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ABSTRACT

We define generalizations of classical invariants of wild ramification for coverings on a variety of arbitrary dimen-
sion over a local field. For an �-adic sheaf, we define its Swan class as a 0-cycle class supported on the wild ramification
locus. We prove a formula of Riemann-Roch type for the Swan conductor of cohomology together with its relative version,
assuming that the local field is of mixed characteristic.

We also prove the integrality of the Swan class for curves over a local field as a generalization of the Hasse-Arf
theorem. We derive a proof of a conjecture of Serre on the Artin character for a group action with an isolated fixed point
on a regular local ring, assuming the dimension is 2.
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Introduction

0.1. The goal of this paper. — Let K be a complete discrete valuation field and OK

be the valuation ring. We assume that the residue field F is perfect of characteristic p > 0.
In this article, we generalize the classical ramification theory of extensions of K briefly
recalled in 0.2 to the ramification theory for varieties over K as is described in 0.3–0.5
below. We also prove a conductor formula of Riemann-Roch type stated in 0.6.

We fix a prime number � different from p. Let U be a separated smooth scheme
of finite type over K and F be a smooth �-adic sheaf on U. The alternating sum
SwKH∗

c (UK̄, F ) of the Swan conductor is defined as an invariant measuring the wild
ramification of the �-adic representation H∗

c (UK̄, F ) of the absolute Galois group GK of
K. We define an element SwU F (see 0.3–0.5 in the introduction and Definition 7.2.4 in
the text) called the Swan class as a certain 0-cycle class supported on the closed fiber of a
compactification of U over OK and prove a conductor formula

(0.1) SwKH∗
c (UK̄, F ) = rank F · SwKH∗

c (UK̄,Q�) + deg SwU F ,

assuming that K is of characteristic 0 in Corollary 7.5.3. We also prove a relative version
(see (0.6) below) of the conductor formula in Theorem 7.5.1.

The formula (0.1) is an arithmetic analogue of the higher dimensional generaliza-
tion of the Grothendieck-Ogg-Shafarevich established in [27]. The term SwKH∗

c (UK̄,Q�)

has been computed in the case where U is further assumed proper over K by the con-
ductor formula of Bloch, proved under some mild assumption in [26]. In this paper,
we will focus on a mixed characteristic case. Another approach in a geometric equal
characteristic case is studied in [42].

0.2. Invariants in classical ramification theory. — We first recall the classical ramifica-
tion theory. For a finite separable extension L of K, we have the following invariants of
ramification in (i)–(iii) below, which are integers ≥ 0. In (ii) and (iii), we assume that L/K
is a Galois extension with Galois group G.

(i) The different DL/K and the logarithmic different Dlog
L/K = DL/K − eL/K + 1,

where eL/K is the ramification index of the extension L/K.
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(ii) The Lefschetz number i(σ ) and the logarithmic Lefschetz number j(σ ) for
σ ∈ G \ {1} defined as

i(σ ) = min
{
ordL

(
σ(a) − a

) ∣∣ a ∈ OL

}
,

j(σ ) = min
{
ordL

(
σ(a)/a − 1

) ∣∣ a ∈ L×}.

(iii) The Artin conductor Art(ρ) and the Swan conductor Sw(ρ) for a finite di-
mensional representation ρ of G over a field of characteristic 0. They are
defined by

Art(ρ) = 1
eL/K

∑

σ∈G−{1}
i(σ )

(
dim(ρ) − Tr

(
ρ(σ)

))
,

Sw(ρ) = 1
eL/K

∑

σ∈G−{1}
j(σ )

(
dim(ρ) − Tr

(
ρ(σ)

))
.

The Hasse-Arf theorem asserts the highly non-trivial fact that these conductors are in
fact integers.

These invariants are linked by several important formulas (see [39] for example).
For example, in the case L/K is Galois with Galois group G, we have

DL/K =
∑

σ∈G\{1}
i(σ ), Dlog

L/K =
∑

σ∈G\{1}
j(σ ).

The invariants Dlog
L/K, j(σ ) and Sw(ρ) are the parts of DL/K, i(σ ) and Art(ρ), re-

spectively, which handles the wild ramification. We will focus on the wild ramification
and introduce generalizations of Dlog

L/K, j(σ ), and Sw(ρ).

0.3. Generalization. — In our generalization of ramification theory in [27] (resp. in
this paper), in place of L/K in 0.2, we consider a finite étale morphism

f : V → U

of non-singular algebraic varieties over a perfect field k of characteristic p (resp. over K)
and study the ramification of f along the boundary of compactifications of V and U over
k (resp. OK). We call the case over k the geometric case (geo) and the case over K the
arithmetic case (ari). For simplicity, in this introduction, we assume char K = 0 in the
case (ari). Although the main theme of this paper is the arithmetic case, we describe also
the geometric case in 0.3 and 0.4 to compare.

In the case (geo) (resp. (ari)), for a proper scheme Y over k (resp. OK) which contains
V as a dense open subscheme, we define in Definition 2.4.1 the wild ramification locus
�V/UY of f : V → U on Y as a closed subset of Y . The wild ramification locus satisfies
the following properties:
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1. V ∩ �V/UY = ∅.
2. If Y′ is a proper scheme over k (resp. OK) containing V as a dense open sub-

scheme and if Y′ → Y is a morphism inducing the identity on V, then �V/UY
coincides with the image of �V/UY′.

3. In the case (ari) (recall that we assume char K = 0), �V/UY is contained in the
special fiber Y ⊗OK F of Y.

For a proper scheme X over k (resp. OK) which contains U as a dense open sub-
scheme, we define the wild ramification locus �V/UX of f on X, which is a closed subset of
X, to be the image f̄ (�V/UY) for a morphism f̄ : Y → X of compactifications extending
f : V → U. This also satisfies analogous properties corresponding to the above 1, 2, 3.

For a commutative ring R, let

F0G(∂V/UV)R := lim←−
Y

(
F0G(�V/UY) ⊗Z R

)
,

F0G(∂V/UU)R := lim←−
X

(
F0G(�V/UX) ⊗Z R

)

where Y runs through proper integral schemes over k (resp. OK) containing V as a dense
open subscheme and X runs through proper integral schemes over k (resp. OK) contain-
ing U as a dense open subscheme. Here G(−) denotes the Grothendieck group of coher-
ent sheaves, and F0G(−) denotes the part generated by the classes of coherent sheaves
with finite supports.

Let Z(V/U) denote the free abelian group on the set of connected components of
the complement V ×U V \ �V of the diagonal �V ⊂ V ×U V. Note that since f : V → U
is étale, �V is open and closed in V ×U V. The definition of generalizations of invariants
of wild ramification is based on a homomorphism

(0.2) Z(V/U) → F0G(∂V/UV)Q,

whose definition will be sketched in 0.4 below. The homomorphism (0.2) is called the
localized intersection product with logarithmic diagonal and denoted by (−,�V)log (resp.
((−,�V))log) in the case (geo) (reps. (ari)). Though V ×U V \ �V does not intersect with
the diagonal, the localized intersection with the log diagonal appears on the boundary of
V in a compactification Y.

(i) We define

Dlog
V/U ∈ F0G(∂V/UV)Q

by

Dlog
V/U = ([V ×U V \ �V],�V

)log
in the case (geo),

Dlog
V/U = (([V ×U V \ �V],�V

))log
in the case (ari).
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(ii) In the case V → U is a Galois covering with Galois group G, then for
σ ∈ G \ {1}, we define

j(σ ) ∈ F0G(∂V/UV)Q

by

j(σ ) = ([�σ ],�V

)log
in the case (geo),

j(σ ) = (([�σ ],�V

))log
in the case (ari),

where �σ is the graph of σ .
(iii) For a finite dimensional representation ρ of G over a field of characteristic 0,

we define the Swan class

Sw(ρ) = 1
	(G)

∑

σ∈G−{1}
f∗
(
j(σ )

)(
dim(ρ) − Tr

(
ρ(σ)

)) ∈ F0G(∂V/UU)Q(ζp∞ )

where f∗ is the push forward F0G(∂V/UV)Q → F0G(∂V/UU)Q and Q(ζp∞) =⋃
n Q(ζpn) with ζpn a primitive pn-th root of unity.

In (ii), we have Dlog
V/U =∑

σ∈G\{1} j(σ ) simply because V ×U V \ �V =∐
σ∈G\{1} �σ .

We expect that we can remove
⊗

Q and
⊗

Q(ζp∞) in the definitions of the above invari-
ants in (i)–(iii).

To formulate a conductor formula given below, we define Sw(ρ) also for a finite
dimensional representation ρ of G over a field of characteristic � by

Sw(ρ) = 1
	(G)

∑

σ∈G−{1}
f∗
(
j(σ )

)(
dim(ρ) − TrBr

(
ρ(σ)

))

∈ F0G(∂V/UU)Q(ζp∞ )

using the Brauer trace. The definition makes sense because we have j(σ ) = 0 unless the
order of σ is not a power of p.

The relation with classical ramification theory is as follows.
In the case (ari), assume U = Spec K,V = Spec L,Y = Spec OL. Then if L/K is

wildly ramified (resp. at most tamely ramified), �V/UY consists of the closed point of Y
(resp. the empty set). If L/K is wildly ramified, we have F0G(�V/UY) = Z, and Dlog

V/U

and j(σ ) defined above recover the classical Dlog
L/K and j(σ ), respectively. In the case (geo),

assume that Y, V, U are smooth curves over k, and let K0 (resp. L0) be the function field of
U (resp. V). Then �V/UY consists of the places of L0 where the extension L0/K0 is wildly
ramified and F0G(�V/UY) is the direct sum of Z indexed by these places. For v ∈ �V/UY,
if u denotes the place of K0 lying under v and if K (resp. L) denotes the completion of K0
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(resp. L0) at u (resp. v), the v-components of Dlog
V/U and j(σ ) defined above coincide with

Dlog
L/K and j(σ ) in the classical ramification theory for L/K, respectively.

The revolutionary idea that the invariant of ramification should be defined as a
0-cycle class on the ramification locus is due to S. Bloch [3].

0.4. The definition of the localized intersection product with logarithmic diagonal. — Let
V → U be a finite étale morphism of smooth integral schemes over k (resp. over K) in the
case (geo) (resp. (ari)). We put n = dim U (reps. n = dim UK + 1) in the case (geo) (resp.
(ari)). The embedding theorem of Nagata and the theory of alteration of de Jong give us
a Cartesian diagram of integral schemes over k (resp. OK) in the case (geo) (resp. (ari))

(0.3)

V
g←−−− W

∩
⏐⏐

⏐⏐∩

Y
ḡ←−−− Z

where Y and Z are proper over k (resp. OK) and satisfy the following properties: The
vertical arrows are open immersions with dense images, the arrow ḡ : Z → Y is surjective
and generically finite and Z is regular and contains W as the complement of a divisor
with simple normal crossings.

In the case (geo) (resp. (ari)), we define the logarithmic self-product (Z×k Z)∼ (resp.
(Z ×OK Z)∼) as a modification of the usual product Z ×k Z (resp. Z ×OK Z). Let P denote
(Z ×k Z)∼ (resp. (Z ×OK Z)∼). The diagonal map Z → Z ×k Z (resp. Z → Z ×OK Z) is
canonically lifted to a closed immersion Z → P called the log diagonal map. The scheme
P contains W ×k W (resp. W ×OK W) as an open subscheme. Let A be the closure of
W ×U W \ W ×V W in P and � be the intersection of A with the logarithmic diagonal Z
in P.

We define the intersection product with the logarithmic diagonal Z in P as a ho-
momorphism

(0.4) G(A) → G(�)

as follows. See Proposition 5.3.3 for detail. Regard OZ as an OP-module via the log
diagonal. In the case (geo), the map (0.4) is defined as the usual intersection product with
the class [OZ] for a smooth scheme P. Namely, it maps the class of a coherent OP-module
F supported on A to the alternating sum:

[F ] �→
dim P∑

i=0

(−1)i
[

T or
OP
i (F , OZ)

]
.

In the case (ari), it is defined as

[F ] �→ [
T or

OP
2i (F , OZ)

]− [
T or

OP
2i−1(F , OZ)

]
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for sufficiently large integer i. In the case (ari), it is proved in [26] that the class
[T or

OP
j (F , OZ)] ∈ G(�) depends only on the parity of j for sufficiently large j.

The maps (0.4) for various diagrams (0.3) induce (0.2) as follows. Let F• denote
the topological filtration on the Grothendieck group G(−). We regard the free abelian
group Z(V/U) as the graded quotient GrF

n G(V ×U V \ �V) by the canonical surjec-
tion defined by taking the length at the generic point of each connected component of
V ×U V \ �V. We prove in Proposition 4.3.5 that the homomorphisms GrF

•G(A) →
GrF

•−nG(�) induced by (0.4) factor through the canonical surjection GrF
•G(A) →

GrF
•G(W ×U W \ W ×V W) defined by the restriction if the following condition is sat-

isfied:

(X) There exists a Cartesian diagram

U
f ◦g←−−− W

∩
⏐⏐

⏐⏐∩

X ←−−− Z

over k (resp. over OK) where X is a proper scheme over k (resp. over OK)
containing U as the complement of a Cartier divisor.

Consequently, we obtain

Z(V/U) = GrF
n G(V ×U V \ �V) → GrF

n G(W ×U W \ W ×V W)

→ F0G(�)

where the first arrow is the pull-back by g × g and the second arrow is induced by (0.4).
If further the condition

(Y) ḡ(�) ⊂ �V/UY

is satisfied, the composition

Z(V/U) → F0G(�)
ḡ∗→ F0G(�V/UY) ⊗Z Q

with the push-forward map ḡ∗ divided by the generic degree [Z : Y] of Z over Y is defined.
We prove in Theorem 5.3.7 that such Z satisfying the conditions (X) and (Y) does exist
and that the composition Z(V/U) → F0G(�V/UY) ⊗Z Q is independent of Z and forms
an inverse system to define the required map (0.2).

0.5. The Swan class of a constructible sheaf. — In order to formulate a conductor for-
mula of Riemann-Roch type in 0.6 below, we extend the definition of the Swan class
to constructible sheaves. In the rest of introduction, we consider the arithmetic case (we
assume char K = 0).
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For a separated scheme U of finite type over K and for a commutative ring R, let

F0G(∂FU)R := lim←−
X

(
F0G(X ⊗OK F) ⊗Z R

)

where X runs through proper schemes over OK which contain U as a dense open sub-
scheme.

Let f : V → U be a finite étale morphism and let Z̄(V/U) denote the free abelian
group on the set of connected components of V ×U V. It is the direct sum of Z(V/U)

with the free abelian group of rank 1 generated by the class of �V. The composition
((−,�V))log : Z(V/U) → F0G(∂V/UV)Q → F0G(∂FV)Q is naturally extended to

(0.5) ((−,�V))log : Z̄(V/U) → F0G(∂FV)Q.

To define the map (0.5), we proceed similarly as in 0.4. Namely, we consider a diagram
(0.3) and, letting A′ ⊂ P denote the closure of W ×U W, we define a homomorphism

G
(
A′)→ F0G(ZF);
[F ] �→ [

T or
OP
2i (F , OZ)

]− [
T or

OP
2i−1(F , OZ)

]
(i � 0)

similarly as (0.4). Then this induces (0.5) in the same way as (0.4) induces (0.2). In partic-
ular, j(σ ) ∈ F0G(∂FV)Q is defined even for σ = 1 as ((�V,�V))log.

We extend the definition of the Swan class of smooth sheaves sketched in 0.2 and
0.3 to constructible sheaves.

Proposition 1 (Proposition 7.4.2, Corollary 7.4.5). — Assume char K = 0. Then, there

is a unique way to define

SwU F , SwU F ∈ F0G(∂FU)Q(ζp∞ )

for any separated scheme U of finite type over K and for any constructible F̄�-sheaf F on U, satisfying

the following conditions (1)–(3).

(1) Assume U is a non-singular variety and F is locally constant. Let f : V → U be a finite

étale Galois covering of U with Galois group G on which the pull-back f ∗F is a con-

stant sheaf. Then SwU F is the image of Sw(ρ) in 0.3 for the F̄�-representation ρ of G
corresponding to F . We also have

SwU F = SwU F − rank F · ((�U,�U))log

= − 1
	(G)

∑

σ∈G

f∗j(σ ) · TrBr
(
ρ(σ)

)
.

(2) For an exact sequence 0 → F ′ → F → F ′′ → 0 of constructible F̄�-sheaves on U, we

have

SwU F = SwU F ′ + SwU F ′′, SwU F = SwU F ′ + SwU F ′′.
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(3) If i : U′ → U is an immersion of schemes over K, we have

SwU(i!F ) = i!SwU′ F

for a constructible F̄�-sheaf F on U′. Here i! on the right hand side is the canonical homo-

morphism F0G(∂FU′)Q(ζp∞ ) → F0G(∂FU)Q(ζp∞ ).

Here in (1), ((�U,�U))log ∈ F0G(∂FU)Q is defined by (0.5) for U = V. The key
ingredient of the proof of Proposition 1 is an excision formula Theorem 6.2.2.

For U as in Proposition 1 and for a constructible Q̄�-sheaf F on U, we define
SwU F ,SwU F ∈ F0G(∂FU)Q(ζp∞ ) as those of the F̄�-sheaf which is obtained from F by
taking modulo �. In the case U is regular and F is smooth and trivialized by a finite étale
Galois covering V → U with Galois group G, SwU F is the image of Sw(ρ) in 0.3 where
ρ is the representation of G over Q̄� corresponding to F .

0.6. The conductor formula. — We prove the following conductor formula of
Riemann-Roch type.

Theorem 2 (Theorem 7.5.1). — Assume char K = 0. Let f : U → V be a morphism of

separated schemes of finite type over K and let F be a constructible F̄�-sheaf (resp. Q̄�-sheaf) on U.

Then we have

(0.6) SwVRf!F = f!SwU F

where f! on the right hand side is the canonical homomorphism F0G(∂FU)Q(ζp∞ ) → F0G(∂FV)Q(ζp∞ ).

In the case where F is smooth and V = Spec K, the equality (0.6) specializes to the
conductor formula (0.1) for the alternating sum of the Swan conductor (Corollary 7.5.3).
It also gives

(0.7) SwKH∗
c (UK̄,Q�) = −deg((�U,�U))log,

which is a generalization of the conductor formula of Bloch [3] proved under some mild
assumption in [26]. A special case of dim UK = 1 and V = Spec K has been studied
in [1]. A crucial ingredient in the proof of the equality (0.6) is a logarithmic variant
Theorem 1.4.7 of the Lefschetz trace formula for open varieties.

0.7. Integrality. — As a generalization of the classical theorem of Hasse-Arf, we
expect that the Swan class SwU F should have no denominator, Conjecture 7.2.8. By a
standard argument using Brauer induction, it is reduced to the rank one case. Theo-
rem 8.3.7 comparing the Swan class SwU F for a smooth sheaf F of rank 1 with a cycle
class cF , defined earlier by one of the authors, implies the following integrality.
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Theorem 3 (Corollary 8.3.8.1). — Assume char K = 0. Let U be a scheme of finite type

over K of dimension ≤ 1 and let F be a constructible F̄�-sheaf (resp. Q̄�-sheaf) on U. Then SwU F
belongs to the image of

F0G(∂FU)Z → F0G(∂FU)Q(ζp∞ ).

From this integrality, we derive the two dimensional case of a conjecture of Serre
[41], as is announced in [23]. In [41], Serre conjectures (see Conjecture 7.2.9) that the
theory of Artin characters in the ramification theory of a discrete valuation ring can be
generalized to any regular local ring A with a finite group of automorphisms under a
condition of isolated fixed point. An equal characteristic case has been proved earlier in
[28] and some special case has been proved in [2].

Theorem 4 (Corollary 8.3.8.2). — The conjecture of Serre [41] is true in the case

dim(A) = 2.

0.8. Organization of this paper. — We sketch the content of each section. The first
three sections are preliminaries. In Section 1, after preparing general terminologies on
semi-stable schemes, log products, etc., we prove a logarithmic Lefschetz trace formula,
which is a crucial step in the proof of the formula (0.6). The trace formula is a sort of
mixture of those proved in [26] and in [27]. In Section 2, we study the tame ramification
of an étale morphism along the boundary, using log products. The purpose of studying
tame ramification first is to define the wild ramification locus and to focus on it. We give
criterions for tameness in terms of valuation rings, using the quasi-compactness of the
limit of proper modifications. In Section 3, first we compute certain tor-sheaves, which
is a crucial step in the proof of the excision formula. We also give some complement
on the localized Chern classes and the excess intersection formula studied in [26] as a
preliminary for the computation of the logarithmic different.

In Sections 4, 5 and 6, we define the invariants of wild ramification and estab-
lish their properties. First, in Section 4, we study the local structures of log products of
schemes over S = Spec OK. In Section 5, we define the invariants and study its basic
properties. Section 6 is technically the heart of the article. We prove the excision formula
for the invariants. We also give a formula in some semi-stable case, which is a crucial step
in the proof of the formula (0.6).

In Section 7, we define the Swan class and prove the formula (0.6). In Section 8,
we compute the Swan class in the case of rank 1 and deduce the integrality of the Swan
class and complete the proof of the conjecture of Serre in the case of dimension 2.

The logical structure of the proof of the formula (0.6) is summarized as follows.
We deduce a formula Proposition 6.3.2 in some semi-stable case from the log Lefschetz
trace formula Theorem 1.4.7. We prove a formula Propositions 7.3.4, 7.3.5 for stable
curves using Proposition 6.3.2 and a compatibility with cospecialization map Proposition
1.6.2. We complete the proof of the formula (0.6) in Theorem 7.5.1 by deducing it from
a special case Corollary 7.3.6, by devissage.
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1. Log Lefschetz trace formula

We prove a logarithmic Lefschetz trace formula Theorem 1.4.7 for schemes over a
discrete valuation ring and give a complement in Section 1.6. They play a crucial role in
the proof of the conductor formula in Section 7.3. As preliminaries, we fix terminologies
on semi-stable schemes, log blow-ups, log products and on log stalks in Sections 1.1, 1.2,
1.3, 1.5 respectively.

1.1. Semi-stable schemes and stable curves. — We fix some terminology on semi-stable
schemes.

Definition 1.1.1. — Let f : X → S be a morphism of schemes and r ≥ 0 be an integer.

1. We say that X is weakly strictly semi-stable of relative dimension r over S if the following

condition is satisfied:

(1.1.1.1) For every point x ∈ X, there exist an open neighborhood x ∈ U ⊂ X, an affine

open neighborhood s = f (x) ∈ Spec R ⊂ S, an integer 1 ≤ q ≤ r + 1, an element

a ∈ R and an étale morphism

U → Spec R[T1, . . . ,Tr+1]/(T1 · · ·Tq − a)

over S.

If S = Spec R for a discrete valuation ring R, we say a weakly strictly semi-stable scheme over S is

strictly semi-stable if a ∈ R in (1.1.1.1) is a uniformizer.

2. We say that X is weakly semi-stable of relative dimension r over S if, étale locally on X and

on S, it is weakly strictly semi-stable of relative dimension r over S. Namely, if the following condition is

satisfied:

(1.1.1.2) For every geometric point x̄ → X, there exist étale neighborhoods x̄ → U → X and

s̄ = f (x̄) → V → S and a morphism U → V compatible with X → S and with

x̄ → s̄ such that U is weakly strictly semi-stable of relative dimension r over V.

If S = Spec R for a discrete valuation ring R, a scheme X over S is said to be semi-stable if, étale

locally on X, it is strictly semi-stable over S.

If X is weakly semi-stable over S, the scheme X is flat over S and is smooth over S
on a dense open subscheme of each fiber.

We show that, locally on X, the subscheme of S defined by a is well-defined and
the subschemes of X defined by T1, . . . ,Tq are well-defined up to permutation.

Lemma 1.1.2. — Let S = Spec R be an affine scheme and f : X → S be a scheme over S.

Assume that X is étale over R[T1, . . . ,Tr+1]/(T1 · · ·Tq − a) for an element a ∈ R and q ≥ 1. Let

x be a point of X where the morphism f : X → S is not smooth and s = f (x).
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1. The annihilator of the OS,s-module �r+1
X/S,x is generated by a.

2. Assume that there exist q irreducible components of the fiber Xs containing x. Then, the inter-

section Spec OX,x ∩ (X ×S Spec R/(a))sm with the smooth locus has q connected components. Their

schematic closures in Spec OX,x are defined by T1, . . . ,Tq.

Proof. — 1. An explicit computation in the case where X = Spec R[T1, . . . ,Tr+1]/
(T1 · · ·Tq − a) shows that the OS,s-module �r+1

X/S,x is generated by one element and the
annihilator is generated by T1 · · ·Ti−1Ti+1 · · ·Tq for i = 1, . . . , q. The assertion follows
from this easily.

2. The irreducible components of the fiber Xs containing x are defined by
T1, . . . ,Tq. The connected components of the intersection Spec OX,x ∩ (X ×S Spec R/

(a))sm are also defined by T1, . . . ,Tq. Thus the assertion follows. �

In Definition 1.1.1.2, we may take V = S in the condition (1.1.1.2) by
Lemma 1.1.2.1.

Corollary 1.1.3. — Let X be a weakly semi-stable scheme over a scheme S. Then, X is weakly

strictly semi-stable over S if and only if, for every point s of S, each irreducible component of the fiber

Xs = X ×S s is smooth over s.

Proof. — If X is weakly strictly semi-stable, each irreducible component of the fiber
Xs = X ×S s is clearly smooth over s for every point s of S. Let x ∈ X be a point above
s ∈ S. If X → S is smooth at x, it is weakly strictly semi-stable at x. Assume f : X → S is
not smooth at x. Let x̄ be a geometric point above x. Then the irreducible components of
the strict henselization Spec OXs,x̄ of the fiber are defined by T1, . . . ,Tq in the notation of
Lemma 1.1.2.1. The pull-back of an irreducible component of the fiber Xs is the union
of some of them. Hence, each irreducible component of the fiber Xs = X ×S s is smooth
at x if and only if the ideals (T1), . . . , (Tq) are defined in OXs,x. �

We may modify a weakly semi-stable curve to a weakly strictly semi-stable curve,
under an assumption. This construction will be used in the proof of Lemma 5.3.2 in the
case (5.3.2.1a).

Lemma 1.1.4. — Let X be a weakly semi-stable curve over a normal scheme S and let E ⊂ X
denote the closed subset consisting of the points where X is not smooth over S. Assume that X is smooth

on a dense open subscheme of S and that the following condition is satisfied:

(1.1.4.1) For every point x ∈ E and s = f (x), the element a ∈ OS,s in Lemma 1.1.2 is a

square up to a unit.

Then, there exists a quasi-coherent ideal I ⊂ OX such that I = OX outside E and that the blow-up

X′ of X at I is weakly strictly semi-stable over S.
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Proof. — Let x be a point of E. Then, étale locally on a neighborhood of x, X is étale
over the scheme defined by T1T2 − a and the ideal (a) is well-defined by Lemma 1.1.2.1.
We put a = b2. By the assumption that S is normal, the ideal (b) is also well-defined. Since
the ideal (T1,T2) is the annihilator of �1

X/S at x, the ideal I ⊂ OX étale locally defined
by (T1,T2, b) is well-defined on X. Then, the blow-up X′ → X by the ideal I satisfies
the condition by Corollary 1.1.3. �

Definition 1.1.5. — Let f : X → S be a weakly semi-stable scheme over S.

1. Let D = D1 + · · · + Dn be the sum of Cartier divisors of X. Then, we say that D has

simple normal crossings relatively to S if the following condition is satisfied:

(1.1.5.1) For every point x ∈ X, there exist an open neighborhood x ∈ U ⊂ X, a weakly semi-

stable scheme Y over S and a smooth morphism U → Am
Y to the affine space with

coordinate T1, . . . ,Tm such that, for each i = 1, . . . , n, the restriction Di ×X U is

either empty or defined by Tji for some 1 ≤ ji ≤ m. Further, for 1 ≤ i < i′ ≤ n such

that Di ×X U and Di′ ×X U are non-empty, we have ji �= ji′ .

2. Let D be a Cartier divisor of X. Then, we say that D has normal crossings relatively to
S if, étale locally on X, it has simple normal crossings relatively to S.

If a Cartier divisor of X has normal crossings relatively to S, it is flat over S. If
D = D1 + · · · + Dn is a divisor with simple normal crossings relatively to S, for a subset
I ⊂ {1, . . . , n}, the intersection DI = ⋂

i∈I Di is weakly strictly semi-stable over S. If X is
smooth over S, the terminology on simple normal crossing divisors is the same as the
usual one defined in [37, 2.1].

We recall the following fact on the tameness of the direct image for a proper semi-
stable scheme.

Lemma 1.1.6. — Let S be a regular noetherian scheme and D ⊂ S be a divisor with normal

crossings. Let f : X → S be a proper weakly semi-stable scheme such that the base change X ×S W →
W = S\D is smooth and E ⊂ X be a divisor with normal crossings relatively to S. We put U = X\E
and fU : U → S be the restriction of f .

Then, for an integer n ≥ 1 invertible on S, the higher direct image RqfU!Z/nZ is locally constant

on W = S \ D and is tamely ramified along D for every q ≥ 0.

Proof. — By the assumption that S is regular and D has normal crossings, it is
reduced to the case where S = Spec OK for a discrete valuation ring and D consists of
the closed point s, by Abhyankhar’s lemma [37, Proposition 5.2]. Let j : U → X denote
the open immersion. Then, it suffices to show that the action of the inertia group I =
Gal(Ksep/Kur) on the sheaf Rqψ j!Z/nZ of nearby cycles is tamely ramified. If E = ∅, it is
proved in [35].

We show the general case. Since the assertion is étale local on X, we may assume
X is weakly strictly semi-stable over S. Let j : U → X denote the open immersion and for
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a finite set I of indices of irreducible components Ei of E, let iI : EI → X be the closed
immersion of the intersections. Then, EI are semi-stable over S and we have an exact
sequence 0 → j!Z/nZ → Z/nZ → ⊕

	I=1 iI∗Z/nZ → ⊕
	I=2 iI∗π∗Z/nZ → ·· · →. Using

this, the assertion is reduced to the case E = ∅. �

We recall the definition of a stable curve [8]. Let f : X → S be a proper weakly
semi-stable scheme of relative dimension 1 over a scheme S and (si)i=1,...,d be a finite
family of sections si : S → X. Let ωX/S = R−1f !OX be the relative dualizing sheaf. Then,
we say a pair (f : X → S, (si)i=1,...,d) is a d pointed stable curve if the following condition
is satisfied.

• The divisor D = ∑d

i=1 si(S) has simple normal crossings relatively to S, the
canonical map OS → f∗OX is an isomorphism and the invertible OX-module
ωX/S(D) is relatively ample.

If (X, (si)) is a pointed stable curve over S, the sections si(S) do not meet each other and
are contained in the locus where f is smooth. Further the OS-module f∗ωX/S is locally
free. The rank of f∗ωX/S is called the genus of X. If (X, (si)) is a d pointed stable curve of
genus g, we have 2g − 2 + d > 0.

We recall some facts on the moduli of pointed stable curves, used in the proof
of the conductor formula for a relative curve in Proposition 7.3.4 and Corollary 7.3.6.
Let S̄ = M̄g,d be the moduli stack of d pointed stable curves of genus g. It is a proper
smooth Deligne-Mumford stack over Z [29] and the coarse moduli scheme M̄g,d is a
projective scheme [30]. Let f : X → S̄ be the universal family and s1, . . . , sd : S̄ → X be
the universal sections. Let S = Mg,d ⊂ S̄ be the open substack where X is smooth. It is
the complement of a divisor with normal crossings [29].

Let n ≥ 1 be an integer. The n-torsion part JacX[ 1
n
]/S[ 1

n
][n] = R1fS[ 1

n
]∗μn of the Ja-

cobian is a locally constant sheaf of Z/nZ-modules of rank 2g on S[ 1
n
]. Let Mg,d,n over

Mg,d[ 1
n
] = S[ 1

n
] be the moduli of an isomorphism (Z/nZ)2g → R1fS[ 1

n ]∗μn. If n ≥ 3, then
Mg,d,n is represented by a scheme Sn = Mg,d,n smooth over Z[ 1

n
]. Further, the normaliza-

tion S̄n = M̄g,d,n of M̄g,d[ 1
n
] in Sn = Mg,d,n is a projective scheme over Z[ 1

n
] [7]. See also

[6, 2.24].

1.2. Semi-stable schemes and log blow-up. — We briefly recall the log blow-up and
apply it to give some constructions related to semi-stable schemes. For terminologies on
log blow-up, we refer to [26, Section 4.2]. Let P be a finitely generated commutative in-
tegral saturated torsion free monoid, called a torsion free fs-monoid for short. In other
words, the associated group Pgp is a finitely generated free abelian group and there ex-
ists a finitely many elements f1, . . . , fm of the dual group Pgp∗ = Hom(Pgp,Z) such that
P is identified with the submonoid {x ∈ Pgp | fi(x) ≥ 0 for i = 1, . . . ,m} ⊂ Pgp, see [34,
Proposition 1.1]. We identify the dual monoid P∗ = Hommonoid(P,N) with the submonoid
{f ∈ Pgp∗ | f (x) ≥ 0 for x ∈ P}. If P× = {x ∈ P | x−1 ∈ P} is trivial, the abelian group Pgp∗
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is generated by the submonoid P∗. Further in this case, P∗ is the intersection of Pgp∗ in
Pgp∗ ⊗Z Q with {a1f1 + · · · + amfm | ai ∈ Q, ai ≥ 0} (loc. cit.).

Let X be a log scheme and f : P → �(X, OX) be a chart. It defines a strict mor-
phism f ∗ : X → Spec Z[P] of log schemes. Recall that a morphism X → Y is strict if the
log structure of X is the pull-back of that of Y. Let Vσ ⊂ Pgp∗ ⊗Z Q be a Q-linear sub-
space. Then the intersection Nσ = P∗ ∩ Vσ is a finitely generated saturated submonoid.
Let Pσ ⊃ P be the finitely generated saturated monoid defined by {x ∈ Pgp | f (x) ≥ 0 for
f ∈ Nσ }. Then, we define a scheme Xσ by Xσ = X ×Spec Z[P] Spec Z[Pσ ]. Let g : P →
�(X, OX) be another chart such that there exists a morphism u : P → �(X, O×

X) sat-
isfying g = f · u. Then, the schemes Xσ over X defined by f and by g are canonically
isomorphic to each other.

Let � be a subdivision of the dual monoid P∗. Recall that a subdivision � consists
of finite family of submonoids Nσ = P∗ ∩ Vσ of the dual monoid P∗ indexed by σ ∈ �.
Recall also that � is regular means that the monoid Nσ ⊂ P∗ for every σ ∈ � is isomor-
phic to Nr for some r ≥ 0 and hence Pσ is isomorphic to Nr × Zn−r where n is the rank of
Pgp. By patching the schemes Xσ over X, we obtain a scheme X� over X. Recall that if
� is a proper subdivision, the scheme X� is proper over X. In this case, we call X� a log
blow-up of X.

Let S be a regular noetherian scheme and D ⊂ S be a divisor with normal cross-
ings. Let jW : W = S \ D → S denote the open immersion and we regard S as a log
scheme defined by the log structure MS = OS ∩ jW∗O×

W. We consider a weakly semi-
stable scheme f : X → S and a divisor E ⊂ X with normal crossings relatively to S such
that the base change X ×S W → W is smooth. Let jU : U = X \ (f −1(D) ∪ E) → X de-
note the open immersion and we regard X as a log scheme defined by the log structure
MX = OX ∩ jU∗O×

U. Then the map f : X → S is log smooth.
We construct proper modifications of weakly semi-stable schemes using log blow-

ups. This will be used at the end of the proof of Theorem 1.4.7.

Lemma 1.2.1. — Let OK be a discrete valuation ring and X be a weakly semi-stable scheme

over S = Spec OK with smooth generic fiber XK. Then, there exists a proper modification X′ → X
such that X′

K → XK is an isomorphism and that X′ is semi-stable over S.

Proof. — Let π be a prime element of OK. First, we consider the case where
there exists an étale morphism X → Spec OK[T1, . . . ,Tr+1]/(T1 · · ·Tq − π e) for an in-
teger e ≥ 1. Let Pq,e be the monoid Nq + 〈( 1

e
, . . . , 1

e
)〉 ⊂ Qq. The uniformizer π and the

pull-backs of T1, . . . ,Tq define a morphism X → Spec Z[Pq,e] = Spec Z[T1, . . . ,Tq,S]/
(T1 · · ·Tq − Se).

We identify the dual monoid Nq,e = P∗
q,e with {(a1, . . . , aq) ∈ Nq | a1 + · · · + aq ≡

0 mod e}. Let Bq,e ⊂ Nq,e be the finite set {(a1, . . . , aq) ∈ Nq | a1 + · · · + aq = e} and define
�q,e by {σ ⊂ Bq,e | (a1, . . . , aq), (b1, . . . , bq) ∈ σ implies |a1 − b1| + · · · + |aq − bq| ≤ 2}.
For σ ∈ �q,e, let Nσ denote the submonoid of Nq,e generated by σ . Then, �q,e defines a
regular proper subdivision of Nq,e and we obtain a log blow-up X�q,e

→ X.
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We show that the scheme X�q,e
is semi-stable over OK. Let f : N → Pq,e be the

map sending 1 to 〈 1
e
, . . . , 1

e
〉. Then, the dual map f ∗ : Nq,e → N sends a ∈ Nq,e to (a1 +

· · · + aq)/e and hence an arbitrary element of Bq,e to 1. A numbering on σ ∈ �q,e defines
an isomorphism Ns → Nσ ⊂ Nq,e. Hence, the composition Ns → N of the restriction
f ∗|Nσ

: Nσ → N with an isomorphism Ns → Nσ sends every member of the canonical
basis of Ns to 1. From this, it follows immediately that Xσ is semi-stable over OK for
every σ ∈ �q,e.

By Lemma 1.1.2, the exponent e and the divisors defined by T1, . . . ,Tq are well-
defined étale locally up to permutation. Since the regular proper subdivision �q,e is invari-
ant under permutations of q letters, the étale locally constructed log blow-ups X�q,e

→ X
patch each other and define a semi-stable modification X′ → X globally. �

Next, we reformulate [6, Proposition 3.6] in our terminology. This together with
Lemma 1.1.4 will be used in the proof of Lemma 5.3.2 in the case (5.3.2.1a).

Lemma 1.2.2. — Let S be a regular noetherian scheme and D ⊂ S be a divisor with simple

normal crossings. Let f : X → S be a weakly strictly semi-stable curve such that the base change XW =
X ×S W → W = S \ D is smooth.

Then, there exists a proper modification X′ → X such that X′
W → XW is an isomorphism, that

X′ is regular and weakly strictly semi-stable over S and that X′ ×S D is a divisor with simple normal

crossings.

Proof. — First, we consider the case where the following data are given:
Let Spec R ⊂ S be an affine open subscheme, s1, . . . , sn ∈ R be elements defining

irreducible components D1, . . . ,Dn of D∩Spec R, d1, . . . , dn > 0 be integers and let X →
Spec R[T1,T2]/(T1T2 − s

d1
1 · · · sdn

n ) be an étale morphism over S. Let c : {1, . . . , n} →
{1,2} be a function.

We define maps N → N2,N → Nn of monoids by (1,1) and (d1, . . . , dn) and
consider the amalgamate sum P = N2 +N Nn. The dual N = P∗ is identified with
{(a, b) ∈ N2 × Nn | a1 + a2 = d1b1 + · · · + dnbn}. Let e1, . . . , en ∈ Nn be the standard
basis. For i = 1, . . . , n, we put Bi = {(a, b) ∈ N | b = ei}. We identify (1, i), (2, i) ∈
A = {1,2} × {1, . . . , n} with ((di,0), ei), ((0, di), ei) ∈ Bi and regard A as a subset of
B = ∐

i Bi ⊂ N. For each j ∈ {1, . . . n}, let �j be the finite set consisting of σ ⊂ Bj ∪ A
satisfying the following conditions:

• If (a, i) ∈ σ ∩ A for i < j, we have a = c(i).
• If ((a1, a2), ej), ((a

′
1, a′

2), ej) ∈ σ ∩ Bj , we have |a1 − a′
1| ≤ 1.

• We have {a ∈ {1,2} | (a, i) ∈ σ ∩ A, i > j} � {1,2}.
We put � = ⋃n

j=1 �j . For each σ ∈ �, the submonoid Nσ ⊂ N generated by σ is iso-
morphic to Ns for s = Card σ ≥ 0. For (a, b) ∈ N, if there exists an integer 1 ≤ j ≤ n not
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satisfying the inequalities

a1 ≥
∑

i≤j, c(i)=1

bidi and a2 ≥
∑

i≤j, c(i)=2

bidi,

then, for the smallest such j, there exists σ ∈ �j such that (a, b) ∈ Nσ . If otherwise,
we have (a, b) ∈ NC for C = {(c(i), i) | i ∈ {1, . . . , n}} ∈ �n. Hence, � defines a regular
proper subdivision of N.

