) = Fo(T)(e*es) With Fy(T') € A,, then its image in
(Ao/(wr))(e e,) = o[U1 /U, (e*e, ) is given by

1 —1 *
> <pr1 > &) FO(E(UO)—l))'L(W)(e er)

veU1/Ur ae(f/?]r

for all » > 1 (cf. e.g. the proof of [14], (2.4.2)). Conversely, this property determifigq")

uniquely.
- i) =
_—_— :'LLO
cond(¥8y)

Definea € Z,, by
so that the value oftl + 7)) € AX atT = e(ug) — 1 is e(—N/cond(¥fy)). If we set

F(T):=C(1 +T)“( I - oo +T)_S(l)))G(T7 £w?) € A,
1IN
ltcond (&)

then it follows from (2.6.9) that thi'(7") enjoys the characterizing property B§(7"), and we
conclude that,(T') = F(T). Clearly, F(T) is a multiple ofA(T'; 0, ) by a unitinA,; and the
proof of (2.4.10) is complete.

3. Determination of congruence modules of Eisenstein type
3.1. Congruence modulesfor A-adic modular forms

The purpose of this section is to prove our main theorem (1.5.5). We treat the case (1) in this
subsection.

We consider the same situation as in Section 1.5:4,ef), u, v, andt be as stated at
the beginning of Section 1.4, withv = N or Np, and assume thai{ ¢(N). Recall that
M(0,¢) =: M (resp.M*(0, ) =: M*) is the Eisenstein maximal ideal ef{(N;t) (resp.
e*H*(N;t)) associated witlg (6, v).
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LEMMA (3.1.1). «(Z/NpZ)* acts on the localization™ (N; t)on through the charactef),
andT(q,q) = (6v)(q)c({q)) in eH(N;t)on for all positive integers; prime to Np. The same
holds fore*H* (INV; t)on- .

Proof. —Itis enough to prove the assertion fdt(N; t)sn, and we may assume thatontains
all the o(NNp)th roots of unity to do this. Then, singe p(N), the action of Z/NpZ)* on the
local ring eH(N;t)sm must factor through a character, and by (1.4.8), this character can be
nothing other thady. The assertion fof’(q, ¢) also follows from this. O

PROPOSITION (3.1.2). C,(N). on+ is a free A,.-module of rank one whe(¥,v) is not
exceptional(1.4.10) If (6, +) is exceptional, it is free of rank two ovar,.

Proof. —We may again assume thatontains all thep(Np)th roots of unity.

Cp(N). on~, being a direct factor of a fre&.-module, isA.-free, and its rank is positive by
(2.3.6). Assume that the rank is strictly greater than one. Then we see from the exact sequence
(2.4.6) that there would exist a non-zero elemerd C,(N). s~ for which the eigenvalues
of T*() coincide with the eigenvalues df'(l) for £(0',v¢';c) € eM(N;A,) with some
(0',4") # (6,%), for all primesi { Np. By (1.4.9), (i), we must haved’,¢’) = (Yw ™1, fw).
Consequently, sincev = N or Np, we havec = 1, andx shares the same eigenvalues for all
prime numbers with £ (w1, fw), in the same sense as above. Whn) is not exceptional,
we get a contradiction by (1.4.9), (ii). In the exceptional case, the same lemma implies that the
Ac-rank of C, (N ), op+ iStwo. O

From now on, we assume th@, ¢) is non-exceptional, anfl” is a complete subfield of,
containingk and all the roots of unity, in this subsection. By the above proposition and (2.3.6),
we have:

(3.1.3) Cop(N)e,on @a, Ao ZCp(N)o, o =Ag(e"eso).

Now consider (2.4.6) as an exact sequencee®f{V;t)-modules, viewingC,(N), as a

module over this ring through the canonical isomorphisM(N;t) = e*H*(N;t). Then, its
localization atht becomes

(3.1.4) 0— eS(N; Ao)on — eM(N; Ag)on 225 Ao (eess) — 0.

Noting thate M (N; A,) ®a, As =2 eM(N;A,) canonically (and similarly for cusp forms), and
using the faithful flatness af, overA, (cf.[16], (2.1.1)), we see thal\/ (N; A )om/eS(N; Ac)om
is A.-free of rank one, and we have the exact sequene@(¢fV; t)oz-modules

(3.1.5) 0— eS(N; Ao - eM(N; Ag)an = Ae — 0

where eH(N;t)or acts onA. through its quotiene™(N;t)om/Z(6,v¢)m = A.. This is the
exact sequence stated in (1.5.5), (I). It splits uniquely as modules over the Hecke algebra when
tensored withZ;, (the quotient field ofA.) over A.. When(6,v) = (w=2,1), the mappingr
may be identified with the one taking/eadic modular form to its constant term of the formal
g-expansion, and the congruence module vanishes in this case, from the argument of [15], 5.2.
We assume thd®), ) # (w2, 1) in the following.

By (2.4.10) and its proof, whencontains the constaqt in (2.6.9), the residue mapping sends
eM(N;A)om to Ac(e*ew ), and (3.1.5) may be identified with

(3.1.6) 0— eS(N; Ad)an — eM (N3 Ao 5% A(eess) — 0.
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(See Section 3.3 below for another description of CaRerTo prove (1.5.5) for (I), we may
assume that we are in this case (or we may even replag®), by (1.1.7) and (1.1.9).

Now if we denote by the section oRes®, , 1., , itsimage is the, -vector subspace spanned
by £(6,v). By (2.4.10), we in fact have

(3.1.7) s(e*es) =UA(T;0,94) 1 E(0,1)
with a unitU in A.. Since the coefficient of” in £(6, ) is¢(p) € v*, we conclude that
(3.1.8) Res(eM(N;A)m Ns(Ac(e'exs))) = A(T50,9) - Ac(e*ess)

which completes the proof of the part (1) of (1.5.5).
As a consequence, we obtain the following result. Witea 1, it had been proved by Wiles
([22], Theorem 4.1).

PrROPOSITION (3.1.9). —-The notation being as if1.5.1) there is a surjective\.-algebra
homomorphism

eh(N;t)on/1(0,9)om — A/ (A(T30,1))).

Proof. —Considering the congruence module attached to (3.1.5) with the canonical splitting as
aneH(N;t)om-module, we obtain a surjective,-algebra homomorphism:

eH(N;t)am — Ao/ (A(T;0,0)).

In view of the description ast{B)/A” of the congruence module in (1.1.4), this must factor
throughe (N ; t)on — eh(N;t)sm, while the description asC'/x(B N s(C))” loc. cit. implies
that this further factors throughh(N; t)on /I(6,%)om. O

COROLLARY (3.1.10).Hf A(T;6,4) is not a unit inA,, thenI(6,), and hencen(f, )
also, is a proper ideal ofh(N;¢).

3.2. Congruence modulesfor Hecke algebras

For the moment, we give some general remarks under the setting as in Section 1.1. We thus
consider the exact sequence (1.1.1) of Ratnodules, and its splitting (1.1.2) ovér

Assume that we are given aR-subalgebrad of Endg(B), which is commutative, unitary
and R-flat. We also assume that (1.1.1) is an exact sequengemiodules, and that (1.1.2) is a
splitting of H ® g L-modules. Therd naturally embeds iftndz(A ®r L) @ Endg(C ®g L).
Let pr; (resp. pg) be the projection mapping frof to the first (resp. the second) direct factor,
and setH; := pr;(H) for i =1, 2. Define idealss andb of H by the exactness of the following
sequences:

pry
(3.2.1) {OH“HH_’H“)O’

O—>b—>H]£>2H2—>O.

Assume furthermore thal/; and H, are bothR-flat (from which the R-flathess ofa and b
follows), and thatf ®r L = (H, ®r L) ® (H, ®g L) via pr, and pk. From the last condition,
we obtain canonical splittings of the two sequences above when tensored awtr R, and we
can consider the associated congruence modules. These are both isomorphic to

(3.2.2) (H1® Hz)/H =:C.
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On the other hand, it is clear that=Anng (C), the annihilator ofC' in H, and this is mapped
injectively into H; via pr;. Thus (1.1.4) gives the following description:

(3.2.3) C = Hy/pr,(Anng(C)).

We now come back to the situation studied in Section 3.1. We assumédthat is non-
exceptional, and apply the argument above to the exact sequence (3.1.9% with, and
H = e¢H(N;t)on. Clearly, we haveéd; = eh(N;t)on andH, = A,. Noting thatpr, in the present
case cannot factor through;, we see that all the conditions above are satisfied. Also, from
definition (1.5.1),b = Z(6,v)sm and pi(b) = I(0,%)am, S0 that the second exact sequence in
(3.2.1) is nothing but the one labelled as (ll) in (1.5.5):

(3.2.4) 0—Z(0,Y)m — eH(N;t);m — Ay — 0.

By (3.2.3), the associated congruence module is isomorphic t@ubpidal Hecke algebra
modulo Eisenstein ideath(N;t)on/I(0,1)m, and we want to show that this is isomorphic to
A/(A(T;0,%)) when(6,v) # (w=2,1), and{0} otherwise. In the former case, (3.1.9) assures
us that the two modules above vanish whéé, 1))on = eh(N;t)a; and we are reduced to the
case wheren(6,v) is a proper ideal. Then, when =1 and0|(z,,z)x = w' with 4 #£ 0, -1
mod (p — 1), the comparison of the two modules above was done in [15], (5.3.21) through an
argument involving the lwasawa main conjecture @r(a theorem of Mazur and Wiles [11]).
Evenwherd = w2, ori =0 or —1, a similar argument applies after [16] (with the aid of results
in Section 3.4 below). Since this task is totally routine, we postpone it until we treat the Galois
representation theoretical aspect of our theory for more geftera) in the appendix, where the
method of Harder and Pink [2], and Kurihara [9] is employed. Here, we prove (1.5.5) in the case
(1) under the assumption thatis not the trivial character

For this, we recall the duality betweénradic modular forms ang-adic Hecke algebras: We
set

(3.2.5) em(N; o) := (eM(N;Ao) ®a, Lx) N (L + qAo[q])

for any K and o as before (which may not contain all the roots of unity). Then, we know

that this is a freeA,-module of finite rank, and stable under the actione®f(N;o0) on

eM(N;A,) ®a, L. Define pairings

(3.2.6) {eh(N;o) x eS(N;Ay) — A,
eH(N;0) x em(N;A,) — A,

by the formula(t, F) := (the coefficient ofg in the formalg-expansion ofF | ¢). Then we
also know that these pairings establish perfect dualities of Argenodules (Hida [7], 7.3; cf.
also [14], (2.5.3) and [15], (2.5.5)).

LEMMA (3.2.7). -Assume that) # 1 and (6,v) is not exceptional. Foi’ containingk, the
localizationsem (N ; Ay )op andeM (N; A, )on at M = 9M(0, 1) (C eH(N;t)) coincide.

Proof. —Itis clear thate M (N; Ay )on C em(N;A,)m, and that these become the same when
tensored withC i over A,. On the other hand, we already know thatl (N; A, )om ®a, Lx IS
spanned by:S(N; A, )m @, Lx and&(0,1)) over L. Sincey # 1, the constant term of the
formal g-expansion o (0, 1) vanishes, and our claim reduces to the equality? (V; Ao) @,

L) NA[q] =eM(N;A,). This follows from [15], (2.4.9) and the final equality in the proof
of [15], (2.4.7); but see also the corrections to [15] at the end of this paper for the latter.
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Let us now consider th&.-dual of the exact sequence (3.1.5). Since the pairings above satisfy
(t't,F)=(t,F|t'), this reads

(3.2.8) 0— Ay — eH(N;t)om — eh(N;t)gm — 0

wherer is the obvious surjection. Namely, this is exactly the first exact sequencein (3.2.1) in the
present situation. Thus the congruence module attached to this sequence together with natural
splitting is isomorphic to that for (3.2.4) which is generated by one element/asmodule

by (1.1.9). We conclude from (1.1.12) that the congruence module in question is isomorphic to
the one in the case (l). This, with the remainder (in the case wherd) treated in the appendix

in greater generality, settles the case (ll) of (1.5.5).