The étale morphism X → Spec R[T1,T2]/(T1T2 − s
d1
1 · · · sdn

n ) induces a morphism
X → Spec Z[T1,T2,S1, . . . ,Sn]/(T1T2 − Sd1

1 · · ·Sdn
n ) = Spec Z[P]. Hence the log blow-

up X� is defined by the regular proper subdivision �.
We show that the scheme X� satisfies the condition. We consider the dual

π∗ : N → Nn of the canonical map π : Nn → P = N2 +N Nn. Let e1, . . . , es and e′1, . . . , e′n
be standard bases of Ns and of Nn. Then, π∗ maps the elements of Bi to e′i ∈ Nn. Let
σ ∈ �i and take an isomorphism Ns → Nσ to the submonoid generated by σ . We
consider the composition ϕ : Ns → Nn with the restriction Nσ → Nn. Then, there ex-
ists a map g : {1, . . . , s} → {1, . . . , n} such that ϕ(ej) = eg(j) for j = 1, . . . , s. Further, for
i′ = 1, . . . , n, we have Card(g−1(i′)) ≤ 1 for i �= i′ and Card(g−1(i)) ≤ 2. Thus, we have
either an étale map Xσ → Spec R[T1,T2]/(T1T2 − si) or an étale map Xσ → Spec R[T].
Hence, the log blow-up X� is weakly strictly semi-stable over S and regular. Further
D ×S X� is a divisor with simple normal crossings.

We prove the general case. To patch the local construction above, we fix a num-
bering of irreducible components of E = X ×S D. Let Spec R ⊂ S be an affine open and
V → Spec R[T1,T2]/(T1T2 − s

d1
1 · · · sdn

n ) be an étale map defined on an open subscheme
V of X. We assume that each V ×S Di has two irreducible components E1,i and E2,i

defined by (T1, si) and (T2, si) respectively. We define a function c : {1, . . . , n} → {1,2}
by requiring that the index of the irreducible component Ec(i),i is the smaller among E1,i

and E2,i with respect to the fixed numbering of the irreducible components of E. By
changing the numbering of D1, . . . ,Dn, we may assume that the indices of the sequence
Ec(1),1, . . . ,Ec(n),n is increasing. With this numbering and the definition of c, it is easily seen
that the log blow-ups V� patch globally and define a modification X′ → X. �

The following lemma will be used in the proof of Corollary 5.3.2 the case (5.3.2.1b)
but not in the proof of the conductor formula.

Lemma 1.2.3. — Let S be a regular noetherian scheme and D ⊂ S be a divisor with simple

normal crossings. Let f : X → S be a weakly strictly semi-stable scheme such that the base change

XW = X ×S W → W = S \ D is smooth.

For an irreducible component Di of D, let Ii be the set of irreducible components of X ×S Di and,

for x ∈ X and s = f (x) ∈ S, let Ix be the set of irreducible components of the fiber Xs containing x. We

assume that the following condition is satisfied:
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(1.2.3.1) There exist a family of functions ϕi : Ii → N and a total order on the finite set

Ix for every x ∈ X satisfying the following condition: If s = f (x) ∈ Di and if the

map Ix → Ii induced by the inclusion Xs → XDi
is injective, then the composition

Ix → N with ϕi is injective and increasing.

Then, there exists a proper modification X′ → X such that X′
W → XW is an isomorphism, that

X′ is regular and weakly strictly semi-stable over S and that X′ ×S D is a divisor with simple normal

crossings.

Proof. — First, we consider the case where the irreducible components D1, . . . ,Dq

of D are defined by t1, . . . , tq, there exists a smooth map X → S[T1, . . . ,Tr]/(T1 · · ·Tr −
t
m1
1 · · · t

mq
q ) for integers m1, . . . ,mq ≥ 0 and the total order on Ix is induced by the natural

order on {1, . . . , r}. We define morphisms N → Nr and e : N → Nq by 1 �→ (1, . . . ,1)

and by 1 �→ (m1, . . . ,mq) respectively. Let P be the amalgamate sum Nr +N Nq with
respect to the morphisms above. We consider the map P → �(X, OX) of monoids defined
by T1, . . . ,Tr and t1, . . . , tq.

We define the dual morphisms | | : Nr → N and m∗ : Nq → N by |(a1, . . . , ar)| =
a1 + · · · + ar and m∗(b1, . . . , bq) = m1b1 + · · · + mqbq. Then, the dual monoid N = P∗ is
identified with {(a, b) ∈ Nr × Nq | |a| = m∗(b)}. We define a regular proper subdivision �

of N. Let V be the finite set {(a, j) ∈ Nr × {1, . . . , q} | |a| = mj}. We regard V as a subset
of N by identifying (a, j) ∈ V with fa,j = (a, fj) ∈ N where f1, . . . , fq denote the canonical
basis of Nq. For a vector a ∈ Nr , we put Supp(a) = {i ∈ {1, . . . , r} | ai > 0}. For elements
(a, j), (a′, j ′) ∈ V, we write (a, j) ≤ (a′, j ′) if max Supp(a) ≤ min Supp(a′) and j ≤ j ′. The
relation ≤ satisfies the anti-symmetry law and the transitivity law but not the reflexive
law. By abuse of terminology, we say a subset σ ⊂ V is totally ordered if (a, j), (a′, j ′) ∈ σ

implies either (a, j) ≤ (a′, j ′), (a′, j ′) ≤ (a, j) or (a, j) = (a′, j ′). We put � = {σ ⊂ V | σ is
totally ordered }. For σ ∈ �, we consider the submonoid Nσ ⊂ N generated by fa,j for
(a, j) ∈ σ . For each (a, b) ∈ N, one can easily find the minimum totally ordered subset
σ ∈ � satisfying (a, b) ∈ Nσ . Thus, � defines a regular proper subdivision. Hence the log
blow-up X′ = X� is regular and X′ ×S D is a divisor with simple normal crossings.

By the assumption on the existence of the functions and the total orders, the log
blow-ups constructed above patch globally to give the required X′. �

1.3. Log products and log blow-ups. — We fix some terminology and notation on log
products, which will be constantly used throughout this paper. For the generality on log
schemes, we refer to [22], [19], [26, Section 4]. In this paper, unless otherwise explicitly
stated, a log structure means an fs-log structure defined Zariski locally. In particular, a
log structure MX is a sheaf of commutative monoids on the Zariski site of a scheme X
endowed with a morphism of sheaf of monoids MX → OX where OX is regarded as a
sheaf of monoids with respect to the multiplication. Further, Zariski locally on X, the log
structure MX admits a chart by an fs-monoid. For a log structure MX, let M̄X denote
the quotient MX/O×

X.
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We recall some basic facts on log schemes from [22], [26, Section 4.3]. For mor-
phisms X → S and Y → S of log schemes, the fiber product X ×log

S Y is defined as a log
scheme. Note that X,Y,S are assumed to be fs-log schemes and X ×log

S Y is the fiber
product in the category of fs-log schemes. We put log in the notation to indicate that the
underlying scheme can be different from X ×S Y in the category is schemes. However,
for example if at least one of the morphisms X → S and Y → S is strict, the underlying
scheme is X ×S Y. In such a case, we will drop log in the notation.

For a Cartier divisor D of a scheme X defined by the ideal sheaf ID ⊂ OX, the
associated log structure is defined to be MX =⋃

n∈N I somOX(OX, I n
D) endowed with the

injection MX → OX induced by the inclusions I n
D → OX. For a finite family D = (Di)i∈I

of Cartier divisors Di ⊂ X, the associated log structure is defined by the amalgamated
sum of those associated to Di for i ∈ I over O×

X. It is the push-out of the log structures
defined by Di for i ∈ I. We have a canonical map NI → �(X, M̄X) that can be lifted to
a chart locally on X.

Let P be an fs-monoid and we consider two morphisms P → �(X, M̄X) of
monoids. Then, by applying [26, Proposition 4.2.3] to the surjection P + P → P, we
conclude that the functor sending a log scheme T to the set

{
f : T → X | the two compositions P → �(X, M̄X)

f ∗→ �(T, M̄T)

are equal to each other
}

of morphisms of log schemes is representable by a log étale scheme over X, that may
be denoted by X ×log

X,P X. Locally on X, it is constructed as follows. Let P̃ be the inverse
image of P by the sum Pgp ⊕ Pgp → Pgp. Locally on X, we take liftings P → �(X, MX) of
P → �(X, M̄X) and let X → Spec Z[P + P] be the induced morphism of log schemes.
Then, X ×log

X,P X is constructed as X ×log
Spec Z[P+P] Spec Z[̃P].

We apply the construction in the following case. Let X → S and Y → S be mor-
phisms of log schemes, P be an fs-monoid and P → �(X, M̄X) and P → �(Y, M̄Y) be
morphisms of monoids. Then, they induces two morphisms P → �(X ×log

S Y, M̄X×log
S Y).

By applying the construction above, we define the log product X ×log
S,P Y. It represents the

functor sending a log scheme T over S to the set
⎧
⎪⎪⎨

⎪⎪⎩
( f : T → X, g : T → Y)

∣∣∣∣ the diagram

P −−−→ �(X, M̄X)
⏐⏐

⏐⏐f ∗

�(Y, M̄Y)
g∗−−−→ �(T, M̄T)

is commutative

⎫
⎪⎪⎬

⎪⎪⎭

of pairs of morphisms of log schemes over S.

Lemma 1.3.1. — If P → �(X, M̄X) and P → �(Y, M̄Y) are locally lifted to charts, then

the projections X ×log
S,P Y → X and X ×log

S,P Y → Y are strict morphisms of log schemes.
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Proof. — By the construction above, the monoid P also defines charts on
X ×log

S,P Y. �

We consider the following variant. Let X → S and Y → S be morphisms of log
schemes, P and Q be fs-monoids and

P ←−−− Q −−−→ P
⏐⏐

⏐⏐
⏐⏐

�(X, M̄X) ←−−− �(S, M̄S) −−−→ �(Y, M̄Y)

be a commutative diagram of morphisms of monoids. Then, we define the log product
X ×log

S,P/Q Y by the Cartesian diagram

(1.3.1.1)

X ×log
S,P/Q Y −−−→ X ×log

S,P Y
⏐⏐

⏐⏐

S −−−→ S ×log
S,Q S

where the bottom arrow is the diagonal map and the right vertical arrow is defined by
functoriality.

We make the construction explicit in the case where the log structures of X and Y
are defined by finite families D = (Di)i∈I and E = (Ei)i∈I of Cartier divisors Di ⊂ X and
of Ei ⊂ Y with the same index set and the log structure of S is trivial. We define the log
product

(1.3.1.2) (X ×S Y)∼
D,E

to be X×log
S,NI Y defined by the canonical morphisms NI → �(X, M̄X),NI → �(Y, M̄Y).

The canonical morphism (X ×S Y)∼
D,E → X ×S Y is log étale. If X = Y and D = E , we

let (X ×S Y)∼
D,E denoted by (X ×S X)∼

D . Further if D is clear from the context, we drop
the subscript D.

Locally, the log product (X ×S Y)∼
D,E is described as follows. Assume that Di and

Ei are defined by fi ∈ �(X, OX) and gi ∈ �(Y, OY) respectively. Then, (fi)i∈I and (gi)i∈I

define maps of monoids NI → �(X, OX) and NI → �(Y, OY) and they further induce a
map P = NI ×NI → �(X×S Y, OX×SY) from the direct sum. We identify the dual monoid
N = P∗ with NI × NI and let Nσ = NI ⊂ NI × NI be the diagonal submonoid. Then, the
corresponding submonoid Pσ = {p ∈ Pgp | f (p) ∈ N for f ∈ Nσ } ⊂ Pgp = ZI × ZI is equal
to {(a, b) ∈ ZI × ZI | a + b ∈ NI}. The log product (X ×S Y)∼

D,E is then equal to
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(X ×S Y)σ(1.3.1.3)

= (X ×S Y) ×Spec Z[P] Spec Z[Pσ ]
= (X ×S Y) ×Spec Z[Si,Ti;i∈I] Spec Z

[
Si,Ti,U±1

i ; i ∈ I
]
/(Si − UiTi; i ∈ I).

We have a global embedding as follows. For each i ∈ I, let IDi
⊂ OX and IEi

⊂
OY be the ideal sheaves. We consider the P1-bundle P(pr∗

1 IDi
⊕ pr∗

2 IEi
) over X ×S Y.

The complement Pi ⊂ P(pr∗
1 IDi

⊕ pr∗
2 IEi

) of the two sections defined by the surjections
pr∗

1 IDi
⊕ pr∗

2 IEi
→ pr∗

1 IDi
and pr∗

1 IDi
⊕ pr∗

2 IEi
→ pr∗

2 IEi
is a Gm-torsor over X ×S Y. The

log product (X ×S Y)∼
D,E is a closed subscheme of the fiber product

∏
i∈I X×SY Pi over

X ×S Y.
We consider the variant of log product. Further, let B be a Cartier divisor of S and

(ni) be a family of integers ni ≥ 0 satisfying f ∗B = ∑
i∈I niDi and g∗B = ∑

i∈I niEi for the
same family (ni)i∈I of integers ni ≥ 1. We consider the log structure of S defined by B and
define the log product

(1.3.1.4) (X ×S Y)∼
D,E /B

to be X×log
S,NI/N Y defined by the canonical morphisms N → �(S, M̄S), NI → �(X, M̄X),

NI → �(Y, M̄Y). It is a closed subscheme of (X ×S Y)∼
D,E . When B is clear from the

context, we let (X ×S Y)∼
D,E /B denoted by (X ×S Y)∼

D,E in order to distinguish it from
(X ×S Y)∼

D,E .
The log product (X ×S Y)∼

D,E /B with respect to D, E and B is locally described
as follows. Suppose that Di,Ei and B are defined by fi ∈ �(X, OX), gi ∈ �(Y, OY) and
a ∈ �(S, OS) respectively. We put a = v

∏
i f

ni

i and a = w
∏

i g
ni

i for v ∈ �(X, O×
X) and

w ∈ �(Y, O×
Y ). Then, ((fi)i∈I, v) and ((gi)i∈I,w) define maps of monoids NI × Z →

�(X, OX) and NI ×Z → �(Y, OY). Let P be the amalgamate sum (NI ×Z)+N (NI ×Z)

with respect to the map N → NI × Z sending 1 to ((ni),1). Then, they further induce
a map P → �(X ×S Y, OX×SY). We identify the dual monoid N = P∗ with {((ai), (bi)) ∈
NI × NI |∑i niai =∑

i nibi} and let Nσ = NI ⊂ N ⊂ NI × NI be the diagonal submonoid.
Then, the corresponding submonoid Pσ ⊂ Pgp = (ZI ×Z⊕ZI ×Z)/〈((ni),1, (−ni),−1)〉
is equal to {(a, a′, b, b′) ∈ Pgp | a + b ∈ NI}. The log product (X ×S Y)∼

D,E /B is then equal
to

(X ×S Y)σ = (X ×S Y) ×Spec Z[P] Spec Z[Pσ ](1.3.1.5)

= (X ×S Y)×Spec Z[Si,Ti;i∈I,V±1,W±1]

Spec Z
[
Si,Ti,U±1

i ; i ∈ I,V±1,W±1
]/

(
Si − UiTi; i ∈ I,W − V

∏

i

Uni

i

)
.
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In other words, in the presentation (1.3.1.3), it is the closed subscheme defined by the
relation pr∗

2w/pr∗
1v =∏

i Uni

i .
We study the boundary of log products. Let i ∈ I and put Ǐi = I \ {i} and Ďi =

(Dj)j∈Ǐi
. We define (Di ×S Di)

∼
Di

to be (Di ×S Di)×X×SX (X×S X)∼
Ďi

. If Di ∩Dj = Di ×X Dj

is a Cartier divisor of Di for every j ∈ Ǐi , the scheme (Di ×S Di)
∼
Di

is the log product with
respect to the family (Di ×X Dj)j∈Ǐi

denoted by Di .

Lemma 1.3.2. — Let X → S and D = (Di)i∈I be as above. Let i ∈ I and assume that

Di ∩ Dj = Di ×X Dj is a Cartier divisor of Di for every j ∈ I′ = I \ {i}.
1. The scheme Ei = (Di ×S Di) ×(X×SX) (X ×S X)∼

D is equal to the inverse images

pr−1
1 (Di) = pr−1

2 (Di) of Di ⊂ X by the projections (X ×S X)∼
D → X. It is a Gm-torsor over

(Di ×S Di)
∼
Di

. The restriction of the log diagonal map Di → Ei defines a trivialization of the restriction

of the Gm-torsor Ei → (Di ×S Di)
∼
Di

to Di ⊂ (Di ×S Di)
∼
Di

.

2. Let B be a Cartier divisor of S. Assume that f ∗B = ∑
j njDj and that the coefficient ni of

Di in f ∗B is strictly positive ni > 0. Then, the intersection Ei ∩ (X ×S X)∼
D/B is a subscheme of a

μni
-torsor over (Di ×S Di)

∼
Di

. The restriction of the log diagonal map Di → Ei defines a trivialization

of the restriction of the μni
-torsor Ei ∩ (X ×S X)∼

D/B → (Di ×S Di)
∼
Di

to Di ⊂ (Di ×S Di)
∼
Di

.

Proof. — 1. Clear from the inductive construction (X ×S X)∼
D = (X ×S X)∼

Ďi
×X×SX

(X ×S X)∼
Di

of the log product.
2. Clear from the remark after (1.3.1.5). �

We define a log blow-up (X ×S Y)′
D,E of X ×S Y containing the log product

(X ×S Y)∼
D,E as an open subscheme. For i ∈ I, let Bi ⊂ N = NI × NI be the subset

{((ak), (bk)) ∈ NI × NI | ak = bk = 0 for k �= i and (ai, bi) ∈ {(1,0), (0,1), (1,1)}} consist-
ing of three elements and we put B = ⋃

i∈I Bi . Then the set � = {σ | σ ⊂ B, Card(σ ∩
Bi) ≤ 2 for every i ∈ I} defines a regular proper subdivision of N. We let the log blow-
up (X ×S Y)� denoted by (X ×S Y)′

D,E . Since the diagonal submonoid NI ⊂ NI × NI

is generated by the subset σ = {((ai), (bi)) ∈ B | ai = bi for every i ∈ I}, the log product
(X ×S Y)∼

D,E is an open subscheme of (X ×S Y)′
D,E .

We define a log blow-up (X ×S Y)′
D,E /B of X ×S Y containing the log product

(X ×S Y)∼
D,E /B as an open subscheme, assuming ni ∈ {0,1} for every i ∈ I. In order to

define the log blow-up, we choose and fix a total order of the subset I′ = {i ∈ I | ni = 1} of
the index set I.

First, we consider the case where I′ = I namely ni = 1 for every i ∈ I. The dual
N = P∗ of P = NI +N NI is identified with {(a, b) ∈ NI × NI | ∑i ai = ∑

i bi}. Let (ei) be
the standard basis of NI. We identify an element (i, j) ∈ I × I with (ei, ej) ∈ N and regard
I × I as a subset of N. We consider the product order on the product I × I. Let � be
the set of totally ordered subsets σ ⊂ I × I. For σ ∈ �, let Nσ ⊂ N be the submonoid
generated by σ . Then, � defines a regular proper subdivision of N. We let the log blow-
up (X ×S Y)� denoted (X ×S Y)′

D,E /B. Since the diagonal σ = �I ⊂ I × I corresponds to
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the diagonal submonoid NI ⊂ N ⊂ NI × NI, the log product (X ×S Y)∼
D,E /B is an open

subscheme of (X ×S Y)′
D,E /B.

In the general case, we put I′′ = I \ I′ and consider the subfamilies D′ =
(Di)i∈I′, E ′ = (Ei)i∈I′, D′′ = (Di)i∈I′′, E ′′ = (Ei)i∈I′′ . Then, we define the log product
(X ×S Y)′

D,E /B as the fiber product by

(1.3.2.1) (X ×S Y)′
D,E /B = (X ×S Y)′

D′,E ′/B ×X×SY (X ×S Y)′
D′′,E ′′ .

1.4. Log Lefschetz trace formula over a discrete valuation ring. — We state and prove a
log Lefschetz trace formula over a discrete valuation ring. Let L be a henselian discrete
valuation field. We regard T = Spec OL as a log scheme with the log structure defined by
the closed point t and also regard t as a log point.

Let X be a weakly semi-stable scheme over T = Spec OL with smooth generic fiber
XL and D ⊂ X be a Cartier divisor with normal crossings relatively to T. Let j : XL → X
be the open immersion. In this section, we regard the scheme X as a log scheme with the
log structure OX ∩ j∗O×

XL
. It is log smooth over T. We consider the fiber Xt = X ×T t also

as a log scheme over a log point t. We put U = X \ D and let jU : U → X be the open
immersion.

If X is proper, we define the log étale cohomology with compact support by

Hq

log c(Ut̄,Q�) = Hq

log(Xt̄, jU!Q�)

where jU! is defined on the log étale site.

Lemma 1.4.1. — Let X be a proper weakly semi-stable scheme over T = Spec OL and

D ⊂ X be a Cartier divisor with normal crossings relatively to T. Then the cospecialization map

(1.4.1.1) H∗
log c(Ut̄,Q�) −→ H∗

c (UL̄,Q�)

is an isomorphism.

Proof. — In the case D = ∅, it follows from [33, Theorem (3.2)(ii)]. We reduce
the general case to this case. Let D̄ be the normalization D and let π : D̄ → X be the
canonical map. Then, we have an exact sequence 0 → jU!Q�,U → Q�,X → π∗Q�,D̄ →
�2π∗Q�,D̄ → ·· · . Thus the assertion follows. �

Let X′ be another weakly semi-stable scheme over T with smooth generic fiber X′
L

and D′ ⊂ X′ be a Cartier divisor with normal crossings relatively to T. We also regard
X′ and X′

t as log schemes over T and over t. Let ιt : Xt → X′
t be an isomorphism of log

schemes over t inducing an isomorphism Dt → D′
t . Then, it induces an isomorphism

ιt∗ : Hq

log c(Ut̄,Q�) → Hq

log c(U
′
t̄
,Q�).

Let � ⊂ UL × U′
L be a closed subscheme of dimension d = dim UL. We assume

that the second projection p2 : � → U′
L is proper. Then, in [27, Section 2.3], the map

(1.4.2.1) �∗ : Hq
c

(
U′

L̄,Q�

)→ Hq
c(UL̄,Q�)
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is defined as p1∗p∗
2. We also let �∗ denote the composition

(1.4.2.2)

Hq
c(UL̄,Q�) Hq

c(U
′
L̄
,Q�)

�∗−−−→ Hq
c(UL̄,Q�)

cosp.

�⏐⏐� cosp.

�⏐⏐�

Hq

log c(Ut̄,Q�)
ιt∗−−−→ Hq

log c(U
′
t̄
,Q�)

by abuse of notation. In this subsection, we give a Lefschetz trace formula computing the
alternating sum

(1.4.2.3) Tr
(
�∗ : H∗

c (UL̄,Q�)
)=

2d∑

q=0

(−1)qTr
(
�∗ : Hq

c(UL̄,Q�)
) ∈ Q�,

assuming that X is weakly strictly semi-stable.
Let X,X′,D and D′ be as above. We assume further that X and X′ are weakly

strictly semi-stable and that D = D1 + · · · + Dn and D′ = D′
1 + · · · + D′

n have simple nor-
mal crossings with the same indices. Let ιt : Xt → X′

t be an isomorphism of log schemes
over t inducing isomorphisms Di,t → D′

i,t for every 1, . . . , n.
Let T denote the log scheme T endowed with the log structure defined by the

Cartier divisor t. We consider an fs-monoid P, a morphism N → P of monoids and a
commutative diagram

(1.4.2.4)

P ←−−− N −−−→ P
⏐⏐

⏐⏐
⏐⏐

�(X, M̄X) ←−−− �(T, M̄T) −−−→ �(X′, M̄X′)

of monoids satisfying the following condition:

(P) The vertical arrows are locally lifted to charts and compatible with the isomor-
phism ιt : Xt → X′

t .

To define the log product (X ×T X′)∼, we define X to be the log scheme X
defined by the push-out M′

X of the log structure MX and that defined by the family
D = (D1, . . . ,Dn). Similarly, we define X′. We consider

P ⊕ Nn ←−−− N −−−→ P ⊕ Nn

⏐⏐
⏐⏐

⏐⏐

�(X, M̄X) ←−−− �(T, M̄T) −−−→ �(X′, M̄X′)

and define the log product

(1.4.2.5)
(
X ×T X′)∼
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to be X ×T,P⊕Nn/N X′. Since the canonical map (X ×T X′)∼ → X ×T X′ is log étale,
the projections (X ×T X′)∼ → X and (X ×T X′)∼ → X′ are log smooth. Similarly as
Lemma 1.3.1, the projections are strict and hence smooth.

By the universality of (X ×T X′)∼, the immersion Xt → X and the composition
ιt : Xt → X′

t → X defines an immersion Xt → (X ×T X′)∼. By identifying X′
t with Xt by

the isomorphism ιt , let δt : Xt → (X ×T X′)∼ denote the immersion. The generic fiber
(X ×T X′)∼ ×T Spec L is identified with the log product (XL ×L X′

L)
∼ with respect to the

families of Cartier divisors D1,L, . . . ,Dn,L and D′
1,L, . . . ,D′

n,L.

Definition 1.4.3. — 1. For a scheme S, let K(S) denote the Grothendieck group of the exact

category of locally free OS-modules of finite rank. For a locally free OS-modules E of finite rank, its class

is denoted by [E ] ∈ K(S).

2. For a noetherian scheme S, let G(S) denote the Grothendieck group of the abelian category

of coherent OS-modules. For a coherent OS-modules F , its class is denoted by [F ] ∈ G(S). For an

integral closed subscheme V, the class [OV] is also denoted by [V].
We define a map G((XL ×L X′

L)
∼) → G(Xt) as follows.

Lemma 1.4.4. — Let X and X′ be weakly strictly semi-stable schemes over T = Spec OL

with smooth generic fibers and D = D1 + · · · + Dn ⊂ X and D′ = D′
1 + · · · + D′

n ⊂ X′ be divisors

with simple normal crossings relatively to T with the same indices. Let ιt : Xt → X′
t be an isomorphism

of log schemes compatible with the numberings of D and D′ and we consider a commutative diagram

(1.4.2.4) of monoids satisfying the condition (P).
1. The pull-back G((X×T X′)∼) → G((X×T X′)∼

t ) by the closed immersion (X×T X′)∼
t= (X ×T X′)∼ ×T t → (X ×T X′)∼ induces a map

(1.4.4.1) G
((

XL ×L X′
L

)∼)→ G
((

X ×T X′)∼
t

)
.

2. The map δt : Xt → (X ×T X′)∼
t is a regular immersion and it defines a pull-back

(1.4.4.2) G
((

X ×T X′)∼
t

)→ G(Xt).

Proof. — 1. Since the projection (X ×T X′)∼ is smooth over X, the scheme
(X×T X′)∼ is flat over T. Hence the closed immersion (X×T X′)∼

t → (X×T X′)∼ is a reg-
ular immersion and is of finite tor-dimension. Thus, it induces a map G((X ×T X′)∼) →
G((X ×T X′)∼

t ).
Since the sequence

G
((

X ×T X′)∼
t

)→ G
((

X ×T X′)∼)→ G
((

XL ×L X′
L

)∼)→ 0

is exact and since the composition

G
((

X ×T X′)∼
t

)→ G
((

X ×T X′)∼)→ G
((

X ×T X′)∼
t

)

is the zero-map, the assertion follows.
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2. Since the projection (X ×T X′)∼ → X is smooth, the immersion δt : Xt →
(X×T X′)∼

t is a section of a smooth map and is a regular immersion. Hence the pull-back
on the Grothendieck groups is defined. �

For an element �̃ ∈ G((XL ×L X′
L)

∼), by Lemma 1.4.4, its reduction �̃t ∈ G((X×T

X′)∼
t ) and the intersection product

(1.4.4.3) (�̃t,�Xt
) = δ∗

t (�̃t) ∈ G(Xt)

are defined.
Recall that for a weakly semi-stable scheme X over T, a semi-stable modification

X� is constructed in Lemma 1.2.1 by patching log blow-ups. By the construction, the
pull-back D� = D ×X X� is a divisor of X� with simple normal crossings relatively to T.
The canonical map X� → X induces an isomorphism X�,L → XL on the generic fiber.

Corollary 1.4.5. — Let weakly strictly semi-stable schemes X,X′ over T and an isomorphism

ιt : Xt → X′
t and a commutative diagram (1.4.2.4) of monoids be as in Lemma 1.4.4. Let f : X� →

X and f ′ : X′
� → X′ be the semi-stable modification as above. Then, the diagram

G((XL ×L X′
L)

∼) −−−→ G((X�)t)
∥∥∥

⏐⏐f∗

G((XL ×L X′
L)

∼) −−−→ G(Xt)

is commutative.

Proof. — We show that the diagram

(1.4.5.1)

(X� ×T X′
�)∼ pr1−−−→ X�

(f ×f ′)∼
⏐⏐

⏐⏐f

(X ×T X′)∼ pr1−−−→ X

is Cartesian. By the definition (1.3.1.1) of (X×T X′)∼, it suffices to show that the diagram
with ×T replaced by ×T is Cartesian. Since the assertion is local on X ×T X′, we may
assume that we have charts P → �(X, OX) and P → �(X′, OX′). Let Q be a sub-fs-
monoid of Pgp containing P as a submonoid. Let P̃ be the inverse image of P by the sum
Pgp ⊕ Pgp → Pgp and define Q̃ similarly. Then, since Pgp = Qgp, the inclusions P → P̃,
Q → Q̃ to the first factors induce an isomorphism Z[̃P] ⊗Z[P] Z[Q] → Z[Q̃]. Hence
the diagram with X� and X′

� replaced by with X ×Spec Z[P] Spec Z[Q] and X′ ×Spec Z[P]
Spec Z[Q] is Cartesian. Since X� and X′

� are defined by patching them, the diagram
(1.4.5.1) is Cartesian by the local construction of log product.
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By the Cartesian diagram (1.4.5.1), we obtain a commutative diagram

G((X� ×T X′
�)∼) −−−→ G((X�)t)

(f ×f ′)∼∗

⏐⏐
⏐⏐f∗

G((X ×T X′)∼) −−−→ G(Xt).

Since the diagram

G((X� ×T X′
�)∼) −−−→ G(XL ×L X′

L)

(f ×f ′)∼∗

⏐⏐
∥∥∥

G((X ×T X′)∼) −−−→ G(XL ×L X′
L)

is commutative, the assertion follows. �

Let X,X′,D,D′ and ιt : Xt → X′
t be as above. Assume X and X′ are strictly semi-

stable and let E1, . . . ,Em be the irreducible components of Xt and E′
1, . . . ,E′

m be the
irreducible components of X′

t such that ιt maps Ej to E′
j for j = 1, . . . ,m. Then, the log

product (X ×T X′)∼ is equal to (X ×T X′)D∪E ,D′∪E ′/t defined by the families of Cartier
divisors D = (D1, . . . ,Dn), E = (E1, . . . ,Em) of X, D′ = (D′

1, . . . ,D′
n), E = (E′

1, . . . ,E′
m)

of X′ and t of T. Consequently, in this case, the log blow-up (X ×T X′)′ is defined as
(1.3.2.1) and contains (X ×T X′)∼ as an open subscheme. It contains the log product
(X ×T X′)∼ as an open subscheme. The generic fiber of the log blow-up (X ×T X′)′ →
X×T X′ is equal to the log blow-up (XL ×L X′

L)
′ → XL ×L X′

L used in [27]. If D = D′ = ∅,
the log blow-up (X ×T X′)′ is equal to the log blow-up (X ×T X′)′ used in [26].

Lemma 1.4.6. — Let (X ×T X′)′ → X ×T X′ be the log blow-up and let (D ×T

X′)′, (X ×T D′)′ ⊂ (X ×T X′)′ be the proper transforms of D ×T X′,X ×T D′ ⊂ X ×T X′.
We consider the open immersions

(X ×T X′)′ \ ((D ×T X′)′ ∪ (X ×T D′)′)
j1−−−→ (X ×T X′)′ \ (X ×T D′)′

�⏐⏐
�⏐⏐j

(XL ×L X′
L)

∼ j1L−−−→ (XL ×L X′
L)

′ \ (XL ×L D′
L)

′.

Then the canonical map

(1.4.6.1) j1!Q� → Rj∗j1L!Q�

is an isomorphism on the log étale site.
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Proof. — For an irreducible component Di of D, let (Di ×T X′)′ ⊂ (X×T X′)′ denote
the proper transform. For a subset I ⊂ {1, . . . , n}, we put

⋂
i∈I(Di ×T X′)′ = (DI ×T X′)′

and let iI : (DI ×T X′)′ \ ((DI ×T X′)′ ∩ (X ×T D′)′) → (X ×T X′)′ \ (X ×T D′)′ be the
closed immersion. Then, we have an exact sequence

0 → j1!Q� → Q� →
n⊕

i=1

ii∗Q� →
⊕

1≤i<j≤n

i{i,j}∗Q� → ·· · .

Since (DI ×T X′)′ is log smooth over T, the canonical map iI∗Q� → Rj∗iIL∗Q� is an
isomorphism by [33, Theorem (0.2)]. �

The following theorem is a key ingredient in the proof of a crucial step Proposi-
tion 6.3.2 of the proof of the conductor formula.

Theorem 1.4.7. — Let X and X′ be proper weakly strictly semi-stable schemes of relative

dimension d over T with smooth generic fibers and D = D1 + · · · + Dn ⊂ X and D′ = D′
1 + · · · +

D′
n ⊂ X′ be divisors with simple normal crossings relatively to T. Let ιt : Xt → X′

t be an isomorphism

of proper log smooth schemes over t inducing isomorphisms (Di)t → (D′
i)t for i = 1, . . . , n and we

consider a commutative diagram (1.4.2.4) of monoids satisfying the condition (P). We put U = X \ D
and U′ = X′ \ D′.

Let �′ ⊂ (XL ×L X′
L)

′ be a closed subscheme of dimension d satisfying

(1.4.7.1) �′ ∩ (
DL ×L X′

L

)′ ⊂ �′ ∩ (
XL ×L D′

L

)′

and we put �̃ = �′ ∩ (XL ×L X′
L)

∼. Then, for � = �′ ∩ (UL ×L U′
L), the second projection

p2 : � → U′
L is proper and, for the composition �∗ (1.4.2.2), we have

(1.4.7.2) Tr
(
�∗ : H∗

c (UL̄,Q�)
)= deg(�̃t,�Xt

).

Note that (�̃t,�Xt
) in the right hand side is defined in (1.4.4.3) using ιt : Xt → X′

t .
The proof is a combination of that of [27, Theorem 2.3.4] and that of [26, Theo-
rem 6.5.1]. In the proper case where X = U, it is proved in [26, Theorem 6.5.1]. The
proof consists of verifying that the method in the proof of [27, Theorem 2.3.4] to treat
the open case also works in this context.

Proof. — By the argument in the beginning of the proof of [27, Theorem 2.3.4],
the inclusion (1.4.7.1) implies that the second projection pr2 : � → U′

L is proper. Thus
the endomorphism �∗ of H∗

c (UL̄,Q�) is defined.
We prove the equality (1.4.7.2) first in the case where X and X′ are strictly semi-

stable. We put

H2d
!∗
(
XL ×L X′

L,Q�(d)
)= H2d

(
XL ×L U′

L, ( jU × 1)!Q�(d)
)
,
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H2d
log,!∗

(
X ×T X′,Q�(d)

)= H2d
log

(
X ×T U′, ( jU × 1)!Q�(d)

)
,

H2d
log,!∗

(
Xt ×t X′

t,Q�(d)
)= H2d

log

(
Xt ×t U′

t, ( jU × 1)!Q�(d)
)
.

Then, in [27, Lemma 2.3.2], the cycle class [�] ∈ H2d
!∗ (XL ×L X′

L,Q�(d)) is defined and
the map �∗ is described in terms of the cycle class [�] as in the upper line of the diagram
(1.4.7.4) below. We consider the image of [�] by the composition

(1.4.7.3)

[�] ∈ H2d
!∗ (XL ×L X′

L,Q�(d))

restriction

�⏐⏐�

H2d
log,!∗(X ×T X′,Q�(d))

restriction

⏐⏐

[�t] ∈ H2d
log,!∗(Xt ×t X′

t,Q�(d))

δ∗
t

⏐⏐

δ∗
t [�t] ∈ H2d

log,c(Ut,Q�(d))

Tr

⏐⏐

Q�.

Similarly as Lemma 1.4.6, the first arrow is an isomorphism by [33, Proposition (4.2)].
Since the cospecialization maps are compatible with the pull-back, cup-product

and the trace maps, we have a commutative diagram

(1.4.7.4)

H∗
c (U

′̄
L
,Q�)

pr∗2−−−−→ H∗
∗!(XL̄ × X′̄

L
,Q�)

⋃[�]−−−−→ H∗
c (UL̄ × U′̄

L
,Q�)

pr1∗−−−−→ H∗
c (UL̄,Q�)

cosp.

⏐⏐ cosp.

⏐⏐
⏐⏐cosp.

⏐⏐cosp.

H∗
log c(U

′̄
t
,Q�)

pr∗2−−−−→ H∗
log∗!(Xt̄ × X′̄

t
,Q�)

⋃[�t ]−−−−→ H∗
log c(Ut̄ × U′̄

t
,Q�)

pr1∗−−−−→ H∗
log c(Ut̄,Q�).

The composition of the arrows in the upper line is the map �∗ (1.4.2.1). We define �∗
t to

be the composition of the arrows in the lower line. Then, we have

(1.4.7.5) Tr
(
�∗ : H∗

c (UL̄,Q�)
)= Tr

(
�∗

t ◦ ιt∗ : H∗
log c(Ut̄,Q�)

)
.

The standard argument of the proof of Lefschetz trace formula using the Künneth
formula [32, Theorem (6.2)] and the Poincaré duality [33, Proposition (4.4)] for log étale
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cohomology, shows that the diagram

2d⊕

q=0

End(Hq

log c(Ut̄,Q�))
�−−−→ H2d

log,!∗(Xt × X′
t̄
,Q�(d))

Tr

⏐⏐
⏐⏐δ∗

t

Q�

Tr←−−− H2d
log,c(Ut̄,Q�(d))

is commutative. Hence, the right hand side of (1.4.7.5) is equal to Tr(δ∗
t [�t]). Thus the

proof of (1.4.7.2) is reduced to showing

(1.4.7.6) Tr
(
δ∗

t [�t]
)= deg(�̃t,�Xt

).

In the definition of the left hand side Tr(δ∗
t [�t]), we modify the diagram (1.4.7.3)

using Lemma 1.4.6. We consider the log blow-up (X ×T X′)′ → X ×T X′ defined by
(1.3.2.1). We consider the proper transforms (D ×T X′)′, (X ×T D′)′ ⊂ (X ×T X′)′ of
D ×T X′,X ×T D′ ⊂ X ×T X′ and let j1 : (X ×T X′)′ \ ((D ×T X′)′ ∪ (X ×T D′)′) →
(X ×T X′)′ \ (D ×T X′)′ be the open immersion as in Lemma 1.4.6. In the following
equalities, we define the left hand sides by the right hand sides

H∗
log!∗

((
X ×T X′)′,Q�

)= H∗
log

((
X ×T X′)′ \ (X ×T D′)′, j1!Q�

)

H∗
!∗
((

XL ×L X′
L

)′
,Q�

)= H∗((XL ×L X′
L

)′ \ (XL ×L D′
L

)′
, j1L!Q�

)
.

We consider a commutative diagram

(1.4.7.7)

H2d
!∗ (XL ×L X′

L,Q�(d)) −−−−→ H2d
!∗ ((XL ×L X′

L)′,Q�(d)) −−−−→ H2d((XL ×L X′
L)∼,Q�(d))

�⏐⏐
�⏐⏐

�⏐⏐

H2d
log,!∗(X ×T X′,Q�(d)) −−−−→ H2d

log,!∗((X ×T X′)′,Q�(d)) −−−−→ H2d
log((X ×T X′)∼,Q�(d))

δ∗
t

⏐⏐


⏐⏐
δ∗

t

⏐⏐
δ∗

t

H2d
log,c(Ut,Q�(d)) −−−−→ H2d

log(Xt,Q�(d)) H2d
log(Xt,Q�(d)).

The upper vertical arrows are the restrictions to the generic fiber and are isomorphisms
by Lemma 1.4.6 and [33, Proposition (4.2)]. The top left horizontal arrow is an iso-
morphism by [27, Corollary 2.2.2]. By the proof of [27, Theorem 2.3.4], the cycle class
[�′] ∈ H2d

!∗ ((XL ×L X′
L)

′,Q�(d)) is the image of [�] ∈ H2d
!∗ (XL ×L X′

L,Q�(d)). Thus, in the
diagram (1.4.7.3), we may replace X ×T X′ etc. by (X ×T X′)′ etc., H2d

log,c(Ut,Q�(d)) by
H2d

log(Xt,Q�(d)) and [�] by [�′]. Further, we may replace (X ×T X′)′ etc. by (X ×T X′)∼
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etc. and [�′] by [�̃] and drop !∗. Therefore the proof of (1.4.7.2) is further reduced to
showing

(1.4.7.8) Tr
(
δ∗

t [�̃t]
)= deg(�̃t,�Xt

)

where the left hand side is defined by

(1.4.7.9)

[�̃] ∈ H2d((XL ×L X′
L)

∼,Q�(d))

restriction

�⏐⏐�

H2d
log((X ×T X′)∼,Q�(d))

restriction

⏐⏐

[�̃t] ∈ H2d
log((X ×T X′)∼

t ,Q�(d))

δ∗
t

⏐⏐

δ∗
t [�̃t] ∈ H2d

log(Xt,Q�(d))

Tr

⏐⏐

Q�.