Remark(3.2.9). — In [4], at the end of the paper, Hida conjectured that the congruence module
attached to€(0,1) is described in terms of Kubota—Leopolgtadic L-function. Precisely,
such aA-adic Eisenstein series determines a direct sumniaofle(N;t) ®a, Lk, which is
isomorphic toly. (If # = yw?~2 with x a Dirichlet character of prime-tp-conductor, this is the
irreducible component attached by Hidatoy anda, in [4], Theorem 7.2.) Sinceh(N;t)on
is free overA., the congruence module above coincides with the one defined in [4], (3.9/8) for
Thus our result gives an affirmative answer to his conjecture under the assumptiphat)
and(0, ) is not exceptional.

3.3. Remark on the duality (3.2.6)

Here, we would like to complement (3.2.7) by the following

PrRoOPOSITION (3.3.1). —Let the notation and the assumption be as stated at the beginning
of Section3.L1 If either ¢) # 1 and 6w # 1; or (6,%) is different from(w=2,1) and non-
exceptional, then we haven(N;A,)o = eM (N; A, )on for M = M(6,4). Consequently, the
second pairing irf(3.2.6)induces a perfect duality between the flegemodules™H (V; 0)ox and
eM(N;AU)gm.

Proof. —-When (6,v)) is exceptional,eM (N;A,)m ®a, Lk iS generated overlx by
eS(N;Ao)om, £(0,7) and&(Yw=1,6w). If » andfw are non-trivial, the constant terms of the
g-expansions of these twa-adic Eisenstein series vanish, and the same reasoning as (3.2.7)
applies to conclude.

So, let us assume thét, 1) is not exceptional, bup = 1 andf # w—2. We first note that we
may replace by ¢ which is finite overZ,,. In fact, if our assertion is established fgrthen the
resulting duality, after tensoringy, overA., yields an isomorphism

eM(N;Ay)om — Homy, (eH(N; 0)om, Ao)

and hence the duality (3.2.6) implies that(N; Ay ) = e M (N; Ao )on.
Now in this case, we use the isomorphism

eh(N;t)on/1(8, 1) = Ao/ (G(T, 0w?))

established in the appendix, to prove our assertion. We take an elémemrin(N; A, )s,m and
expressit as
‘F = b(T)g(ov 1) + C(T)]:cusp

with b(T),c(T) € L, and Fousp € eS(N; Ac)om. Write b(T') as b, (T)/ba(T") with mutually
coprimeb, (T'),ba(T) € A.. What we want to show is that (T) | G(T', 0w?).
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For this, putFo := bq(T)c(T') Feusp = ba(T)F — bn(T)E(6, 1). This belongs to
(eS(N; Ad)am @4, Li) N Acfg] = eS(N; Ac)on.
Itis then easy to see that
Fo|T(1) = (0(1)A(T) + 1) Fo modba(T)Ac[g]

if 7 is a prime number different from, and %, | T'(p) = Fo mod bq(T)A:[q]; i.e. Fo is
transformed undeF (1)’s in the same manner @6, 1) modulobq(T)A.[q].

But since the coefficient of? in Fy is prime tobq(T), we see that the image o, in
eS(N; Ao /ba(T) — (A/(ba(T)))[q] spans a free\./(ba(T))-module of rank one. The
action on this module gives usa-algebra homomorphismh(N;t)on — A/ (ba(T)) sending
eachT’(1) to the eigenvalue df (1) for £(6, 1), which must factor througbh (N ; t)sn /1(0, 1) on.
From the above mentioned isomorphism, we conclude(tiér’, 0w?)) C (b4(T)). O

Thus, for non-exceptiondb, ) # (w=2,1) with ) = 1, we have used our main result (1.5.5)
in the case (II) to prove (3.3.1). As the argument in the previous subsection shows, if one could
prove (3.3.1) directly somehow, it would conversely give a proof of (1.5.5) for §fiah) in the
case ().

We now give another description of Ker) (resp. Cokefi)) in the sequence (3.2.8) (resp.
(3.1.6)). This was suggested by the anonymous referee to whom the author is thankful. It is
based on the exact sequence due to Hida [7], Theorem 2.2:

(3.3.2) 0— S(N;t) > M(N;t) = C(S X Z);t) = 0

assuming that contains primitiveNth roots of unity. Here S(N;t) (resp.M(N;t)) is the
space ofp-adic cusp forms (resp. modular forms) of levélovert as defined in [7], 81, and
C(S x Z,;v) is the space of-valued continuous functions o%1 x Z5 (the projective limit of
the set of unramified cusps of the toweX; (Np”) }r>0).

Now applying the idempotent, localizing at9t, and then taking the-dual, we obtain an
exact sequence

(3.3.3) 0 — Meas(S x Z,;t)am — eH(N;t)m L eh(N;t)gp — 0

when(,1) # (w=2,1). Here, the module in the left-hand side is the one consistingvafued
measures o x Z. Indeed, Hida proved the-{inear) duality betweers(N;t) andh(Nt)
([7], Theorem 1.3), and one can proceed in a similar manner (but taking account of a subtle
difference between thedual of M(N;t) and(N;t)) to obtain the duality for modular forms
under the assumption on characters above. Note that this especially sholvsfteeness of
Ker(n).

Next, taking the\ .-dual of (3.3.3), we also obtain an exact sequence

0— eS(N;Ac)m N eM(N;Ay)om — Homy, (MeaS(S X Z;;'C)gm,Ar) —0
under the same hypothesis as in (3.3.1).
It is tempting to treat the case (ll) of (1.5.5) directly through (3.3.2) and (3.3.3), but the author

has not worked it out.
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3.4. Galoisaction on p-adic Eichler—Shimura cohomology groups

We give here some preparatory results, in order to complete the proof of (1.5.5) in the next
subsection and in the appendix. In accordance with the terminology of [16], we set

A i=e*ES (N )P = ¢*GES,(N)y 7,; Ao = A ®z7,0 =A% Oy, Ao,
(8.4.1) { Bi :=e"ESy(N)z, /As; Bl o =Bl Bz,0 =B Qay Ao,
B, 1= e* GESy(N)z, /U%; B, , =B Bz,0=B% @4, Ao,

wherel, is the inertia group of3al(Q,/Q,) C Gal(Q/Q). In what follows, we indicate by

the superscnpt(“)" the wi-eigenspace with respect to the action(&f/pZ)*. Then, in general
(i.e. without assuming thatt ¢(N')), we have the following:

THEOREM (3.4.2). Assume thati # 0 modulo p — 1. Then a geometric Frobenius
¥, € Gal(Q,/Q,) acts asI™(p) on Ax

Proof. —We first note that whetv = 1, this is due to Mazur and Wiles [12], p. 250 (under a
different choice of the models of modular curves).

If J. denotes the Jacobian variety &f,(Np") defined overQ, there is a well-known
isomorphism of Galois module&l! (X (Np")®q Q, Z,) = T, (J,)(—1) through whicHl™ (—)
on the left-hand side commutes will(—) (the covariant action of the Hecke correspondence)
on the right-hand side. Thus, what we need to show isdhaicts asl’(p) oneT),(J,.) (—1)!»
for eachr > 1 wheni #Z 0 modp — 1, e being Hida’s idempotent associated wilip). For this,
we may take®, from Gal Q,,/Q,(¢,))-

Let B, be the “good quotient” of/,. studied by Mazur and Wiles [11,12], Tilouine [20] and
others (cf. [14], 3.2). It has good reduction o\@ (¢, ), and we denote bys,. 7 (¢, (resp.
B, r,) the Néron model of3,. overZ,[(,] (resp. its closed fibre). We can consider théivis-
ible group oveiZ,,[¢,-]

(@)
Gy = (e Byyz,(¢, (D))

where ‘(p)” means the associatggdivisible group, and we know thatT,(J,)? = T,(G,)
canonically. On the other hand, i, is a positive integer congruent to 1 (regp. mod p”
(resp. N), we also know thatl’(p) acts asT(qp,qp)st—1 on eTy(B,/r,) (cf. Saby [17],
Théorémes 2.2.3 and 2.3.1).

Let GY (resp.G%) be the connected part (resp. the maximal étale quotierd).ofhe results
above imply thatl'(p) = T(qp, qp) @, ' on T,(GS). Let us denote by , ], the twisted Weil
pairing onT},(.J,-), which induces a perfect duality betweB(G?) andT),(G) (cf. [14], (3.2.5)
where (the “*-version” of) the results of Mazur, Wiles and Tilouine are reviewed, or [16], (1.2.8)).
Now, with the choice o, as above, we have

(2?7, y™] = [T(qp,qp)T(p) "2, y],

for all z € eT},(GY) andy € T,(G%!). On the other hand, the well-known property of the twisted
Weil pairing implies that

[,y ®r] = 6(Pp) [T(ap: )2, 9] -

We thus conclude tha@ = k(9,)T(p) on T,(G2). Our result follows from this, since
eTy(J.) D (=1)fr = T,(G%)(~1) (loc. cit.). O
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In the rest of this section, we f{#, 1) andt, and assumél.5.2). For notational simplicity, we
put:
b* :=e"h*(N;t)om-,
H* == e*H*(N;t)om~,
X :=€*"ESp(N)e o,
Y :=¢e*GES,(N)¢,om+,
with " = 901* (6, 1)). We then know thaf := X’» =% .. is a freeh*-module of rank

one, andX/ X ®a, Ly is afreeh* @, Li-module of rank one ([16], (2.3.6), [15], (5.1.2)). We
therefore obtain a two-dimensional Galois representation:

(3.4.3)

(3.4.4) p:Gal(Q/Q) — GLy-(X) — GLy(h* @4, L)

This is unramified outsid&/p, and its determinant is given by

-1

(3.4.5) det p(0) = (0w) " (0)(K(0)) "1 ((K(0)))

for all o € Gal(Q/Q). In fact, for any prime numbei not dividing Np, we have
det p(@;) = 1T*(1,1) for the geometric Frobenius &{[15], (5.1.5)); and hence (3.1.1) and the
Cebotarev density theorem gives the formula above.

Now we want to split the exact sequences:

0= Xy > X —X/Xs 0,
(3.4.6) { DX o X XX

0—-X;,—-Y->Y/X;—0
of H*-modules. For this, we define an integenod (p — 1) by
(347) 9|(Z/pZ)X :wi.

Then,o € I, acts onX /X, andY/X, asw™ (o) (k(o)) " 1e((r(o))) "1, by [16], (1.3.8).
Wheni # —1 mod (p — 1), it is easy to split (3.4.6), and this was in fact done in [15], 5.3
and [16], 3.2: We take and fix @ € I,, such thatw=""!(0¢) # 1 and (x(og)) = 1. Then we
defineX_ (resp.Y_) as the subspace df (resp.Y’) consisting of elements on which, acts
as multiplication byv=%=1(ay). Itis clear that this is mapped isomorphically og X . (resp.
Y/X4).

Next assume that = —1 mod (p — 1). In the following, we take®, in such a way that
k(®Pp) = 1, which is of course possible sind®,((,~)/Q, is totally ramified atp. For this
$,, we havedet p(P,) = (Oyw)(p).

LEMMA (3.4.8). -Assume that= —1 mod (p — 1). ThenT™*(p) — (yw)(p)T*(p)~* € H*
iS a unit.

Proof. —Since$H* is local, it is enough to show that the element above reduced modulo the
maximal ideal9t* is a unit. But sincel™ (p) = ¢ (p) mod 2t*, we see that it is congruent to
P(p) — (Bw)(p) modM*. Our assumption (1.5.2) then implies that this is a unit

By (3.4.2), 9, acts as™*(p) on X, and by the remark above, it acts @sw)(p)T*(p)~*
on X/X . Thus if we setX_ := (the elements of on which &, acts ag6yw)(p)T*(p)~1),
then this is a direct summand a&f which gives the splitting of the first sequence in (3.4.6), by
the lemma above.
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To treat the second sequence in (3.4.6), we recall that there are exact sequéhde€iQ)-

andGal(Q,/Q,)-modules, respectively:

3.4.0 0—-X—-Y —Cp(N)e,m-(—1) =0,

(3:49) {OHX/X+—>Y/X+ (N )eane (—1) = 0

([15], 4.3). Here, we hav€,(N). o+ = Ac(e*es), by (2.3.6) and (3.1.2). The main result
of [16] implies that the second sequence splits uniquely)&asand Gal(ﬁp/Qp)—modules
when tensored withC, over A.. Thus we can defin&_ C Y in exactly the same manner
as X_ to get the desired splitting afh*-modules, for the same reason as above, with the
following:

LEMMA (3.4.10). -Wheni = —1 mod(p — 1), &, (such thatx(,) = 1) acts onC,, (N ) m~
as(6yw)(p)T*(p)~1, and hence its action oF/ X, is also given byfyw)(p)T*(p) ~*.