We prove (1.4.7.8). The proof goes similarly as that of [26, Theorem 6.5.1]. We
identify Grd

FK((XL ×L X′
L)

∼)Q with GrF
0G((XL ×L X′

L)
∼)Q by the canonical isomor-

phism, cf. [26, Lemma 2.1.4]. Since we are assuming that X is strictly semi-stable, the
log product (X ×T X′)∼ is regular. Hence, the restriction map Grd

FK((X ×T X′)∼) →
Grd

FK((XL ×L X′
L)

∼) is a surjection and the class [�̃] ∈ Grd
FK((XL ×L X′

L)
∼) is lifted to

an element [�̃] ∈ Grd
FK((X ×T X′)∼). We define the class [�̃] ∈ H2d((X ×T X′)∼,Q�(d))

as the Chern character. Since the Chern character is compatible with the pull-back,
the class [�̃] ∈ H2d((XL ×L X′

L)
∼,Q�(d)) on the top is the restriction of the class

[�̃] ∈ H2d((X ×T X′)∼,Q�(d)). Further the trace map H2d(Xt̄,Q�(d)) → Q� is the com-
position of the canonical map H2d(Xt̄,Q�(d)) → H2d

log(Xt̄,Q�(d)) with the trace map
H2d

log(Xt̄,Q�(d)) → Q�. Hence the left hand side of the equality (1.4.7.8) is the image of
[�̃] ∈ H2d((X ×T X′)∼,Q�(d)) in the second line of the diagram (1.4.7.9) with log re-
moved everywhere. Thus the equality (1.4.7.8) follows from the compatibility of the trace
map with the degree map [26, Lemma 6.5.4].

We reduce the proof of (1.4.7.2) to the case where X and X′ are strictly semi-stable.
As in Corollary 1.4.5, we consider the semi-stable modifications X� → X and X′

� → X′

constructed in Lemma 1.2.1. The isomorphism ιt : Xt → X′
t induces an isomorphism

ιt� : (X�)t → (X′
�)t . Thus, by Corollary 1.4.5, it is reduced to the strictly semi-stable

case. �
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1.5. Log stalks. — In the next subsection, we prove an important complement
Proposition 1.6.2 to the log Lefschetz trace formula Theorem 1.4.7. As a preliminary,
we briefly recall some elementary terminology on log points and the stalks of a tamely
ramified sheaf at a log geometric point. For more systematic account, we refer to [19, Sec-
tion 4]. A reader familiar with the generalities on log schemes may skip this subsection.

Let t be the spectrum of a field F. If t is endowed with the log structure defined by
the chart N → F sending 1 to 0, we call t a log point. Let t̄ be the spectrum of a separably
closed field F of characteristic p ≥ 0. If t̄ is endowed with the log structure defined by the
chart Z(p) ∩ [0,∞) → F sending any element a > 0 to 0, we call t̄ a log geometric point.
For a log scheme Y, we call a morphism t → Y from a log point a log point of Y. Similarly,
we call a morphism t̄ → Y from a log geometric point a log geometric point of Y.

A typical example of log points and log geometric points are constructed as follows.
Let OL be a discrete valuation ring and regard T = Spec OL as a log scheme with the log
structure defined by the closed point t. Then, the scheme t endowed with the pull-back
log structure is a log point. Assume further OL is henselian and let Ltr denote the maximal
tamely ramified extension of L. Then, the limit of the standard log structures on Spec OL′

for finite extensions L′ of L in Ltr defines a structure of log geometric point on the closed
point t̄ of Spec OLtr . A morphism T → Y of log schemes define a log point t → Y and
further a log geometric point t̄ → Y.

For a log geometric point t̄ of a log scheme Y, the log strict localization Ỹt̄ is defined
in [19, 4.5]. The definition of the log stalk Gt̄ of a sheaf G on the Kummer étale site on
a log scheme Y at a log geometric point t̄ of Y is given in [19, Definition 4.3]. We will
make it explicit in a special case.

Let S be a regular noetherian scheme and D be a divisor with normal crossings.
We put W = S \ D and j : W → S the open immersion. Then, the log scheme S with the
log structure MS = OS ∩ j∗O×

W is log regular [25]. We consider a locally constant sheaf
F on W tamely ramified along D. The direct image j∗F on the Kummer étale site of S
is a locally constant sheaf by Abhyankar’s lemma. Let g : Y → S be a morphism of log
schemes and we consider the pull-back G = g∗j∗F to the Kummer étale site of Y.

Let t̄ → Y be a log geometric point and let s̄ denote the geometric point of S
defined by the composition t̄ → Y → S. Let g̃ : Ỹt̄ → S̃s̄ denote the map of the log strict
localizations induced by g and j̃ : W ×S S̃s̄ → S̃s̄ denote the open immersion. The pull-
back of F on W ×S S̃s̄ is a constant sheaf and hence the direct image F̃ = j̃∗(F |W×SS̃s̄

)

is a constant sheaf on the usual étale site of S̃s̄. The log stalk Gt̄ is canonically identified
with the stalk (g̃∗F̃ )t̄ at t̄ of the pull-back of the constant sheaf F̃ . The map g̃ : Ỹt̄ → S̃s̄

induces an isomorphism (j∗F )s̄ → Gt̄ of log stalks.
We consider the log cospecialization map [32, (2.8) 6]. We will use it only in the

following situation. Let g : Y → S be a morphism of log schemes and G = g∗j∗F be as
above. Let V ⊂ Y be an open subscheme where the log structure is trivial and let η̄ be a
geometric point of V. Assume that the image of the log geometric point t̄ in Y lies in the
closure of the image of η̄. Then, by choosing a lifting of η̄ in Ỹt̄ , a log cospecialization
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map Gt̄ → Gη̄ is defined as the usual cospecialization map (g̃∗F̃ )t̄ → (g̃∗F̃ )η̄. Let ξ̄ be an
intermediate geometric point of V such that the image of t̄ lies in the closure of the image
of ξ̄ and that the image of ξ̄ lies in the closure of the image of η̄. Then, by choosing liftings
ξ̄ → Ỹt̄ and η̄ → Yξ̄ → Ỹt̄ successively, we obtain the transitivity of cospecialization maps
Gt̄ → Gξ̄ → Gη̄.

The following compatibility of the cospecialization map with the pull-back will be
used in the proof of Proposition 1.6.2.

Lemma 1.5.1. — Let S be a regular noetherian scheme and W = S\D ⊂ S be the complement

of a divisor D with normal crossings. We consider a commutative diagram

t̄ t Y
g

S.

Y

h

g′

of morphisms of log schemes. We assume t is a log point and t̄ is a log geometric point.

Let h̃ : Ỹt̄ → Ỹt̄ be the morphism on the log strict localization induced by h. Let η̄ be a usual

geometric point of an open subscheme V ⊂ Y where the log structure is trivial. We take a lifting η̄ → Ỹt̄

and let h̄ : η̄ → η̄ be a morphism such that the diagram

(1.5.1.1)

η̄ −−−→ Ỹt̄

h̄

⏐⏐
⏐⏐h̃

η̄ −−−→ Ỹt̄

is commutative.

Let F be a locally constant sheaf on W tamely ramified along D and we put G = g∗(j∗F ) and

G ′ = g′∗(j∗F ) = h∗G . Then, for the isomorphism h̄∗ : Gη̄ → G ′
η̄, we have a commutative diagram

Gt̄

cosp.−−−→ Gη̄
∥∥∥

⏐⏐h̄∗

G ′
t̄

cosp.−−−→ G ′
η̄

Proof. — By the commutative diagram (1.5.1.1), we have a commutative diagram

g̃∗(F̃ )t̄

cosp.−−−→ g̃∗(F̃ )η̄
∥∥∥

⏐⏐h̄∗

g̃′∗(F̃ )t̄

cosp.−−−→ g̃′∗(F̃ )η̄

Thus it follows from the descriptions of the log stalks and the cospecialization maps. �
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We consider a geometric situation. Let S be a regular noetherian scheme and W =
S \ D ⊂ S be the complement of a divisor D with normal crossings as above. Let f : X →
S be a proper weakly semi-stable scheme such that the base change X ×S W → W is
smooth and let fU : U → S be the restriction to the complement U ⊂ X of a divisor
E ⊂ X with normal crossings relatively to S as in Lemma 1.1.6. Then, for an integer
n invertible on S, by Lemma 1.1.6, the higher direct image F = RqfU!Z/nZ is locally
constant on W and is tamely ramified along D.

Let T = Spec OL be the spectrum of a discrete valuation ring with the log structure
defined by the closed point t ∈ T and g : T → S be a morphism of log schemes such that
the image of the generic point is in W. Then, the pull-back G = g∗j∗F is a locally constant
sheaf on the Kummer étale site of T and the stalk GL̄ at the geometric point defined by
an algebraic closure L̄ is identified with Hq

c(UL̄,Z/nZ) by the usual proper base change
theorem. By the proof of [33, Proposition (4.3)], we obtain a commutative diagram

(1.5.1.2)

Gt̄

cosp.−−−→ GL̄⏐⏐
⏐⏐

Hq

log c(Ut̄,Z/nZ) −−−→ Hq
c(UL̄,Z/nZ)

of isomorphisms.

1.6. Compatibility with cospecializations. — We prove a compatibility with cospecial-
ization maps, that gives an important complement to the log Lefschetz trace formula. We
consider the following data:

(1.6.1.1a) Let Y be a log scheme and V ⊂ Y be an open subscheme where the
log structure is trivial. Let h : Y → Y be a morphism of log schemes
satisfying h(V) ⊂ V.

(1.6.1.1b) Let T be the spectrum Spec OL of a discrete valuation ring OL regarded
as a log scheme with the log structure defined by the closed point t.
Let T → Y be a morphism of log schemes such that the image of the
generic point Spec L ∈ T is in V and that the map t → Y of log schemes

is the same as the composition of t → Y
h→ Y. Let t̄ be a log geometric

point above the log point t.
(1.6.1.1c) Let η̄ be a geometric point of the strict henselization Vξ̄ of V at a geo-

metric point ξ̄ above the image ξ ∈ V of Spec L → T and h̄ : η̄ → η̄ be
an automorphism compatible with h.

(1.6.1.1d) Let f : X → Y be a proper and weakly strictly semi-stable scheme of
relative dimension d over Y such that the base change XV = X×Y V →
V is smooth. Let D = D1 + · · · + Dn be a divisor of X with simple
normal crossings relatively to Y.
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The data above are summarized in the following diagram:

(1.6.1.1)

X ⊃ D

T Y Y
h

t L V V
h|V

t̄ Vξ̄ Vξ̄

η̄ η̄
h̄

Let U = X \ D be the complement and fU : U → Y be the restriction of f . Let
UV ⊂ XV and U′

V ⊂ X′
V denote the base changes of U ⊂ X by the inclusion and the

restriction h|V respectively. We consider the log product and the log blow-up (XV ×V X′
V)∼

⊂ (XV ×V X′
V)′ with respect to the pull-backs (D1,V, . . . ,Dn,V) and (D′

1,V, . . . ,D′
n,V) by

the inclusion and by h|V of (D1, . . . ,Dn). Let (DV ×V X′
V)′, (XV ×V D′

V)′ ⊂ (XV ×V X′
V)′

denote the proper transforms of DV ×V X′
V and of XV ×V D′

V respectively.
We consider a closed subscheme �̃ ⊂ (XV ×V X′

V)∼ flat of relative dimension d

over V. Assume that the second projection pr2 : � = �̃ ∩ (UV ×V U′
V) → U′

V is proper.
Then, the geometric fiber �η̄ ⊂ Uη̄ ×η̄ U′

η̄ defines a linear map �∗ : Hq
c(U

′
η̄,Q�) →

Hq
c(Uη̄,Q�) and the morphism id× h̄ : Uη̄ → U′

η̄ induces an isomorphism h̄∗ : Hq
c(Uη̄,Q�)

→ Hq
c(U

′
η̄,Q�). Consequently, the alternating sum

(1.6.1.2) Tr
(
�∗ ◦ h̄∗ : H∗

c (Uη̄,Q�)
)=

2d∑

q=0

(−1)qTr
(
�∗ ◦ h̄∗ : Hq

c(Uη̄,Q�)
) ∈ Q�

is defined.
Let ιt : Xt → X′

t be the isomorphism defined by the assumption that the map
t → Y is the same as the composition with h : Y → Y. It induces an isomorphism
ιt∗ : Hq

log c(Ut̄,Q�) → Hq

log c(U
′
t̄
,Q�) as in (1.4.2.2). Since �L ⊂ UL ×L U′

L induces
�∗

L : H∗
c (U

′
L̄
,Q�)) → H∗

c (UL̄,Q�), the alternating sum Tr(�∗ : H∗
c (UL̄,Q�)) is defined

by (1.4.2.3).
The following complement to the Lefschetz trace formula Theorem 1.4.7 will be

used in the proof of a crucial step Proposition 7.3.4 of the proof of the conductor formula.
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Proposition 1.6.2. — Let the notation be as in the diagram (1.6.1.1). We take a lifting of

the geometric point η̄ to the log strict localization Ỹt̄ and assume that h̄ : η̄ → η̄ is compatible with

the morphism h̃ : Ỹt̄ → Ỹt̄ induced by h. Let � be a closed subscheme of UV ×V U′
V flat of relative

dimension d over V. We assume that the second projection pr2 : � → U′
V is proper.

We assume the following condition:

(1.6.2.2) There exist a regular noetherian scheme S, a proper weakly semi-stable scheme

f̄ : XS → S, a divisor DS ⊂ XS with normal crossings relatively to S and a mor-

phism g : Yt̄ → S from the usual strict localization satisfying the following conditions.

The pull-back of D ⊂ X over Y to Yt̄ is isomorphic to that of DS ⊂ XS. There exists

a divisor DS of S with simple normal crossings such that the pull-back of XS to the

complement W = S \ DS is smooth.

Then, for the alternating sum (1.6.1.2), we have

(1.6.2.3) Tr
(
�∗ ◦ h̄∗ : H∗

c (Uη̄,Q�)
)= Tr

(
�∗ : H∗

c (UL̄,Q�)
)
.

Proof. — By the definition of �∗ : H∗
c (UL̄,Q�) → H∗

c (UL̄,Q�), it suffices to show
the commutativity of the diagram

H∗
c (Uη̄,Q�)

h̄∗
H∗

c (U
′
η̄,Q�)

�∗
H∗

c (Uη̄,Q�)

H∗
c (UL̄,Q�) H∗

c (U
′
L̄
,Q�)

�∗
H∗

c (UL̄,Q�)

H∗
log,c(Ut̄,Q�)

where the non-horizontal arrows are the cospecialization maps. For the right square, it is
a consequence of the compatibility of a correspondence with usual cospecializations.

We show the commutativity of the left quadrangle. By replacing Y by the strict
localization, we may assume Y = Yt̄ . We put US = XS \ DS in (1.6.2.2) and let fW : UW =
US ×S W → W be the restriction of fS : XS → S. We consider the smooth Q�-sheaf F =
RqfW!Q� on W tamely ramified along DS. Let jW : W → S denote the open immersion
and define a smooth sheaf G = g∗j∗F on Yt̄ . We consider the diagram

Gt̄

cosp.−−−→ GL̄
cosp.−−−→ Gη̄

⏐⏐
⏐⏐

⏐⏐

Hq

log,c(Ut̄,Q�) −−−→ Hq
c(UL̄,Q�) −−−→ Hq

c(Uη̄,Q�).
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The right square is the usual commutative diagram for étale cohomology and the left is
(1.5.1.2). We have a similar commutative diagram for U′. By the transitivity of cospecial-
ization maps, the commutativity of the left quadrangle follows from Lemma 1.5.1. �

2. Tamely ramified coverings

In this section, we give a definition for an étale morphism of schemes to be tamely
ramified along the boundary. The purpose of studying tame ramification first is to define
the wild ramification locus and to focus on it.

First, we formulate the definition of an unramified morphism to be tamely ramified
along the boundary using proper modifications and log products in Section 2.1. We give
a tameness criterion, Proposition 2.4.4, in terms of valuation rings in Section 2.4 after
recalling tamely ramified extensions of valuation fields and the limit of proper modifica-
tions in Sections 2.2 and 2.3 respectively. We study the relation with Kummer coverings
in 2.5. Finally, we give a criterion for a Galois covering to be tamely ramified in terms of
inertia groups in 2.6.

Although we don’t need to assume for schemes to be separated in a large part of
this section, we will assume it for simplicity.

2.1. Tame ramification and log products. — Recall that a morphism of schemes V → U
of finite type is said to be unramified if the diagonal map δV : V → V ×U V is an open
immersion. We consider a separated scheme Y containing V as an open subscheme and
introduce a notion that an unramified morphism f : V → U is tamely ramified with
respect to Y.

Lemma 2.1.1. — Let f : V → U be an unramified separated morphism of finite type of schemes

and j : V → Y be an open immersion of separated schemes. Let D = (Di)i∈I be a finite family of Cartier

divisors of Y such that V ∩ Di = ∅ for every i ∈ I.
For a commutative diagram

(2.1.1.1)

Y
j←−−− V

⏐⏐
⏐⏐f

S ←−−− U

of separated schemes, let (Y ×S Y)∼
D be the log product and define a closed subset �D

V/UY ⊂ Y to

be the intersection �
log
Y ∩ W of the log diagonal with the closure of the open and closed subscheme

W = (V ×U V) \ �V ⊂ V ×U V in the log product (Y ×S Y)∼
D .

Then, the closed subset �D
V/UY ⊂ Y is independent of the choice of a diagram (2.1.1.1).
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For any morphisms Y ← V → U of schemes, we can complete them into a dia-
gram (2.1.1.1) by putting S = Spec Z.

Proof. — We consider a commutative diagram (2.1.1.1) with S replaced by another
separated scheme S′ and show that �D

V/UY ⊂ Y are the same. It suffices to consider the
case where S′ = Spec Z. Hence, we may assume that there exists a morphism S → S′ that
makes the diagram

Y S

S′ U

commutative. The canonical map (Y ×S Y)∼
D → (Y ×S′ Y)∼

D is a closed immersion since
it is a base change of the diagonal S → S ×S′ S. Hence, the assertion follows. �

Definition 2.1.2. — Let f : V → U be an unramified separated morphism of finite type of

schemes and j : V → Y be an open immersion of separated schemes.

1. For a finite family of Cartier divisors D = (Di)i∈I of Y such that V∩Di = ∅ for every i ∈ I,
define a closed subset �D

V/UY ⊂ Y to be the intersection �
log
Y ∩ W of the log diagonal with the closure

of the open and closed subscheme W = (V ×U V) \ �V ⊂ V ×U V in the log product (Y ×S Y)∼
D as

in Lemma 2.1.1 by taking a commutative diagram (2.1.1.1).
Define a closed sunset �+

V/UY ⊂ Y to be the intersection
⋂

D �D
V/UY ⊂ Y where D = (Di)i∈I

runs through finite families of Cartier divisors of Y as above.

2. We say f : V → U is tamely ramified with respect to Y, if there exists a proper scheme

Y′ over Y containing V as an open subscheme such that �+
V/UY′ = ∅.

We will define the wild ramification locus �V/UY as a closed subset of �+
V/UY in

Definition 2.4.1. Since �D
V/UY ⊃ �D′

V/UY for D ⊂ D′, there exists a finite family D of
Cartier divisors of Y such that �+

V/UY = �D
V/UY if Y is quasi-compact. In particular, the

condition �+
V/UY = ∅ is equivalent to the existence of a finite family D of Cartier divisors

of Y as in Definition 2.1.2.1 satisfying �D
V/UY = ∅.

Lemma 2.1.3. — Let S be a scheme and let

Y′ j′←−−− V′ −−−→ U′

g

⏐⏐
⏐⏐

⏐⏐

Y
j←−−− V −−−→ U

be a commutative diagram of separated schemes over S. Assume that V → U and V′ → U′ are un-

ramified and that the canonical map V′ → V ×U U′ is an immersion. Assume also that j : V → Y
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and j ′ : V′ → Y′ are open immersions. If OY′ → j ′∗OV′ is an injection, then we have g(�+
V′/U′Y′) ⊂

�+
V/UY.

Proof. — Let D = (Di)i∈I be a finite family of Cartier divisors of Y such that
Di ∩ V = ∅ for every i ∈ I. By the assumption that OY′ → j ′∗OV is injective, the pull-
backs g∗Di defines a family D′ = (D′

i)i∈I of Cartier divisors of Y′ satisfying D′
i ∩ V = ∅

for every i ∈ I. Hence, the morphism (g × g)∼ : (Y′ ×S Y′)∼
D′ → (Y ×S Y)∼

D is defined.
By the assumption that V′ → V ×U U′ is an immersion, the inverse image of �V by
V′ ×U′ V′ → V ×U V is �V′ . Hence V′ ×U′ V′ \ �V′ ⊂ (Y′ ×S Y′)∼

D′ is a subset of the in-
verse image of V ×U V \ �V. Thus, we have V′ ×U′ V′ \ �V′ ⊂ (g × g)∼−1(V ×U V \ �V)

and �D′
V′/U′Y′ ⊂ g−1(�D

V/UY). By taking the intersection, the assertion follows. �

Whether �+
V/UY is empty or not may depend on Y as the following example shows.

Example 2.1.4. — Let A be a ring where 2 is invertible and let V = Spec A[T±1
1 ,

T±1
2 ] ⊂ Y = A2

A = Spec A[T1,T2]. We define an action of a cyclic group G of order 4 by
T1 �→ −T2,T2 �→ T1. Then, V is a G-torsor over U = V/G. For the blow-up Y′ of Y at
the 0-section, an elementary computation shows that �+

V/UY′ = ∅ while �+
V/UY consists

of the 0-section of Y.

2.2. Tamely ramified extension of valuation fields. — We will study tame ramification
defined in the previous subsection in detail in Section 2.4. As preliminaries, we first study
tamely ramified extensions of valuation fields in this subsection and limit of compactifi-
cations in the next subsection.

We recall the definition of tamely ramified extensions of valuation fields. For gen-
erality on valuation rings, we refer to [5, Chapitre 6] and [44, Chapter VI]. If L is a finite
separable extension of a field K and if B is the integral closure in L of a valuation ring
A of K, then the map from the finite set of maximal ideals of B to the set of valuation
rings of L dominating A sending a maximal ideal m to the local ring Bm is a bijection [5,
Chapitre 6, Section 8, no 3, Remarque].

Definition 2.2.1. — Let L be a finite separable extension of a field K and B be a valuation ring

of L. We put A = B ∩ K. Let Ash and Bsh be strict henselizations and let Ksh and Lsh be the fraction

fields.

We say that L is tamely ramified over K with respect to B if the degree [Lsh : Ksh] is invertible

in B.

If the residue field of B is of characteristic 0, an arbitrary finite separable extension
L over K is tamely ramified with respect to B.

We recall some standard terminologies on inertia subgroups. Let M be a finite
Galois extension of a field K of Galois group G = Gal(M/K) and A be a valuation
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ring of K. Let C ⊂ M be the integral closure of A and m be a maximal ideal of C.
The subgroup D = {σ ∈ G | σ(m) = m} is called the decomposition group of m and
I = Ker(D → Aut(C/m)) the inertia group. The local ring Cm is a valuation ring. Let
Csh

m
be a strict henselization and let Msh be the fraction field of Csh

m
. Then, the I-fixed part

of Csh
m

is a strict henselization Ash of A.
We regard the value group �A = K×/A× as a subgroup of �m = M×/C×

m
. Then

the map I × M× → (C/m)× defined by (σ, c) �→ σ(c)/c induces a pairing I × �m/�A →
(C/m)×.

Lemma 2.2.2. — Let M be a finite Galois extension of a field K of Galois group G =
Gal(M/K) and A be a valuation ring of K. Let I ⊂ G be the inertia group of a maximal ideal m of

the integral closure C ⊂ M of A. Let p be the characteristic of the residue field A/mA.

1. ([44, Chapter VI, §12, Corollary of Theorem 24]) If p = 0, the pairing I ×
�m/�A → (C/m)× is a perfect pairing of finite abelian groups.

2. ([Loc. cit. Theorems 24 and 25]) Assume p > 0 and let (�m/�A)′ denote the prime-to-

p part of �m/�A. Then, the kernel P of the induced map I → Hom(�m/�A, (C/m)×) is the unique

p-Sylow subgroup of I and the induced pairing I/P × (�m/�A)′ → (C/m)× is a perfect pairing of

finite abelian groups.

For the rest of this subsection, in the case p = 0, we put (�m/�A)′ = �m/�A and
P = 1.

Corollary 2.2.3. — Let K be a field and L be a finite separable extension of K. Let A be a

valuation ring of K and B be the integral closure of A in L. Then the following conditions are equivalent:

(1) For every maximal ideal m of B, L is tamely ramified over K with respect to Bm.

(2) There exist non-zero elements t1, . . . , tn of the maximal ideal mA and integers m1, . . . ,mn

invertible in A such that the normalization B′ of A in L[S1, . . . ,Sn]/(Sm1
1 − t1, . . . ,

Smn
n − tn) is finite étale over the normalization A′ of A in K[S1, . . . ,Sn]/(Sm1

1 − t1, . . . ,

Smn
n − tn).

Proof. — (1)⇒(2): We may assume L is a Galois extension of K. Let m be a maximal
ideal of B and let Lsh be the fraction field of the strict henselization of B at a geometric
point above m and define Ksh similarly. By Lemma 2.2.2, Lsh is an abelian extension of
Ksh and the pairing Gal(Lsh/Ksh) × (�B/�A)′ → (B/m)× is a perfect pairing of finite
abelian groups of order prime to p. We take an isomorphism Z/m1Z ⊕ · · · ⊕ Z/mnZ →
(�B/�A)′ and its lifting γ : Zn → �B. Let e1, . . . , en ∈ Zn be the standard basis and we
take elements t1, . . . , tn ∈ mA satisfying vA(ti) = miγ (ei) for i = 1, . . . , n. Then, we have
Lsh = Ksh(t

1/m1
1 , . . . , t1/mn

n ) and the assertion follows.
(2)⇒(1): Since [Lsh : Ksh] divides m1 · · ·mn, the extension L is tamely ramified. �

We give a criterion for a finite separable extension of valuation field to be tamely
ramified.
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Proposition 2.2.4. — Let L be a finite separable extension of a field K and B ⊂ L be a valuation

ring of L. We put A = B ∩ K, U = Spec K ⊂ S = Spec A and V = Spec L ⊂ Y = Spec B.

Then, the following conditions (1)–(4) are equivalent:

(1) L is tamely ramified over K with respect to B.

(2) There exists a finite family D = (Di)i∈I of Cartier divisors of Y such that the intersection

�D
V/UY = W∩�

log
Y with the closure of W = V×U V\�V in the log product (Y×S Y)∼

D
is empty.

(3) Let M be an arbitrary finite separable extension of L and σ : L → M be a morphism over

K different from the inclusion. For an arbitrary valuation ring C of M dominating B and

σ(B), there exists a non-zero element b ∈ B such that σ(b)/b �≡ 1 mod mC.

(4) Let M be a finite Galois extension of K of Galois group G = Gal(M/K) containing L
as a subextension and m be a maximal ideal of the integral closure C ⊂ M of B such that

B ∩ m = mB. Then, the subgroup H = Gal(M/L) ⊂ G = Gal(M/K) contains the

conjugates of the p-Sylow subgroup P of the inertia group I of m.

In (2), we did not say that V → U is tamely ramified with respect to Y because the
canonical map V → Y may not be an open immersion.

Proof. — (2)⇒(3) Let D = (Di)i∈I be a finite family of Cartier divisors of Y = Spec B
such that �D

U/VY = ∅. Since C dominates B and σ(B), the compositions L× → M× → �C

and L× σ→ M× → �C are equal. Hence, the map γ = (i, σ ) : Z = Spec C → Y ×S Y
induces a map γ̃ : Z → (Y ×S Y)∼

D to the log product. Since σ is different from the
inclusion, the image γ̃ (Z) is in the closure W of W = V ×U V \ �V. Hence, we have
γ (Z) ∩ �

log
Y ⊂ �D

U/VY = ∅.
For i ∈ I, let bi ∈ B an element defining the divisor Di . Then, the closed subscheme

�
log
Y ⊂ (Y×S Y)∼

D is defined by the ideal (b⊗1−1⊗b; b ∈ B, (bi ⊗1)/(1⊗bi)−1; i ∈ I).
Hence the closed subscheme of Z defined by (σ (b)−b; b ∈ B, σ (bi)/bi −1; i ∈ I) is empty.
Namely the ideal of C generated by σ(b) − b for b ∈ B and σ(bi)/bi − 1 for i ∈ I contains
a unit. Thus the assertion is proved.

(3)⇒(2) We put W = V ×U V \ �V =∐
j∈J Spec Mj where Mj are fields. We regard

Mj as an extension of L by the map defined by the first projection and let σj : L → Mj be
the map defined by the second projection. For each j ∈ J, the set {Cij | i ∈ Ij} of valuation
rings of Mj dominating both B and σ(B) is a finite set. For each Cij , take a non-zero
element bij ∈ B such that σj(bij)/bij �≡ 1 mod mCij

and let Dij be the Cartier divisor of Y
defined by bij . We put I =∐

j∈J Ij and let D = (Dij)j∈J,i∈Ij
be the family of Cartier divisors.

We show that �D
V/UY is empty. Let Zj be the closure of Spec Mj in the log product

(Y ×S Y)∼
D . Then, we have W =⋃

j∈J Zj and �D
V/UY =⋃

j∈J(Zj ∩ �
log
Y ). Hence, if �D

V/UY

was not empty, the intersection Zj ∩ �
log
Y would contain the closed point y of Y for some

index j ∈ J. Take a valuation ring C of Mj dominating the local ring OZj ,y. Then, C dom-
inates B and σj(B). Hence it is equal to Cij for some i ∈ Ij and σj(bij)/bij − 1 is a unit of
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C = Cij . On the other hand, since the image y of the closed point of C is in �
log
Y , the

ideal (σj(b) − b; b ∈ B, σj(bik)/bik − 1; k ∈ J, i ∈ Ik) is different from C, as in the proof of
(2)⇒(3). Thus, we obtain a contradiction.

(1)⇒(3) By replacing K by an unramified extension, we may assume that the
residue field of L is a purely inseparable extension of the residue field of K. We may
assume M is a Galois extension and extend σ : L → M to an element of the Galois group
G = Gal(M/K). Then, since both C and σ(C) dominates σ(B), there exists τ ∈ G such
that τ(C) = σ(C) and that τ |σ(L) : σ(L) → M is the inclusion. Replacing σ by τ−1σ if
necessary, we may assume σ(C) = C. Namely, by the assumption on the residue field,
we may assume that σ is in the inertia group I ⊂ G of the maximal ideal of mC. By the
assumption that σ |L �= idL, it is not an element of the subgroup H = Gal(M/L) ⊂ G
corresponding to L.

We put C̄ = C/mC and we consider the perfect pairings I/P × (�mC/�A)′ → C̄×

and (I ∩ H)/(P ∩ H)× (�mC/�B)
′ → C̄×. Since [Lsh : Ksh] = [I : I ∩ H] is invertible in B,

the induced pairing I/(I ∩ H) × (�B/�A)′ → C̄× is perfect. Since σ |L is not the identity,
there exists an element b ∈ L× such that σ(b)/b �≡ 1 mod mC.

(3)⇒(4) Let σ be an element of a conjugate τPτ−1 of P. We regard L as a sub-
field of M by τ |L : L → M. Then, the maximal ideal m′ = τ(m) satisfies σ(m′) = m′

and τ |−1
L (m′) = (σ ◦ τ |L)−1(m′) is equal to B ∩ m = mB. If σ was not an element

of H, the condition (3) would imply the existence of an element b ∈ L× such that
σ(τ(b))/τ(b) �≡ 1 mod m′. This implies that the order of σ is not a power of p. Thus,
we get a contradiction.

(4)⇒(1) Let M be a finite Galois extension of K containing L as a subfield and
we put G = Gal(M/K) ⊃ H = Gal(M/L). We take a maximal ideal m of the integral
closure C above the maximal ideal of B and let I be the inertia group of m. Then, the
inertia group I is identified with the Galois group Gal(Msh/Ksh) and H∩I is the subgroup
of I corresponding to the field Lsh. Hence P ⊂ H implies that [Lsh : Ksh] = [I : I ∩ H] is
prime to p. �

2.3. Limit of compactifications and valuation rings. — We study local rings of the limit of
compactifications. Let S be a separated noetherian scheme and U be a separated scheme
of finite type over S. We consider the category CU/S of compactifications of U over S.
Namely an object of CU/S is a pair (X, j) consisting of a proper scheme X over S and
an open immersion j : U → X over S. A morphism f : (X′, j ′) → (X, j) is a morphism
f : X′ → X of schemes over S such that f ◦ j ′ = j. In the following, we omit j from the
notation and write simply X for a compactification (X, j).

Lemma 2.3.1. — Let S be a separated noetherian scheme and U be a separated scheme of finite

type over S.

1. The category CU/S is cofiltered. In particular, it is non-empty.

2. The objects containing U as the complement of a Cartier divisor are cofinal in CU/S.
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Proof. — By Nagata’s embedding theorem [31], the category CU/S is non-empty.
Since a blow-up X′ → X is proper, the objects containing U as the complement of a
Cartier divisor are cofinal in CU/S. For objects (X, j) and (X′, j ′) of CU/S, a morphism
X → X′ is unique if OX → j∗OU is injective. If X and X′ are objects of CU/S, the schematic
closure of the diagonal map U → X ×S X′ is an object of CU/S. Hence, the category CU/S

is cofiltered. �

We consider the projective limit X̃ = lim←−X∈CU/S
X in the category of locally ringed

spaces. The underlying topological space X̃ is known to be quasi-compact [9, Theo-
rem 5.14]. For a point x̃ = (xX) ∈ X̃, we have OX̃,x̃ = lim−→X∈C o

U/S
OX,xX. We will describe

the limit X̃ and the local rings OX̃,x̃ in terms of valuation rings.

Definition 2.3.2. — Let U be a scheme, u ∈ U be a point and A be a valuation ring of the

residue field κ(u).

1. We say A is U-external, if A � κ(u) and if there exists no intermediate ring A ⊂ A′ � κ(u)

such that the map u → U is extended to Spec A′ → U.

2. Let U → S be a separated morphism of schemes. We say A is S-integral, if the composition

u → U → S is extended to a morphism Spec A → S.

Let u ∈ U and A ⊂ κ(u) be an S-integral valuation ring. Then, for an object X
of CU/S, the inclusion u → U is uniquely extended to a morphism Spec A → X over S
by the valuative criterion of properness. The images xA ∈ X \ U of the closed point of
Spec A define a point x̃A = (xA) of the projective limit X̃ = lim←−X∈CU/S

X. Thus, we obtain
a natural map

(2.3.2.1)
∐

u∈U

{
S-integral valuation ring of κ(u)

}→ X̃.

An S-integral valuation ring A of κ(u) is U-external if and only if {u} = U ×X

Spec A � Spec A for an object X of CU/S. Consequently, the map (2.3.2.1) induces

(2.3.2.2)
∐

u∈U

{
U-external and S-integral valuation ring of κ(u)

}→ X̃ \ U.

We show that the map (2.3.2.2) is a bijection.

Lemma 2.3.3. — (Cf. [9, 5.4]) Let S be a separated noetherian scheme and U be a separated

scheme of finite type over S. Let x̃ = (xX)X ∈ X̃ \ U be a point in the complement and put OX̃,x̃ =
lim−→ OX,xX .

Then, there exists a unique point u ∈ U such that U ×X Spec OX̃,x̃ = Spec OU,u for every

object X of CU/S. The canonical map OX̃,x̃ → OU,u is injective and its image is the inverse image of

a U-external and S-integral valuation ring A of κ(u). For each object X of CU/S, the point xX is the

image of the closed point of Spec A by the unique map Spec A → X over S extending u → U.
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Proof. — Let x̃ = (xX)X ∈ X̃ \ U be a point in the complement. For a morphism
X′ → X of CU/S, we have U ×X X′ = U if U is dense in X′. Hence the inverse image
U ×X Spec OX̃,x̃ is independent of X. Thus, to show the existence of u ∈ U such that
U ×X Spec OX̃,x̃ = Spec OU,u, it suffices to show the existence for one object X ∈ CU/S.
Take an object X ∈ CU/S. We may assume U is the complement of a Cartier divisor
D ⊂ X.

By [9, Proposition 5.12], the local ring OX̃,x̃ is Ix̃-valuative for Ix̃ = ID,xX OX̃,x̃ in
the terminology loc. cit. Hence, �(U ×X Spec OX̃,x̃, OX̃) = lim−→X′ �(U ×X′ Spec OX′,xX′ ,

OX′) is a local ring further by [9, Proposition 5.11]. Since Spec OX′,xX′ → X′ ×X

Spec OX,xX is a limit of open immersions, its restriction U ×X′ Spec OX′,xX′ ,→ U ×X

Spec OX,xX is also a limit of open immersions. Hence the local ring �(U×X Spec OX̃,x̃, OX̃)

is a localization of �(U ×X Spec OX,xX, OX) and is equal to the local ring OU,u at a point
u ∈ U. Further by [9, Proposition 5.11], the canonical map OX̃,x̃ → OU,u is an injec-
tion and its image is the inverse image of a valuation ring A of κ(u) by the surjection
OU,u → κ(u).

Since �(U ×X Spec OX̃,x̃, OX̃) = OU,u, the valuation ring A is U-external. Since A
is X-integral, it is S-integral. The image xX of the closed point of Spec OX̃,x̃ is the same
as the image of the closed point of Spec A by the induced map Spec A → X. �

Corollary 2.3.4. — The map (2.3.2.2) is a bijection. The inverse is defined by sending x̃ to the

valuation ring OX̃,x̃/mu = Image(OX̃,x̃ → κ(u)) ⊂ κ(u), in the notation of Lemma 2.3.3.

Proof. — Let u ∈ U be a point and A be a U-external and S-integral valuation ring
of κ(u). Let x̃ ∈ X̃ be the point defined by the images of the closed point of Spec A. We
consider A′ = OX̃,x̃/mu′ ⊂ κ(u′) as in Lemma 2.3.3. We have a natural local homomor-
phism OX̃,x̃ → A. By [9, Proposition 5.11], the ideal mu′ ⊂ OX̃,x̃ is the intersection

⋂
n In

x̃.
Since A is U-external, we have

⋂
n In

x̃A = 0. Hence, it induces a local homomorphism
A′ → A. Since A′ is also U-external, we obtain u′ = u. Further, since the valuation ring
A ⊂ κ(u) dominates A′ ⊂ κ(u), we obtain A′ = A. �

2.4. Tame ramification and valuation rings. — We give a criterion for tame ramification
in terms of valuation rings, in Proposition 2.4.4. We slightly generalize Definition 2.1.2.2.

Definition 2.4.1. — Let f : V → U be an unramified morphism of finite type of separated

schemes.

1. Let Y be a separated scheme of finite type containing V as an open subscheme. We define the
wild ramification locus �V/UY to be the closed subset

�V/UY =
⋂

Y′
πYY′

(
�+

V/UY′)

where πYY′ : Y′ → Y runs through objects of CV/Y.
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2. Let T be a separated noetherian scheme and assume that V is a separated scheme of finite type

over T. We say f : V → U is tamely ramified with respect to T, if there exists an object Y of

CV/T such that �V/UY is empty.

Since the category CV/T is cofiltered, the map f : V → U is tamely ramified with
respect to T if and only if �V/UY is empty for every object of CV/T. If U is a scheme over
S and if finite étale morphisms V → U and V′ → U are tamely ramified with respect
to S, then the fiber product V ×U V′ → U is also tamely ramified with respect to S.
In particular, if a finite étale morphism V → U of connected normal schemes is tamely
ramified with respect to S, its Galois closure W → U is also tamely ramified with respect
to S.

Lemma 2.4.2. — Let T be a separated noetherian scheme, V be a separated scheme of finite

type over T and let f : V → U be an unramified morphism of finite type of separated schemes. Then, the

objects Y of CV/T such that there exists a finite family D of Cartier divisors satisfying �V/UY = �D
V/UY

are cofinal in CV/T.

Proof. — For an object Y of CV/T, let πY : Ỹ = lim←−Y′∈CV/T
Y′ → Y denote the pro-

jection. Since CV/T is cofiltered and Ỹ is quasi-compact [9, Theorem 5.14], the objects
Y such that π−1

Y (�+
V/UY) = ⋂

Y′ π
−1
Y′ (�+

V/UY′) and Y = πY(Ỹ) are cofinal in CV/T by
Lemma 2.1.3. For such Y, we have �+

V/UY = πY(π−1
Y (�+

V/UY)) =⋂
Y′ πY(π−1

Y′ (�+
V/UY′)).

Hence the assertion follows from the quasi-compactness of Y. �

Lemma 2.4.3. — Let T be a separated noetherian scheme and V be a separated scheme of finite

type over T. Let f : V → U be an unramified separated morphism of finite type of schemes. Let v ∈ V
be a point and B be a T-integral valuation ring of κ(v). We consider the conditions:

(1) There exists a proper scheme Y over T containing V as an open subscheme such that the

closed subset �+
V/UY ⊂ Y does not meet the image of the map Spec B → Y.

(2) The finite separable extension κ(v) over κ(f (v)) is tamely ramified with respect to B.

The condition (1) implies (2). If B is V-external (Definition 2.3.2.1), then the conditions (1)
and (2) are equivalent.

Proof. — (1)⇒(2) The condition (1) implies that there exists a finite family D =
(Di)i∈I of Cartier divisors of Spec B such that �D

v/f (v) Spec B is empty, as the pull-back by
Spec B → Y. Then, the condition (2) is satisfied by Proposition 2.2.4 (2)⇒(1).