Proof. —SinceT™ (p) = ¥(p) on A, (e*e), it is enough to show that
e/” = (0w)(p)e,

for eachr > 1.

In general, ifc € Gal(Q/Q) satisfies(3;, = (§ with an integera, and if o’ € Z is taken
so thataa’ =1 mod N,, theno sends the cusp:], mod {+1} to [.5.], mod {£1}
(Stevens [19], Theorem 1.3.1). Fer= &,, we clearly havea’ = p mod N and o/ =

modp”, and the conclusion follows from the definition@f (cf. (2.2.2) and (2.2.6)). O

Summing up, we have obtained the direct sum decompositigyt ehodules:

(3.4.11) {X_X+@X’

Y=X oY

3.5. Congruence modules attached to p-adic Eichler—Shimura cohomology groups

In this subsection, we treat the cases (lIl) and (IV), and complete the proof of (1.5.5). We keep
the notation and the assumption of Section 3.4.
We first consider the exact sequence already mentioned above:

(3.5.1) 0—-X—-Y —A(eex)(—1) — 0.

This is the sequence (lll) in (1.5.5). From the existenc& ofabove, we see that this exact
sequence splits uniquely as modules o$¢rwhen tensored witlC;, over A., and we want to
determine the structure of the congruence module attached to this situation.

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



260 M. OHTA

For this, we consider the following commutative diagram in which all the sequences are exact:

0 0
X, X,
(3.5.2) 0 X ) Y — " Cp(N)eam- (1) —>0
v
0—— Bl eome — B gp —— (Mo (<1) —>0

Let
5:Cp(N)eom(—=1) ®a, L =Y @4, Li

and
s":Cp(N)eon- (—1) @4, Ly — %207r7931* ®4A, Lk

be the homomorphisms giving the (unique) splittings of the two horizontal lines abo¥g;as
modules.

The uniqueness implies that we hayes s = s’. We also have that ands’ commute with
the action ofGal(Qp/Qp). Thus from the construction in the previous subsection, we see
that s(Cp(INV)e, o+ (—1)) C Y_ ®a, Li. Consequently, the congruence modules attached to two
horizontal lines above are isomorphic.

As before, we takdl (D k) so large that it contains all the roots of unity. By the main result
of [16], we then have the following commutative diagram:

O%%;,U,Dﬁ* 4>C USUI*_)HO

:;o,o,im*
(3.5.3) z lz
0——=eS(N;As)mm ——=eM(N; Ao)om (e*exo)

where we are fixing an isomorphisré;, (—1) = Z,. Here, the Hecke operatd*(—) on the
upper left two modules corresponds®g—) on the lower left two modules. The case (1) of
(1.5.5), which was established in Section 3.1, together with (1.1.7) implies that the congruence
module attached to the lower sequence is isomorphig {d A(T'; 0, ) if (6,¢) # (w~2,1) and
{0} otherwise. (Remember that, is faithfully flat overA..) The case (lll) of (1.5.5) therefore
follows from this combined with (1.1.7) and (1.1.9).

Let us finally treat the case (IV) of (1.5.5). In Section 1.3, we have established the duality
(1.3.3) betweere* GES,(N), and e*MS,(N).. By (1.3.5), this induces the self-duality of
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e*ES,(N),. Thus taking the\.-dual of the exact sequence:
(3.5.4) 0— e*ESy(N)e = €* GESp(N)e — Cp(N)e(=1) — 0
we obtain an exact sequence:
(3.5.5) 0— Cp(N)e(=1)Y = e*MS,(N): = e*ES,(N)e — 0
where 7 is the natural surjection. We have especially shown tRat= Ker(7) is a free
A.-module, in general. From (1.3.3), (i), we have a natural actionedf{*(N;t) on

e*MS,(N)., which induces the original action ef »*(N; t) on the quotient* ES,, (N ).. Now
taking theA.-dual of the diagram (3.5.2), we obtain:

*V
%oo,t,im* >0

(3.5.6) | Bop- e*MS (N )egne — €*ESy(N)eonr — 0
XY XY
0 0

The middle horizontal sequence is the one labelled as (IV) in (1.5.5). Here, we already know that
the two horizontal sequences split uniquely as modules 9¥evhen tensored witlf;, overA..
When(6,) = (w=2,1), we already know that the upper horizontal exact sequence in (3.5.2)
splits as modules ovej*, and hence the same holds for the lower horizontal sequence in (3.5.6).
This shows the vanishing of the congruence module in question in this case. We may thus assume
that(0,) # (w=2,1).
As in Section 3.4, we choose a geometric Frobediyis Gal(Q,/Q),) such that:(®,) =1
in the following:

LEMMA (3.5.7).—Let the integeri mod (p — 1) be defined by(3.4.~7) Through the
natural action of Gal(Q/Q) on e*MS,(N)., o € I, acts trivially on B on- and as
w1 (o) k(o)) e({k(0))"t) on XY. Wheni = —1 mod (p — 1), ¢, acts asT™*(p) on
%g:,m*' and as(0yw)(p)T*(p)~' on X, respectively.

Proof. —This directly follows from the known facts far* GES,(N ). o+ ((3.4.2), (3.4.10)
and [16], (1.3.8)) and (1.3.3).0

It easily follows from this that the congruence modules (of the fot(iB’)/A") attached to
two horizontal sequences in (3.5.6) are isomorphic. On the other hand, by (3.5.3) and (3.3.1),
the upper horizontal sequence in (3.5.6) tensored witlover A, can be described in terms of
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Hecke algebras:

00— Ag(e*en)’ ——= B

(3.5.8) J/z lz

% eh(N; 0)9}3 — (.