(2)⇒(1) Assume that B is V-external. By Proposition 2.2.4 (1)⇒(2), there exists a
finite family D = (Di)i∈I of Cartier divisors of Spec B such that �D

v/f (v) Spec B is empty.
Let Ỹ = lim←−Y∈CV/T

Y be the limit of compactifications and ỹ = (yY)Y ∈ Ỹ be the point

corresponding to B ⊂ κ(v). We take a non-zero divisor fi ∈ B defining Di and a lifting
f̃i ∈ OỸ,ỹ for each i ∈ I. Since OỸ,ỹ = lim−→Y

OY,yY , there exist an object Y of CV/T, an open
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neighborhood W of yY and non-zero divisors gi ∈ �(W, OY) invertible on V ∩ W sent
to fi for i ∈ I. By replacing Y by the blow-up of the closure of the divisors of gi , we may
assume that there exists a finite family DY = (DY,i)i∈I of Cartier divisors of Y such that
DY,i ∩ V = ∅ and DY,i ∩ W is defined by gi for each i ∈ I. Then the inverse image of
�

DY
V/UY by the map Spec B → Y is equal to �D

v/f (v) Spec B and hence is empty. Thus the
assertion is proved. �

Proposition 2.4.4. — Let T be a separated noetherian scheme and V be a separated scheme

of finite type over T. For an unramified separated morphism f : V → U of finite type of schemes, the

following conditions are equivalent:

(1) f : V → U is tamely ramified with respect to T.

(2) For every point v ∈ V and for every T-integral and V-external valuation ring (Defini-
tion 2.3.2) B of κ(v), the extension κ(v) over κ(f (v)) is tamely ramified with respect to

B.

(3) For every point v of V and for every T-integral valuation ring B of κ(v), the extension κ(v)

over κ(f (v)) is tamely ramified with respect to B.

Proof. — (3)⇒(2) Clear.
(1)⇒(3) It follows from Lemma 2.4.3 (1)⇒(2).
(2)⇒(1) Let Ỹ = lim−→Y∈CV/T

Y be the limit of compactifications and let πY : Ỹ → Y
denote the projection. By Lemma 2.4.3 (2)⇒(1), for every point ỹ ∈ Ỹ of the boundary,
there exists a proper scheme Y over T containing V as an open subscheme such that
the inverse image of �+

V/UY ⊂ Y does not contain ỹ. In other words, the intersection⋂
Y∈CV/T

π−1
Y (�+

V/UY) ⊂ Ỹ is empty. Since Ỹ is quasi-compact and since the category CV/T

is cofiltered, there exists an object Y of CV/T such that π−1
Y (�+

V/UY) is empty. Thus the
assertion follows. �

Corollary 2.4.5. — Let T be a separated noetherian scheme and V be a separated scheme

of finite type over T. Let f : V → U be a separated unramified morphism of finite type. If one of the

following conditions is satisfied, then f : V → U is tamely ramified with respect to T.

(1) T is a scheme over Q.

(2) V is a G-torsor over U for a finite group G of order invertible on T.

Proof. — Let v ∈ V be a point and B be a T-integral and V-external valuation ring
of κ(v). Then, either of the conditions (1) and (2) implies that the extension κ(v) over
κ(f (v)) is tamely ramified with respect to B. Hence the assertion follows from Proposi-
tion 2.4.4 (2)⇒(1). �

Corollary 2.4.6. — Let T be a separated noetherian scheme and V be a separated scheme of

finite type over T. Let f : V → U be an unramified and separated dominant morphism of schemes of
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finite type. Assume that U and V are integral and let ξ ∈ U and η ∈ V be the generic point respectively.

We consider the following conditions:

(1) f : V → U is tamely ramified with respect to T.

(2) The extension κ(η) of κ(ξ) is tamely ramified with respect to an arbitrary T-integral

valuation ring of κ(η).

Then, the implication (1)⇒(2) always holds. The other implication (2)⇒(1) holds if V is

regular.

Proof. — (1)⇒(2) It follows from Proposition 2.4.4 (1)⇒(3).
(2)⇒(1) Assume V is regular. Let v ∈ V and let B ⊂ κ(v) be a T-integral valu-

ation ring. Since V is regular, there exists a valuation ring B0 ⊂ κ(η) dominating OV,v

such that the residue field of B0 is κ(v). Let B1 be the inverse image of B ⊂ κ(v) by
the surjection B0 → κ(v). Then B1 ⊂ κ(η) is a valuation ring and T-integral. Thus, by
Proposition 2.4.4, it suffices to show that κ(v) is tamely ramified over κ(u) with respect
to B assuming κ(η) is tamely ramified over κ(ξ) with respect to B1.

We put A = B ∩ κ(u) and A1 = B1 ∩ κ(ξ). Then, the map A1 → A is a surjection
and we have κ(v) = κ(u) ⊗A1 B1. Hence we have B = A ⊗A1 B1. Let Ash

1 and Bsh
1 be the

strict henselizations and κ(ξ)sh
1 and κ(η)sh

1 be their fraction fields. By the assumption, the
degree [κ(η)sh

1 : κ(ξ)sh
1 ] is invertible in B. Let Ash and Bsh be the strict henselizations and

κ(u)sh and κ(v)sh be their fraction fields. Then, Ash and Bsh are quotients of Ash
1 and of

Bsh
1 and the canonical map κ(u)sh ⊗Ash

1
Bsh

1 → κ(v)sh is an isomorphism. Hence, we have
[κ(v)sh : κ(u)sh] = [κ(η)sh

1 : κ(ξ)sh
1 ] and the assertion follows. �

The following example shows that the condition (2) need not imply (1) if we replace
“regular” by “normal”.

Example 2.4.7. — Let k be an algebraically closed field of characteristic p > 0,
E be an ordinary elliptic curve over k and L be a very ample invertible OE-module on
E e.g. O(3 · [0]). Let X0 = Spec

⊕
�(E, L⊗n) be the affine cone. The blow-up X1 of X0

at the origin is the line bundle over E associated to L. Let Y1 → X1 be the base change
of the map V : E(p) → E and Y0 → X0 be the Stein factorization of the composition
Y1 → X1 → X0.

Let C → C′ be a finite étale cyclic covering of affine curves of degree p. We assume
that the map C → C

′
of the compactifications is wildly ramified. We put V = Y0 × C,

Y = Y0 × C and we consider the action of E[p](k) × Gal(C/C′) � (Z/pZ)2 on Y. Let
G ⊂ E[p](k) × Gal(C/C′) be a diagonal subgroup and X = Y/G be the quotient. Since
the action of G on V is free, the map f : V → U = V/G is finite and étale.

We show that Y → X satisfies (2). Since V : E(p) → E is finite étale, the blow-up
Y1 → X1 of Y0 → X0 is finite étale. Hence, the action of G on Y1 × C is free and the
map Y1 × C → (Y1 × C)/G is finite étale.
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We show that Y → X does not satisfy (1). The inclusion C → Y at the origin of
Y0 induces C

′ → X. By the assumption, the covering C → C
′

is widely ramified at the
boundary c ∈ C \ C. Since the valuation ring OC,c is Y-integral, the assertion follows.

2.5. Tame ramification and Kummer coverings. — We consider a finite étale morphism
f : V → U of separated schemes of finite type over a separated noetherian scheme S. We
study the condition for f : V → U to be tamely ramified with respect to S in terms of
Kummer coverings.

Definition 2.5.1. — Let X be a scheme, U ⊂ X be an open subscheme and f : V → U be a

finite étale morphism.

1. Let x ∈ X\U be a point of boundary. We say f : V → U is of Kummer type at x if there exist

an open neighborhood W of x, functions t1, . . . , tn ∈ �(W, OX) invertible on UW = U ∩ W, integers

m1, . . . ,mn ≥ 1 invertible on W and an étale surjective morphism W′ → W, such that the base change

of f : V → U by the étale map U ×X (W[S1, . . . ,Sn]/(Sm1
1 − t1, . . . ,Smn

n − tn) ×W W′) → U is

a constant étale covering.

2. We say f : V → U is of Kummer type with respect to X if it is of Kummer type at every point

of x ∈ X \ U.

Lemma 2.5.2. — Let S be a separated noetherian scheme and f : V → U be a finite étale

morphism of separated schemes of finite type over S. Let u ∈ U be a point let A be an S-integral

valuation ring of κ(u). We consider the conditions:

(1) For every point v ∈ f −1(u) and for every valuation ring B of κ(v) dominating A, the

extension κ(v) over κ(u) is tamely ramified with respect to B.

(2) There exists a proper scheme X over S containing U as an open subscheme such that V → U
is of Kummer type at the image of the closed point of Spec A by Spec A → X.

The condition (1) implies (2). If A is U-external, then the conditions (1) and (2) are equivalent.

Proof. — (2)⇒(1) Since the assertion is étale local on Spec A, it follows from Corol-
lary 2.2.3 (2)⇒(1).

(1)⇒(2) Assume that A is U-external. By Corollary 2.2.3 (1)⇒(2), there exists non-
zero elements t1, . . . , tn ∈ mA and integers m1, . . . ,mn ≥ 1 invertible in A such that, for
every v ∈ f −1(u), the normalization of A in κ(v)[S1, . . . ,Sn]/(Sm1

1 − t1, . . . ,Smn
n − tn) is

finite étale over the normalization of A in κ(u)[S1, . . . ,Sn]/(Sm1
1 − t1, . . . ,Smn

n − tn). We put
A1 = A[S1, . . . ,Sn]/(Sm1

1 − t1, . . . ,Smn
n − tn) and let Ash denote the strict henselization of A.

Then, the étale covering Vu = V×U u of u is trivialized by the base change A → Ash ⊗A A1.
Consequently, there exist an étale A-algebra A′ and a maximal ideal m′ of A′ above the
maximal ideal mA such that the étale covering Vu = V ×U u of u is trivialized by the base
change A → A′ ⊗A A1.
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Let X̃ = lim←−X∈CU/S
X be the limit of compactifications and x̃ ∈ X̃ be the point

corresponding to A ⊂ κ(u). We write Ã = OX̃,x̃ and let p = mu ⊂ Ã denote the ker-
nel of the surjection Ã → A. We take liftings t̃1, . . . , t̃n ∈ Ã of t1, . . . , tn ∈ A and put
Ã1 = Ã[S1, . . . ,Sn]/(Sm1

1 − t̃1, . . . ,Smn
n − t̃n). We also take an étale Ã-algebra Ã′ such

that Ã′ ⊗Ã A = A′ and put Ã′
1 = Ã′ ⊗Ã Ã1. Then, we have an isomorphism Ã′

1 ⊗Ã A →
A′ ⊗A A1. Let m̃′ be the maximal ideal of Ã′ above m′ and m̃′

1 be a maximal ideal Ã′
1

above m̃′. We will apply the following lemma to the localization Ã′
1,m̃′

1
.

Lemma 2.5.3. — Let A be a local ring and p be a prime ideal of A such that A is canonically

isomorphic to the inverse image of A/p by the surjection Ap → κ(p). Let B be a finite A-algebra such

that B ⊗A Ap is flat over Ap and that B ⊗A κ(p) is isomorphic to the product κ(p)n. We define an A-

subalgebra B′ of B⊗A Ap to be the inverse image of (A/p)n by the surjection B⊗A Ap → B⊗A κ(p).

Then, B′ is finite étale over A and the canonical maps B ⊗A Ap → B′ ⊗A Ap and B′/pB′ → (A/p)n

are isomorphisms.

Proof. — We may assume B is p-torsion free and identify B ⊂ B ⊗A Ap. By the
assumption on A, the prime ideal p = Ker(A → A/p) is equal to the maximal ideal
pAp = Ker(Ap → κ(p)). Hence, we have pB′ ⊂ pAp(B ⊗A Ap) = pAp · B = pB ⊂ pB′.
Thus, we have an equality pB′ = pAp(B ⊗A Ap) and an isomorphism B′/pB′ → (A/p)n.
Since the A-module B′/B is isomorphic to (A/p)n/(B/pB), the A-module B′ is of finite
type. Hence, by Nakayama’s lemma, B′ is finite flat over A and hence is étale over A.
The canonical map B ⊗A κ(p) → B′ ⊗A κ(p) is an isomorphism and hence B ⊗A Ap →
B′ ⊗A Ap is also an isomorphism. �

We go back to the proof of Lemma 2.5.2. By [9, Proposition 5.11], the local ring
Ã is canonically isomorphic to the inverse image of Ã/p by the surjection Ãp → κ(p).
We show that the local ring Ã′

1,m̃′
1

also satisfies the condition of Lemma 2.5.3. Since

Ã′
1 is flat over Ã, it follows that Ã′

1 is canonically isomorphic to the inverse image of
Ã′

1/pÃ′
1 = A′ ⊗A A1 by the surjection Ã′

1 ⊗Ã Ãp → Ã′
1 ⊗Ã κ(p). Thus the claim follows by

localization.
By Zariski’s main theorem, there exists a finite Ã-algebra B̃ such that B̃ ⊗Ã OU,u

is isomorphic to �(V ×U Spec OU,u, OV). Hence, by Lemma 2.5.3, the base change of
V×U Spec OU,u → Spec OU,u by Ã → Ã′

1 is extended to a finite étale covering on a neigh-
borhood of m̃′

1. By replacing A′ by an étale algebra contained in Ash, we may assume that
the base change of V ×U Spec OU,u → Spec OU,u by Ã → Ã′

1 is a constant finite étale
covering.

Since Ã = lim−→X
OX,xX, there exist an object X of CU/S, an open neighborhood W

of xX and non-zero divisors f1, . . . , fn ∈ �(W, OX) invertible on U ∩ W sent to t̃i for i =
1, . . . , n and an étale morphism W′ → W such that Ã′ is the pull-back of W′ → W by
Spec Ã → W. We put W1 = W[S1, . . . ,Sn]/(Sm1

1 − f1, . . . ,Smn
n − fn). Then further by Ã =
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lim−→X
OX,xX, replacing X if necessary, the base change of V → U by W1 ×W W′ → X is a

constant finite étale covering. �

Proposition 2.5.4. — Let S be a separated noetherian scheme and f : V → U be a finite étale

morphism of separated schemes of finite type over S. Then, the following conditions are equivalent:

(1) f : V → U is tamely ramified with respect to S.

(2) There exists a proper scheme X over S containing U as an open subscheme such that V → U
is of Kummer type with respect to X.

Proof. — (2)⇒(1) It follows from Lemma 2.5.2 (2)⇒(1) and Proposition 2.4.4
(2)⇒(1).

(1)⇒(2) By Proposition 2.4.4 (1)⇒(2) and Lemma 2.5.2 (1)⇒(2), for every point
x̃ ∈ X̃ = lim←−X∈CU/S

X of the boundary, there exists a proper scheme X over S containing
U such that the maximum open subscheme WX ⊂ X where V → U is of Kummer type
contains the image πX(x̃) ∈ X of x̃ ∈ X̃ by the projection πX : X̃ → X. In other words,

the family (π−1
X (WX))X∈CU/S is an open covering of X̃. Since X̃ is quasi-compact and since

the category CU/S is cofiltered, there exists an object X of CU/S such that π−1
X (WX) = X̃.

Thus the assertion follows. �

2.6. Tame ramification of Galois coverings. — The following proposition shows that
the definition of tame ramification here is equivalent to that given by Gabber [43, Sec-
tion 2.1] for Galois coverings. Let X be a normal scheme, U ⊂ X, be a dense open
subscheme and V → U be a finite G-torsor. Then, for a geometric point x̄ of X, the
inertia subgroup Ix̄ of G is defined up to conjugacy.

Proposition 2.6.1. — Let S be a separated noetherian scheme and U be a separated normal

integral scheme of finite type over S. For a G-torsor f : V → U for a finite group G, the following

conditions are equivalent:

(1) f : V → U is tamely ramified with respect to S.

(2) There exists a proper normal scheme X over S and an open immersion U → X over S such

that for every geometric point x̄ of X, the order of the inertia subgroup Ix̄ ⊂ G is invertible

at x̄.

Proof. — (1)⇒(2) By Proposition 2.5.4 (1)⇒(2), there exists a proper normal scheme
X over S and an open immersion U → X over S such that V → U is of Kummer type
with respect to X. Hence the assertion follows.

(2)⇒(1) For every point u ∈ U, for every S-integral and U-external valuation ring
A of κ(u), for every v ∈ f −1(u) and for every valuation ring B of κ(v) dominating A, the
order of the inertia group IB/A is invertible in A. Hence, by Proposition 2.4.4 (2)⇒(1), the
map V → U is tamely ramified with respect to S. �
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Corollary 2.6.2. — Let f : V → U be a finite étale morphism and let X be a normal scheme

containing U as a dense open subscheme. We assume f : V → U is a G-torsor for a finite group G. We

consider the following conditions:

(1) f : V → U is tamely ramified with respect to X.

(2) For every geometric point x̄ of X, the order of the inertia subgroup Ix̄ ⊂ G is invertible at x̄.

(3) Let x be an arbitrary point of X such that the local ring OX,x is a discrete valuation ring.

Then, f : V → U is tamely ramified with respect to OX,x.

Then, we have implications (2)⇒(1)⇒(3). If X is a regular separated noetherian scheme and if

U is the complement of a divisor with normal crossings, then (3) implies (2).

Proof. — (2)⇒(1) It follows from Proposition 2.6.1 (2)⇒(1).
(1)⇒(3) It follows from Proposition 2.4.4 (1)⇒(2).
(3)⇒(2) By [37, Proposition 5.2] (Lemme d’Abhyankhar absolu), the condition (3)

implies that V → U is of Kummer type with respect to X. Hence (3) implies (2). �

If we drop the assumption that U is the complement of a divisor with normal
crossings, the implication (1)⇒(2) nor (3)⇒(1) need not hold even if X is regular, as the
following examples show. The authors thank M. Raynaud for the help to find Exam-
ple 2.6.3.2.

Example 2.6.3. — 1. Let k be an algebraically closed field of characteristic p > 0
and V0 → U0 = Spec k[t, t−1, (t − 1)−1] = P1

k \ {0,1,∞} be a finite étale connected
Galois covering of degree divisible by p tamely ramified at 0,1,∞. We put X = A2

k =
Spec k[x, y] ⊃ U = Spec k[x, y, (xy(x − y))−1] and define a map U → U0 by sending t to
x/y. Let V = V0 ×U0 U be the pull-back by the map U → U0. Then, since V0 → U0 is
assumed tamely ramified, the covering V → U is tamely ramified with respect to X and
satisfies the condition (1). Since the inertia group at the origin 0 ∈ X is equal to the Galois
group Gal(U0/V0), the condition (2) is not satisfied.

2. Let k be a field of characteristic p ≥ 3 and m ≥ 1 be an integer. We consider the
cyclic covering

Z= Spec k[x, y, z]/(zp−1−(x2m(p−1)−1 + xm(p−1)ym(p−1) + y2m(p−1)))

π

⏐⏐

X = A2
k = Spec k[x, y]

of degree p − 1 ramified at the divisor D = (x2m(p−1)−1 + xm(p−1)ym(p−1) + y2m(p−1)). We put
U = X\D and W = Z×X U. We consider the Artin-Schreier covering of Z×X (Gm ×A1)

defined by Tp − T = ym(p−2)z/xmp. Since
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ym(p−2)z

xmp
−
((

z

xmym

)p

− z

xmym

)

= (y2m(p−1) − (x2m(p−1)−1 + xm(p−1)ym(p−1) + y2m(p−1)) + xm(p−1)ym(p−1))z

xmpymp

= −xm(p−2)−1z

ymp
,

it is extended to a finite étale covering on Z\π−1(0). Hence it defines a finite étale Galois
covering V → U of Galois group F×

p � Fp, tamely ramified with respect to X \ {0}. Thus
the Galois covering V → U ⊂ X satisfies the condition (3) in Corollary 2.6.2.

Let X′ → X be the blow-up at the origin and Z′ be the normalization of X′ in W.
We put t = x/y. Then, since x2m(p−1)−1 + xm(p−1)ym(p−1) + y2m(p−1) = y2m(p−1)−1(t2m(p−1)−1 +
tm(p−1)y + y), the cyclic covering Z′ → X′ is totally ramified along the exceptional divisor
E ⊂ X′ and the valuation of ym(p−2)z/xmp = z/(x2mtm(p−2)) at the generic point of the inverse
image E′ = E ×X′ Z′ is (2m(p − 1) − 1) − 2m(p − 1) = −1. Hence the Artin-Schreier
covering V → W is totally ramified along E′ and V → U is not tamely ramified with
respect to X. Thus the Galois covering V → U ⊂ X does not satisfy the condition (1) in
Corollary 2.6.2.

3. Complements on localized intersection products

We compute certain tor-sheaves in Section 3.1. This computation plays a crucial
role in the proof of the excision formula and of the blow-up formula in Section 6.2. We
recall the definition of the localized intersection product and some useful formulas in
Section 3.3.

The results in Sections 3.2 and 3.4 are used only in an explicit computation of
the logarithmic different in Section 5.1. In Section 3.4, we prove a refinement Propo-
sition 3.4.3 of the excess intersection formula [26, Proposition 3.4.2], which relates the
classes of certain tor-sheaves defining the localized intersection product with the mapping
cone of exterior derived power complexes. In Section 3.2, we show that the class of the
mapping cone of exterior derived power complexes is given by the localized Chern class.

3.1. A computation of Tor sheaves. — We compute certain Tor sheaves related to
blow-up. We recall some terminology on tor-sheaves. For a Cartesian diagram

(3.1.0.1)

Y ←−−− Z

g

⏐⏐
⏐⏐

S
f←−−− X
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of schemes, a quasi-coherent OX-module F , a quasi-coherent OY-module G and an in-
teger q ≥ 0, a quasi-coherent OZ-module T orOS

q (F , G) is defined in [11, (6.5.3)]. If S =
Spec A,X = Spec B,Y = Spec C are affine and if F and G are the quasi-coherent sheaves
associated to an B-module M and an C-module N respectively, then T orOS

q (F , G) is as-
sociated to the B ⊗A C-module TorA

q (M,N). If F = OX, we put Lqf
∗G = T orOS

q (OX, G).

Definition 3.1.1. — 1. ([16, Definition 1.5]) Let X and Y be schemes over a scheme S. We

say that X and Y are tor-independent over S if T orOS
q (OX, OY) = 0 for every q > 0.

2. ([16, Definition 3.1]) Let f : X → S be a morphism of schemes. We say that f is of finite
tor-dimension, if there exists an integer n ≥ 0 such that, for every quasi-coherent OS-module F and

every integer q > n, we have Lqf
∗F = 0.

If X or Y is flat over S, then X and Y are tor-independent over S.

Lemma 3.1.2. — We consider morphisms

Y
g−−−→ S

f←−−− X
f ′←−−− X′

of schemes. Assume that X and Y are tor-independent over S. Then, X′ and Y are tor-independent over

S if and only if X′ and X ×S Y are tor-independent over X.

Proof. — By the assumption that T orOS
q (OX, OY) = 0 for every q > 0, we obtain an

isomorphism T orOS
q (OX′, OY) → T orOX

q (OX′, OX×SY) for every q > 0. �

Lemma 3.1.3. — Assume that the schemes S and X are noetherian and Y is of finite type over

S in the diagram (3.1.0.1). Then, for a coherent OX-module F and for a coherent OY-module G , the

OZ-modules T orOS
q (F , G) are coherent.

Proof. — Since the question is local on Z, we may assume that schemes S,X,Y
and Z are affine. We take a closed immersion Y → P = An

S to an affine space. Since an
OZ-module is coherent if it is coherent as an OX×SP-module, we may replace Y by P.
Hence, we may assume further that Y is flat over S. Then, a resolution L of G by free
OY-modules of finite rank is a resolution by flat OS-modules. Since T orOS

q (F , G) is a
cohomology sheaf of the complex F ⊗OS L, it is a coherent OZ-module. �

Let S be a regular noetherian scheme of finite dimension. Then, for a scheme
f : X → S of finite type over S, the dimension function X → N is defined as in [26, Sec-
tion 2.1]. Namely, for a point x ∈ X and s = f (x), we put dim x = tr.deg(κ(x)/κ(s)) +
dim S − dim OS,s. Using this dimension function, the topological filtration F•G(X) and
the lower numbering Chow groups CH•(X) are defined. We have a canonical map
CH•(X) → GrF

•G(X) sending the class [V] of an integral closed subscheme V of X to
the class [OV] also denoted by [V].
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By Lemma 3.1.3, for a morphism f : X → Y of noetherian schemes of finite tor-
dimension and for a scheme A of finite type over Y, the pull-back map

f ∗ : G(A) → G(A ×Y X)

is defined by f ∗([F ]) =∑
q≥0(−1)q[T orOY

q (F , OX)] for a coherent OA-module F .

Lemma 3.1.4. — Let S be a regular noetherian scheme of finite dimension and f : X → Y be

a quasi-projective morphism locally of complete intersection of relative virtual dimension r of schemes of

finite type over S.

Then, for a scheme A of finite type over Y, the pull-back f ∗ : G(A) → G(A ×Y X) preserves

topological filtration in the sense that f ∗ maps F•G(A) to F•+rG(A ×Y X). Further, for an integer

q ≥ 0, we have a commutative diagram

(3.1.4.1)

CHq(A)
f !−−−→ CHq+r(A ×Y X)

⏐⏐
⏐⏐

GrF
q G(A)

f ∗−−−→ GrF
q+rG(A ×Y X).

Proof. — By the assumption on f , it is the composition X → P → Y of a regu-
lar immersion X → P and a smooth morphism P → Y. Since, it is clear for a smooth
map, it is reduced to the case where f is a regular immersion. Then, it follows from [26,
Proposition 2.2.2]. �

We compute T orOX
r (OX′, OY) for morphisms Y → X′ → X under certain condi-

tions. Corollaries 3.1.6 and 3.1.7 of the following proposition are crucial in the proof of
Proposition 6.2.1 and Theorem 6.2.2 respectively.

Proposition 3.1.5. — Let X be a scheme and N be a locally free OX-module of finite

rank c. Let α : N → OX be an OX-linear map and C ⊂ X be the closed subscheme defined by

IC = Im(α : N → OX). Let P ⊂ P(N ) be an open subscheme of the associated Pc−1-bundle

P(N ) = P roj(S•N ) and p : P → X be the canonical map.

Let E = Ker(p∗N → OP(1)) = �1
P/X(1) be the kernel of the canonical surjection. Let

X′ ⊂ P be the closed subscheme defined by the image IX′ = Im(α′ : E → OP) of the restriction

α′ = p∗α|E : E → OP to E ⊂ p∗N and q : X′ → X denote the composition.

We consider a Cartesian diagram

(3.1.5.1)

EY −−−→ E −−−→ PC −−−→ C
⏐⏐

⏐⏐
⏐⏐

⏐⏐

Y
g−−−→ X′ ⊂−−−→ P

p−−−→ X
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of schemes. Let f : Y → X denote the composition of the bottom arrows. We assume that EY = E×X′ Y
is a Cartier divisor of Y.

1. The upper middle arrow E → PC = P ×X C is an isomorphism. The restriction X′ \ E →
X \ C of q : X′ → X is an isomorphism. The composition of the immersions X′ \ E → P \ PC →
P(N ) is the composition of the isomorphism X′ \E → X\C and the section X\C → P(N ) defined

by the surjection α|X\C : N |X\C → OX\C.

The map α : N → OX induces a surjection f ∗N → IEY ⊂ OY. The composition Y →
X′ → P(N ) is the section defined by the surjection f ∗N → IEY .

2. We assume that the immersion X′ → P is a regular immersion of codimension c − 1 [4,
Definition 1.4]. Let γ : Y → PY = P ×X Y be the section defined by g and � ⊂ PY be the image of

γ regarded as a closed subscheme of PY. Let pr1 : PY → P and pr2 : PY → Y denote the projections.

Then, the composition q : X′ → X is of finite tor-dimension and there exists a spectral sequence

E1
p,q ⇒ Er of OX′×XY-modules such that

(3.1.5.2) Er =
{

Ker(OX′×XY → O�) if r = 0,

T orOX
r (OX′, OY) if r �= 0,

E1
p,q = pr∗

1�
p+q+1
P/X (p + q + 1) ⊗ pr∗

2 N −(q+1)

EY/Y if p ≥ 0, q ≥ 0, p + q ≤ c − 2

and E1
p,q = 0 otherwise.

3. Assume that Y is noetherian. The surjection OX′×XY → O� is an isomorphism outside

E ×C EY and we have equalities

[
Ker(OX′×XY → O�)

]+
∑

r>0

(−1)r
[

T orOX
r (OX′, OY)

]

=
c−1∑

p=1

(−1)p−1
p∑

q=1

[
pr∗

1�
p

E/C(p) ⊗ pr∗
2 N −q

EY/Y

]
(3.1.5.3)

=
c∑

s=2

(−1)s
[
�sπ∗N

] ·
∑

q≥1,r≥1,q+r≤s

[
pr∗

1 O(−r)
] · [pr∗

2 N −q

EY/Y

]
(3.1.5.4)

in G(E ×C EY) where π : E ×C EY → X denotes the canonical map.

Proof. — 1. The first paragraph is clear from the definition of X′ and of C. The map
α : N → OX defines a surjection N → IC ⊂ OX and hence induces a surjection f ∗N →
IEY ⊂ OY. By the first paragraph, the kernel of the surjection f ∗N → g∗(OX′(1)) is equal
to the kernel of f ∗N → IEY on the complement Y \ EY. Since a section Y → P(N )

is uniquely determined by its restriction to the complement of a divisor, the assertion
follows.
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2. By the definition of regular immersion [4, Definition 1.4], the Koszul complex

K = Kos
(
α′)= [

�c−1 E → ·· · → E α′→ OP

]

is a resolution of an OP-module OX′ . Since P is flat over X and X′ → P is assumed to be
a regular immersion, the composition q : X′ → X is of finite tor-dimension. Further, we
obtain an isomorphism

Hr(K ⊗OX OY) → T orOX
r (OX′, OY)

from the resolution K → OX′ .
We construct a resolution of the OPY-module O� . Let β : pr∗

1 E → pr∗
2 IEY be the

restriction of the map pr∗
1p∗N = pr∗

2f ∗N → pr∗
2 IEY to the kernel pr∗

1 E = Ker(pr∗
1p∗N →

pr∗
1 OP(1)). The map β induces the pull-back pr∗

1 E → OPY of α′. Since the section
γ : Y → PY is defined by the surjection f ∗N → IEY by 1, the closed subscheme � ⊂ PY

is characterized by the condition that the cokernel Coker(β : pr∗
1 E → pr∗

2 IEY) is an
invertible O�-module. Hence the Koszul complex K′ = Kos(β ′) defined by the twist
β ′ : pr∗

1 E ⊗ pr∗
2 I −1

EY
→ OPY of β is a resolution of the OPY-module O� .

We consider the morphism of complexes K ⊗OX OY → K′ induced by the inclusion
pr∗

1 E → pr∗
1 E ⊗ pr∗

2 I −1
EY

. Then, it induces the canonical surjection OX′×XY → O� . Hence,
for the complex M = (K′/(K ⊗OX OY))[−1], we have an isomorphism Hr M → Er .

The p-th component Mp of the complex M is given by

Mp = (
�p+1pr∗

1 E ⊗ pr∗
2 I −(p+1)

EY

)/
�p+1pr∗

1 E

= �p+1pr∗
1 E ⊗ (

pr∗
2 I −(p+1)

EY

/
OPY

)
.

We define an increasing filtration F• on M by Fq Mp = �p+1pr∗
1 E ⊗ (pr∗

2 I −(q+1)

EY
/OPY).

Then, we obtain a spectral sequence

E1
p,q = GrF

−q Mp+q ⇒ Hr M.

Since GrF
−q Mp = �p+1pr∗

1 E ⊗ pr∗
2 N −(q+1)

EY/Y and E = �1
P/X(1), the assertion follows.

3. By 2, we have the equality (3.1.5.3). By the exact sequence 0 → E →
p∗N → O(1) → 0, we have an exact sequence 0 → �cp∗N (−(c − p)) → ·· · →
�p+1p∗N (−1) → �p E → 0 and an equality [�p E ] = ∑c

p+r=p+1(−1)r−1[�p+rp∗N (−r)].
Substituting this and putting p + r = s, we obtain the second equality (3.1.5.4). �

Corollary 3.1.6. — Let X be a noetherian scheme and C ⊂ X be a closed subscheme such that

the immersion C → X is a regular immersion of codimension c. Let q : X′ → X be the blow-up at C
and let E = X′ ×X C denote the exceptional divisor.

Let Y be a noetherian scheme over X′ such that EY = E ×X′ Y ⊂ Y is a Cartier divisor and let

� denote the image of the section Y → X′ ×X Y. Let pr1 : E×C EY → E and pr2 : E×C EY → EY

denote the projections.
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Assume that q : X′ → X is locally of complete intersection. Then, we have an equality

[
Ker(OX′×XY → O�)

]+
∑

r>0

(−1)r
[

T orOX
r (OX′, OY)

]
(3.1.6.1)

=
c−1∑

p=1

(−1)p−1
p∑

q=1

[
pr∗

1�
p

E/C(p) ⊗ pr∗
2 N −q

EY/Y

]

in G(E ×C EY).

Proof. — Locally on X, there exists a surjection N = O⊕c
X → IC of OX-modules.

Hence, applying Proposition 3.1.5.3 to P = P(N ) and the closed immersion Y = X′ →
P, we obtain a spectral sequence (3.1.5.2), locally on X. By the proof of Proposition
3.1.5.3, it suffices to construct the spectral sequence (3.1.5.2) globally.

If we have another locally free OX-module N ′ of rank c and a surjection N ′ → IC,
then locally we have an isomorphism N → N ′ compatible with the surjections to IC. It
induces an isomorphism of spectral sequences and the assertion follows. �

The authors do not know how to construct globally the spectral sequence (3.1.5.2)
under the assumption of Corollary 3.1.6 without using patching.

Corollary 3.1.7. — Let U be a scheme of finite type over a noetherian scheme S and D ⊂ U
be a Cartier divisor. Let q : (U ×S U)∼ → U ×S U be the log product with respect to D and assume

that q : (U ×S U)∼ → U ×S U is locally of complete intersection of relative dimension 0. Let �U ⊂
U ×S U and �

log
U ⊂ (U ×S U)∼ denote the diagonal and the log diagonal respectively and identify the

inverse image of �D ⊂ U ×S U by (U ×S U)∼ → U ×S U with Gm,D.

Then, the kernel of the surjection q∗O�U → O
�

log
U

and Lrq
∗O�U for r > 0 are coherent OGm,D-

modules and we have

[
Ker

(
q∗O�U → O

�
log
U

)]+
∑

r>0

(−1)r
[
Lrq

∗O�U

]= [Gm,D]

in G(Gm,D).

Proof. — We define a locally free OU×SU-module of rank 2 by N = pr∗
1 ID ⊕ pr∗

2 ID

and define a P1-bundle P(pr∗
1 ID ⊕pr∗

2 ID) over U×S U. The complement P ⊂ P(pr∗
1 ID ⊕

pr∗
2 ID) of the sections defined by the surjections N = pr∗

1 ID ⊕pr∗
2 ID → pr∗

i ID for i = 1,2
is a Gm-bundle on U×S U. We regard the log product (U×S U)∼ as a subscheme of P. By
the assumption that (U ×S U)∼ → U ×S U is locally of complete intersection of relative
dimension 0, the immersion (U ×S U)∼ → P is a regular immersion of codimension 1 by
Lemma below.
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We apply Proposition 3.1.5 to the diagram

(3.1.7.1)

D −−−→ PD×SD PD×SD −−−→ D ×S D
⏐⏐

⏐⏐
⏐⏐

⏐⏐

U −−−→ (U ×S U)∼ ⊂−−−→ P −−−→ U ×S U

where the image of the first arrow U → (U ×S U)∼ in the bottom is �
log
U and that of the

composition U → U ×S U is �U. In the notation there, we have C = D ×S D, Y = U,
EY = D and E is the Gm-bundle PD×SD. Hence E ×C EY is PD = Gm,D.

In the right hand side of (3.1.5.4), the pull back of N = pr∗
1 ID ⊕pr∗

2 ID to D is N ⊕2
D/U

and the second exterior power �2π∗N is N ⊗2
D/U. Since NEY/Y = ND/U and the pull-back

of O(1) to D is also ND/U by Proposition 3.1.5.1, the assertion follows. �

Lemma 3.1.8. — Let S be a noetherian scheme, X → S be a scheme locally of complete

intersection of relative dimension d and P → S be a smooth scheme of relative dimension n. Then, an

immersion X → P over S is a regular immersion of codimension n − d.

Proof. — Since the assertion is local on X, we may take a regular immersion X → Q
of codimension c over S to a smooth scheme Q of relative dimension d + c over S. The
immersion X → P ×S Q is the composition of the section X → P ×S X of a smooth
morphism of relative dimension n and the smooth base change P ×S X → P ×S Q of the
regular immersion X → Q of codimension c and is a regular immersion of codimension
n + c. It is also the composition of the section X → X ×S Q of a smooth morphism of
relative dimension d + c and an immersion X ×S Q → P ×S Q. Hence, the immersion
X ×S Q → P ×S Q is a regular immersion of codimension (n + c) − (d + c) = n − d on
the image of X by [13, Proposition 19.1.5]. Since X ×S Q → P ×S Q is a smooth base
change of X → P, the assertion follows. �

3.2. Derived exterior power and localized Chern classes. — We study the relation between
derived exterior power complexes and localized Chern classes. Let X be a noetherian
scheme, E and E ′ be locally free OX-modules of the same finite rank n and e : E → E ′ be
a morphism. For an integer k ≥ 0, we consider the complex [�k E → �k E ′] where �k E ′

is put on degree 0. Let D be a closed subset of X such that K = [E → E ′] is acyclic on
the complement X \ D. We define a morphism

(3.2.0.1)
[
�k E → �k E ′]

D
: G(X) −→ G(D)

by sending the class [F ] of a coherent OX-module F to [Coker(F ⊗ �k E → F ⊗
�k E ′)] − [Ker(F ⊗ �k E → F ⊗ �k E ′)].

Recall that homomorphisms λt, γt : K(X) → 1 + tK(X)[[t]] ⊂ K(X)[[t]]× are de-
fined by λt([E ]) = ∑n

q=0[�q E ]tq and γt([E ]) = λ t
1−t

([E ]). We define operators γk(K)D :
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G(X) → G(D) for k ≥ 1 by requiring that γt(K)D =∑n

k=1 γk(K)D · tk is given by

(3.2.0.2) γt(K)D =
( n∑

k=1

[
�k E → �k E ′]

D
·
(

t

1 − t

)k)
· γt

([E ])−1
.

If γk(K) without the suffix D denotes the composition with G(D) → G(X), we have
1 + γt(K) = 1 + (γt([E ′]) − γt([E ])) · γt([E ])−1 = γt([E ′] − [E ]).

Let ck(K)D : CH•(X) → CH•−k(D) be the localized Chern class map defined by
using the graph construction in [10, Section 18.1].

Proposition 3.2.1. — Let S be a regular noetherian scheme of finite dimension. Let X be a

scheme of finite type over S, E and E ′ locally free OX-modules of the same finite rank and e : E → E ′

be a morphism such that the restriction on the complement of D is an isomorphism. For the complex

K = [e : E → E ′] and an integer k > 0, we have the following.

1. The map γk(K)D : G(X) → G(D) sends the topological filtration FjG(X) to Fj−kG(D).

2. The diagram

(3.2.1.1)

CHj(X)
ck(K)D−−−→ CHj−k(D)

⏐⏐
⏐⏐

GrF
j G(X)

γk(K)D−−−→ GrF
j−kG(D)

is commutative.

Proof. — 1. It suffices to show γk(K)D([X]) ∈ Fd−kG(D) assuming that X is integral
of dimension d and D �= X, by a standard argument. We show this by using the most
elementary case of MacPherson’s graph construction cf. [10, Section 18.1].

Let n be the rank of E and p : G → X be the Grassmann scheme Grassn(E ⊕ E ′)
classifying subbundles of rank n. The second factor E ′ ⊂ E ⊕ E ′ defines a section s0 :
X → G. Let t denote the coordinate of Gm,X. Then, the graph of t−1 · e : EGm,X → E ′

Gm,X

defines a section s̃ : Gm,X → Gm,G. At t = 1, the restriction s̃|1 : X → G is the section
defined by the graph of e.

On the complement U = X \ D, the restriction e|U : EU → E ′
U is an isomorphism.

The transpose of the graph of t · e|−1
U : E ′

A1
U

→ EA1
U

defines a section s̄ : A1
U → A1

GU
. At t = 0,

the restriction s̄|0 : U → GU is the restriction s0|U. The restrictions of s̃ and s̄ on Gm,U =
Gm,X ∩ A1

U are the same. Let X̃ ⊂ A1
G denote the schematic closure of s̃(Gm,X) ∪ s̄(A1

U)

and let π : X̃ → A1
X be the projection. Since s̄|0 : U → GU is the restriction of s0, the fiber

X̃0 = X̃ ×A1
X

X at t = 0 contains s0(X) as a closed subscheme.
Let Ẽ ⊂ EX̃ ⊕ E ′

X̃ be the restriction to X̃ ⊂ A1
G of the tautological subbundle and

ẽ : Ẽ → E ′
X̃ be the restriction of the second projection. We consider the complex K̃ =
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[Ẽ → E ′
X̃]. The restriction of K̃ to Ũ = s̄(A1

U) is acyclic. We put D̃ = A1
D ×A1

X
X̃ and let

πD : D̃ → A1
D be the projection. We consider the composition

G(X̃)
γk(K̃)D̃−−−→ G(D̃)

πD∗−−−→ G(A1
D).

The pull-backs i∗1, i∗0 : G(A1
D) → G(D) by the sections D → A1

D at t = 1,0 are the same
isomorphisms. Since the fiber K̃1 at t = 1 recovers the original complex K on X, we
have γk(K)D([X]) = i∗1πD∗(γk(K̃)D̃([X̃])). Let K̃0 denote the pull-back of K̃ to X̃0 and let
π0 : X̃0 → X0 be the projection. We put D̃0 = D̃ ∩ X̃0. We have further γk(K)D([X]) =
i∗0πD∗(γk(K̃)D̃([X̃])) = π0∗(γk(K̃0)D̃0([X̃0])).

Let [X0] denote the class of the kernel Ker(OX̃0 → Os0(X)) of the surjec-
tion. Since the restriction K̃|s0(X) is acyclic and X0 ⊂ D̃0, we have γk(K̃0)D̃0([X̃0]) =
γk(K̃0)D̃0([X0]) = γk([E ′] − [Ẽ ])([X0]). Hence,

(3.2.1.2) γk(K)D

([X])= π0∗
(
γk

([
E ′]− [Ẽ ])([X0]

))

is an element of Fd−kG(D) as required.
2. In the notation above, the localized Chern class ck(K)D ∩[X] ∈ CHd−k(D) is de-

fined as π0∗(c(E ′)c(E )−1([X0]))dim=d−k [10, Section 18.1]. Hence, the assertion follows. �

The proof of Proposition 3.2.1 shows that the system of maps γk(K)D is character-
ized by the compatibility with the Gysin maps for regular immersions and the normaliza-
tion property that the composition with the natural map G(D) → G(X) is equal to the
map γk([E ′] − [E ]). Similarly as (3.2.1.2), we have

(3.2.1.3)
[
�k(E ) → �k

(
E ′)]

D

([X])= π0∗
(([

�k
(

E ′)]− [
�k(Ẽ )

])([X0]
))

.

Similarly as [10, Section 18.1], we have the following properties.

Corollary 3.2.2. — Let X be a scheme of finite type over a regular noetherian scheme S of finite

dimension and D ⊂ X be a closed subscheme.

1. Let E → E ′ be a morphism of locally free OA1
X
-modules of finite rank such that the complex

of K = [E → E ′] is acyclic outside A1
D. Let K0 and K1 be the pull-back of K by the 0-section and the

1-section respectively. Then, we have

γk(K0)D = γk(K1)D.

2. Let E1 → E ′
1 and E2 → E ′

2 be morphisms of locally free OX-modules of finite rank such

that the complexes K1 = [E1 → E ′
1] and K2 = [E2 → E ′

2] are acyclic outside D. If K1 → K2 is a

quasi-isomorphism, we have

γk(K1)D = γk(K2)D.
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Let K be a complex of OX-modules such that there exist a morphism E → E ′ of
locally free OX-modules of finite rank and a quasi-isomorphism [E → E ′] → K. Then,
we define the map γk(K)D : G(X) → G(D) to be γk([E → E ′])D. This is well-defined by
Corollary 3.2.2.2. The localized Chern class ck(K)D : CHj(X) → CHj−k(D) is defined
similarly as ck([E → E ′])D if X is of finite type over a regular noetherian scheme S of
finite dimension.

We consider coherent OX-modules F , F ′ and a morphism f : F → F ′ of OX-
modules satisfying the following condition:

(3.2.3.1) There exists a locally free OX-module E ′ of finite rank and a surjection
E ′ → F ′. The kernel E = Ker(F ⊕ E ′ → F ′) is a locally free OX-module
of the same finite rank as E ′.

Let D ⊂ X be a closed subscheme such that f is an isomorphism outside D. Then,
since the map [E → E ′] → K = [F → F ′] is a quasi-isomorphism, the map γk(F →
F ′)D : G(X) → G(D) and the localized Chern class ck(F → F ′)D : CHj(X) → CHj−k(D)

are defined.
We further assume that F is of tor-dimension ≤ 1 and let r be the virtual rank.

In other words, for a surjection E → F as in (3.2.3.1), the kernel L = Ker(E → F ) is
locally free of rank rank E − r. Since the canonical map Ker(E → F ) → Ker(E ′ → F ′)
is an isomorphism, the sheaf F ′ is also of tor-dimension ≤ 1 and of virtual rank r.

We also define a map δk(F → F ′)D : G(X) → G(D) for k > 0 by requiring that
δt(F → F ′)D =∑∞

k=1 δk(F → F ′)D · tk is given by

δt

(
F → F ′)

D
= γt

(
F → F ′)

D
· γt

([F ] − r
)
.

We recall that the localized Chern class ck(F ′ − F )D : CHj(X) → CHj−k(D) is defined
by requiring

(3.2.3.2)
∑

k>0

ck

(
F ′ − F

)
D

· tk =
(∑

k>0

ck

(
F → F ′)

D
· tk

)
· ct(F )

in [27, (3.24)].
For the definition and properties of the derived exterior power L�k F , we refer to

[26, Section 1.2]. We recall that for a locally free resolution [L → E ] → F as above, we
have a quasi-isomorphism [�k L → �k−1 L ⊗ E → ·· · → L ⊗ �k−1 E → �k E ] → L�k F ,
where �• denotes the divided power. For an integer k > 0, the mapping cone [L�k F →
L�k F ′] of the derived exterior powers is defined. We define a map

[
L�k F → L�k F ′]

D
: G(X) → G(D)

sending [G] to
∑

q(−1)q T orOX
q ([L�k F → L�k F ′], G). We describe the map [L�k F →

L�k F ′]D using the operators γk(F → F ′)D : G(X) → G(D).
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Proposition 3.2.4. — Let S be a regular noetherian scheme of finite dimension and X be a

scheme of finite type over S. Let F , F ′ be coherent OX-modules of tor-dimension ≤ 1 and of virtual rank

r and f : F → F ′ be a morphism of OX-modules satisfying the condition (3.2.3.1). Let D ⊂ X be a

closed subscheme such that f is an isomorphism outside D.

1. We put formally βt = ∑∞
k=1[L�k F → L�k F ′]D( t

1−t
)k : G(X) → G(D)[[t]]. Then,

we have δt(F → F ′)D = (1 − t)rβt .

2. For n = r + 1, we have

(3.2.4.1)
[
L�n F → L�n F ′]

D
= δn

(
F → F ′)

D

and it sends the topological filtration FjG(X) to Fj−nG(D). Further the diagram

(3.2.4.2)

CHj(X)
cn(F ′−F )D−−−−−→ CHj−n(D)

⏐⏐
⏐⏐

GrF
j G(X)

[L�n F →L�n F ′]D−−−−−−−−−→ GrF
j−nG(D)

is commutative.

In the case where F = 0 and D = X, Proposition 3.2.4.2 is proved in [26, Propo-
sition 2.4.4].

Proof. — 1. The equality δt(F → F ′)D = (1 − t)rβt is reduced to the equality

(3.2.4.3) δt

(
F → F ′)

D

([X])= (1 − t)rβt

([X])

in G(D)[[t]], by a standard argument. In fact, since G(X) is generated by the classes
of integral closed subschemes V, it suffices to prove the formula for [V] and to take
the push-forward. By the assumption that F and F ′ are of tor-dimension ≤ 1, the ker-
nel L = Ker(E → F ) = Ker(E ′ → F ′) is locally free and we have quasi-isomorphisms
[L → E ] → F and [L → E ′] → F ′. Hence, we obtain [L�k F → L�k F ′]D([X]) =∑k

q=0(−1)q[�k−q E → �k−q E ′]D[�q L]([X]). We apply the graph construction to E → E ′

and use the notation in the proof of Proposition 3.2.1. Then by (3.2.1.3), we have

[
L�k F → L�k F ′]

D

([X])

= π0∗

( k∑

q=0

(−1)q
([

�k−q E ′]− [
�k−q Ẽ

])[
�q L

]([X0]
))

.
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Thus, we obtain

βt

([X])= π0∗
((

γt

([
E ′])− γt

([Ẽ ]))γt

([L])−1([X0]
))

= γt

([
F ′])π0∗

((
1 − 1

1 + γt

([E → Ẽ ])
)([X0]

))

= γt

([
F ′])

(
1 − 1

1 + γt

([
E → E ′])

D

)([X])

= γt(F )γt

([
E → E ′])

D

([X]).
Since γt(F ) = γt(F − r)γt(1)r = γt(F − r)(1 − t)−r , we obtain the equality (3.2.4.3).

2. For n = r + 1, we have

δt

(
F → F ′)

D
= (1 − t)rβt

≡
r∑

k=1

[
L�k F → L�k F ′]

D
· tk(1 − t)r−k

+ [
L�n F → L�n F ′]

D
· tn(1 − t)−1 mod tn+1.

Comparing the coefficients of tn, we obtain δn(F → F ′)D = [L�n F → L�n F ′]D. The
remaining assertion follows from this and Proposition 3.2.1. �

Lemma 3.2.5. — Let E and E ′ be locally free OX-modules of the same rank n and let E ′ →
E → OX be morphisms of OX-modules. We consider the Koszul complexes K = Kos(E → OX) and

K′ = Kos(E ′ → OX) and the induced morphism K′ → K of complexes.

Let M = [K∗ → K′∗] be the mapping cone of the morphism of the dual complexes. Then, the

homology sheaves Hq(M) are H0(K′) = OX/(Image E ′)-modules.

Proof. — The product K ⊗ K → K of Koszul complex induces a canonical map
K ⊗ K∗ → K∗. The canonical maps K ⊗ K∗ → K∗ and K′ ⊗ K′∗ → K′∗ induces K′ ⊗
M → M. This defines a multiplication H0(K′) ⊗ Hq(M) → Hq(M) compatible with
the OX-module structure. Thus the assertion follows. �

Let X be a scheme and K → K′ be a morphism of chain complexes of flat OX-
modules. For an integer q ≥ 0, we consider the mapping cone [L�q K → L�q K′]. The
canonical maps L�q+1 K → L�q K ⊗ K and L�q+1 K′ → L�q K′ ⊗ K′ [26, (1.2.1.4)] in-
duce a map

(3.2.5.1)
[
L�q+1 K → L�q+1 K′]→ [

L�q K → L�q K′]⊗ K′.

We consider the following condition on a complex K of OX-modules.
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(L(n)) For every x ∈ X, there exist an open neighborhood U of x, locally free OU-
modules E and L of rank n and 1 respectively and a quasi-isomorphism
[L → E ] → K|U.

If a complex K of OX-modules satisfies the condition (L(n)), it is a perfect complex of tor-
dimension ≤ 1. For a perfect complex K of OX-modules satisfying the condition (L(n)), let
Z denote the closed subscheme of X defined by the annihilator ideal IZ = Ann�n H0(K)

and i : Z → X denote the immersion. Then, for a quasi-isomorphism [L → E ] → K|U
on an open subscheme U of X as in (L(n)), the intersection Z∩U ⊂ U is the largest closed
subscheme where the map L → E is the zero-map. Further, a quasi-isomorphism [L →
E ] → K|U induces an isomorphism i∗L → LZ|Z∩U = L1i∗K|Z∩U. Hence, LZ = L1i∗K is
an invertible OZ-module [26, Lemma 2.4.1.1].

Corollary 3.2.6. — Let K and K′ be complexes of OX-modules satisfying the condition (L(n))
and K → K′ be a morphism such that the mapping cone [K → K′] is of tor-dimension ≤ 1. For

q > 0, let [L�q K → L�q K′] denote the mapping cone.

Let Z and Z′ denote the closed subschemes of X defined by the annihilator ideals IZ =
Ann�n H0(K) and IZ′ = Ann�n H0(K′). Let i : Z → X and i′ : Z′ → X denote the immersions

and let LZ = L1i∗K and L′
Z′ = L1i′∗K′ be the invertible OZ-module and OZ′-module respectively.

1. The scheme Z is a closed subscheme of Z′ and the canonical map L′
Z′ ⊗OZ′ OZ → LZ is an

isomorphism.

2. The homology sheaf Hp([L�q K → L�q K′]) is an OZ′-module if p > 0 or q ≥ n.

3. The map (3.2.5.1) induces an isomorphism

(3.2.6.1) Hp+1

([
L�q+1 K → L�q+1 K′])→ Hp

([
L�q K → L�q K′])⊗ L′

Z′

for p > 0 or q ≥ n.

In the case where K = 0, Corollary 3.2.6.2 (resp. 3.2.6.3) is proved in [26, Lemma
2.4.2.1 (resp. 2.4.2.2)].

Proof. — 1. Since the question is local, we may assume that there is a quasi-
isomorphism [L → E ′] → K′ for locally free sheaves E ′ and L of rank n and 1. Then,
the mapping cone [E ′ ⊕ K → K′] is a perfect complex of tor-amplitude [1,1] and hence
is quasi-isomorphic to E [1] for a locally free sheaf E of rank n. Thus, we obtain a quasi-
isomorphism [L → E ] → K. Since the pull-back of L → E to Z is the zero-map, the
pull-back of L → E ′ to Z is also the zero-map. This shows that Z is a subscheme of Z′.
Further, the canonical map L′

Z′ ⊗OZ′ OZ → LZ is induced by the identity of L and is an
isomorphism.

2. Since the assertion is local, we may assume, as in the proof of 1, that K =
[OX

e→ E ] and K′ = [O e′→ E ′] where E and E ′ are locally free of rank n, and K → K′

is induced by E → E ′ compatible with e and e′. Then for q ≥ 0, the derived exterior
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power complex L�q K is identified with the complex [OX
e→ E ∧e→ �2 E ∧e→ ·· · ∧e→ �q E ].

Consequently, if q ≥ n, its shift (L�q K)[−q] is isomorphic to the dual of the Koszul
complex Kos(e∗ : E ∗ → OX) associated to the dual of e : OX → E and similarly for the
complex (L�q K′)[−q]. Since the ideal sheaf IZ′ ⊂ OX of Z′ is the image of e′∗ : E ′∗ →
OX, the assertion follows from Lemma 3.2.5.

3. We show that (3.2.5.1) induces (3.2.6.1). The map (3.2.5.1) induces a homomor-
phism

Hp+1

([
L�q+1 K → L�q+1 K′])→ Hp+1

([
L�q K → L�q K′]⊗ K′)

= T or
OX
p+1

([
L�q K → L�q K′], K′).

Since K′ is of tor-dimension ≤ 1, the spectral sequence

E2
s,t = T orOX

s

(
Ht

([
L�q K → L�q K′]), K′)

⇒ T orOX
s+t

([
L�q K → L�q K′], K′)

induces a homomorphism

T or
OX
p+1

([
L�q K → L�q K′], K′)→ T or

OX
1

(
Hp

([
L�q K → L�q K′]), K′).

Since Hp([L�q K → L�q K′]) is an OZ′-module, we have an isomorphism

T or
OX
1

(
Hp

([
L�q K → L�q K′]), K′)→ Hp

([
L�q K → L�q K′])⊗ L1i′∗K′

= Hp

([
L�q K → L�q K′])⊗OZ′ L′

Z′ .

(cf. [26, Lemma 2.4.1.3]). They define a canonical map (3.2.6.1).
By [26, (2.4.2.2)], the canonical maps

Lp+1�
q+1 K → Lp�

q K ⊗OZ LZ, Lp+1�
q+1 K′ → Lp�

q K′ ⊗OZ′ L′
Z′

are isomorphisms. Further by 1, the canonical map Lp�
q K ⊗OZ LZ → Lp�

q K ⊗OZ′ LZ′

is an isomorphism. Thus the map (3.2.6.1) is an isomorphism. �

3.3. Localized intersection product. — We briefly recall terminologies and properties
on cotangent complexes [14, Chapitre II] and excess conormal complexes [26, Defini-
tion 1.6.3] which will play the central roles in this and the next subsections.

For a morphism of schemes X → S, the cotangent complex LX/S is defined in [14,
Chapitre II] as an object of the derived category D−

qcoh(OX) of the category of quasi-
coherent OX-modules. We have H0(LX/S) = �1

X/S and Hi(LX/S) = 0 for i < 0. For a
morphism f : X → Y of schemes over S, we have a distinguished triangle

(3.3.0.1) Lf ∗LY/S → LX/S → LX/Y → .
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If X → P is a regular closed immersion over S and if P is smooth over S, then there exists
a canonical isomorphism

(3.3.0.2) LX/S → [
NX/P

d→ �1
P/S ⊗OP OX

]

to the complex where the conormal sheaf NX/P = IX/I 2
X is put on degree 1 and �1

P/S ⊗OP

OX is put on degree 0. If T → S is flat, then the canonical map Lp∗
1LX/S → LX×ST/T is an

isomorphism where p1 : X ×S T → X denotes the first projection.
For an immersion V → X of schemes, the conormal complex MV/X is defined in

[26, Definition 1.6.3] to be the shift LV/X[−1] of the cotangent complex LV/X. We have
a canonical isomorphism H0(MV/X) → NV/X to the conormal sheaf.

Lemma 3.3.1. — If X → S is flat, then there exists a canonical isomorphism LX/S →
MX/(X×SX).

Proof. — We consider the distinguished triangle (3.3.0.1) for X → X ×S X → X,
where the first arrow is the diagonal δ : X → X ×S X and the second arrow is the second
projection. Since LX/X = 0, we obtain an isomorphism MX/(X×SX) = LX/(X×SX)[−1] →
Lδ∗L(X×SX)/X. Since X → S is assumed to be flat, the canonical map p∗

1LX/S → L(X×SX)/X

is an isomorphism where p1 denotes the first projection. It induces an isomorphism
LX/S → Lδ∗Lp∗

1LX/S → Lδ∗L(X×SX)/X. �

For an immersion V → X and for a morphism W → X such that T = V ×X

W → W is a regular immersion, the excess conormal complex M′
V/X,W is defined in [26,

Definition 1.6.3] as an object of the derived category D−
qcoh(OV) of the category of quasi-

coherent OV-modules. We have a distinguished triangle

M′
V/X,W → Lg∗MV/X → NT/W →

where g is the morphism T → V.
We recall the definition of locally a hypersurface [26, Definition 3.1.1].

Definition 3.3.2. — Let S be a scheme. A scheme X of finite presentation over S is called locally

a hypersurface of relative virtual dimension n − 1 if, locally on X, it is a Cartier divisor of a smooth

scheme of relative dimension n over S.

For such X, if i : X → P is a regular immersion to a smooth scheme over S, the
cotangent complex LX/S is canonically quasi-isomorphic to the complex [NX/P → i∗�1

P/S]
inducing a canonical isomorphism H0(LX/S) → �1

X/S. Consequently, the complex LX/S

satisfies the condition (L(n)) in Section 3.2.
We recall the definition of the localized intersection product [26, Definition 3.2.2].

Let S be a regular noetherian scheme of finite dimension and let X be a scheme of finite
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type over S that is locally a hypersurface of relative virtual dimension n − 1. Let Z be
the closed subscheme of X defined by the annihilator of �n

X/S, i : Z → X be the closed
immersion and let LZ = L1i∗LX/S be the invertible OZ-module. The underlying set of Z
is the complement of the largest open subscheme of X smooth over S.

Let V be a closed subscheme of X and W be a noetherian scheme over X. We
put T = V ×X W. Then, for a coherent OV-module F , a complex G ∈ Db

coh(OW) of OW-
modules with bounded coherent cohomology sheaves and for a sufficiently large integer
q, the OT-module T orOX

q (F , G) is supported on the inverse image ZT = Z ×X T and the
class [T orOX

q (F , G)] in G(ZT)/LZ = Coker(LZ − 1 : G(ZT) → G(ZT)) depends only on
the parity of q by [26, Theorem 3.2.1].

Definition 3.3.3. — Let S be a regular noetherian scheme of finite dimension and let X be

a scheme of finite type over S that is locally a hypersurface of relative virtual dimension n − 1. Let Z
be the closed subscheme of X defined by the annihilator of �n

X/S, i : Z → X be the closed immersion

and let LZ = L1i∗LX/S be the invertible OZ-module. Let V be a closed subscheme of X and W be a

noetherian scheme over X. We put T = V ×X W, ZT = Z ×X T and G(ZT)/LZ = Coker(LZ −
1 : G(ZT) → G(ZT)).

Then, the localized intersection product

(3.3.3.1) (( , ))X : G(V) × G(W) → G(ZT)/LZ

is a biadditive pairing defined by

(3.3.3.2)
(([F ], [G]))

X
= (−1)q

([
T orOX

q (F , G)
]− [

T or
OX
q+1(F , G)

])

for a coherent OV-module F , a coherent OW-module G and for a sufficiently large integer q.

In [26], it is denoted [[ , ]]. We have changed the notation to emphasize the sim-
ilarity with the usual intersection pairing ( , ) of algebraic cycles. It is proved in [26,
Theorem 3.2.1], that the right hand side of (3.3.3.2) is independent of q sufficiently large
and defines a pairing.

For G = OW, we put

(3.3.3.3)
(([F ], [OW]))

X
= (([F ],W

))
X
.

The localized intersection product with W defines a map

(3.3.3.4) (( ,W))X : G(V) → G(ZT)/LZ .

Similarly, we define a map ((V, ))X : G(W) → G(ZT)/LZ . If � ⊂ W is a closed subset
such that the restriction W \ � → X is of finite tor-dimension, the map (3.3.3.4) is lifted
to a map

(3.3.3.5) (( ,W))X : G(V) → G(ZT ×W �)/LZ .

We recall some formulas on localized intersection product.
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Lemma 3.3.4. — Let X and X′ be locally hypersurfaces of relative virtual dimension n − 1
and n′ − 1 over a regular noetherian scheme S of finite dimension and

V ←−−− T

∩
⏐⏐

⏐⏐∩

X′ ←−−− W′

f

⏐⏐
⏐⏐

X ←−−− W

be a Cartesian diagram of noetherian schemes over S where the vertical arrows are closed immersions.

We assume that the immersion f : X′ → X is of finite tor-dimension. We also assume that

Z ×X X′ is a closed subscheme of the closed subscheme Z′ of X′ defined by the annihilator of �n′
X′/S and

that the map G(ZT) → G(Z′
T) induced by the inclusion ZT → Z′

T induces a map G(ZT)/LZ →
G(Z′

T)/LZ′ .

Then, the composition

G(V)
(( ,W))X−−−−→ G(ZT)/LZ → G(Z′

T)/LZ′

is equal to the localized intersection product

(( , [Lf ∗OW]))X′ : G(V) → G(Z′
T)/LZ′

with [Lf ∗OW] ∈ G(W′).

Proof. — It follows from the canonical isomorphism T orOX
q (F , OW) → T orOX′

q (F ,

Lf ∗OW) for a coherent OV-module F [26, Lemma 1.5.1]. �

Lemma 3.3.5. — Let X be locally a hypersurface of relative dimension n − 1 over a regular

noetherian scheme S of finite dimension and

V ←−−− T

∩
⏐⏐

⏐⏐∩

X ←−−− W

be a Cartesian diagram of noetherian schemes over S where the vertical arrows are closed immersions. We

assume V is regular.

Then, the map (( ,W))X : G(V) → G(ZT)/LZ is equal to the usual intersection product

(
, ((V,W))X

)
V
: G(V) → G(ZT)/LZ

with the localized intersection product ((V,W))X ∈ G(ZT)/LZ .
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Assume in addition that V is locally of complete intersection of relative dimension n − c over S,

that W is of dimension p and that the immersion T → W is a regular immersion of codimension c′. Let

M′
V/X,W denote the excess conormal complex. Then, we have

(3.3.5.1) ((V,W))X = (−1)c−c′cc−c′
T
ZT

(
M′

V/X,W

)∩ [T]
in GrF

p−c(G(ZT)/LZ).

Proof. — We apply [26, Lemma 3.3.1] to the spectral sequence E2
p,q = T or

OV
p (F ,

T orOX
q (OV, OW)) ⇒ Ep+q = T or

OX
p+q(F , OW). Then, similarly as in the proof of [26,

Proposition 3.3.2.1], we obtain an equality ((F ,W))X = (F , ((V,W))X)V for a coher-
ent OV-module F .

The equality (3.3.5.1) is [26, (3.4.4.1)]. �

Lemma 3.3.6. — Let X be locally a hypersurface over a regular noetherian scheme S of finite

dimension and

V ←−−− T ←−−− T′

∩
⏐⏐

⏐⏐∩
⏐⏐∩

X ←−−− W
g←−−− W′

be a Cartesian diagram of noetherian schemes over S where the vertical arrows are closed immersions. We

assume that g : W′ → W is of finite tor-dimension.

Then, the map (( ,W′))X : G(V) → G(ZT′)/LZ is equal to the composition of

G(V)
(( ,W))X−−−−→ G(ZT)/LZ

g∗−−−→ G(ZT′)/LZ .

Proof. — It suffices to put G = OW and H = OW′ in [26, Proposition 3.3.2.1]. �

Lemma 3.3.7. — Let X be locally a hypersurface over a regular noetherian scheme S of finite

dimension and let X′ be locally a hypersurface over a regular noetherian scheme S′ of finite dimension. We

consider a Cartesian diagram

V ←−−− V′ ←−−− T

∩
⏐⏐ ∩

⏐⏐
⏐⏐∩

X
f←−−− X′ ←−−− W

of noetherian schemes over S where the vertical arrows are closed immersions. We assume that f : X′ →
X is of finite tor-dimension. We also assume that ZT = Z ×X T is a subset of Z′

T = Z′ ×X′ T set-

theoretically and that the canonical morphism G(ZT) → G(Z′
T) induces a morphism G(ZT)/LZ →

G(Z′
T)/LZ′ .
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Then, the composition (( ,W))X : G(V) → G(ZT)/LZ → G(Z′
T)/LZ′ is equal to the com-

position of

G(V)
f ∗−−−→ G(V′)

(( ,W))X′−−−−→ G(Z′
T)/LZ′ .

Proof. — Similarly as [26, Corollary 3.3.4.3] applied by taking W = X′ and V′ to
be W, it follows from [26, Proposition 3.3.3]. �

3.4. Relative excess intersection formula. — We establish a refinement of the excess
intersection formula [26, Proposition 3.4.2]. The result in this subsection will be used
in the proof of an explicit computation of the logarithmic different in Proposition 5.1.2.
Most of the proofs in this subsection are immediate variations of those in [26, Sections 1.6,
1.7]. The reader is recommended to read them before following the proof here. The
authors apologize for possible inconvenience.

We consider a commutative diagram

(3.4.0.1)

T
⊂−−−→ W

⏐⏐
⏐⏐g′

V′ ⊂−−−→ X′
⏐⏐

⏐⏐f

V
⊂−−−→ X

of schemes satisfying the following condition:

(3.4.0.2) The horizontal arrows are closed immersions and the immersion
T → W is a regular immersion. The upper square and the tall rectangle
are Cartesian.

Let g : W → X denote the composition of the right vertical arrows. Recall that a simpli-
cial algebra AV/X,W on T such that the normal complex N(AV/X,W) computes Lg∗OV

is defined in [26, 1.6.3, 1.6.4]. Further, an ideal IV/X,W ⊂ AV/X,W is defined as the
kernel of the surjection AV/X,W → OT and the excess conormal complex M′

V/X,W =
N(IV/X,W/I2

V/X,W)[−1] is defined as a complex of OT-modules loc. cit.
We construct a variant of the spectral sequence E1

p,q = H2p+qL�−pM′
V/X,W ⇒

T or
OX′
p+q (OV, OW) [26, (1.6.4.3)]. We further assume that the map f : X′ → X is of finite

tor-dimension. We define an object C of D−
coh(OX′) fitting in the distinguished triangle

(3.4.0.3) → C → Lf ∗OV → OV′ →
as follows. Since Lf ∗OV is acyclic in degree > 0, the 0-th subcomplex τ≤0Lf ∗OV in
the canonical filtration is quasi-isomorphic to Lf ∗OV. Namely, for a complex C ′ defin-
ing Lf ∗OV in the derived category and the subcomplex τ≤0 C ′ defined by replacing the
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components C ′
q by 0 for q > 0 and C ′

0 by Ker(C ′
0 → C ′

−1), the inclusion τ≤0 C ′ → C ′

is a quasi-isomorphism. Let C be the subcomplex of C ′ obtained by further replacing
Ker(C ′

0 → C ′
−1) on degree 0 by the kernel of the surjection Ker(C ′

0 → C ′
−1) → OV′ . Then,

the complex C fits in the distinguished triangle (3.4.0.3) and is independent of the choice
of C ′ up to a canonical quasi-isomorphism.

We use the notation in [26, Proposition 1.6.4]. A simplicial algebra AV/X,W and
an increasing filtration F•AV/X,W = I•

V/X,W are defined in [26, Definition 1.6.3]. Sim-
ilarly AV′/X′,W and its filtration F• are defined. They define a filtered chain complex
C̃ = [AV/X,W → AV′/X′,W] of simplicial modules. Here AV′/X′,W is put on degree 0 and
AV/X,W is on degree 1. Then, since PX(OV) and PX′(OV′) are resolutions of OV and of
OV′ by free simplicial algebras [14, 1.5.5.6], we have a quasi-isomorphism

∫
NC̃ → Lg′∗C

from the associated simple complex. Thus, we obtain a spectral sequence

(3.4.0.4) E1
p,q = Hp+qGr−p

F

∫
NC̃ ⇒ T or

OX′
p+q (C, OW).

Lemma 3.4.1. — Let the notation be as above. Then, for the E1-term of (3.4.0.4), there exists

a canonical isomorphism

(3.4.1.1) E1
p,q → H2p+q

[
L�−pM′

V/X,W → L�−pM′
V′/X′,W

]

of OT-modules.

By Lemma 3.4.1, we obtain a spectral sequence

(3.4.1.2) E1
p,q = H2p+q

[
L�−pM′

V/X,W → L�−pM′
V′/X′,W

]⇒ T or
OX′
p+q (C, OW)

of OT-modules.

Proof. — The proof is similar to [26, Proposition 1.6.4]. Similarly as loc. cit.,
the canonical map Sp(Gr1

F C̃) → Grp

F C̃ is an isomorphism. The normal complex of the
graded piece Gr1

F C̃ = [Gr1
FAV/X,W → Gr1

FAV′/X′,W] is defined by the canonical map
M′

V/X,W[1] → M′
V′/X′,W[1] of conormal complexes. Hence the normal complex NGrp

F C̃ =
N[Grp

FAV/X,W → Grp

FAV′/X′,W] is canonically quasi-isomorphic to the mapping cone of
NSp(M′

V/X,W[1]) → NSp(M′
V′/X′,W[1]). Thus by [26, Proposition 1.2.8], the E1-term

E1
p,q = Hp+qGr−p

F

∫
NC̃ is given by H2p+q[L�−pM′

V/X,W → L�−pM′
V′/X′,W] as required. �
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We consider a commutative diagram

(3.4.2.1)

T
⊂−−−→ W

⏐⏐
⏐⏐

V′ ⊂−−−→ X′ ⊂−−−→ P′
⏐⏐

⏐⏐
⏐⏐

V
⊂−−−→ X

⊂−−−→ P

of schemes satisfying the following conditions:

(3.4.2.2) The horizontal arrows are closed immersions and the immersions
X → P and X′ → P′ are regular immersions of the same codimension.
The immersion T → W is also a regular immersion. The upper square,
the left tall rectangle and the right square are Cartesian.

In [26, (1.7.2.1)], a map λV/X/P,W : L�pM′
V/X,W → NX/P ⊗ L�p−1M′

V/X,W[1] is de-
fined as the composition of the maps

(3.4.2.3) L�pM′
V/X,W → M′

V/X,W ⊗ L�p−1M′
V/X,W → NX/P ⊗ L�p−1M′

V/X,W[1]
induced by the canonical map M′

V/X,W → Lg∗
TMV/X → Lg∗

TMX/P[1] = NX/P ⊗ OT[1]. We
identify NX′/P′ = f ∗NX/P and define λV′/X′/P′,W : L�pM′

V′/X′,W → NX/P ⊗L�p−1M′
V′/X′,W[1]

similarly. We will construct a map (3.4.2.5) below compatible with λV/X/P,W and
λV′/X′/P′,W.

We use the notation in the proof of [26, Proposition 1.7.2]. Then, we have a com-
mutative diagram of exact sequences

(3.4.2.4)

0 −−−→ JB′/J2
B′ −−−→ B′/J2

B′ −−−→ A′ −−−→ 0
�⏐⏐

�⏐⏐
�⏐⏐

0 −−−→ JB/J2
B −−−→ B/J2

B −−−→ A −−−→ 0

of filtered simplicial modules. The lower exact sequence is constructed for V → X ← W
and the upper one is for V′ → X′ ← W′. Further we have a quasi-isomorphism [A →
A′] → [AV/X,W → AV′/X′,W]. By the assumption that the right square in (3.4.2.1) is Carte-
sian, we have an isomorphism NX/P ⊗ [A → A′] → [ JB/J2

B → JB′/J2
B′ ] by iii in the step 1

of the proof of [26, Proposition 1.7.2]. They induce a canonical map

λ : [L�pM′
V/X,W → L�pM′

V′/X′,W
]→ NX/P ⊗ [

L�p−1M′
V/X,W(3.4.2.5)

→ L�p−1M′
V′/X′,W

][1].
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By the step 3 in the proof of [26, Proposition 1.7.2], we see that it fits in a commutative
diagram of distinguished triangles

(3.4.2.6)

L�pM′
V/X,W

λV/X/P,W−−−−→ NX/P ⊗ L�p−1M′
V/X,W[1]

⏐⏐
⏐⏐

L�pM′
V′/X′,W

λV′/X′/P′,W−−−−−→ NX/P ⊗ L�p−1M′
V′/X′,W[1]

⏐⏐
⏐⏐

[L�pM′
V/X,W → L�pM′

V′/X′,W] λ−−−→ NX/P ⊗ [L�p−1M′
V/X,W → L�p−1M′

V′/X′,W][1].
⏐⏐

⏐⏐

Lemma 3.4.2. — Let ET denote the spectral sequence E1
p,q ⇒ Ep+q (3.4.1.2) and let

ET [−1,3] denote the spectral sequence E1
p+1,q−3 ⇒ Ep+q−2.

Then, there exists a map

(3.4.2.7) α : ET → NX/P ⊗ ET [−1,3]
of spectral sequences where the maps of E1-terms are induced by the map λ in (3.4.2.5).

Proof. — This is a variant of the construction in [26, Proposition 1.7.2] where the
corresponding map for the spectral sequence E1

p,q = H2p+qL�−pM′
V/X,W ⇒ T or

OX
p+q(OV,

OW) is defined. Similarly as the step 1 in the proof loc. cit., we obtain a map of spectral
sequences. The assertion on the map of E1-terms is clear from the definition of λ. �

We prove a relative version of the excess intersection formula [26, Proposition
3.4.2].

Proposition 3.4.3. — Let S be a regular noetherian scheme of finite dimension and X,X′ be

locally hypersurfaces over S. We consider a commutative diagram

(3.4.3.1)

T
⊂−−−→ W

⏐⏐
⏐⏐

V′ ⊂−−−→ X′
⏐⏐

⏐⏐f

V
⊂−−−→ X
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of schemes over S satisfying the condition (3.4.0.2). Let c′ be the codimension of the regular immersion

T → W. Let M′
V/X,W and M′

V′/X′,W be the excess conormal complexes.

We assume that, locally on X, there exists a commutative diagram

(3.4.3.2)

V′ ⊂−−−→ X′ ⊂−−−→ P′
⏐⏐

⏐⏐f

⏐⏐f̃

V
⊂−−−→ X

⊂−−−→ P

of schemes over S satisfying the following condition:

(3.4.3.3) The maps X → P and X′ → P′ are regular immersion of codimension 1 and that

V → P and V′ → P′ are regular immersion of codimension n. The right square is

Cartesian. The schemes P and P′ are smooth of relative dimension n over S.

Let U′ ⊂ X′ be an open subscheme such that V′ ×X′ U′ → V ×X U′ is an open immersion

and put � = X′ \ U′. Let Z′ ⊂ X′ be the closed subscheme defined by the annihilator of �n
X′/S and we

put LZ′ = L1i′∗LX′/S where i′ : Z′ → X′ is the closed immersion. Then, we have the following.

1. The map f : X′ → X is of finite tor-dimension.

2. The canonical map L�n−c′M′
V/X,W → L�n−c′M′

V′/X′,W is a quasi-isomorphism on the

complement T \ (Z′
T ×X′ �).

3. We define f ![V] − [V′] ∈ G(� ∩ (V ×X X′)) by

f ![V] − [
V′]= [

Ker
(
f ∗OV → OV′

)]+
∑

q>0

(−1)q
[
Lqf

∗OV

]

and put d = dim W. Then, we have

(3.4.3.4)
(((

f ![V] − [
V′]),W

))
X′ =

[
L�n−c′(M′

V/X,W → M′
V′/X′,W

)]

in Fd−n+c′G(Z′
T ×X′ �)/LZ′ .

Proof. — 1. In the diagram (3.4.3.2), the schemes X and P′ are tor-independent
over P. Since f̃ is of finite tor-dimension, the map f is also of finite tor-dimension.

2. The assertion is local on X. Recall that the diagram (3.4.3.2) defines a quasi-
isomorphism M′

V/X,W → [NX/P ⊗ OT → Ker(NV/P ⊗ OT → NT/W)] [26, Lemma 1.7.1]
and similarly for M′

V′/X′,W. Hence the excess conormal complexes M′
V/X,W and M′

V′/X′,W
satisfy the condition (L(n − c′)) in Section 3.2.

The map V′ → V ×X X′ defined by the diagram (3.4.3.1) is an open immersion
outside �. Hence the canonical map M′

V/X,W → M′
V′/X′,W is a quasi-isomorphism on the

complement T \ T ×X′ � by the description of the excess conormal complex recalled
above.

Let Z′
1 ⊂ T be the closed subscheme defined by the annihilator ideal of

�n−c′ H0(M′
V′/X′,W). By the assumption that the right square in (3.4.3.2) is Cartesian,
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the canonical map NX/P ⊗OX OX′ → NX′/P′ is an isomorphism. Hence the assumption
that the mapping cone [M′

V/X,W → M′
V′/X′,W] is of tor-dimension ≤ 1 is satisfied. Thus by

Lemma 3.2.5, the homology sheaves Hq([L�n−c′M′
V/X,W → L�n−c′M′

V′/X′,W)] are OZ′
1
-

module for q ≥ 0.
Since the diagram (3.4.3.2) defines an isomorphism [NX′/P′ → �1

P′/S ⊗OP′ OX′ ] →
LX′/S, we have an inclusion Z′

1 ⊂ Z′
T of closed subschemes of T. Hence the assertion

follows.
3. The proof is similar to [26, Proposition 3.4.2] using Lemmas 3.4.1 and 3.4.2.
By 2, the right hand side of (3.4.3.4) is defined as an element of Fd−n+c′G(Z′

T ×X′ �).
Since X and P′ are tor-independent over P, we see that the canonical map Lf̃ ∗OV →
Lf ∗OV is a quasi-isomorphism. Hence, the complex C of OX′ -modules in Lemma 3.4.1 is
acyclic outside �. We consider the spectral sequence (3.4.1.2) and will show the equality

(3.4.3.5)
∑

p+q=r,r+1

(−1)p+q
[
E1

p,q

]= (−1)r[Er] + (−1)r+1[Er+1]

for sufficiently large r. The right hand side of (3.4.3.5) is independent of sufficiently large
r by [26, Theorem 3.2.1] and defines the left hand side of (3.4.3.4).

We show that the left hand side of (3.4.3.5) equals the right hand side of (3.4.3.4).
By [26, Lemma 3.4.1], the map λV/X/P,W induces an isomorphism Lp+1�

q+1M′
V/X,W →

NX/P ⊗ Lp�
qM′

V/X,W for q ≥ n − c′ and similarly for λV′/X′/P′,W. By the commutative di-
agram (3.4.2.6), it induces an isomorphism E1

p,q → LZ′ ⊗ E1
p+1,q−3 if −(p + 1) ≥ n − c′.

Hence, the left hand side of (3.4.3.5) is equal to
∑

q(−1)−(n−c′)+q[E1
−(n−c′),q] and to the

right hand side of (3.4.3.4).
We show the equality (3.4.3.5) applying [26, Lemma 3.3.1]. Note that, in [26,

Lemma 3.3.1], the map αr is used only to show that the right hand side is independent of
r ≥ r0 and that we can drop the compatibility assumption with the restriction αr|T∩U since
it is not used in the proof. We apply [26, Lemma 3.3.1], to the maps (3.4.2.5) and [26,
(3.1.3.1)] and the map (3.4.2.7). Then, by Lemma 3.4.2, the maps of E1-terms of (3.4.2.7)
are isomorphisms for sufficiently large p + q and the assumption of [26, Lemma 3.3.1] is
satisfied. Thus, we obtain the equality (3.4.3.5). �

4. Intersection product with the log diagonal

From this section on, we fix a complete discrete valuation field K with perfect
residue field F of characteristic p > 0. We put S = Spec OK and s = Spec F. Both 0 and
p are allowed as the characteristic of K. A morphism of schemes over S is always a mor-
phism over S.

We introduce in Section 4.3 the localized intersection product with the log diag-
onal by applying Definition 3.3.3. We establish an important property that the localized
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intersection product with the log diagonal is independent of the boundary in Proposi-
tion 4.3.5. In preliminary subsections 4.1 and 4.2, we study local structure of log products
and the logarithmic cotangent complex respectively.

4.1. Log products. — In this subsection, we study the log self-product of a regular
flat scheme X of finite type over S = Spec OK with respect to a divisor D ⊂ X with simple
normal crossings. We do not assume inclusion between D and the closed fiber XF. The
case where D = XF and XK is smooth over K is treated in [26, Sections 5.1, 5.2]. First,
we study the local structure of X.

Lemma 4.1.1. — Let X be a regular flat scheme of finite type over S and D be a divisor with

simple normal crossings. Then, for every point x of X, there exist an open neighborhood U of x, a smooth

scheme P over S, a divisor D̃ of P with simple normal crossings relatively to S and a regular immersion

U → P of codimension 1 such that D ∩ U = D̃ ×P U.