00— Ay(e*ex)” —— eH(N;0)m

Now fix an isomorphism\,(e*e,, )" = A.. Lett:%’;‘xtjfm* ®a, L, — Ly be the homomor-

phism giving the splitting of the exact sequence in question,téﬂﬁj;g{om* ®p, Lk — LK

its Lx-linear extension. Then, from the diagram above and the argument in Section 3.2, we
see thatt’(%’;g,o,m*) is a free A,-module of rank one. In addition, we see from the case
(I of (1.5.5) and (1.1.7) that the congruence module attached to (3.5.8) is isomorphic to
Ao /(A(T;0,1)). These imply that

~ 1
/ *V _
(3.5.9) (B gom-) = 7A(T;9,¢)A°

which in turn implies that

A(T;0,9)t (B on+) C Av.

But if the equality does not hold here, the left-hand side must be contained in the maximal ideal
(T, w) of A, which evidently contradicts (3.5.9).
This settles the case (IV), and we have completed the proof of our main result (1.5.5).

Remark(3.5.10). — In [1], Greenberg and Stevens considered the congruence module attached
to (3.5.5) (with its canonical splitting), and raised the problem of analyzing its structure.

More precisely, the relation between the terminology of [1] and ours is as follows: The module
D in [1] is isomorphic toZ, [(Z2)'] with

(ZZQ))’ ={la,d |a,c€ Zy,aZy+ cZ,=17,},

and these are acted on By, (Z,,) from the right ([1], p. 431). Let

Zy = { {z] |a,ce Zp,aZp—i-ch_Zp}.

Then the obvious bijectiofZ?)’ — Z, given by(a, ¢] < [°] transforms the above right action
of g € My(Z,) to the left action ofg* on Z, defined in a similar manner as in [1], whefe
denotes the canonical involution. Via this isomorphism, we may identify SyRip(D) with
Homp, () (Do, Z,[Zo]) = MS,(N)z, (cf. [14], (1.2.12)), and hence the exact sequence (6.7)
in [1] with

canon.

0 — Ker(canon.) — MS,(N)z, — ES,(N)z, — 0.

On the other hand, in [1], the Hecke operatdfsand|m] are considered. Here,andm are
positive integers aneh is prime toNp. Let Wy :=[{ 3']. For f € Homp, (n)(Do, Zp[Z0]),
we definef | Wy by f | Wn(d) :== W§ f(Wnd). It is then clear that the correspondence:
[ f| Wy gives an automorphism of Hofy (Do, Z,[Zo]). A direct calculation, using
results of [13], 7.3 and 7.4, shows that the conjugation by this automorphism transfgrms
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(resp.[m]) to ourT*(n) (resp.T*(m,m)). It follows that the modul€” defined on [1], p. 444 is
isomorphic to the congruence module attached to (3.5.5)witlZ,, as aAz, -module.

We have determined the structure of the localizations of the congruence module attached to
(3.5.5) at “primitive” (in the sense thatv = N or Np) and non-exceptionali*(6,+) when
pto(N), which gives a partial solution to the problem of Greenberg and Stevens.

Appendix A. Construction of abelian p-extensionsover Z,-extensions
A.l. Theextension L/F,,

We keep the notation of the text. Especially, weg#ixNand(6,), and assume (1.5.2) for
them.t is the ring of integers of a finite extensiarof Q,, containing the values ¢f and+.

In [15], Section 5 and [16], Section 3, we applied the method of Harder and Pink [2]
and Kurihara [9] toe* ES,(N). to construct large unramified abelian gscextensions over
cyclotomicZ,-extensions of abelian number fields, wher= 1. The purpose of this appendix
is to show that one can apply the same technique for gef®ra) (such thaty—! # w=2) as
above, which will also settle the case (II) of (1.5.5). When the argument is parallel to the above
mentioned works, we will be brief, referring the details to them.

In the following, we argue under the assumption that the id€al= m*(6,+) defined in
(1.5.1)is a proper ideal of the Hecke algebeah*(N;t), which assures us that

h* :=e*h* (N; ) = e*h*(N; 1)~

is not a zero ring. As for (1.5.5), (Il), whef¥,v)) = (w=2,1), we will soon arrive at a
contradiction to this assumption, while otherwise, we have reduced the problem to this case
in Section 3.2.

Now recall that we have seY := e*ES,(N) on+ = e*ES,(N)e,m+, and thatX is a direct
sum of X := X'» and X_ defined in Section 3.4. We know that ®,_ L (resp.X,)is a
freeh* @4, Li-module (resp. freg*-module) of rank one. We fix bases of these modules in this
order, and realize the Galois representatidB.4.4) in the form:

a(o) b(o

c(o) d(o

(A.1.1) plo) = [ ﬂ € GLy(h" ®4a, Lk).

Thus by construction,

(A.1.2) (o) = {det” (0)

*

0 .
) if oel,

and recall thatlet p is in general given by (3.4.5).

Let J* be the ideal of* generated by (p) — v»(p) and allT* (1) — (8(1)I.({1)) + (1)) for
prime numbers not dividing Np. This is clearly contained id* := I*(6,¢)h*. Noting that,
wheni=—1mod(p — 1),

(Oyw)(p)T*(p)~" 0 }: [(9w)(p) mod J*

p(Pp) = [ 0 T*(p) 0 w@)]

for a geometric Frobenius ptsuch that<( ¢,) = 1, we have the following:
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LEMMA (A.1.3).—For anyo,7 € Gal(Q/Q), the elements

a(o) —det p(o)y(o), d(o)—(o)™' and b(o)c(r)

are contained inJ*.
The sets
{a(o) —det p(0)y(0) | o € Gal(Q/Q)}

and
{d(o) —¥(0)! |0 € Gal(Q/Q)}
generate the same ided} of h*. If i 0 mod(p — 1), we in fact have/j = J*.

DEFINITION (A.1.4). — We denote by andC theh*-submodule oh* @4, L, generated by
all b(c) andc(o) for o € Gal( Q/Q), respectively.

From the lemma aboveé3C is an ideal ofy* contained inJ*.

LEMMA (A.1.5). —BC containsT™* (1) — (6(1)l1t({l)) + v (1)) for infinitely many prime$ not
dividing Np. If i 20,—1 mod(p — 1), thenBC in fact coincides with/*. As a consequence,
andC are faithfulh*-modules.