Proof. — It suffices to prove the cases where x is a closed point of XF and of XK

respectively. First, we show the case where x is a closed point of XF. Let D1, . . . ,Dm be the
irreducible components of D containing x and take t1, . . . , tm ∈ mx defining D1, . . . ,Dm on
a neighborhood of x. We extend it to a minimal system t1, . . . , tn ∈ mx of generators. Then,
the map U → An

S defined by t1, . . . , tn on an open neighborhood U of x is unramified.
Hence, after shrinking U if necessary, there is an étale scheme P → An

S and a regular
closed immersion U → P of codimension 1 such that D ∩ U is the sum of the pull-back
of the first m coordinate hyperplanes by [13, Corollaire (18.4.7)].

Next, we show the case where x is a closed point of XK. We take a minimal system
t1, . . . , tn ∈ mx of generators as above. There exists an element t0 ∈ OX,x such that the
residue field κ(x) is a finite separable extension of K(t̄0) and that K(t̄0) is purely insep-
arable over K by Lemma 4.1.2 below. Then, the map U → An+1

S defined by t0, t1, . . . , tn
on an open neighborhood U of x is unramified. Thus, we conclude similarly as above. �

Lemma 4.1.2. — Let k be a field of characteristic p > 0 such that [k : kp] = p. Then, for a

finite extension L of k, there exists an integer e ≥ 0 such that L is a separable extension of k1/pe

.

Proof. — Let L1 be the separable closure of k in L and put [L : L1] = pe. Then since
[L1 : Lp

1] = [k : kp] = p, it follows that L is a unique purely inseparable extension L1/pe

1 of
L of degree pe and is a separable extension of k1/pe

. �

We show a relative version of Lemma 4.1.1.

Lemma 4.1.3. — Let X and Y be regular flat schemes of finite type over S and f : Y → X
be a morphism over S. Let D ⊂ X and E ⊂ Y be divisors with simple normal crossings such that

Y \ E ⊂ f −1(X \ D). Let y be a point of Y and we put x = f (y) ∈ X.
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Then, there exists open neighborhoods U and V of x and y respectively satisfying f (V) ⊂ U and

a Cartesian diagram

(4.1.3.1)

V −−−→ Q ⊃ Ẽ

f |V
⏐⏐

⏐⏐f̃

U −−−→ P ⊃ D̃
of schemes over S satisfying the following conditions:

• The schemes P and Q are smooth over S and D̃ = ∑
i D̃i ⊂ P and Ẽ = ∑

j Ẽj ⊂ Q are

divisors with relative simple normal crossings relatively to S respectively. For each i, we have

f̃ −1(D̃i) =∑
j eijẼj for some integers eij ≥ 0. The horizontal arrows are regular immersions

of codimension 1 and D ∩ U = D̃ ×P U and E ∩ V = Ẽ ×Q V as in Lemma 4.1.1.

Proof. — It suffices to prove the cases where y is a closed point of YF and of YK

respectively. First we prove the case where y is a closed point of YF and hence x is a
closed point of XF. By the proof of Lemma 4.1.1, we obtain a diagram (4.1.3.1) with-
out f̃ together with étale morphisms P → An

S = Spec OK[T1, . . . ,Tn] and Q → An′
S =

Spec OK[S1, . . . ,Sn′ ] such that D̃ and Ẽ are the pull-back of the first m and m′ coordi-
nate hyperplanes respectively and that the maximal ideals mx ⊂ OX,x and my ⊂ OY,y are
generated by ti = Ti|U for i = 1, . . . , n and sj = Sj|V for j = 1, . . . , n′ respectively.

For i = 1, . . . ,m, we put f ∗ti = vi

∏
j s

eij

j for some units vi on V. For i = m+1, . . . , n,
we also put f ∗ti =∑

j aij sj for some functions aij on V. After shrinking Q, we take units ṽi

on Q lifting vi and functions ãij on Q lifting aij and define a map g : Q → An
S by sending Ti

to ṽi

∏
j S

eij

j for i = 1, . . . ,m and to
∑

j ãijSj for i = m+1, . . . , n. By replacing Q by an étale

neighborhood Q ×An
S

P, we obtain a map f̃ : Q → P that makes (4.1.3.1) a commutative
diagram.

The equalities f̃ −1(D̃i) = ∑
j eijẼj follow from the definition of g. We show that

the diagram (4.1.3.1) thus obtained is Cartesian on a neighborhood of y. Let m̃x ⊂ OP,x

and m̃y ⊂ OQ,y be the maximal ideals. Since the horizontal arrows are regular immer-
sions of codimension 1, it suffices to show that the canonical map f̃ ∗ : m̃x/m̃

2
x → m̃y/m̃

2
y

induces an isomorphism Ker(m̃x/m̃
2
x → mx/m

2
x) → Ker(m̃y/m̃

2
y → my/m

2
y ) on the sub-

spaces of dimension 1. Since mx/m
2
x = 〈t1, . . . , tn〉 and my/m

2
y = 〈s1, . . . , sn′ 〉, we have

m̃x/m̃
2
x = Ker(m̃x/m̃

2
x → mx/m

2
x) ⊕ 〈T1, . . . ,Tn〉 and m̃y/m̃

2
y = Ker(m̃y/m̃

2
y → my/m

2
y ) ⊕

〈S1, . . . ,Sn′ 〉. By the definition of g, the map f̃ ∗ sends the subspace 〈T1, . . . ,Tn〉 ⊂
m̃x/m̃

2
x into 〈S1, . . . ,Sn′ 〉 ⊂ m̃y/m̃

2
y . Since π,T1, . . . ,Tn and π,S1, . . . ,Sn′ are bases of

m̃x/m̃
2
x = Ker(m̃x/m̃

2
x → mx/m

2
x) ⊕ 〈T1, . . . ,Tn〉 and of m̃y/m̃

2
y respectively, the image of

Ker(m̃x/m̃
2
x → mx/m

2
x) is not in 〈S1, . . . ,Sn′ 〉. Hence the map Ker(m̃x/m̃

2
x → mx/m

2
x) →

Ker(m̃y/m̃
2
y → my/m

2
y ) induced by f̃ ∗ is an isomorphism as required.

Next, we prove the case where y is a closed point of YK and hence x is a closed
point of XK. Let π be a prime element of OK. We may take t0 ∈ OX,x and s0 ∈ OY,y such
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that t0 ≡ π mod mx and s0 ≡ π mod my if K is of characteristic 0 and t
pa

0 ≡ π mod mx

and s
pa+b

0 ≡ π mod my for some integers a ≥ 0, b ≥ 0 and κ(x) and κ(y) are separa-
ble extensions over K(t̄0) and over K(s̄0) respectively if K is of characteristic p > 0 by
Lemma 4.1.2. Then, we obtain a diagram (4.1.3.1) without f̃ together with étale mor-
phisms P → An+1

S = Spec OK[T0,T1, . . . ,Tn] and Q → An′+1
S = Spec OK[S0,S1, . . . ,Sn′ ]

similarly as above. We put f ∗t0 = s
pb

0 + ∑
j>0 a0j sj and take liftings ã0j as above. By the

same procedure for i > 0 as above, we define a map f̃ : Q → P that makes (4.1.3.1) a
commutative diagram satisfying the equalities f̃ −1(D̃i) =∑

j eijẼj .
We show that the diagram (4.1.3.1) thus obtained is Cartesian on a neighborhood

of y. By the definition of f̃ , the map f̃ ∗ sends the subspace 〈T1, . . . ,Tn〉 ⊂ m̃x/m̃
2
x into

〈S1, . . . ,Sn′ 〉 ⊂ m̃y/m̃
2
y . Since Tpa

0 − π,T1, . . . ,Tn and Spa+b

0 − π,S1, . . . ,Sn′ are bases of
m̃x/m̃

2
x = Ker(m̃x/m̃

2
x → mx/m

2
x) ⊕ 〈T1, . . . ,Tn〉 and of m̃y/m̃

2
y respectively, the image

of Ker(m̃x/m̃
2
x → mx/m

2
x) is not in 〈S1, . . . ,Sn′ 〉. This implies the required assertion as

above. �

Let X be a regular flat separated scheme of finite type over S and D ⊂ X be a
divisor with simple normal crossings. We consider the log product (X ×S X)∼ defined as
(X ×S X)∼

D with respect to the family D = (Di)i∈I of irreducible components of D.

Lemma 4.1.4. — Let X be a regular flat separated scheme of finite type over S and D ⊂ X be

a divisor with simple normal crossings.

Then, the log product (X×S X)∼ is locally a hypersurface (Definition 3.3.2) over X with respect

to either of the projections.

Proof. — Let x ∈ X be a point, U ⊂ X be an open neighborhood of x and U → P
be a regular immersion of codimension 1 to a smooth scheme P over S satisfying the
condition in Lemma 4.1.1. We define the log product (P ×S X)∼ similarly. Since the
second projection (P ×S X)∼ → X is log smooth and strict by Lemma 1.3.1, it is smooth.
Hence the log product (P ×S X)∼ is regular.

By the universality of log product, we have a Cartesian diagram

(4.1.4.1)

(U ×S X)∼ pr1−−−→ U
⏐⏐

⏐⏐

(P ×S X)∼ pr1−−−→ P.

Hence the ideal defining the immersion (U ×S X)∼ → (P ×S X)∼ is locally monogenic.
Thus, to conclude that (U ×S X)∼ is a divisor of (P ×S X)∼, it is sufficient to show that
the immersion (U ×S X)∼ → (P ×S X)∼ is nowhere dominant. Thus, it is reduced to the
case where D is empty. In this case, U ×S X is a divisor of P ×S X since X is flat over S. �
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Corollary 4.1.5. — Let X and Y be regular flat separated schemes of finite type and D ⊂ X
and E ⊂ Y be divisors with simple normal crossings. Let f : Y → X be a morphism over S satisfying

f −1(D) ⊂ E set-theoretically.

Then, the map (f × f )∼ : (Y ×S Y)∼ → (X ×S X)∼ is locally of complete intersection and

hence is of finite tor-dimension.

Proof. — Since the assertion is local, we may take a Cartesian diagram (4.1.3.1). By
the Cartesian diagram (4.1.4.1) and the corresponding one for Y, the diagram

(4.1.5.1)

(V ×S Y)∼ (fV×f )∼−−−→ (U ×S X)∼
⏐⏐

⏐⏐

(Q ×S Y)∼ (f̃ ×f )∼−−−→ (P ×S X)∼

is Cartesian. Since (P ×S X)∼ is smooth over X and (Q ×S Y)∼ is smooth over Y, they
are regular. Hence the bottom horizontal arrow (f̃ × f )∼ is locally of complete intersec-
tion. Since the vertical arrows are regular immersion of codimension 1 and the diagram
is Cartesian, (U ×S X)∼ and (Q ×S Y)∼ are tor-independent over (P ×S X)∼. Hence
the top arrow (fV × f )∼ is locally of complete intersection of the same virtual relative
dimension. �

We study the local structure of the log product (X ×S X)∼ inductively on the num-
ber of irreducible components of D. Let X, D and the log product (X×S X)∼ be as in the
beginning of this subsection. Let X1 be a regular divisor of X such that D1 = D ∩ X1 is
a divisor of X1 with simple normal crossings. Let D = (Di)i∈I be the family of irreducible
components of D and we consider the family D1 = (Di ∩ X1)i∈I of smooth divisors of X1.
Then, the log product (X1 ×S X1)

∼ with respect to D1 is identified with the inverse image
of X1 ×S X1 by the canonical map (X ×S X)∼ → X ×S X.

The sum D′ = D ∪ X1 is a divisor of X with simple normal crossings. We consider
the log product (X ×S X)≈ with respect to D′. By the inductive construction of the log
product, we have a canonical isomorphism (X ×S X)≈ → (X ×S X)∼ ×X×SX (X ×S X)∼

X1
.

The inverse image E of (X1 ×S X1)
∼ by the canonical map (X ×S X)≈ → (X ×S X)∼ is

a Gm-torsor over (X1 ×S X1)
∼ by Lemma 1.3.2. They are summarized in the Cartesian

diagram

(4.1.5.2)

E −−−→ (X1 ×S X1)
∼ −−−→ X1 ×S X1

⏐⏐
⏐⏐

⏐⏐

(X ×S X)≈ −−−→ (X ×S X)∼ −−−→ X ×S X

where the vertical arrows are closed immersions. The morphism (X ×S X)≈ → (X ×S

X)∼ is an isomorphism on the complements of E and (X1 ×S X1)
∼. The subscheme
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E ⊂ (X ×S X)≈ is the inverse image of X1 ⊂ X by the composition of the canonical map
(X ×S X)≈ → X ×S X with either of the projections X ×S X → X.

To understand the local structure of the log product, it suffices to study it on a
neighborhood of E by the inductive construction of the log product.

Lemma 4.1.6. — Let the notations X,D,X1,E etc. be as above.

1. Assume X1 is flat over S. Then the immersion (X1 ×S X1)
∼ → (X ×S X)∼ is a regular

immersion of codimension 2 and E is a Cartier divisor of (X ×S X)≈.

2. Assume X1 is a subscheme of the closed fiber XF and put d = dim XF. Then the scheme

(X1 ×F X1)
∼ is smooth of dimension 2d over F.

Proof. — 1. The immersion (X1 ×S X1)
∼ → (X ×S X)∼ is locally of complete in-

tersection by Corollary 4.1.5. Hence, the assertion follows from Lemma 3.1.8.
2. Since the projections (X1 ×F X1)

∼ → X1 are smooth of relative dimension d ,
the assertion follows. �

We show some tor-independences (Definition 3.1.1.1). Its consequences Corol-
lary 4.1.8.1 and 4.1.8.2 will be used in the proof of Propositions 6.1.1 and 6.1.2 respec-
tively.

Lemma 4.1.7. — Let X and Y be regular flat separated schemes over S of finite type and

f : Y → X be a morphism over S. Let D ⊂ X be a regular divisor such that DY = D ×X Y is a

divisor of Y and let D′ be a divisor of Y with simple normal crossings. We assume that either both D
and DY are flat over S or they are schemes over F.

1. The fiber products D ×S D and Y ×S Y are tor-independent over X ×S X.

2. Let (X ×S X)∼ and (Y ×S Y)∼ be the log product with respect to D and D′ respectively.

Assume that DY = D ×X Y is a subset of D′ set-theoretically. Further assume that either D and D′ are

flat over S or D and D′ are schemes over F.

Let E ⊂ (X ×S X)∼ be the pull-back of D ⊂ X by either of the two projections. Then E and

(Y ×S Y)∼ are tor-independent over (X ×S X)∼.

Proof. — 1. By Lemma 3.1.2, it suffices to show that D ×S D and X ×S Y are
tor-independent over X ×S X and that D ×S DY and Y ×S Y are tor-independent over
X ×S Y.

By the assumption that DY = D ×X Y is a divisor of Y, it follows that D and Y
are tor-independent over X. Either if D is flat over S or if D is a scheme over F, the
fiber product D ×S D is flat over D. Hence D ×S D and Y are tor-independent over X
with respect to the second projection D ×S D → X by Lemma 3.1.2. Thus, by applying
Lemma 3.1.2 to Y → X ← X ×S X ← D ×S D, we conclude that D ×S D and X ×S Y
are tor-independent over X ×S X.

Similarly, either if DY is flat over S or if D and DY are both schemes over F, the
fiber product D ×S DY is flat over D. Hence D ×S DY and Y are tor-independent over
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X with respect to the first projection D ×S DY → X by Lemma 3.1.2. Thus, by applying
Lemma 3.1.2 to Y → X ← X ×S Y ← D ×S DY, we conclude that D ×S DY and Y ×S Y
are tor-independent over X ×S Y as required.

2. First, we show the case where D and D′ are flat over S. By Lemma 4.1.6.1,
E is a divisor of (X ×S X)∼. Since every D′

i is flat over S in this case, the pull-back
E′

i ⊂ (Y ×S Y)∼ of an irreducible component D′
i of D′ by either of the two projections

(Y ×S Y)∼ → Y is also a divisor. Hence, if DY = ∑
i eiD′

i , the pull-back (f × f )∼∗E =∑
i eiE′

i is also a divisor and the assertion follows in this case.
Assume D = DF. Since the assertion is local, we may take a Cartesian diagram

(4.1.3.1) satisfying the condition in Lemma 4.1.3 and we consider the diagram (4.1.5.1).
By applying Lemma 3.1.2 to U → P ← (X ×S P)∼ ← (Y ×S Q)∼, we conclude that
the schemes (X ×S U)∼ and (Y ×S Q)∼ are tor-independent over (X ×S P)∼. Since
E ∩ (X ×S U)∼ is a divisor of (X ×S P)∼ and (f × f )∼∗E ∩ (Y ×S V)∼ is a divisor
of (Y ×S Q)∼, the schemes E ∩ (X ×S U)∼ and (Y ×S Q)∼ are tor-independent over
(X ×S P)∼. Then, applying Lemma 3.1.2 to (Y ×S Q)∼ → (X ×S P)∼ ← (X ×S U)∼ ←
E ∩ (X ×S U)∼, we conclude that E ∩ (X ×S U)∼ and (Y ×S V)∼ are tor-independent
over (X ×S U)∼. �

Corollary 4.1.8. — Let the notation be as in Lemma 4.1.7 and we put DY = D ×X Y =∑
i eiD′

i and c = dim YK − dim XK.

1. Let fi : D′
i → D be the restriction of f : Y → X and (fi × fj)

∗ : G(D×S D) → G(D′
i ×S

D′
j) be the pull-back. Then, the map (f × f )∗ : GrF

•G(D ×S D) → GrF
•+2cG(DY ×S DY) defined

by f × f : Y ×S Y → X ×S X is the composition of

GrF
•G(D ×S D)

((fi×fj )
∗)i,j−−−−−→

⊕

i,j

GrF
•+2cG(D′

i ×S D′
j)

∑
i,j ei ·ej ·can−−−−−→ GrF

•+2cG(DY ×S DY)

.

2. We put E′ = E×(X×SX)∼ (Y×S Y)∼ and let E′
i ⊂ (Y×S Y)∼ be the pull-back of D′

i ⊂ Y
by either of the projections. Then, the restriction gi : E′

i → E of (f × f )∼ : (Y×S Y)∼ → (X×S X)∼

is of finite tor-dimension. Further, the map (f × f )∼∗ : GrF
•G(E) → GrF

•+2cG(E′) defined by (f ×
f )∼ : (Y ×S Y)∼ → (X ×S X)∼ is the composition of

GrF
•G(E)

(g∗
i )i−−−→

⊕

i

GrF
•+2cG(E′

i)

∑
i ei ·can−−−−→ GrF

•+2cG(E′).

Proof. — 1. By Corollary 4.1.5 applied to (�iD′
i) ×S (�iD′

i) → D ×S D with the
trivial divisor, the map fi × fj : D′

i ×S D′
j → D ×S D is of finite tor-dimension. Hence

the map (fi × fj)
∗ : G(D ×S D) → G(D′

i ×S D′
j) is defined. Let fD : DY → D be the base

change of f . Then, by Lemma 4.1.7.1, the map (f × f )∗ : G(D ×S D) → G(DY ×S DY)

is the same as the pull-back by fD × fD : DY ×S DY → D ×S D. By the assumption, either
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every D′
i is flat over S or is a scheme over F. Hence, there exists a filtration on ODY×SDY

such that graded pieces are invertible OD′
i×SD′

j
-modules with multiplicities eiej . Thus the

assertion follows.
2. Both E′

i and E ×D×SD (D′
i ×S D′

i)
∼ are Gm-torsors over (D′

i ×S D′
i)

∼. The map
E′

i → E ×D×SD (D′
i ×S D′

i)
∼ induced by gi : E′

i → E is compatible with the ei-th power
map of Gm and is flat. Hence, the map gi is of finite tor-dimension by Corollary 4.1.5. By
Lemma 4.1.7.2, the map (f × f )∼∗ : G(E) → G(E′) is the same as the pull-back by the
restriction gE : E′ → E. Since there exists a filtration on OE′ such that graded pieces are
invertible OE′

i
-modules with multiplicities ei , the assertion follows. �

4.2. Logarithmic cotangent complex. — We define a logarithmic version of the cotan-
gent complex.

Definition 4.2.1. — Let X be a regular flat separated scheme of finite type over S = Spec OK

and D be a divisor of X with simple normal crossings. We put n = dim XK + 1. Let (X ×S X)∼

denote the log product with respect to the family (Di) of Cartier divisors consisting of the irreducible

components of the divisor D. We regard X as a closed subscheme of (X ×S X)∼ by the log diagonal map

δ : X → (X ×S X)∼.

Define the logarithmic cotangent complex LX/S(log D) to be the conormal complex

MX/(X×SX)∼ = LX/(X×SX)∼[1] and a coherent OX-module �1
X/S(log D) to be the conormal sheaf

NX/(X×SX)∼ = H0(LX/S(log D)). Define a closed subscheme �X/S of X to be that defined by the

annihilator of the n-th exterior power �n
X/S(log D) = �n�1

X/S(log D).

If the characteristic of K is 0, the coherent sheaf �1
X/S(log D) is locally free of rank

n−1 on the generic fiber and hence �X/S is supported on the closed fiber set-theoretically.
Since the log diagonal map δ : X → (X ×S X)∼ is a section of the projection

(X ×S X)∼ → X, the pull-back Lδ∗L(X×SX)∼/X of the cotangent complex [14] is canoni-
cally identified with the conormal complex MX/(X×SX)∼ [26, Definition 1.6.3.1] and hence
with the logarithmic cotangent complex LX/S(log D).

Lemma 4.2.2. — Let X be a regular flat separated scheme of finite type over S and D be a

divisor with simple normal crossings.

1. Let U be an open subscheme of X and U → P be a regular immersion of codimension 1
into a smooth scheme P over S satisfying D ∩ U = D̃ ×P U as in Lemma 4.1.1. Then, we have a

quasi-isomorphism

(4.2.2.1)
[
NU/P → �1

P/S(log D̃) ⊗OP OU

]→ LX/S(log D)|U.

Consequently, the logarithmic cotangent complex LX/S(log D) satisfies the condition (L(n)) in Section 3.2
and we have an exact sequence

(4.2.2.2) NU/P → �1
P/S(log D̃) ⊗OP OU → �1

U/S(log D) → 0.
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2. Let D1, . . . ,Dm be the irreducible components of D. Then, we have a distinguished triangle

(4.2.2.3) → LX/S → LX/S(log D) →
m⊕

i=1

ODi
→

and consequently an exact sequence

(4.2.2.4) 0 → �1
X/S → �1

X/S(log D) →
m⊕

i=1

ODi
→ 0.

Proof. — 1. The distinguished triangle (3.3.0.1) for the immersions U →
(U ×S X)∼ → (U ×S P)∼ defines a distinguished triangle

δ|∗UN(U×SX)∼/(U×SP)∼ → NU/(U×SP)∼ → MU/(U×SX)∼ → .

Since U → (U ×S P)∼ is a section of the smooth morphism (U ×S P)∼ → U, the iso-
morphism pr∗

2�
1
P/S(log D̃) → �1

(U×SP)∼/U induces a canonical isomorphism NU/(U×SP)∼ →
�1

P/S(log D̃) ⊗OP OU. By the Cartesian diagram (4.1.4.1), the canonical map NU/P →
δ|∗UN(U×SX)∼/(U×SP)∼ is an isomorphism. Thus the assertion follows.

2. The distinguished triangle (3.3.0.1) for X → (X ×S X)∼ → X ×S X defines a
distinguished triangle

(4.2.2.5) LX/S → LX/S(log D) → Lδ∗L(X×SX)∼/X×SX → .

Let E1, . . . ,Em be the inverse images by either of the two projections (X ×S X)∼ →
X. Then, we have a canonical isomorphism �1

(X×SX)∼/X×SX → ⊕m

i=1 OEi
. It suffices

to show that this induces an isomorphism Lδ∗L(X×SX)∼/X×SX → ⊕m

i=1 OEi
. The as-

sertion is local on X. By comparing the isomorphism (4.2.2.1) with the isomor-
phism [NU/P → �1

P/S ⊗OP OU] → LU/S, the distinguished triangle (4.2.2.5) implies that
Lδ∗L(X×SX)∼/X×SX →⊕m

i=1 OEi
is an isomorphism. �

If there exists a dense open subscheme of X smooth over S, the coherent OX-
module �1

X/S(log D) is locally free of rank n − 1 on it and the first map NU/P →
�1

P/S(log D̃) ⊗OP OU in (4.2.2.2) is an injection.
On an open subscheme U ⊂ X with a regular immersion U → P as in Lemma 4.1.1,

if e1, . . . , en is a basis of �1
P/S(log D̃) ⊗OP OU and if a1e1 + · · · + anen is the image of a basis

of NU/P, then the restriction �n
X/S(log D)|U is isomorphic to OU/(a1, . . . , an) and hence

the annihilator ideal Ann �n
X/S(log D)|U ⊂ OU is generated by a1, . . . , an.

We study the logarithmic cotangent complex LX/S(log D) more in detail. First, we
consider the case where there exists a dense open subscheme of X smooth over S.

Lemma 4.2.3. — We put XF = ∑
i liDi as a divisor of X and define a Cartier divisor D′

of X by D′ =∑
Di⊂XF,Di⊂D liDi . We put Z = �X/S and let i : Z → X be the closed immersion. We
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also put n = dim XK + 1. Assume that there exists a dense open subscheme of X smooth over S. Then,

we have the following.

1. There exists a unique OX-linear map

·d logπ : OD′
(
D′ − XF

)= OD′ ⊗OX IXF−D′ → �1
X/S(log D)

sending a local generator g of the ideal IXF−D′ ⊂ OX to dg + g · d log(π/g) for a prime element π

of K. The map ·d logπ is independent of the choice of a uniformizer π .

2. The map ·d logπ : OD′(D′ − XF) → �1
X/S(log D) is an injection and the cokernel

�1
X/S(log D)/OD′(D′ − XF) is an OX-module of tor-dimension ≤ 1.

3. The OZ-module L1i∗�1
X/S(log D) is invertible. For a normal scheme W over F and a

morphism ϕ : W → Z over S and for the pull-back ϕ∗L1i∗�1
X/S(log D), there exists a canonical

isomorphism

Ns/S ⊗ OW → ϕ∗L1i∗�1
X/S(log D)

of trivial invertible OW-modules, where Ns/S denotes the conormal sheaf mK/m2
K of the closed point s

of S.

The complement X \ Z is the largest open subscheme of X smooth over S, which
is assumed to be dense in X. In the case X \ D ⊂ XK, we have D′ = XF and the cokernel
�1

X/S(log D)/OXF will be denoted by �1
X/S(log D/ log F).

Proof. — 1. The local section d log(π/g) of �1
X/S(log D) is independent of the choice

of a prime element π . We have d(ug) + (ug) · d log(π/ug) = u(dg + g · d log(π/g)) +
g(du − ud log u) for a unit u and the last term is 0. Hence the OX-linear map d logπ · :
OX(D′ − XF) → �1

X/S(log D) is well-defined.
Since (π/g)(dg + g · d log(π/g)) = (π/g)dg + gd(π/g) = dπ = 0, it induces

OD′(D′ − XF) → �1
X/S(log D).

2. For the injectivity, it suffices to show it at the generic point of each irreducible
component Di of D′. Hence, we may assume XK = X \ D. Then, it follows from [26,
Lemma 5.3.4.2].

We show that �1
X/S(log D)/OD′(D′ − XF) is of tor-dimension ≤ 1. Since the ques-

tion is local, we take an immersion U → P as in Lemma 4.1.1. Let g̃ be a function on P
lifting g = π/

∏
i t

li
i . Then, on a neighborhood of U, the divisor U ⊂ P is defined by an

equation π = g̃ · ∏i Tli
i . Hence, the image of NU/P → �1

P/S(log D̃) ⊗OP OU is generated
by d(g̃ ·∏i Tli

i ). Since the image of the section (
∏

i t
li
i )

−1d(g̃ ·∏i Tli
i ) = dg̃ + g̃ ·∑i lid log Ti

of �1
P/S(log D̃) ⊗OP OU in �1

X/S(log D)|U is dg + g · d log(π/g), we have a locally free res-
olution 0 → NU/P(D′) → �1

P/S(log D̃) ⊗OP OU → (�1
X/S(log D)/OD′(D′ − XF))|U → 0.

3. Since �1
X/S(log D) satisfies the condition L(n) in Section 3.2, the OZ-module

L1i∗�1
X/S(log D) is invertible.
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We may assume W is integral. Let iW = i ◦ ϕ : W → X denote the composition.
Then, since �1

X/S(log D) is of tor-dimension ≤ 1 and the OZ-modules i∗�1
X/S(log D)

and L1i∗�1
X/S(log D) are locally free, the canonical map ϕ∗L1i∗�1

X/S(log D) →
L1i∗W�1

X/S(log D) is an isomorphism.
First we consider the case iW(W) �⊂ D. By iW(W) �⊂ D, we have L1i∗W ODi

= 0.
Hence the exact sequence (4.2.2.4) induces an isomorphism L1i∗W�1

X/S → L1i∗W�1
X/S(log D)

of invertible OW-modules. Let Z′ be the closed subscheme of X defined by the annihi-
lator ideal of �n

X/S = �n�1
X/S. For a morphism g : T → X of schemes, the OT-module

L1g∗�1
X/S is invertible if and only if g factors through Z′, since �1

X/S satisfies the condition
L(n) in Section 3.2. Since L1i∗W�1

X/S is invertible, the map iW : W → X factors through
the closed subscheme Z′. Hence, the assertion follows from [26, Lemma 5.1.3.1].

Next, we consider the case iW(W) ⊂ D. Then the exact sequence 0 → OX(−XF) →
OX(D′ − XF) → OD′(D′ − XF) → 0 defines an isomorphism i∗W OX(−XF) = Ns/S ⊗
OW ← L1i∗W OD′(D′ − XF). Further the map d logπ · : OD′(D′ − XF) → �1

X/S(log D) in-
duces a map L1i∗W OD′(D′ − XF) → L1i∗W�1

X/S(log D). We show that it is an isomorphism.
Since the question is local, we take an immersion U → P as in Lemma 4.1.1. Then,

by the proof of 2, we have a commutative diagram of exact sequences

(4.2.3.1)

0 −−−→ NU/P −−−→ NU/P(D′) −−−→ OD′(D′ − XF)|U −−−→ 0
∥∥∥

⏐⏐
⏐⏐d logπ ·|U

0 −−−→ NU/P −−−→ �1
P/S(log D̃) ⊗OP OU −−−→ �1

X/S(log D)|U −−−→ 0.

Then both L1i∗W OD′(D′ − XF) and L1i∗W�1
X/S(log D) are identified with i∗WNU/P and the

assertion follows. �

Next, we consider the case where �X/S = X. This occurs only if the characteristic
of K is p > 0.

Lemma 4.2.4. — Assume �X/S = X. Then, there exists a canonical isomorphism �1
S ⊗

OX → H1(LX/S(log D)) of invertible OX-modules.

Proof. — Let K0 = Kp ⊂ K and put S0 = Spec OK0. The composition of closed
immersions X → (X ×S X)∼ → (X ×S0 X)∼ defines a distinguished triangle

(4.2.4.1) → Lδ∗L(X×SX)∼/(X×S0 X)∼[1] → LX/S0(log D) → LX/S(log D) →
of cotangent complexes. By the Cartesian diagram

(X ×S X)∼ −−−→ (X ×S0 X)∼
⏐⏐

⏐⏐

S −−−→ S ×S0 S,
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we obtain a surjection �1
S/S0

⊗OS OX → N(X×SX)∼/(X×S0 X)∼ . We claim that this map and
the map H1LX/S(log D) → N(X×SX)∼/(X×S0 X)∼ defined by (4.2.4.1) are isomorphisms. This
will complete the proof since �1

S/S0
= �1

S is an invertible OS-module.
To show the claim, it suffices to show that the canonical map H1LX/S0(log D) →

H1LX/S(log D) is the 0-map since H0LX/S0(log D) → H0LX/S(log D) is an isomorphism
and H1LX/S(log D) is invertible. We show that H1LX/S0(log D) → H1LX/S(log D) is the
0-map. Since the assertion is local on X, we may assume that there is a regular immer-
sion X → P0 of codimension 1 to a smooth scheme P0 over S0 as in Lemma 4.1.1. It
induces an immersion X → P = P0 ×S0 S to a smooth scheme P over S. Then, the map
H1LX/S0(log D) → H1LX/S(log D) is identified with the canonical map NX/P0 → NX/P of
the conormal sheaves induced by the projection P = P0 ×S0 S → P0. Since X ×S0 S =
X ×P0 P regarded as a Cartier divisor of P is p-times the Cartier divisor X of P, the
assertion follows. �

We study a consequence of Lemma 4.1.3.

Lemma 4.2.5. — Let f : Y → X be as in Lemma 4.1.3 and put n = dim XK + 1 and

n′ = dim YK + 1 respectively. Then, for the closed subschemes �X/S ⊂ X and �Y/S ⊂ Y defined

by the annihilators �n�1
X/S(log D) and �n′

�1
Y/S(log E), the pull-back �X/S ×X Y is a subscheme

of �Y/S.

Proof. — The assertion is local on Y. We consider a Cartesian diagram (4.1.3.1)
satisfying the condition in Lemma 4.1.3. Then, we have a commutative diagram of exact
sequences

(4.2.5.1)

0 −−−−→ f |∗VNU/P −−−−→ f |∗V(�1
P/S(log D̃) ⊗OP OU) −−−−→ f |∗V�1

X/S(log D)|U −−−−→ 0

�
⏐⏐

⏐⏐
⏐⏐

0 −−−−→ NV/Q −−−−→ �1
Q/S(log Ẽ) ⊗OQ OV −−−−→ �1

Y/S(log E)|V −−−−→ 0

The closed subscheme (�X/S ×X Y) ∩ V is the largest closed subscheme where the pull-
back f |∗VNU/P → f |∗V(�1

P/S(log D̃) ⊗OP OU) is the zero-map. Similarly �Y/S ∩ V is the
largest closed subscheme where the pull-back NV/Q → �1

Q/S(log Ẽ) ⊗OQ OV is the zero-
map. Hence the assertion follows from (4.2.5.1). �

Next, we study consequences of Lemma 4.1.6. As loc. cit., we assume that X1

is a regular divisor of X and that D1 = D ∩ X1 is a divisor with simple normal cross-
ings. Let (X ×S X)∼ and (X ×S X)≈ be the log product with respect to D and D′ =
D ∪ X1 respectively and E be the inverse image of X1 by either of the two projections
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(X ×S X)≈ → X. We have Cartesian diagrams

(4.2.6.1)

X1
⊂−−−→ E

⏐⏐
⏐⏐

X
⊂−−−→ (X ×S X)≈,

X1
⊂−−−→ (X1 ×S X1)

∼
⏐⏐

⏐⏐

X
⊂−−−→ (X ×S X)∼

by the definition of E and by the universality of log product, respectively.
First, we consider the case where X1 is flat over S.

Lemma 4.2.6. — Let the notation be as above and assume that X1 is flat over S. Let i :
X1 → X denote the closed immersion. Then, the left Cartesian diagram (4.2.6.1) defines a distinguished

triangle

LX1/S(log D1) → Li∗LX/S

(
log D′)→ OX1 →

on X1.

Proof. — By Lemma 4.1.6.1, the vertical arrows in the left Cartesian dia-
gram (4.2.6.1) are regular immersion of codimension 1. Hence the canonical map
Li∗LX/S(log D′) → MX1/E to the conormal complex is a quasi-isomorphism. Since E →
(X1 ×S X1)

∼ is smooth, the morphisms X1 → E → (X1 ×S X1)
∼ define a distinguished

triangle LX1/S(log D1) → MX1/E → �1
E/(X1×SX1)∼ ⊗ OX1. Since E is a Gm-torsor over

(X1 ×S X1)
∼ splitting on X1, we have a canonical trivialization �1

E/(X1×SX1)∼ ⊗ OX1 →
OX1. Thus, the assertion follows. �

Next, we assume that X1 is contained in the closed fiber XF. Since the immer-
sions X1 → E and X1 → (X1 ×F X1)

∼ are regular immersions of smooth schemes over
F, the Cartesian diagram (4.2.6.1) define the excess conormal complexes M′

X/(X×SX)≈,E
and M′

X/(X×SX)∼,(X1×FX1)∼ as complexes of OX1-modules as in [26, Definition 1.6.3.2]. By
the definitions LX/S(log D) = MX/(X×SX)∼ and LX/S(log D′) = MX/(X×SX)≈ , they fit in the
distinguished triangles

→ M′
X/(X×SX)≈,E →Li∗1LX/S

(
log D′)→ NX1/E →,(4.2.7.1)

→ M′
X/(X×SX)∼,(X1×FX1)∼ →Li∗1LX/S(log D) → �1

X1/F(log D1) →(4.2.7.2)

by [26, Proposition 1.6.4.2]. More concretely, they are described as follows.

Lemma 4.2.7. — Let the notation be as above and assume that X1 is a smooth scheme of

dimension d over F. Let Ns/S be the conormal sheaf mK/m2
K of the closed point s of S.

1. There exists a canonical isomorphism M′
X/(X×SX)≈,E → Ns/S ⊗F OX1[1].

2. There exists a canonical isomorphism M′
X/(X×SX)∼,(X1×FX1)∼ → [Ns/S ⊗F OX1 →

NX1/X]. The complex M′
X/(X×SX)∼,(X1×FX1)∼ on X1 is acyclic outside the intersection X1 ∩ �X/S

where �X/S is defined in Definition 4.2.1.
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Proof. — 1. Let i1 : X1 → X be the closed immersion. Since the immersion X1 → E
is a regular immersion of codimension d + 1, the canonical surjection i∗1�

1
X/S(log D′) →

NX1/E is an isomorphism. Hence, by the distinguished triangle (4.2.7.1), we obtain
an isomorphism M′

X/(X×SX)≈,E → L1i∗1LX/S(log D′) [1]. Thus the assertion follows from
Lemma 4.2.3.3 and Lemma 4.2.4.

2. Similarly as Lemma 4.2.2.2, we have a distinguished triangle → LX/S(log D) →
LX/S(log D′) → OX1 → and hence a distinguished triangle → Li∗1LX/S(log D) →
Li∗1LX/S(log D′) → Li∗1 OX1 →. By (4.2.7.1), (4.2.7.2) and by the exact sequence 0 →
�1

X1/F(log D1) → NX1/E → OX1 → 0, we obtain a distinguished triangle

→ M′
X/(X×SX)∼,(X1×FX1)∼ → M′

X/(X×SX)≈,E1
→ L1i∗1 OX1[1] → .

Hence the assertion follows from 1 and the isomorphism L1i∗1 OX1 → NX1/X.

On the complement of �X/S, the immersion X1 → XF is an open immersion and
the complex M′

X/(X×SX)∼,(X1×FX1)∼ is acyclic. �

Assume that the underlying set of the closed fiber XF is a subset of D and put
n = dim XK + 1. We give a variant of Lemma 4.1.4 and Lemma 4.2.3. We define a
variant (X ×S X)∼ of the log product by the Cartesian diagram

(X ×S X)∼ −−−→ (X ×S X)∼
⏐⏐

⏐⏐

S −−−→ (S ×S S)∼

where (S ×S S)∼ is the log product defined with respect to the Cartier divisor s of S.

Lemma 4.2.8. — Let X be a regular flat scheme of finite type over S and D ⊂ X be a divisor

with simple normal crossings. Assume that the underlying set of the closed fiber XF is a subset of D.

Then the scheme (X ×S X)∼ is flat and locally a hypersurface over X with respect to either of

the projections.

Proof. — The log scheme X with the log structure defined by D is log flat ([26,
Section 4.3]) and log locally of complete intersection ([26, Definition 4.4.2]) over S with
the log structure defined by the closed point, similarly as [26, Lemma 5.2.1]. Since the
projection (X×S X)∼ → X is strict, it is flat. Since the assertion is local, we take a regular
immersion U → P of codimension 1 as in Lemma 4.1.1. Then, we have a closed immer-
sion (U ×S X)∼ → (P ×S X)∼. Then, since (P ×S X)∼ is smooth over X and (U ×S X)∼

is locally of complete intersection, the immersion (U ×S X)∼ → (P ×S X)∼ is a regular
immersion by Lemma 3.1.8. We verify that it is a regular immersion of codimension 1 by
reducing to the case where D is empty. �

We also define a variant LX/S(log D/ log F) of the logarithmic cotangent complex
to be the conormal complex MX/(X×SX)∼ . The coherent OX-module �1

X/S(log D/ log F)
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defined as H0(LX/S(log D/ log F)) is the conormal sheaf NX/(X×SX)∼ . For a regular im-
mersion U → P as in Lemma 4.1.1, we have shown in the proof of Lemma 4.2.8
that the immersion (U ×S X)∼ → (P ×S X)∼ is a regular immersion of codimen-
sion 1. The immersions U → (U ×S X)∼ → (P ×S X)∼ define a distinguished triangle
δ|∗UN(U×SX)∼/(P×SX)∼ → NU/(P×SX)∼ → MU/(U×SX)∼ →. Similarly as for LX/S(log D), it de-
fines a quasi-isomorphism

(4.2.9.1)
[
N(U×SX)∼/(P×SX)∼ ⊗ OU → �1

P/S(log D̃) ⊗OP OU

]→ LX/S(log D/ log F)|U.

This shows that the logarithmic cotangent complex LX/S(log D/ log F) satisfies the con-
dition (L(n)) in Section 3.2. If there exists a dense open subscheme of X smooth over S,
the coherent OX-module �1

X/S(log D/ log F) is locally free of rank n − 1 on a dense open
subscheme and the map N(U×SX)∼/(P×SX)∼ ⊗ OU → �1

P/S(log D̃) ⊗OP OU in (4.2.9.1) is an
injection.