Now consider the mapping defined by

(A.1.6) (o) := det p(9)¥(0) —

0 Plo) 1]’

where the bar indicates the reduction modtito det p(c), (o) € b*/I* andb(o) € B/I*B.
Under the matrix product in the obvious sengaives a representation 6fal( Q/Q).

Let F' be the abelian extension @ corresponding to the intersection of the kernelgof
andt. From our assumption, the degreefofoverQ is prime top. Let F, be the cyclotomic
Z,-extension off’, and as usual, we set

A= Gal(F/Q),

(A.1.7) {I‘:: Gal(Foo/F)a

so that we have an identification: G&l,/Q) = A x I'. On the other hand, let

Ly := (the field corresponding to Kép)),
(A1.8) { L:=Ly-F,
K := (the field corresponding tfr € Gal(Q/Q) | det p(c) = 1,9 (o) = 1}).

Clearly, L/ F, is a prop abelian extension, anli C F.. It is easy to see thd O F. From
(A.1.2), we see that the primes abgvare unramified ir.o / K, while the primes abovgramify
totally in Fi./F. We therefore obtain

(A.1.9) Gal(Ly/K)= Gal(L/Fx) — B/I"B
by o — b(o).

Gal(F./Q) acts on G4dlL/F,,) via the conjugation. Recall that we have get= 0y —!
(1.5.3), in the following:
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LEMMA (A.1.10). —Identify Gal(L/F..) with its image inB/I* B via (A.1.9). Then on this
module, the action oA\ is given by the characteitw) !, and the action ofy € T is given by

(£(7) (k1)) 7).

Let vo be the ring generated by the valuesfobver Z,,. The lemma above implies that the
image of Ga|L/F.,) is aA.,-submodule ofB/I* B. A computation of some commutator shows
that the image ofal(L/F) in fact generate®/I* B as aA.-module; i.e. we have a surjection
of A.-modules
(A.1.11) Gal(L/Fy) @yt — B/I"B.

Now consider the case whefé,+) = (w=2,1). Then L is an unramified abelian prp-
extension of the cyclotomi&,-extension ofQ(¢,), whose Galois group is acted on by
Gal(Q(¢p)/Q) via the charactew. As is well-known, such an extension must be trivial, and
hence (A.1.11) force® to be {0}. This contradiction implied*(6,+) = e*h*(N;t), which
completes the proof of (1.5.5), (ll) in this case.

We thus henceforth assume tiféty) # (w=2,1), and note that the power serid$7’; 6, 1))
belongs toA.,. The lemma above states that the actiorZgfA x I'] on GalL/Fy,) factors
throughto [I'] via (éw)~!. We fix a topological generatoey, of I'" and let it correspond to a
topological generatot(+o) =: up of Uy, which gives [I'] & A,,, the latter being identified with
to[T] viaug < 1 + T. The resulting (Iwasawa theoretig), -module structure of GaL/F.)
and the older one are transformed to each other by the (involutiv@)tomorphism

14+T —uy ' (14+T)7 !
of Ay, =to[T]. In view of this, we set
F(T,éw?) == G(ug'(1+T)7 = 1,&w?),

(A.1.12) B(T;0,v) := ( ll‘—][V ((1 + 7)) — (gw)(l)l))F(T, §w2)
ltcond (&)

so thatF(uf — 1,£w?) = L,(s,éw?) (cf. (1.4.5)), andB(T’;0,v) generates the same ideal of
Ay @asA(ug '(1+T)"1 = 1;6,9).

THEOREM (A.1.13). —If we considerGal(L/F,) as aA.,-module lwasawa theoretically,
then we have

Fitta,, (Gal(L/ Fuo)) € B(T;0,9) v,
{char,\to (Gal(L/Fs)) € B(T;0,9) Ay,

where Fitta, —(resp. chary, ) means the Fitting idea(resp. the characteristic ideplof a
A,-module.

Proof. —The first assertion is equivalent to saying that
Fitta,, (Gal(L/Fx)) C A(T;0,1)A,
with respect to the older description of thg,-module structure above, which we now propose
to prove.
First note that, from the definition of the Fitting ideal, we have

Fitty, (Gal(L/Fx))Ac = Fitta, (Gal(L/Fx) ¢, t).
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But it follows from (A.1.11) that
Fitta, (Gal(L/Fx) ®x, t) C Fitta, (B/I*B).
Leth*/I* = A./a with an ideala of A.. (A.1.5), (3.1.9) and a standard argument imply
Fitts, (B/I"B) Ca C A(T;0,9)A,
Combining these, we have
Fitta,, (Gal(L/Fx))Ac € A(T;0,9)Ac
i.e. every element of Fitt (Gal(L/Fx)) is divisible by A(7';6,%) in A, and hence im\,
aISV(\)/;a next deduce the latter assertion from the former: ThereAg anodule E of the form
B.", A, /PF" which is pseudo-isomorphic to Gdl/ F,), whereP; are prime ideals of\.,
of height one (the “elementary,,-module associated with Gdl/ F,,)"). We thus obtain exact

sequences of finitely generated torsiby -modules

{O—>F1—>E—>E’—>O,
0— E' — Gal(L/Fyx) — F» — 0,

with F and F; finite.
Now from the properties 1, 5, 9 and 11 in the appendix of [11], respectively, we obtain:

Fitta,, (E) C Fitta, (£'),

Fitta,, (E) = charp, () = chary, (Gal(L/F)),
Fitta,, (£') - Fitta, (Fg) CFitta,, (Gal(L/Fx)),
Fitta,, (F2) 2 (p, )l with [ = length, (F3).