The immersions X → (X ×S X)∼ → (X ×S X)∼ define a distinguished triangle

(4.2.9.2) Lδ∗L(X×SX)∼/(X×SX)∼ → LX/S(log D) → LX/S(log D/ log F) → .

Since (S×S S)∼ = Spec OK[U±1]/((U−1)π) for a prime element π , the conormal sheaf
NS/(S×SS)∼ is isomorphic to F and is generated by d logπ . Hence, the distinguished triangle
(4.2.9.2) gives an exact sequence

(4.2.9.3) OXF → �1
X/S(log D) → �1

X/S(log D/ log F) → 0.

If there exists a dense open subscheme of X smooth over S, the first arrow OXF →
�1

X/S(log D) is an injection by Lemma 4.2.3.2. If X is nowhere smooth over S, the second
arrow �1

X/S(log D) → �1
X/S(log D/ log F) is an isomorphism of locally free OX-modules

of rank n + 1. We put �n
X/S(log D/ log F) = �n�1

X/S(log D/ log F).

Lemma 4.2.9. — Let Z be the closed subscheme of X defined by the ideal Ann �n
X/S(log D/

log F) and i : Z → X be the closed immersion. Then the restriction of the invertible OZ-module

L1i∗�1
X/S(log D/ log F) to the reduced closed fiber ZF,red is trivial.

Proof. — It suffices to consider the cases where the complement X \ Z is dense
and Z = X respectively. First, we prove the case where the complement X \ Z is dense.
In this case, the proof is similar to [26, Lemma 5.3.5.1]. Let i′ : ZF,red → X be the
immersion. Similarly as in Lemma 4.2.3.3, the restriction of the invertible OZ-module
L1i∗�1

X/S(log D/ log F) to ZF,red is isomorphic to L1i′∗�1
X/S(log D/ log F).

By the exact sequence (4.2.9.3) together with the injectivity of OXF → �1
X/S(log D),

we obtain an exact sequence

0 → L1i′∗OXF → L1i′∗�1
X/S(log D) → L1i′∗�1

X/S(log D/ log F)

→ i′∗OXF → i′∗�1
X/S(log D) → i′∗�1

X/S(log D/ log F) → 0.
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By a local description of Z similar to that given before Lemma 4.2.3, it follows that the
last map i′∗�1

X/S(log D) → i′∗�1
X/S(log D/ log F) is an isomorphism of locally free OZF,red -

modules. Hence the map L1i′∗�1
X/S(log D/ log F) → i′∗OXF is a surjection of invertible

OZF,red -modules and is an isomorphism. Therefore, the map L1i′∗OXF → L1i′∗�1
X/S(log D)

is also an isomorphism of invertible OZF,red -modules. Since L1i′∗OXF is isomorphic to
OZF,red , the assertion follows.

We show the case where Z = X. The proof in this case is similar to that
of Lemma 4.2.4. We show that there exists a canonical isomorphism �1

S ⊗ OX →
H1LX/S(log D/ log F) of invertible OX-modules. Let K0 = Kp ⊂ K and put S0 =
Spec OK0 as in the proof of Lemma 4.2.4. The composition of closed immersions X →
(X ×S X)∼ → (X ×S0 X)∼ defines a distinguished triangle

(4.2.9.4) → Lδ∗L(X×SX)∼/(X×S0 X)∼[1] → LX/S0(log D) → LX/S(log D/ log F) →
of cotangent complexes. By the Cartesian diagram

(X ×S X)∼ −−−→ (X ×S0 X)∼
⏐⏐

⏐⏐

S −−−→ (S ×S0 S)∼,

we obtain a surjection �1
S/S0

(log F)⊗OS OX → N(X×SX)∼/(X×S0 X)∼ . Similarly as in the proof
of Lemma 4.2.4, this map and the map H1LX/S(log D/ log F) → N(X×SX)∼/(X×S0 X)∼ de-
fined by (4.2.9.4) are isomorphisms. This complete the proof since �1

S/S0
(log F) is isomor-

phic to OS. �

4.3. Intersection product with the log diagonal. — Let X be a regular flat separated
scheme of finite type over S = Spec OK and D ⊂ X be a divisor with simple normal
crossings. We put n = dim XK + 1. We define the localized intersection product with the
log diagonal as follows.

We recall the notation from the previous subsection. The log product (X ×S X)∼ is
defined with respect to the family D = (Di)i∈I of irreducible components of D. The log-
arithmic cotangent complex LX/S(log D) is defined as the conormal complex MX/(X×SX)∼

of the log diagonal δ : X = �
log
X → (X ×S X)∼ and we have a canonical isomorphism

H0(LX/S(log D)) → �1
X/S(log D). We define a closed subscheme �X/S of X to be that

defined by the annihilator ideal of �n
X/S(log D) = �n(�1

X/S(log D)). Let L�X/S denote the
invertible O�X/S -module L1i∗LX/S(log D) where i : �X/S → X denote closed immersion.

We consider the following special case of Definition 3.3.3. We consider X and the
log product (X ×S X)∼ as S and X in Definition 3.3.3. The log product (X ×S X)∼ is
locally a hypersurface of relative dimension n − 1 over X by either of the two projections
by Lemma 4.1.4. As V in Definition 3.3.3, we take X regarded as a closed subscheme of
(X ×S X)∼ by the log diagonal. Since the canonical map δ∗�1

(X×SX)∼/X → �1
X/S(log D)
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is an isomorphism, the intersection Z ×X V ⊂ V in Definition 3.3.3 is �X/S ⊂ X in our
setting.

We consider a scheme W of finite type over S and a morphism g : W → (X×S X)∼

over S as W → X in Definition 3.3.3. Then, ZT ⊂ T ⊂ W in Definition 3.3.3 are the
inverse images g−1(�X/S) ⊂ g−1(�

log
X ) ⊂ W where �

log
X denotes X regarded as a closed

subscheme of (X ×S X)∼ by the log diagonal. Since the canonical map Lδ∗L(X×SX)∼/X →
LX/S(log D) is an isomorphism, the pull-back of LZ to Z ×X V in Definition 3.3.3 is the
invertible sheaf L�X/S = L1i∗LX/S(log D) on �X/S in our setting. By Lemma below, under
the assumption (A) there, the group G(ZT)/LZ in Definition 3.3.3 is G(g−1(�X/S)) in our
setting.

Lemma 4.3.1. — Let the notation be as above. In particular, let W be a scheme of finite type over

S and g : W → (X ×S X)∼ a morphism over S. Assume that the morphism g : W → (X ×S X)∼

satisfies the condition:

(A) The inverse image g−1(�X/S) is supported on the closed fiber WF set-theoretically.

Then the multiplication of the pull-back of the invertible O�X/S-module L�X/S on the Grothendieck group

G(g−1(�X/S)) is the identity.

Proof. — Since the Grothendieck group G(g−1(�X/S)) is generated by the push
forward of the classes of the normalizations of integral closed subschemes, it follows from
Lemma 4.2.3.3 and Lemma 4.2.4. �

Thus, we make the following definition as in [26, Definition 5.1.5].

Definition 4.3.2. — Let X be a regular flat separated scheme of finite type over S = Spec OK

and D ⊂ X be a divisor with simple normal crossings. Let W be a scheme of finite type over S and

g : W → (X ×S X)∼ be a morphism over S satisfying the condition (A) in Lemma 4.3.1. Then, we

define the localized intersection product with the log diagonal

(4.3.2.1)
((

�
log
X ,

))
(X×SX)∼ : G(W) → G

(
g−1(�X/S)

)

as the product (3.3.3.1) with the class of F = OX.

In [26, Definition 5.1.5], we defined the localized intersection product with the log
diagonal under the assumption that the generic fiber is smooth and D = XF. Here, we
replace the assumption by the condition (A) in Lemma 4.3.1.

The logarithmic localized intersection product ((�
log
X , ))(X×SX)∼ : G(W) →

G(g−1(�X/S)) preserves the topological filtration in the sense that it induces a map

FqG(W) → Fq−nG
(
g−1(�X/S)

)

[26, Theorem 3.4.3.1].
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If we take a closed immersion A → (X ×S X)∼ as W → (X ×S X)∼, the condition
(A) in Lemma 4.3.1 can be written as

(A′) The intersection δ−1(A) ∩ �X/S is supported on the closed fiber XF set-
theoretically.

Under this assumption, the localized intersection product with the log diagonal

(4.3.2.2)
((

,�
log
X

))
(X×SX)∼ : G(A) → G

(
δ−1(A) ∩ �X/S

)

is defined as the product (3.3.3.1) with the class of G = OX by taking X → (X ×S X)∼ as
W → X in Definition 3.3.3. By the symmetry of T or, we have

((
,�

log
X

))
(X×SX)∼ = ((

�
log
X ,

))
(X×SX)∼ .

The localized intersection product with log diagonal has the following functoriality.

Lemma 4.3.3. — Let Y be another regular flat separated scheme of finite type over S and E ⊂ Y
be a divisor with simple normal crossings. Let (Y ×S Y)∼ be the log product with respect to E and we

put V = Y \ E. Let f : Y → X be a morphism over S such that f (V) ⊂ U = X \ D and we consider

the map (f × f )∼ : (Y ×S Y)∼ → (X ×S X)∼ of log products.

Let A be a closed subscheme of (X ×S X)∼ satisfying the condition (A′) after Definition 4.3.2
and assume that AY = (f × f )∼−1(A) ⊂ (Y ×S Y)∼ also satisfies the corresponding condition that

δ−1
Y (AY) ∩ �Y/S is supported on the closed fiber YF set-theoretically. Let f ∗ : G(δ−1

X (A) ∩ �X/S) →
G(δ−1

Y (AY) ∩ �Y/S) be the pull-back by f : Y → X.

Then the pull-back (f × f )∼∗ : G(A) → G(AY) by (f × f )∼ : (Y×S Y)∼ → (X×S X)∼

is defined. Further, the diagram

G(A)
(( ,�

log
X ))−−−−→ G(δ−1

X (A) ∩ �X/S)

(f ×f )∼∗
⏐⏐

⏐⏐f ∗

G(AY)
(( ,�

log
Y ))−−−−→ G(δ−1

Y (AY) ∩ �Y/S)

is commutative.

Proof. — By Lemma 4.2.5, we have f −1(�X/S) ⊂ �Y/S. Since f −1(δ−1
X (A)) =

δ−1
Y (AY), the map G(δ−1

X (A) ∩ �X/S) → G(δ−1
Y (AY) ∩ �Y/S) is defined by the assump-

tion (A′).
By Corollary 4.1.5, the map (f × f )∼ : (Y ×S Y)∼ → (X ×S X)∼ is of finite tor-

dimension. Hence, the pull-back (f × f )∼∗ : G(A) → G(AY) by (f × f )∼ : (Y ×S Y)∼ →
(X ×S X)∼ is defined.

We apply the associativity, Lemma 3.3.6, by taking A → (X ×S X)∼ ← X ←
Y as V → X ← W ← W′. Then the composition via upper right is equal to the
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map (( ,�
log
Y ))(X×SX)∼ . We also apply the associativity, Lemma 3.3.7, by taking A →

(X ×S X)∼ ← (Y ×S Y)∼ ← Y as V → X ← X′ ← W′. Then, the composition via lower
left is also equal to the same map. �

We establish an important property that the localized intersection product with the
log diagonal is independent of the boundary, in Proposition 4.3.5 below. We begin with
preliminary computations. Let X1 be a regular divisor of X such that the intersection
D1 = X1 ∩ D is a divisor of X1 with simple normal crossings. Let D = (Di)i∈I be the
family of irreducible components of D and we consider the family D1 = (Di ∩ X1)i∈I of
smooth divisors of X1. We identify the log product (X1 ×S X1)

∼ with respect to D1 with
the inverse image of X1 ×S X1 by the canonical map (X ×S X)∼ → X ×S X. The sum
D′ = D ∪ X1 is a divisor of X with simple normal crossings.

We consider the log product (X ×S X)≈ with respect to D′, the log diagonal map
δ : X → (X ×S X)≈ and the canonical map (X ×S X)≈ → (X ×S X)∼. The inverse
image E of (X1 ×S X1)

∼ ⊂ (X ×S X)∼ by (X ×S X)≈ → (X ×S X)∼ is a Gm-torsor
over (X1 ×S X1)

∼ by Lemma 1.3.2. The pull-back of the Gm-torsor E by the log di-
agonal X1 → (X1 ×S X1)

∼ is trivialized by the restriction to X1 of the log diagonal
X → (X ×S X)≈. We identify E ×(X1×SX1)∼ X1 with Gm,X1 and the restriction of the log
diagonal X1 → E ×(X1×SX1)∼ X1 with the 1-section 1X1 . They are summarized in the
Cartesian diagram

(4.3.4.1)

Gm,X1 −−−→ E −−−→ (X ×S X)≈
⏐⏐

⏐⏐
⏐⏐

X1 −−−→ (X1 ×S X1)
∼ −−−→ (X ×S X)∼.

Lemma 4.3.4. — Let X1 be a regular irreducible divisor of X such that D1 = X1 ∩ D is a

divisor of X1 with simple normal crossings. Let (X ×S X)≈ denote the log product with respect to D′ =
D∪X1 and let �′

X/S be the closed subscheme of X defined by the annihilator ideal Ann �n
X/S(log D′).

Let A be a closed subscheme of E ⊂ (X ×S X)≈ satisfying the condition (A′) after Defini-

tion 4.3.2. We identify E×(X1×SX1)∼ X1 with Gm,X1 and the section X1 → E×(X1×SX1)∼ X1 defined

by the restriction of the log diagonal with 1X : X1 → Gm,X1 . Then, the intersection product

(4.3.4.2)
((

,�
log
X

))
(X×SX)≈ : G(A) → G

(
δ−1(A) ∩ �′

X/S

)

with the log diagonal satisfies the following.

1. Assume that X1 is flat over S. Then the composition A → E → (X1 ×S X1)
∼ satisfies the

condition (A) in Lemma 4.3.1 and the localized intersection product

(4.3.4.3)
((

�
log
X1

,
))

(X1×SX1)∼
: G(A) → G(A ∩ Gm,�X1/S)
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with the log diagonal X1 → (X1 ×S X1)
∼ is defined. Further, we have �X1/S = �′

X/S ∩ X1 and the

map (4.3.4.2) is induced by the composition

(4.3.4.4) G(A)
((�

log
X1

, ))(X1×SX1)∼−−−−−−−−−−→ G(A ∩ Gm,�X1/S)
( ,1X1 )Gm,X1−−−−−−→ G(δ−1(A) ∩ �X1/S).

2. Assume that X1 is a subscheme of the closed fiber XF. Then, we have X1 ⊂ �′
X/S and the

map on the graded quotients (( ,�
log
X ))(X×SX)≈ : GrF

•G(A) → GrF
•−nG(δ−1(A) ∩ �′

X/S) induced

by (4.3.4.2) is induced by the usual intersection product

(4.3.4.5) G(A)
( ,1X1 )E−−−−→ G(δ−1(A) ∩ X1).

Proof. — 1. By Lemma 4.2.6, we have an exact sequence 0 → �1
X1/S(log D1) →

�1
X/S(log D′) ⊗ OX1 → OX1 → 0. This defines an isomorphism �n−1

X1/S(log D1) →
�n

X/S(log D′) ⊗ OX1. Hence, we have �X1/S = �′
X/S ∩ X1. Thus the condition (A′) for

A → (X ×S X)≈ implies the condition (A) for A → (X1 ×S X1)
∼.

By Lemma 4.1.6.1, E is a Cartier divisor of (X×S X)≈ and we have (E,�
log
X )(X×SX)≈

= [�log
X1

]. We apply Lemma 3.3.4 to the diagram

A ←−−− A ∩ X1
⏐⏐

⏐⏐

E ←−−− X1
⏐⏐

⏐⏐

(X ×S X)≈ ←−−− X

Then, the map (4.3.4.2) is the same as (( ,1X1))E : G(A) → G(δ−1(A) ∩ �X1/S). Further
we apply Lemma 3.3.6 by taking the upper line in the Cartesian diagram

E ←−−− Gm,X1 ←−−− X1
⏐⏐

⏐⏐

(X1 ×S X1)
∼ ←−−− X1

as X ← W ← W′ on the lower line in the diagram of Lemma 3.3.6. Then the map
(( ,1X1))E : G(A) → G(δ−1(A) ∩ �X1/S) is equal to the composition of (( , [Gm,X1]))E :
G(A) → G(A ∩ Gm,�X1/S) with the usual intersection product ( ,X1)Gm,X1

: G(A ∩
Gm,�X1/S) → G(δ−1(A) ∩ �X1/S). Since E is flat over (X1 ×S X1)

∼, the first map
(( , [Gm,X1]))E : G(A) → G(A ∩ Gm,�X1/S) is the same as (4.3.4.3)

2. We show X1 ⊂ �′
X/S. Since X1 is assumed irreducible, it suffices to show that

the generic point ξ1 of X1 is contained in �′
X/S. It suffices to consider the case where

the complement X \ �′
X/S is dense. Then, we have an exact sequence 0 → OXF →
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�1
X/S(log D′) → �1

X/S(log D′/ log F) → 0 on a neighborhood ξ1. By the assumption that
the complement X\�′

X/S is dense, the free part of the module �1
X/S(log D′)ξ1 over the dis-

crete valuation ring OX,ξ1 has rank n − 1. Since it is not torsion free, the smallest number
of generators is n. Hence ξ1 is contained in �′

X/S as required.
We apply Lemma 3.3.5 by taking E → (X ×S X)≈ ← �

log
X as V → X ← W.

Then, the localized intersection product (( ,�
log
X ))(X×SX)≈ is equal to the usual intersec-

tion product ( , ((E,�
log
X ))(X×SX)≈)E. By the excess intersection formula (3.3.5.1), we have

((E,�
log
X ))(X×SX)≈ = c0(M′

X/(X×SX)≈,E) ∩ [X1]. By Lemma 4.2.7.1, the right hand side is
equal to 1X1 . Hence, the assertion follows. �

Proposition 4.3.5. — Let X be a regular flat separated scheme of finite type over S and

D ⊂ X be a divisor with simple normal crossings. We put U = X \ D. Let A be a closed subscheme of

(X ×S X)∼ satisfying the condition (A′) after Definition 4.3.2 and the following condition:

(B) For each irreducible component Di of D, we regard Gm,Di
as a closed subscheme of

(X ×S X)∼ as in (4.3.4.1). Then, there exists an integer li ≥ 1 such that the intersec-

tion A ∩ Gm,Di
is supported on the subscheme μli,Di

⊂ Gm,Di
.

We put A◦ = A ∩ (U ×S U). Then, there exists a unique map GrF
•G(A◦) → GrF

•−nG(δ−1(A) ∩
�X/S), also denoted by (( ,�

log
X )), that makes the diagram

(4.3.5.1) GrF
•G(A)

(( ,�
log
X ))

restriction

GrF
•−nG(δ−1(A) ∩ �X/S)

GrF
•G(A◦)

commutative.

Proof. — For each irreducible component Di of D, let Ei be its inverse image by
either of the two projections (X ×S X)∼ → X and we put Ai = A ∩ Ei. By the exact
sequence

⊕
i GrF

•G(Ai) → GrF
•G(A) → GrF

•G(A◦) → 0, it suffices to show that the com-
position of

(4.3.5.2) GrF
•G(Ai) −−−→ GrF

•G(A)
(( ,�

log
X ))−−−−→ GrF

•−nG(δ−1(A) ∩ �X/S)

is the zero map for each i.
First, we consider the case where Di is flat over S. By Lemma 4.3.4.1, the compo-

sition of (4.3.5.2) is induced by the composition of

G(Ai)
(( ,�

log
Di

))(Di×SDi )
∼

−−−−−−−−−→ G(Ai ∩ Gm,�Di/S)
( ,1Di

)Gm,Di−−−−−→ G(δ−1(Ai) ∩ �Di/S).
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Hence, it suffices to show the second map is the zero-map. By the assumption (B), the
intersection Ai ∩ Gm,Di

is a closed subscheme of μli,Di
. Hence, if the characteristic of K is

p > 0, the assertion follows from Lemma 4.3.6 below. If the characteristic of K is 0, the
generic fiber �Di/S ×S Spec K is empty. Hence it also follows from Lemma 4.3.6 below.

Next, we consider the case where Di is a subscheme of the closed fiber XF. In this
case, by Lemma 4.3.4.2, the composition of (4.3.5.2) is induced by the composition of

G(Ai)
( ,�

log
Di

)(Di×FDi )
∼

−−−−−−−−→ G(Ai ∩ Gm,Di
)

( ,1Di
)Gm,Di−−−−−→ G(Ai ∩ �

log
Di

).

Hence, it suffices to show the second map is the zero-map. By the assumption (B), the
assertion in this case is also reduced to the following Lemma 4.3.6.

Lemma 4.3.6. — Let D be a noetherian scheme over Fp and l ≥ 1 be an integer. Let A be a

closed subscheme of μl,D ⊂ Gm,D. Then, the intersection product

( ,1D)Gm,D : G(A) → G(A ∩ 1D)

with the unit section 1D ⊂ μl,D is the zero map.

Proof. — By replacing l by its p-part l ′, we may assume that l is a power of the
characteristic p > 0 of F since μl′,D is a closed and open subscheme of μl,D and has the
same intersection with the 1-section. Further, since the closed immersion A ∩ 1D → A
defined by a nilpotent ideal induces an isomorphism G(A∩1D) → G(A), we may assume
A is a closed subscheme of 1D. For a coherent O1D -module F , we have

([F ],1D

)
Gm,D

= [
T or

OGm,D
0 (F , O1D)

]− [
T or

OGm,D
1 (F , O1D)

]

= [F ] − [F ] = 0.

Hence the assertion follows. �

The following Lemma, analogous to Lemma 4.3.4, will be used in the proof of
Proposition 6.1.1, which in turn will be used in the proof of a blow-up formula Proposi-
tion 6.2.1.

Lemma 4.3.7. — Let X1 be a regular divisor of X such that D1 = X1 ∩ D is a divisor of X1

with simple normal crossings. Let (X ×S X)∼ denote the log product with respect to D and let �X/S be

the closed subscheme of X defined by the annihilator ideal Ann �n
X/S(log D). We regard (X1 ×S X1)

∼

as a closed subscheme of (X ×S X)∼ as in (4.3.4.1).
Let A be a closed subscheme of (X1 ×S X1)

∼ satisfying the condition (A′) after Definition 4.3.2
and let i : (X1 ×S X1)

∼ → (X ×S X)∼ be the closed immersion. Then, the map on the graded pieces
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(4.3.7.1)
((

,�
log
X

))
(X×SX)∼ : GrF

•G(A) → GrF
•−nG

(
δ−1(A) ∩ �X/S

)

induced by the intersection product with the log diagonal is computed as follows.

1. Assume X1 is flat over S. Then, we have �X1/S = �X/S ∩ X1 and the map (4.3.7.1) is the

composition of

(4.3.7.2) GrF
•G(A)

(( ,�
log
X1

))(X1×SX1)∼−−−−−−−−−→ GrF
•−(n−1)G

(
δ−1(A) ∩ �X1/S

)

−i∗◦c1(NX1/X)−−−−−−−→ GrF
•−nG

(
δ−1(A) ∩ �X1/S

)
.

2. Assume that X1 is a subscheme of the closed fiber XF. Then, the map on the graded pieces

induced by (4.3.7.1) is the composition of

(4.3.7.3)
GrF

•G(A)
( ,�

log
X1

)(X1×FX1)∼−−−−−−−−−→ GrF
•−(n−1)G

(
δ−1(A)

)

−c1([Ns/S⊗OX1→NX1/X])X1∩�X/S−−−−−−−−−−−−−−−−−→ GrF
•−nG

(
δ−1(A) ∩ �X/S

)
.

Proof. — 1. We have shown the equality �X1/S = �X/S ∩ X1 at the beginning
of the proof of Lemma 4.3.4.1. By Lemma 4.1.6.1, the immersion (X1 ×S X1)

∼ →
(X ×S X)∼ is a regular immersion of codimension 2. Since the excess conormal sheaf
Ker((pr∗

1NX1/X ⊕ pr∗
2NX1/X)|X1 → NX1/X) is isomorphic to NX1/X, we have ((X1 ×S

X1)
∼,�

log
X )(X×SX)∼ = −c1(NX1/X) ∩ �

log
X1

. We apply Lemma 3.3.4 by taking (X ×S X)∼ ⊃
(X1 ×S X1)

∼,X ⊃ X1 as X ⊃ X′,W ⊃ W′. Then, the map (4.3.7.1) is induced by
(( ,−c1(NX1/X) ∩ �

log
X1

))(X1×SX1)∼ : G(A) → G(δ−1(A) ∩ �X1/S). Further, it is equal to the
composition of (4.3.7.2).

2. We apply Lemma 3.3.5 by taking (X1 ×S X1)
∼ → (X ×S X)∼ ← �

log
X as V →

X ← W. Then, the map (4.3.7.1) is equal to the usual intersection product
(
,
((

(X1 ×S X1)
∼,�

log
X

))
(X×SX)∼

)
(X1×SX1)∼

with (((X1 ×S X1)
∼,�

log
X ))(X×SX)∼ = −c1(M′

X/(X×SX)∼,(X1×SX1)∼) ∩ [X1]. By Lemma
4.2.7.2, the right hand side is equal to −c1([Ns/S ⊗ OX1 → NX1/X])X1∩�X/S ∩ �

log
X1

. Hence,
the assertion follows. �

If (X \ D)F = ∅, we have an alternative construction. Let A ⊂ (X ×S X)∼ ⊂
(X ×S X)∼ be a closed subscheme satisfying the condition (A). Then, a localized intersec-
tion product

(4.3.7.4)
((

,�
log
X

))
(X×SX)∼ : G(A) → G

(
δ−1(A) ∩ �X/S

)
.

is defined similarly as (4.3.2.1), by Lemma 4.2.9. We show that it gives the same invariants.
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Proposition 4.3.8. — Let X be a regular flat separated scheme of finite type over S and D ⊂ X
be a divisor with simple normal crossings. We assume (X \ D)F = ∅.

Then, for a closed subscheme A of (X ×S X)∼ satisfying the condition (A), we have an equality

((
,�

log
X

))
(X×SX)∼ = ((

,�
log
X

))
(X×SX)∼

of maps GrF
•G(A) → GrF

•−nG(δ−1(A) ∩ �X/S).

Proof. — Let W ⊂ A be an integral closed subscheme. If W is a subscheme of �
log
X ,

let π : W′ → W denote the identity of W. If not, let π : W′ → W be the blow-up at
W′ ∩ �

log
X . Since G(A) is generated by the classes π∗[W′] for integral closed subschemes

W of A, it suffices to show the equality ((W′,�log
X ))(X×SX)∼ = ((W′,�log

X ))(X×SX)∼ .

We put T′ = W′ ×(X×SX)∼ �
log
X ,Z = �X/S, d = dim WK + 1 and let ϕ : T′ → X

denote the canonical map. Then, by the excess intersection formula [26, Theorem 3.4.3],
we have

((
W′,�log

X

))
(X×SX)∼ = π∗

(
(−1)d cd

T′
ZT′
(
M′

X/(X×SX)∼,W′
)∩ [

T′]),
((

W′,�log
X

))
(X×SX)∼ = π∗

(
(−1)d cd

T′
ZT′
(
M′

X/(X×SX)∼,W′
)∩ [

T′]).

By the distinguished triangles

→ OXF → LX/S(log D) → LX/S(log D/ log F) → 0,

→ M′
X/(X×SX)∼,W′ → Lϕ∗LX/S(log D) → NT′/W′ →,

→ M′
X/(X×SX)∼,W′ → Lϕ∗LX/S(log D/ log F) → NT′/W′ →,

and by c1(OXF) ∩ [T′] = 0, we obtain an equality cd
T′
ZT′ (M

′
X/(X×SX)∼,W′) ∩ [T′] =

cd
T′
ZT′ (M

′
X/(X×SX)∼,W′) ∩ [T′]. Thus the assertion follows. �

The following Proposition shows that the localized intersection product does not
depend on the choice of the base S.

Proposition 4.3.9. — Let X be a regular flat separated scheme of finite type over S and D ⊂ X
be a divisor with normal crossings. Assume that K is a finite extension of a complete discrete valuation

field K′ and put OK′ = K′ ∩ OK. Let A be a closed subscheme of (X ×S X)∼ satisfying the condition

(A′) after Definition 4.3.2 with respect to S′ = Spec OK′ . Namely, we assume that δ−1(A) ∩ �X/S′

is contained in XF.

Then, we have an inclusion �X/S ⊂ �X/S′ and an equality

((
,�

log
X

))
(X×S′ X)∼ = ((

,�
log
X

))
(X×SX)∼

of maps GrF
•G(A) → GrF

•−nG(δ−1(A) ∩ �X/S′).
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Proof. — The proof is similar to that of Proposition 4.3.8. Let W ⊂ A be an integral
closed subscheme and let π : W′ → W be as in the proof of Proposition 4.3.8. We put
T′ = W′ ×(X×SX)∼ �

log
X , Z′ = �X/S′ , and d = dim WK +1. Then, by the excess intersection

formula [26, Theorem 3.4.3], we have
((

W′,�log
X

))
(X×SX)∼ = π∗

(
(−1)d cT′

d,ZT′
(
M′

X/(X×SX)∼,W′
)∩ [

T′]),
((

W′,�log
X

))
(X×S′ X)∼ = π∗

(
(−1)d cT′

d,ZT′
(
M′

X/(X×S′ X)∼,W′
)∩ [

T′]).

Using the distinguished triangle �1
S/S′ ⊗L OX → LX/S′(log D) → LX/S(log D) →, we com-

plete the proof similarly as in the proof of Proposition 4.3.8. �

5. Invariants of wild ramification

We keep fixing a complete discrete valuation field K with perfect residue field F of
characteristic > 0 and S = Spec OK.

In Section 5.3, we define invariants of wild ramification for a finite étale morphism
f : V → U of regular flat separated schemes of finite type over S, such that the generic
fiber VK → UK is tamely ramified with respect to K (Definition 2.4.1). The definition
uses the localized intersection product with the log diagonal constructed in Section 4.3.
The definition is extended to cover the case where U and V are not assumed regular at
the end of Section 6.2 as a consequence of the excision formula, Theorem 6.2.2. On the
counterpart for a finite étale morphism f : V → U of smooth separated schemes of finite
type over F defined in [27], we also state some complements. In Section 5.4, we establish
elementary properties of the invariants of wild ramification defined in Section 5.3. We
define the logarithmic different and the Lefschetz classes and derive their basic properties
analogous to the classical ones.

Before defining the invariants in the general case, we define and compute the loga-
rithmic different and the Lefschetz class using regular schemes containing U and V as the
complements of divisors with simple normal crossings in Section 5.1. We introduce the
target groups where the invariants of wild ramification take values as certain projective
limits with respect to the system of compactifications in Section 5.2. We also introduce in
Theorem 5.3.9 a variant that will be used in the case where K is of characteristic 0, in
Section 7.5.

5.1. Logarithmic different and the Lefschetz class. — Let Y be a regular flat separated
scheme of finite type over S = Spec OK and V ⊂ Y be the complement of a divisor E with
simple normal crossings. Let f : V → U be a finite étale morphism of separated schemes
of finite type over S. We consider the family E = (Ei)i∈I of irreducible components of E
and we assume that the closed subscheme �E

V/UY ⊂ Y (Definition 2.1.2.1) is supported
on the closed fiber.
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By the assumption that V → U is finite étale, the diagonal �V is an open and closed
subscheme of V ×U V. The closure A of (V ×U V) \ �V in the log product (Y ×S Y)∼ =
(Y×S Y)∼

E satisfies the condition (A′) after Definition 4.3.2 since �E
V/U is the inverse image

δ−1(A) by the log diagonal δ : Y → (Y ×S Y)∼.
We also assume that there exists a separated scheme X of finite type over S con-

taining U as the complement of a Cartier divisor and that f : V → U is extended to a
morphism f̄ : Y → X over S satisfying f̄ −1(U) = V. Then, by Lemma 1.3.2.2, the same
A satisfies the condition (B) in Proposition 4.3.5. Thus, by applying the map (4.3.5.1), we
obtain

((
(V ×U V) \ �V,�

log
Y

))
(Y×SY)∼ ∈ F0G

(
�E

V/UY
)
.

Definition 5.1.1. — Let Y be a regular flat separated scheme of finite type over S and V ⊂ Y
be the complement of a divisor E of Y with simple normal crossings. Let f : V → U be a finite étale

morphism of separated schemes of finite type over S.

We assume that the closed subset �E
V/UY (Definition 2.1.2.1) defined for the family E = (Ei)i∈I

of irreducible component of E is supported on the closed fiber. We also assume that there exists a separated

scheme X of finite type over S containing U as the complement of a Cartier divisor and that f : V → U
is extended to a morphism f̄ : Y → X over S satisfying f̄ −1(U) = V.

Then, we define the the logarithmic different Dlog
V/U,Y ∈ F0G(�E

V/UY) by

Dlog
V/U,Y = ((

V ×U V \ �V,�
log
Y

))
(Y×SY)∼ .

We compute the logarithmic different explicitly using regular models. It will imply
in particular (Corollary 5.1.3) that if U = Spec L and V = Spec M for finite separable
extensions L ⊂ M of K, we have

(5.1.1.1) Dlog
V/U,Y = lengthOM

�1
OM/OL

(log/ log) = lengthOM
�1

OM/OL
− (eM/L − 1)

in Z = F0G(Spec OM/mM). Recall that lengthOM
�1

OM/OL
is the classical different.

We consider a Cartesian diagram

(5.1.1.2)

V −−−→ Y

f

⏐⏐
⏐⏐f̄

U −−−→ X

of regular flat separated schemes of finite type over S. Suppose that f : V → U is finite
étale and that U = X \ D and V = Y \ E are the complements of divisors D and E
with simple normal crossings respectively. Using the diagram (5.1.1.2), the logarithmic
different Dlog

V/U,Y can be computed as follows.
We put n = dim XK + 1 = dim YK + 1. We consider the map f̄ ∗�1

X/S(log D) →
�1

Y/S(log E) of coherent OY-modules. Let � = �Y/X ⊂ Y be the closed subscheme
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defined by the annihilator I� = Ann(Coker(f̄ ∗�1
X/S(log D) → �1

Y/S(log E))) ⊂ OY.

Since Y is regular, there exist a locally free OY-module V and a surjection V →
�1

Y/S(log E) by [15, Corollaire 2.2.7.1]. Hence, the localized Chern class cn(�
1
Y/S(log E)−

f̄ ∗�1
X/S(log D))� ∩ [Y] ∈ F0G(�Y/X) is defined in [27, (3.24)] (cf. (3.2.3.2)).

The image of the logarithmic different Dlog
V/U,Y ∈ F0G(�E

V/UY) in F0G(�Y/X) is
computed using the localized Chern class cn(�

1
Y/S(log E) − f̄ ∗�1

X/S(log D))�Y/X ∩ [Y] as
follows.

Proposition 5.1.2. — Let X and Y be regular flat separated schemes of finite type over S and

let U = X \ D and V = Y \ E be the complements of divisors D ⊂ X and E ⊂ Y with simple

normal crossings. Let f̄ : Y → X be a morphism over S such that f̄ −1(U) = V and the restriction

f = f̄ |V : V → U is finite étale.

We assume that the support � = �Y/X ⊂ Y of the cokernel �1
Y(log E)/f̄ ∗�1

X(log D) is

supported on the closed fiber YF. We also assume that there exists a dense open subscheme of X smooth

over S.

Then, we have �E
V/UY ⊂ �Y/X and, for n = dim XK + 1,

(5.1.2.1) Dlog
V/U,Y = (−1)ncn

(
�1

Y/S(log E) − f̄ ∗�1
X/S(log D)

)
�

∩ ([Y])

in F0G(�Y/X).

Proof. — We consider the log products (X ×S X)∼ and (Y ×S Y)∼ with respect to
D and E respectively and will apply Proposition 3.4.3 to the commutative diagram

(5.1.2.2)

Y −−−→ Y
⏐⏐

⏐⏐

Y
δY−−−→ (Y ×S Y)∼

f̄

⏐⏐
⏐⏐(f̄ ×f̄ )∼

X
δX−−−→ (X ×S X)∼

where the upper square and the tall rectangle are Cartesian. We put (Y ×X Y)∼ =
(Y×S Y)∼ ×(X×SX)∼ �

log
X . Since the cokernel Coker(f̄ ∗�1

X/S(log D)) → �1
Y/S(log E)) is the

conormal sheaf NY/(Y×XY)∼ , the restriction of the log diagonal map δY : Y → (Y ×X Y)∼

to the complement Ṽ = Y \ � is an open immersion. Hence the complement A =
(Y ×X Y)∼ \ �

log
Ṽ is a closed subset of (Y ×S Y)∼ such that δ−1(A) = �Y/X. Since A

contains (V ×U V) \ �V as a subset, we have an inclusion �E
V/UY ⊂ �Y/X.

We define a bounded complex C of O(Y×SY)∼ -modules fitting in the distinguished
triangle → C → L(f̄ × f̄ )∼∗O

�
log
X

→ O
�

log
Y

→ as in (3.4.0.3). We have A ∩ (V ×S V) =
(V ×U V) \ �V and the restriction map FnG(A) → FnG((V ×U V) \ �V) sends [C]
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to [(V ×U V) \ �V]. Hence, by Proposition 4.3.5, the image of the logarithmic differ-
ent Dlog

V/U,Y by the map F0G(�E
V/UY) → F0G(�Y/X) is the localized intersection product

(([C],�log
Y ))(Y×SY)∼ .

In order to apply Proposition 3.4.3 to the diagram (5.1.2.2), we check that its as-
sumption is satisfied. For a point y of the closed fiber of Y, we have an open neighborhood
V′ of y, an open neighborhood U′ of f̄ (y) and a Cartesian diagram

V′ −−−→ Q
⏐⏐

⏐⏐

U′ −−−→ P

as in Lemma 4.1.3. Then, in the diagram

V′ −−−→ (V′ ×S Y)∼ −−−→ (Q ×S Y)∼
⏐⏐

⏐⏐
⏐⏐

U′ −−−→ (U′ ×S X)∼ −−−→ (P ×S X)∼,

the right square is Cartesian and the horizontal arrows in the right square are regular
immersions of codimension 1. The compositions of the horizontal arrows are both sec-
tions of smooth morphisms of relative dimension n and hence are regular immersions of
codimension n. Thus the condition (3.4.3.3) is satisfied.

By the assumption that there exists a dense open subscheme of X smooth
over S, the excess conormal complexes M′

Y/(Y×SY)∼,Y = MY/(Y×SY)∼ = LY/S(log E) and
M′

X/(X×SX)∼,Y = Lf ∗MX/(X×SX)∼ = Lf ∗LX/S(log D) are quasi-isomorphic to �1
Y/S(log E)

and f ∗�1
X/S(log D) respectively. Applying Proposition 3.4.3.3 to the diagram

Y −−−→ (Y ×S Y)∼
⏐⏐

⏐⏐

X −−−→ (X ×S X)∼

and to T = W = Y, we obtain
((

(f × f )∗[�U] − [�V],�log
Y

))
(Y×SY)∼

= [
L�nf ∗�1

X/S(log D) → L�n�1
Y/S(log E)

]

in F0G(�Y/X). The right hand side is equal to the image of the localized Chern class
cn(�

1
Y/S(log E) − f ∗�1

X/S(log D))� ∩ ([Y]) in F0G(�Y/X) by Proposition 3.2.4. �

Corollary 5.1.3. — Let L ⊂ M be finite separable extensions of K and put U = Spec L
and V = Spec M. Let X and Y be the normalizations of S in U and V respectively. Then, we have

Dlog
V/U,Y = lengthOM

�1
OM/OL

(log/ log) ∈ Z (5.1.1.1).
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For an automorphism of a scheme over S, we define the Lefschetz class as the
intersection product of the graph with the log diagonal as follows.

Definition 5.1.4. — Let X be a regular flat separated scheme of finite type over S and U =
X \ D be the complement of a divisor D with simple normal crossings. Let σ be an automorphism of X
over S such that σ(U) = U and Uσ = ∅.

1. Let �̃σ ⊂ (X ×S X)∼ be the schematic closure of the graph �σ ⊂ U ×S U of the restriction

of σ . We define the logarithmic fixed part Xσ
log ⊂ X by

Xσ
log = �

log
X ×(X×SX)∼ �̃σ .

We assume that the intersection Xσ
log ∩ �X/S with the support �X/S of �n

X/S(log D) is supported in

the closed fiber set-theoretically. We call the logarithmic intersection product

((
�̃σ ,�

log
X

))
(X×SX)∼ ∈ F0G

(
Xσ

log ∩ �X/S

)

the logarithmic Lefschetz class.
2. We say σ is admissible if the following condition is satisfied: For each irreducible component

Di of D, we have either σ(Di) = Di or σ(Di) ∩ Di = ∅.

We compute the logarithmic Lefschetz class using the Segre classes [10, 4.2], under
a slightly weaker assumption than in [26, Lemma 5.4.8].

Lemma 5.1.5. — Let X be a regular flat separated scheme of finite type over S and U = X\D
be the complement of a divisor D with simple normal crossings. Let σ be an automorphism of X over S
such that σ(U) = U and Uσ = ∅. We assume σ is admissible. Let D1, . . . ,Dm be the irreducible

components of D and we put Ũ = X \⋃i:σ(Di)∩Di=∅ Di . Assume further that there exists a dense open

scheme of X smooth over S. Then,

1. Let γŨ : Ũ → X ×S X be the restriction of γ = (1, σ ) : X → X ×S X. Then it induces

a closed immersion γ̃ : Ũ → (X ×S X)∼. The image �̃σ = γ̃ (Ũ) ⊂ (X ×S X)∼ is the schematic

closure of �σ ⊂ U ×S U.