Putting all these together, we conclude that

chary, (Gal(L/Fx)) - (p,T)" C Fitta, (Gal(L/Fx))
from which our claim follows. O
A.2. Characteristic power seriesof Gal(L/Fw)

In this final subsection, we show that the “extra factor” appearing(#’; 0, ) corresponds
to the ramification inL/ F, of primes abové such thaf | N and! t cond(&), and we determine
the characteristic power series of Gal F. ), when¢ # w2

We already know that the extensidn F., is unramified outsidév. We fix a primel dividing
N in the following. There are only finitely many primes 6%, abovel, and letly,...,[,, be
all such primes. Lef.(!) be the maximal subextension bf F,, in which all [; are unramified.
This is a Galois extension @. By class field theoryGal(L/L(1)) is isomorphic to a quotient
of (h_mn H/\\l o§7l7A. Here, F,, is thenth layer of theZ,-extensionF . /F, o, » is the A-adic
completion of the ring of integers @f,,, and the projective limit is relative to the norm mappings.
SinceGal(L/F,) is a prop group, it is also isomorphic to a quotient(@n HA\I tlop, 2)", 8
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meaning the residue field. Again by class field theory, the actigudfF., /Q) onGal(L/L(l))
corresponds to the natural action 8m,, [],; ¢(or,,») . Considering the action of the inertia

group ofl in A, we see from (A.1.10) that = L(I) whenl | cond(¢). (This argument is due to
Mazur and Wiles ([11], Chapter 1, Section 8).)

LEMMA (A.2.1). —Assume that dividesN, but does not divideond(¢). ThenGal(L/L(1))
is a cyclicty [I']-module annihilated by

(1+T)* — (£w) ()l =: by(T) € to[I] = As,.
Proof. —In this case, theGal(F./Q)-module GalL/F,,) is unramified at/, by lemma
(A.1.10). Moreover, the same lemma, after the “change of variableT « uy ' (1 + 7)1,

implies that the lwasawa theoretic action of a geometric FrobehigsGal(F., /Q) atl is given
by (¢w)(1)(1+T)~*". On the other handp; acts onlim , [T, , €(0,,»)* as multiplication by

=1 (if we consider this group as an additive group). It follows that(GaL(/)) is annihilated
by (£w)(1)(1 +T)~*®W —1~1, and hence by its unit multiple (7") also.

For n large enough, the restrictions ; of [; to F, give m distinct primes, and each
lim,50¢(0r, 1,,,) " is @ pro-cyclic group. Sinc&al(F./Q) acts transitively o[y, ..., [, },
we conclude thaGal(L/L(l)) is a cyclic module oveZ,[A x I'], and hence ovek,,. O

THEOREM (A.2.2). —Consider Gal(L/F) as a A.,-module Iwasawa theoretically. If
£ # w2, then we have

chary, (Gal(L/Fx)) = B(T;0,)A,.
Proof. —Let ! be a prime such thdtl N butl{cond(¢). From the exact sequence:
0— Gal(L/L(l)) = Gal(L/Fs) — Gal(L(l)/Fx) — 0
of A.,-modules and the lemma above we see that:
charp, (Gal(L/Fx)) 2 by(T) - chara, (Gal(L(1)/F.)).

Let L™ be the maximal everywhere unramified subextensiof Af.. Then repeating the
argument above, we obtain

chary, (Gal(L/Fx)) 2 < H bl(T)> chary, (Gal(L"/Fy.)).
1IN
ltcond (&)

By (A.1.13), the left-hand side is containedA{T’; 0, ) A.,, and we note that this implies
F(T,&w?) A, 2 chary, (Gal(L"/Fy)).

However, since we assumed tifat? + 1, the lwasawa main conjecture proved by Mazur and
Wiles [11] (cf. also [16]) assures us the reverse inclusion, i.e.:

chary, (Gal(L/Fx)) 2 B(T;0,1)Ax,. O
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During the course of the proof above, we have constructed large enough unramified extension
L' of F,, using the Galois representation @hES,(N),m+ With m* = m*(6,v). More
precisely, for the same reason as [15], (5.3.20), we have:

COROLLARY (A.2.3).—Again assume tha¢ # w~2. Let L., be the maximal unramified
pro-p abelian extension af,. ThenL"" above is the subextensionif, / F, corresponding to
the quotienGal(L«/Fix) ®z,(a) to Of the Galois group, where we consider the tensor product
via (§w) 1A — e

In Section 3.2, we left a part of the proof of (1.5.5) in the case (ll) unproved. The following
corollary covers this lacuna:

COROLLARY (A.2.4).—h*/I* isisomorphic ta\./(A(T';0,v)) as aA.-algebra.

Proof. —We have proved this under the assumption that 1 in Section 3.2. Since

(6,9) # (w™2,1),

we may assume that# w—2. Consider GdlL/F..) as aA,-submodule of3/7* B. Then from
the proof of (A.1.13) and (A.2.2), we have

A(T30,9)Ae 2 a 2 Fitta, (Gal(L/Fu)) A 2 A(T30,9)(p, T)' A

Our assertion follows from this, because we already know th& a principal ideal by
(1.1.9). O

Correctionsto [15]

During the preparation of this paper, the author found errors in [15], and he would like to take
this opportunity to correct them. These are caused by two misobservations: p. 256, lines 13-14
and p. 261, line 11, which are no longer true witéris not finite overQ,,. (A non-zero element
of A, can have zeros of the forgu® — 1 for infinitely many roots of unity. of p-power orders
even for a fixedl; while the ring of integers of a finite extension &f can be of infinite type as
ano-module.) The proofs of (2.4.6) and (2.4.7) should be corrected as follows:

e They are valid wherk is finite overQ,. However, for the estimate of the rank given on
p. 262, line 7 (in this case), we should have also appealed to the first statement in the proof
of (2.4.6).

e In general, for a giver > 0 and a non-zerd'(T') € A,, it is true that there are infinitely
many characters of U; such thatF(e(u)u? — 1) # 0. Assume tha’ contains all the roots of
unity of p-power orders and the(V)th roots of unity for the moment. Then the proof of (2.4.6),
given after p. 261, line 22, and the statement concerning the rank in (2.4.7) remain valid with the
remark above, for such &.

e Let K be as above. Then, at the end of the proof of (2.4.6), we can chdgse. ., F. } from
eMj(N;Az,). ConsequentlyM; (N;A,) = eM; (N;Az,) ®a,, Ao, and it is independent of
k > 2. The equality given on p. 262, line 12 also follows from this, because the right-hand side
is contained in1/D(T))(AoF1 + - - - + Ao F;) with a non-zeraD(T') € Az, .

e The validity of the statements (2.4.6) and (2.4.7) (and the above mentioned equality) for
generalK follows from this.
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