2. Assume that the generic fiber Xσ
log,K is empty and let s(Xσ

log,X) denote the Segre class of

Xσ
log ⊂ X. We put n = dim XK +1. Then the log Lefschetz class ((�̃σ ,�

log
X ))(X×SX)∼ ∈ F0G(Xσ

log)

is equal to the image of

{
c
(
�1

X/S(log D)
)∗ ∩ s

(
Xσ

log,X
)}

dim 0

=
n∑

i=0

(−1)ici

(
�1

X/S(log D)
)
sn−i

(
Xσ

log,X
)
.

In particular, if the logarithmic fixed part Xσ
log is a Cartier divisor of X, we have

((
�σ ,�

log
X

))
(X×SX)∼ = {

c
(
�1

X/S(log D)
)∗ ∩ (

1 + Xσ
log

)−1 ∩ [
Xσ

log

]}
dim 0

.
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Proof. — 1. We set (X×S X)0 = X×S X−⋃
(i,j):Di∩Dj=∅ Di ×Dj . By the definition of

(X ×S X)∼, we have pr−1
1 (Di) = pr−1

2 (Di) in (X ×S X)∼ for every irreducible component
Di of D. Hence (X ×S X)∼ is a scheme over (X ×S X)0. By the definition of Ũ, it is the
inverse image of (X ×S X)0 ⊂ X ×S X by the map γ : X → X ×S X. Hence its restriction
γŨ : Ũ → (X ×S X)0 is a closed immersion.

By the assumption that σ is admissible, the map γŨ : Ũ → (X ×S X)0 induces a
map γ̃ : Ũ → (X ×S X)∼. Since γŨ : Ũ → (X ×S X)0 is a closed immersion, the induced
map γ̃ : Ũ → (X ×S X)∼ is also a closed immersion.

2. By the assumption that Xσ
log,K is empty, the underlying set of Xσ

log is a sub-
set of the closed fiber XF. We apply [26, Corollary 3.4.6], by taking X → (X ×S

X)∼ → X to be V → X → S and Xσ
log → �̃σ → (X ×S X)∼ to be T → W → X in

[26, Corollary 3.4.6]. Since MX/(X×SX)∼ = �1
X/S(log D), we obtain ((X, �̃σ ))(X×SX)∼ =

{c(�1
X/S(log D))∗ ∩ s(Xσ

log, �̃σ )}dim 0. Since the open immersion �̃σ → X induces the
identity on Xlog

σ , we have s(Xσ
log,�σ ) = s(Xσ

log,�Ũ) = s(Xσ
log,X). Thus the assertion is

proved. �

Corollary 5.1.6. — Assume further that σ is of finite order and let i be an integer prime to the

order of σ . Then, we have ((�σ ,�
log
V )) = ((�σ i ,�

log
V )).

Proof. — Since Xσ
log = Xσ i

log, the assertion follows from Lemma 5.1.5.2. �

For isolated singular points, we have the following formula similarly as [27,
Lemma 3.4.14].

Proposition 5.1.7. — Let X be a regular flat separated scheme of finite type over S and σ be

an automorphism of X over S. Assume that there exists a dense open subscheme of X smooth over S. Let

x ∈ X be a closed point in the closed fiber and assume that the fixed part Xσ is set-theoretically equal to

the set {x}.
Let f : X′ → X be the blow-up at x and D be the exceptional divisor. Let (X′ ×S X′)∼

denote the log product with respect to D and �̃σ ⊂ (X′ ×S X′)∼ be the proper transform of the graph

�σ ⊂ X ×S X of σ . Then, we have

(5.1.7.1) f∗
((

�̃σ ,�X′
))

(X′×SX′)∼ = [OXσ ] − [x]
where [OXσ ] = length OXσ · [x].

Proof. — We apply Lemma 5.1.5 to the automorphism σ of X′ admissible with
respect to the exceptional divisor D. By the exact sequence 0 → �1

D/F → �1
X′/S(log D) ⊗

OD
res→ OD → 0, the total Chern class satisfies c(�1

X′/S(log D)) = c(�1
D/F) = c(O(−1))n =

(1 − H)n on D where H denote the class of the hyperplane of the projective space D.
Hence, by Lemma 5.1.5, we obtain

((
�̃σ ,�X′

))
(X′×SX′)∼ = {

(1 + H)ns
(
X′σ

log,X′)}
dim 0

.
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Let I ⊂ OX and J ⊂ OX′ denote the ideal sheaf of Xσ and the ideal sheaf of
X′σ

log respectively. Then, since I is generated by σ(ti) − ti for a minimal system (ti) of
generators of the maximal ideal mx, we compute f ∗I = J · ID. This means that X′σ

log is
the residual scheme [10, Definition 9.2.1] to the Cartier divisor D in the inverse image
f ∗(Xσ ). Hence by [10, Proposition 9.2], it implies that the Segre class satisfies

s
(
f ∗(Xσ

)
,X′)

dim 0
= Hn−1 + {

(1 + H)ns
(
X′σ

log,X′)}
dim 0

since the self intersection D · D is −H. Thus, we obtain

f∗
((

�̃σ ,�X′
))

(X′×SX′)∼ = f∗s
(
f ∗(Xσ

)
,X′)

dim 0
− f∗Hn−1.

By f∗s(f ∗(Xσ ),X′)dim 0 = s(Xσ ,X)dim 0 = [Xσ ] [10, Proposition 4.2(2)] and f∗Hn−1 = [x],
the assertion follows. �

In the case X = Spec OL for a finite separable extension L of K, we obtain the
following.

Corollary 5.1.8. — Let L be a finite separable extension of K and σ be a non-trivial automor-

phism of L over K. We put X = Spec OL and let Jσ ⊂ OL be the ideal generated by σ(a) − a for

a ∈ OL and σ(b)/b − 1 for b ∈ OL and b �= 0. Then, we have
((

�σ ,�
log
X

))
(X×SX)∼ = lengthOL

OL/Jσ .

5.2. The target groups. — Let f : V → U be a finite étale morphism of separated
schemes of finite type over S = Spec OK. In this subsection, we define an abelian group
F0G(∂V/UW) and a Q-vector space F0G(∂V/UW)Q for a separated scheme W of finite type
over V. Assuming U and V are regular, for a finite étale scheme V′ over V, invariants of
wild ramification of V′ → U will be defined as elements of the group F0G(∂V/UV′)Q in
Section 5.4. Without assuming the regularity of U and V, the definition is extended at
the end of Section 6.2 as a consequence of the excision formula, Theorem 6.2.2.

Let f : V → U be a morphism of separated schemes of finite type over S. Recall
that an open immersion j : V → Y is schematically dense if the canonical map OY →
j∗OV is an injection. We define a category CV→U of compactifications of f : V → U as
follows:

• An object is a morphism f̄ : Y → X of proper schemes over S such that X and Y
contain U and V respectively as schematically dense open subschemes and that
the diagram

(5.2.0.1)

V −−−→ Y

f

⏐⏐
⏐⏐f̄

U −−−→ X
is commutative.
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• A morphism (g, h) : (f̄ ′ : Y′ → X′) → (f̄ : Y → X) is a pair of morphisms
g : X′ → X and h : Y′ → Y of schemes over S extending the identities of U and
of V such that the diagram

(5.2.0.2)

Y′ f ′−−−→ X′

h

⏐⏐
⏐⏐g

Y
f−−−→ X

is commutative.

Lemma 5.2.1. — Let f : V → U be a morphism of separated schemes of finite type over S.

1. The category CV→U is cofiltered and in particular non-empty.

2. If f : V → U is finite flat, then the objects f̄ : Y → X such that the diagram (5.2.0.1) is

Cartesian and that f̄ are finite flat are cofinal in the category CV→U.

3. If V is a G-torsor over U for a finite group G, the objects f̄ : Y → X such that the diagram

(5.2.0.1) is Cartesian, that f̄ are finite flat and that the action of G is extended to an action on Y over

X are cofinal in the category CV→U.

Proof. — 1. By Nagata’s embedding theorem [31], there exists a proper scheme X
over S containing U as an open subscheme. After replacing X by the schematic closure of
U, the open subscheme U is schematically dense in X. Further by Nagata’s embedding
theorem [31], there exists a proper scheme Y over X containing V as an open subscheme.
After replacing Y by the schematic closure of V as above, we obtain an object Y → X of
CV→U.

Let Y → X and Y′ → X′ be objects of CV→U. If there exists a map (Y → X) →
(Y′ → X′) of CV→U, it is unique since V is assumed schematically dense. Let X′′ be the
schematic closure of U in X ×S X′ and Y′′ be the schematic closure of V in X′′ ×X×SX′

(Y ×S Y′). Then Y′′ → X′′ is an object of CV→U and there exist unique maps (Y′′ →
X′′) → (Y → X) and (Y′′ → X′′) → (Y′ → X′).

2. Let Y → X be an object of CV→U. Since V is schematically dense in Y, the
diagram (5.2.0.1) is Cartesian. Then it follows from [36, 5.7.10] that there exists a blow-
up X′ → X inducing an isomorphism U ×X X′ → U such that the proper transform Y′

of Y is finite flat over X′. After replacing X′ by the schematic closure of U, the immersion
U → X is schematically dense. Since Y is flat over X, the immersion V → Y is also
schematically dense.

3. Let Y → X be an object of CV→U. By replacing Y by the schematic closure of
the diagonal image of V in the fibered product

∏
σ∈G,X Y over X, we may assume that

Y carries an action of G. Then Y′ constructed in the proof of 2 also carries an action
of G. �

Recall that for an object Y of the category CV/S of compactifications of V over
S, the wild ramification locus �V/UY ⊂ Y is defined as a closed subscheme in Definition
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2.4.1. Further, if V is schematically dense in Y, the closed subsets �V/UY form a projective
system by Lemma 2.1.3.

Definition 5.2.2. — Let f : V → U be a finite étale morphism of separated schemes of finite

type over S.

1. We define an abelian group F0G(∂V/UU) and a Q-vector space F0G(∂V/UU)Q as the

inverse limits:

F0G(∂V/UU) = lim←−
(f̄ : Y→X)∈CV→U

F0G
(

f̄ (�V/UY)
)

F0G(∂V/UU)Q = lim←−
(f̄ : Y→X)∈CV→U

(
F0G

(
f̄ (�V/UY)

)⊗Z Q
)

with respect to the proper push-forward maps.

2. Let W be a separated scheme of finite type over V. We define an abelian group F0G(∂V/UW)

and a Q-vector space F0G(∂V/UW)Q as the inverse limits:

F0G(∂V/UW) = lim←−
(Z→Y)∈CW→V

F0G(�V/UY ×Y Z)

F0G(∂V/UW)Q = lim←−
(Z→Y)∈CW→V

(
F0G(�V/UY ×Y Z) ⊗Z Q

)

with respect to the proper push-forward maps.

In the rest of this subsection, we will establish properties for F0G(∂V/UW). The
same proof also works for F0G(∂V/UW)Q.

For an object Z → Y of CW→V, we have a canonical map

prZ : F0G(∂V/UW) → F0G(�V/UY ×Y Z).

Since we will assume that the covering of the generic fibers VK → UK is tamely
ramified with respect to K in the definition of the invariants in the next subsection, the
group F0G(∂V/UW) is generated by the classes supported on the closed fibers, in practice.
The assumption is always satisfied if K is of characteristic 0, by Corollary 2.4.5.

Lemma 5.2.3. — Let

(5.2.3.1)

U′ ←−−− V′ ←−−− W′
⏐⏐

⏐⏐
⏐⏐g

U ←−−− V ←−−− W
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be a commutative diagram of separated schemes of finite type over S such that the left square is Cartesian

and that the map V → U is finite étale. Then, the push-forward maps induce

(5.2.3.2)
g! : F0G

(
∂V′/U′W′)→ F0G(∂V/UW),

g! : F0G
(
∂V′/U′W′)

Q
→ F0G(∂V/UW)Q.

If g is proper, we write g∗ = g! in (5.2.3.2).

Proof. — We define a category CW′→V′/W→V consisting of commutative diagrams

Y′ ←−−− Z′

h̄

⏐⏐
⏐⏐ḡ

Y ←−−− Z

of schemes over S compatible with the right square of (5.2.3.1) such that Z → Y
and Z′ → Y′ are objects of CW→V and of CW′→V′ respectively. By Lemma 2.1.3, for
an object of CW′→V′/W→V we have h̄(�V′/U′Y′) ⊂ �V/UY and the push-forward map
ḡ∗ : F0G(�V′/U′Y′ ×Y′ Z′) → F0G(�V/UY ×Y Z) is defined. Similarly as in Lemma 5.2.1,
the image of CW′→V′/W→V in CW′→V′ is cofinal. Hence the map g! : F0G(∂V′/U′W′) →
F0G(∂V/UW) is defined as the limit. The map g! : F0G(∂V′/U′W′)Q → F0G(∂V/UW)Q is
defined similarly. �

Lemma 5.2.4. — Let f : V → U be a finite étale morphism of separated schemes of finite type

over S and let g : W′ → W be a finite flat morphism of separated schemes of finite type over V.

1. The pull-back maps induce a map

g∗ : F0G(∂V/UW) → F0G
(
∂V/UW′).

2. Assume that g : W′ → W is of degree d. Then, the composition g∗ ◦ g∗ : F0G(∂V/UW) →
F0G(∂V/UW) is multiplication by d.

3. Assume that W′ is a G-torsor over W for a finite group G. Then, the composition g∗ ◦
g∗ : F0G(∂V/UW′) → F0G(∂V/UW′) is equal to

∑
σ∈G σ ∗. Consequently, g∗ : F0G(∂V/UW)Q →

F0G(∂V/UW′)Q is an isomorphism to the G-fixed part.

Proof. — 1. By Lemma 5.2.1.2, it suffices to show the following: Let (h′, h) :
((ḡ1, idY) : (Z′

1 → Y) → (Z1 → Y)) → ((ḡ, idY) : (Z′ → Y) → (Z → Y)) be a morphism
in the category CW′→V/W→V defined in the proof of Lemma 5.2.3 such that ḡ1 : Z′

1 → Z1

and ḡ : Z′ → Z are finite flat and that the maps W′ → W ×Z1 Z′
1 and W′ → W ×Z Z′ are
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isomorphisms. Then, the diagram

F0G(�V/UY ×Y Z1)
ḡ∗
1−−−→ F0G(�V/UY ×Y Z′

1)

h∗
⏐⏐

⏐⏐h′∗

F0G(�V/UY ×Y Z)
ḡ∗−−−→ F0G(�V/UY ×Y Z′)

is commutative.
Since the diagram is commutative if Z′

1 = Z′ ×Z Z1, we may assume h is the iden-
tity. Let z ∈ �V/UY ×Y Z be a closed point. Then since the base changes of the finite
flat morphisms Z′ → Z and Z′

1 → Z1 = Z to the henselization are decomposed into
the disjoint unions of the spectra of local rings, the class ḡ∗[z] = [ḡ−1(z)] is equal to
h′
∗(ḡ

∗
1 [z]) = h′

∗([ḡ−1
1 (z)]). Hence the assertion follows.

2. By Lemma 5.2.1.2, it suffices to consider objects ḡ : Z′ → Z of CW′→W such that ḡ

is finite flat of degree d . Then, for a closed point z ∈ �V/UY ×Y Z, we have ḡ∗ḡ∗[z] = d[z]
and the assertion follows.

3. Similarly as in the proof of 2, by Lemma 5.2.1.3, it suffices to consider finite flat
objects Z′ → Z of CW′→W such that the G-action is extended. Then, for a closed point
z ∈ �V/UY ×Y Z′, we have ḡ∗ḡ∗[z] =∑

σ∈G[σ z] and the assertion follows. �

Similarly, the push-forward map

f∗ : F0G(∂V/UV) → F0G(∂V/UU)

and, if V is a G-torsor over U, the pull-back map

f ∗ : F0G(∂V/UU) → F0G(∂V/UV)

are defined. The following Lemma is proved in the same way as Lemma 5.2.4.

Lemma 5.2.5. — Let f : V → U be a finite étale morphism of separated schemes of finite type

over S and assume that V is a G-torsor over U for a finite group G of order d.

The composition f∗ ◦ f ∗ : F0G(∂V/UU) → F0G(∂V/UU) is multiplication by d and

the composition f ∗ ◦ f∗ : F0G(∂V/UV) → F0G(∂V/UV) is equal to
∑

σ∈G σ ∗. Consequently,

f ∗ : F0G(∂V/UU)Q → F0G(∂V/UV)Q is an isomorphism to the G-fixed part.

Let V′ → V → U be finite étale morphisms of separated schemes of finite type
over S. Then, for an object g : Y′ → Y of CV′→V, we have an inclusion �V′/UY′ ⊂
g−1(�V/UY) by Lemma 2.1.3. Hence, for a separated scheme W of finite type over V′, a
canonical map

(5.2.5.1) F0G(∂V/UW) → F0G(∂V′/UW)

is defined.
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Similarly, let V → U → U′ be finite étale morphisms of separated schemes of finite
type over S. Then, for an object Y of CV/S, we have an inclusion �V/UY ⊂ �V/U′Y by
Lemma 2.1.3. Hence, for a separated scheme W of finite type over V, a canonical map

(5.2.5.2) F0G(∂V/UW) → F0G(∂V/U′W)

is defined.
We introduce a variant.

Definition 5.2.6. — Let U be a separated scheme of finite type over S and CU/S be the category

of compactifications defined in the beginning of Section 2.3.

1. We define an abelian group F0G(∂FU) and a Q-vector space F0G(∂FU)Q as the inverse

limits:

F0G(∂FU) = lim←−
X∈CU/S

F0G(X ×S F),

F0G(∂FU)Q = lim←−
X∈CU/S

(
F0G(X ×S F) ⊗Z Q

)

with respect to the proper push-forward maps.

2. For a morphism f : V → U of separated schemes of finite type over S, we define a map

f! : F0G(∂FV) → F0G(∂FU)

to be the limit of the push-forward maps.

If f is proper, we write f∗ = f!.

Let f : V → U be a finite étale morphism of separated schemes of finite type over
S such that the generic fiber fK : VK → UK is tamely ramified with respect to K. Then,
the objects Y of the category CV/S of compactifications of V satisfying set-theoretical
inclusions �V/UY ⊂ YF are cofinal in CV/S. Hence, we have a canonical map

(5.2.6.1) F0G(∂V/UV) → F0G(∂FV).

5.3. Definition of invariants of wild ramification. — In this subsection, we define invari-
ants of wild ramification without assuming the regularity of compactification.

First, we recall the existence of an alteration.

Lemma 5.3.1 ([6, Theorem 6.5]). — Let X be a flat separated scheme of finite type over

S = Spec OK and U ⊂ X be a dense open subscheme. Then, there exist a scheme Z over S and a

morphism h̄ : Z → X over S satisfying the following conditions:

(5.3.1.1) The scheme Z is regular flat separated of finite type over S and W = h̄−1(U) is the

complement of a divisor D with simple normal crossings.
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(5.3.1.2) The morphism h̄ : Z → X is proper, surjective and generically finite.

We give some sufficient conditions for simultaneous good alterations for a scheme
Y and for a weakly semi-stable scheme Y′ over Y. This will be used in Proposition 6.3.2.

Corollary 5.3.2. — Let Y be a flat separated scheme of finite type over S and V ⊂ Y be a dense

open subscheme. Let Y′ → Y be a weakly semi-stable scheme such that the base change Y′
V = Y′ ×Y V

is smooth over V. We assume that either of the following conditions is satisfied:

(5.3.2.1a) Y′ → Y is a curve.

(5.3.2.1b) There exist a morphism ḡ0 : Z0 → Y of schemes over S satisfying the conditions

(5.3.1.1) and (5.3.1.2) with X and h̄ replaced by Y and ḡ0 and a log blow-up

Z′
0 → Y′ ×Y Z0 inducing an isomorphism Z′

0 ×Z0 W0 → Y′ ×Y W0 where

W0 = ḡ−1
0 (V). Further, Z′

0 → Z0 is weakly strictly semi-stable and satisfies the

condition (1.2.3.1) with X → S replaced by Z′
0 → Z0.

Then, there exist a regular flat scheme Z over S, a proper surjective and generically finite mor-

phism ḡ : Z → Y and a log blow-up Z′ → Y′ ×Y Z satisfying the following conditions: The inverse

image W = ḡ−1(V) is the complement of a divisor DZ with simple normal crossings, the induced map

Z′ ×Z W → Y′ ×Y W is an isomorphism, the map Z′ → Z is weakly strictly semi-stable, the scheme

Z′ is regular and the divisor Z′ ×Z DZ has simple normal crossings.

Only the case (5.3.2.1a) will be used in the proof of the conductor formula.

Proof. — First, we consider the case where Y′ is a curve over Y. By replacing Y
by a finite covering obtained by adjoining some square roots, we may assume that Y
satisfies the condition (1.1.4.1) in Lemma 1.1.4. By Lemma 5.3.1, there exist a regular
flat scheme Z over S, a proper surjective and generically finite morphism ḡ : Z → Y such
that inverse image W = ḡ−1(V) is the complement of a divisor DZ with simple normal
crossings. Then, it suffices to apply Lemmas 1.1.4 and 1.2.2.

If (5.3.2.1b) is satisfied, it suffices to apply Lemma 1.2.3. �

Proposition 5.3.3. — Let f : V → U be a finite étale morphism of regular flat separated

schemes of finite type over S. Let Y be a flat separated scheme of finite type over S containing V as an open

subscheme and let D = (Di)i∈I be a finite family of Cartier divisors of Y satisfying V = Y \⋃i∈I Di

and �D
V/UYK = ∅. Let AD ⊂ (Y ×S Y)∼

D denote the closure (V ×U V \ �V).

Let

(5.3.3.1)

Y
ḡ←−−− Z

h̄−−−→ X

∪
�⏐⏐ ∪

�⏐⏐
�⏐⏐∪

V
g←−−− W

h−−−→ U
be a Cartesian diagram of separated scheme of finite type over S satisfying the following conditions:
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(5.3.3.1a) The scheme Z is regular and flat over S and W is the complement of a divisor D
with simple normal crossings.

(5.3.3.1b) The scheme X contains U as the complement of a Cartier divisor B and we have

h = f ◦ g.

Let (Z ×X Z)∼ ⊂ (Z ×S Z)∼ be the log products defined by the family (D′
j)j of irreducible

components of the complement Z \ W and by B ⊂ X (5.3.3.1b). Let A ⊂ (Z ×S Z)∼ denote the

intersection (ḡ × ḡ)∼−1(AD) ∩ (Z ×X Z)∼.

We put n = dim Z. Then, there exists a unique map

((
,�

log
Z

)) : GrF
•G(W ×U W \ W ×V W) → GrF

•−nG
(
�D

V/UY ×Y Z
)

that makes the diagram

(5.3.3.2)

GrF
•G(W ×U W \ W ×V W)

(( ,�
log
Z ))

GrF
•−nG(�D

V/UY ×Y Z)

GrF
•G(A)

restriction

(( ,�
log
Z ))(Z×SZ)∼

commutative.

In the characterization of the map (( ,�
log
Z )) : GrF

•G(W ×U W \ W ×V W) →
GrF

•−nG(�D
V/UY×Y Z) in (5.3.3.2), we may replace A by the closure of W×U W\W×V W.

Since the definition of the log product (Z ×X Z)∼ involves also the Cartier divisor
B ⊂ X, it could be better denoted by (Z ×X Z)∼. However, since we always consider the
log product with B as long as the base is X, we will use the notation (Z ×X Z)∼.

Proof. — We show that the condition (A′) after Definition 4.3.2 and (B) in Propo-
sition 4.3.5 are satisfied. By the assumption that the generic fiber of �D

V/UY = AD ∩
�

log
Y is empty, the intersection A ∩ �

log
Z ⊂ (ḡ × ḡ)∼−1(AD ∩ �

log
Y ) is supported on the

closed fiber. Hence, the condition (A′) after Definition 4.3.2 is satisfied and the map
(( ,�

log
Z ))(Z×SZ)∼ : G(A) → G(�D

V/UY ×Y Z) is defined.
Let (D′

j)j be the irreducible components of Z \ W and we put h̄∗B =∑
j ljD′

j . Since
W = h̄−1(U), we have lj > 0 for each irreducible component D′

j . By Lemma 1.3.2.2,
the intersection A ∩ Gm,D′

j
⊂ (Z ×X Z)∼ ∩ Gm,D′

j
is a closed subscheme of μlj ,D′

j
for each

irreducible component D′
j . Hence the condition (B) in Proposition 4.3.5 is also satisfied.

Since the intersection A◦ = A ∩ (W ×U W) is equal to W ×U W \ W ×V W, there exists
a unique map (( ,�

log
Z )) : GrF

•G(W ×U W \ W ×V W) → GrF
•−nG(�D

V/UY ×Y Z) making
the diagram (5.3.3.2) commutative by Proposition 4.3.5. �

The map (( ,�
log
Z )) is compatible with the pull-back as follows.
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Corollary 5.3.4. — We keep the notation in Proposition 5.3.3. Further, let Z′ be a regular

separated scheme of finite type over S and π : Z′ → Z be a morphism over S such that W′ = π−1(W)

is the complement of a divisor with simple normal crossings.

We assume dim Z′
K + 1 = dim ZK + 1 = n. Then, we have a commutative diagram

(5.3.4.1)

GrF
•G(W ×U W \ W ×V W)

(( ,�
log
Z ))−−−−→ GrF

•−nG(�D
V/UY ×Y Z)

(π×π)∗
⏐⏐

⏐⏐π∗

GrF
•G(W′ ×U W′ \ W′ ×V W′)

(( ,�
log
Z′ ))−−−−→ GrF

•−nG(�D
V/UY ×Y Z′).

Proof. — It suffices to apply Lemma 4.3.3.1. �

We introduce a category of alterations. Let f : V → U be a proper morphism of
separated reduced schemes of finite type over S. We define a category AV→U of alterations
as follows:

• An object is a proper, surjective and generically finite morphism ḡ : Z → Y of
proper schemes over S such that Y contains V as a schematically dense open
subscheme satisfying the following conditions:
(5.3.5.1a) The scheme Z is regular and flat over S and W = ḡ−1(V) is the com-

plement of a divisor D with simple normal crossings. There exists a
dense open subscheme V0 of V such that ḡ−1(V0) → V0 is finite flat
of constant rank.

(5.3.5.1b) There exists a proper scheme X over S containing U as the comple-
ment of a Cartier divisor B and a Cartesian diagram

(5.3.5.1)

W
⊂−−−→ Z

f ◦g

⏐⏐
⏐⏐h̄

U
⊂−−−→ X

of schemes over S where g : W → V is the restriction of ḡ : Z → Y.
• A morphism (π̄, ϕ) : (ḡ′ : Z′ → Y′) → (ḡ : Z → Y) is a pair of a proper, sur-

jective and generically finite morphism π̄ : Z′ → Z over S and a morphism
ϕ : Y′ → Y of schemes over S such that the diagram

(5.3.5.2)

Z′ ḡ′−−−→ Y′ ⊃←−−− V

π̄

⏐⏐
⏐⏐ϕ

∥∥∥

Z
ḡ−−−→ Y

⊃←−−− V
is commutative and that there exists a dense open subscheme Z0 of Z such that
π̄−1(Z0) → Z0 is finite flat of constant rank.
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Lemma 5.3.5. — Let f : V → U be a proper, surjective and generically finite morphism of

separated schemes of finite type over S.

1. For an object Y of the category CV/S of compactifications containing V as a schematically dense

open subscheme, there exists an object ḡ : Z → Y of the category AV→U of alterations.

2. The category AV→U is cofiltered.

Proof. — 1. By Nagata’s embedding theorem [31], there exists a proper scheme X
over S containing U as an open subscheme. By replacing X by a blow-up at the comple-
ment X \ U if necessary, we may assume U ⊂ X is the complement of a Cartier divisor B.
By replacing Y by the closure of the graph �f ⊂ X ×S Y, we may assume there exists
a morphism f̄ : Y → X such that f̄ −1(U) = V and f̄ |V = f . Then, it suffices to apply
Lemma 5.3.1 to the open immersion V → Y and to take some disjoint union of con-
nected component.

2. It suffices to apply Lemma 5.3.1 to the open immersion W ×V W′ →
W ×V W′ ⊂ Z ×S Z′ and to take some disjoint union of connected component. �

Note that the condition (5.3.5.1b) is satisfied if we have an object f̄ : Y → X of
CV→U such that X contains U as the complement of a Cartier divisor B. If V → U is a
Galois covering, such an object may be constructed as follows.

Lemma 5.3.6. — Let f : V → U be a finite étale morphism of regular separated scheme of

finite type over S and V → Y be an open immersion of separated schemes of finite type over S. Let

D = (Di)i∈I be a finite family of Cartier divisors of Y such that V is the complement of the union⋃
i∈I Di . Assume that V is a G-torsor over U and that the action of G is extended to Y and on D.

Assume further that the action of G on Y is admissible in the sense that the quotient X = Y/G is defined

as a scheme.

Then, the canonical map f̄ : Y → X is finite, the quotient X is separated of finite type over S
and there exists a Cartier divisor B of X such that the complement is U.

Proof. — It suffices to show the existence of B. By the assumption the sum D =∑
i Di is stable by the action of G and V = Y\D. The norm B of D is defined as a Cartier

divisor of X since OX → f̄∗OY is injective. Since the inverse image of the complement
X \ B is V, we obtain U = X \ B. �

Let f : V → U be a finite étale morphism of regular separated schemes of finite
type over S. For a morphism g′ : W → V′ of regular schemes of finite type over V, the
pull-back map

(
g′ × g′)∗ : GrF

n G
(
V′ ×U V′ \ V′ ×V V′)→ GrF

n G(W ×U W \ W ×V W)

by g′ × g′ : W ×S W → V′ ×S V′ is defined by Corollary 4.1.5 and Lemma 3.1.4.
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Theorem 5.3.7. — Let f : V → U be a finite étale morphism of regular separated schemes

of finite type over S = Spec OK such that UK → VK is tamely ramified with respect to K. Let V′ be

a regular flat scheme of finite type over S and V′ → V be a proper morphism over S. We assume that

dim VK = dim V′
K and put n = dim VK + 1.

Then, there exists a unique map

(5.3.7.1) (( ,�V′))log : GrF
n G(V′ ×U V′ \ V′ ×V V′) → F0G(∂V/UV′)Q

satisfying the following property:

For an object Y of CV/S, a finite family D of Cartier divisors of Y such that �V/UY = �D
V/UY

(Definition 2.4.1.1), an object Y′ → Y of CV′→V and an object ḡ′ : Z → Y′ of AV′→U such that ḡ′

is generically of constant degree [W : V′], the diagram

(5.3.7.2)

GrF
n G(V′ ×U V′ \ V′ ×V V′)

(( ,�
log
V′ ))

(g′×g′)∗

F0G(∂V/UV′)Q

prY′

GrF
n G(W ×U W \ W ×V W)

(( ,�
log
Z ))

F0G(�V/UY ×Y Y′)Q

F0G(�V/UY ×Y Z)

1
[W:V′] ḡ′∗

is commutative, where g′ : W = ḡ′−1(V′) → V′ is the restriction of ḡ′ : Z → Y′.

Proof. — By the remark after Definition 2.4.1, there exist an object Y of CV/S and
a finite family D of Cartier divisors of Y such that �V/UY = �D

V/UY. Further since CV′→V

is non-empty, there exist an object Y′ → Y of CV′→V and an object ḡ′ : Z → Y′ of AV′→U

by Lemma 5.3.5.1. By the definition of F0G(∂V/UV′)Q as the projective limit, it suffices to
show that the composition of the lower maps in the diagram (5.3.7.2) is independent of
the choice of an object ḡ′ : Z → Y′ of AV′→U and that the compositions form an inverse
system with respect to objects Y′ → Y of CV′→V.

The categories CV′→V and AV′→U are cofiltered by Lemmas 5.2.1.1 and 5.3.5.2.
Hence, it suffices to show that the diagram

(5.3.7.3)

GrF
n G(W ×U W \ W ×V W)

(π×π)∗−−−→ GrF
n G(W1 ×U W1 \ W1 ×V W1)

(( ,�
log
Z ))

⏐⏐
⏐⏐(( ,�

log
Z1

))

F0G(�V/UY ×Y Z) F0G(�V/UY1 ×Y1 Z1)

1
[W:V′] ḡ∗

⏐⏐
⏐⏐ 1

[W1:V′] ḡ1∗

F0G(�V/UY ×Y Y′)Q
ϕ∗←−−− F0G(�V/UY1 ×Y1 Y′

1)Q



116 KAZUYA KATO, TAKESHI SAITO

is commutative for morphisms (ϕ,ψ) : (Y′
1 → Y1) → (Y′ → Y) of CV′→V and (π̄, ϕ) :

(ḡ1 : Z1 → Y′
1) → (ḡ : Z → Y′) of AV′→U where π : W1 → W denotes the restric-

tion of π̄ : Z1 → Z on the inverse image of V′. By Corollary 5.3.4, the pull-back
π̄∗ : F0G(�V/UY ×Y Z) → F0G(�V/UY1 ×Y1 Z1) makes the upper half of (5.3.7.3) into a
commutative square. On the other hand, the push-forward π̄∗ : F0G(�V/UY1 ×Y1 Z1) →
F0G(�V/UY ×Y Z) divided by the degree [Z1 : Z] makes the lower half into a commu-
tative square. The composition π̄∗ ◦ π̄∗ is equal to the multiplication by [Rπ̄∗OZ1] and
induces the multiplication by [Z1 : Z] = rank(Rπ̄∗OZ1) on F0G(�V/UY ×Y Z). Hence,
the assertion is proved. �

Definition 5.3.8. — Let the notation be as in Theorem 5.3.7. We call the map

(5.3.8.1) (( ,�V′))log : GrF
n G

(
V′ ×U V′ \ V′ ×V V′)→ F0G

(
∂V/UV′)

Q

the logarithmic localized intersection product with the diagonal. For an object Y′ → Y of

CV′→V, we define

(5.3.8.2) (( ,�Y′))log : GrF
n G

(
V′ ×U V′ \ V′ ×V V′)→ F0G

(
�V/UY ×Y Y′)

Q

as the composition of (5.3.8.1) with the projection F0G(∂V/UV′)Q → F0G(�V/UY×Y Y′)Q and call

it also the logarithmic localized intersection product with the diagonal.

Since we assume that VK → UK is tamely ramified with respect to Spec K, the
target group F0G(∂V/UV′)Q is generated by the classes supported on the closed fibers.
The assumption is always satisfied if K is of characteristic 0, by Corollary 2.4.5.

If V is finite étale over V, the graded piece GrF
n G(V′ ×U V′ \ V′ ×V V′) is iden-

tified with the free abelian group Z0(V′ ×U V′ \ V′ ×V V′) generated by the irreducible
components of V′ ×U V′ \ V′ ×V V′. Thus, in this case, the maps (5.3.8.1) and (5.3.8.2)
define

(5.3.8.3) (( ,�V′))log : Z0
(
V′ ×U V′ \ V′ ×V V′)→ F0G

(
∂V/UV′)

Q
,

(5.3.8.4) (( ,�Y′))log : Z0
(
V′ ×U V′ \ V′ ×V V′)→ F0G

(
�V/UY ×Y Y′)

Q
.

Theorem 5.3.7 implies that, for an open and closed subscheme � of V′ ×U V′ \ V′ ×V V′,
the logarithmic localized intersection products ((�,�Y′))log for objects Y′ → Y of
CV′→V such that �+

V/UYK = ∅ form a projective system and defines an element of
F0G(∂V/UV′)Q = lim←−Y′→Y

F0G(�V/UY ×Y Y′)Q.
Keep assuming V′ → V is finite étale and let Y′ → Y be an object of CV′→V. As-

sume that Y′ is regular and V′ ⊂ Y′ is the complement of a divisor with simple normal
crossings. Assume further that there exist a proper scheme X over S containing U as the
complement of a Cartier divisor and a morphism Y′ → X extending V′ → U. Then, the
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identity Y′ → Y′ is an object of AV′→U and, for a finite family D of Cartier divisors of Y
such that �D

V/UYK = ∅, the diagram

(5.3.8.5)

Z0
(
V′ ×U V′ \ V′ ×V V′) (( ,�V′ ))log

−−−−−→ F0G
(
∂V/UV′)

(( ,�
log
Y′ ))

⏐⏐
⏐⏐prY′

F0G
(
�D

V/UY ×Y Y′)
Q

←−−− F0G
(
�V/UY ×Y Y′)

Q

is commutative. Consequently, if we assume resolution of singularities or if we assume
dim YK ≤ 1, we do not need to introduce denominator and an integral version

(5.3.8.6) (( ,�V′))
log
Z : Z0

(
V′ ×U V′ \ V′ ×V V′)→ F0G

(
∂V/UV′)

is defined as the limit of (( ,�
log
Y′ )).

Let f : V → U be a finite étale morphism of smooth separated schemes of finite
type over F and V′ be a finite étale scheme over V. Then, similarly as above, slightly
refining [27, Theorem 3.2.3], we define a map

(5.3.8.7) ( ,�V′)log : Z0
(
V′ ×U V′ \ V ×U V

)→ CH0

(
∂V/UV′)

Q
.

We introduce a variant of the map (5.3.8.3) assuming K is of characteristic 0. This
variant is defined without removing the diagonal �V ⊂ V ×U V.

Theorem 5.3.9. — Assume K is of characteristic 0. Let V → U be a finite étale morphism of

smooth separated schemes of finite type over S and let Y be an object of CV/S. Then, there exists a unique

map

(5.3.9.1) (( ,�V))log : Z0(V ×U V) → F0G(∂FV)Q

satisfying the following property:

For an object Y of CV/S, a finite family D of Cartier divisors of Y such that �D
V/UYK = ∅ and

an object ḡ : Z → Y of AV→U such that ḡ is generically of constant degree [W : V], there exists a map

(( ,�
log
Z )) : GrF

n G(W ×U W) → F0G(Z ×S Spec F) that makes the diagram

(5.3.9.2)

GrF
n G(V ×U V)

(( ,�
log
V ))

(g×g)∗

F0G(∂FV)Q

prY

GrF
n G(W ×U W)

(( ,�
log
Z ))

F0G(Y ×S Spec F)Q

GrF
n G

(
(Z ×X Z)∼)

(( ,�
log
Z ))(Z×SZ)∼

restriction

F0G(Z ×S Spec F)

1
[W:V′] ḡ∗

commutative.
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By the assumption that K is of characteristic 0, in the notation of the proof of
Proposition 5.3.3, the generic fiber ZK is smooth over K and the log product (Z×X Z)∼ ⊂
(Z ×S Z)∼ satisfies the condition (A′) after Definition 4.3.2 with X replaced by Z. Except
this remark, the proof is the same as that of Theorem 5.3.7.

We keep assuming that K is of characteristic 0 and let f : V → U be a finite étale
morphism of regular flat separated schemes of finite type over S. Then, the maps (5.3.8.3)
and (5.3.9.1) are compatible in the sense that the diagram

(5.3.9.3)

Z0(V ×U V \ �V)
(( ,�V))log−−−−−→ F0G(∂V/UV)Q

∩
⏐⏐

⏐⏐(5.2.6.1)

Z0(V ×U V)
(( ,�V))log−−−−−→ F0G(∂FV)Q

is commutative.

5.4. Elementary properties of the invariants of wild ramification. — The map (5.3.8.3) has
the following compatibility.

Proposition 5.4.1. — Let f : V → U be a finite étale morphism of regular schemes over S
such that the generic fiber VK → UK is tamely ramified with respect to K. Let V′ be a finite étale scheme

over V.

1. For a finite étale morphism g : V′′ → V′, the diagram

(5.4.1.1)

Z0
(
V′ ×U V′ \ V′ ×V V′) (( ,�V′ ))log

−−−−−→ F0G
(
∂V/UV′)

Q

(g×g)∗
⏐⏐

⏐⏐g∗

Z0
(
V′′ ×U V′′ \ V′′ ×V V′′) (( ,�V′′ ))log

−−−−−→ F0G
(
∂V/UV′′)

Q

2. Assume that the generic fiber V′
K → UK is tamely ramified with respect to K. Then,

(5.4.1.2)

Z0
(
V′′ ×U V′′ \ V′′ ×V V′′) (( ,�V′′ ))log

−−−−−→ F0G
(
∂V/UV′′)

Q

can

⏐⏐
⏐⏐(5.2.5.1)

Z0
(
V′′ ×U V′′ \ V′′ ×V′ V′′) (( ,�V′′ ))log

−−−−−→ F0G
(
∂V′/UV′′)

Q

is commutative.
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3. For a finite étale morphism U → U′ such that the generic fiber VK → U′
K is tamely ramified

with respect to K, the diagram

(5.4.1.3)

Z0
(
V′ ×U V′ \ V′ ×V V′) (( ,�V′ ))log

−−−−−→ F0G
(
∂V/UV′)

Q

can

⏐⏐
⏐⏐(5.2.5.2)

Z0
(
V′ ×U′ V′ \ V′ ×V V′) (( ,�V′ ))log

−−−−−→ F0G
(
∂V/U′V′)

Q

is commutative.

Proof. — 1. By Lemma 5.2.4.2, the map g∗ is injective. Hence, by replacing V′′ if
necessary, we may assume V′′ is a G-torsor over V′ for a finite group G. Since an object of
AV′′→U define an object of AV′→U, the square with the arrow g∗ replaced by |G|−1g∗ going
the other way is commutative by the definition of the map (5.3.8.3). Since the images are
in the G-fixed part, the assertion follows from Lemma 5.2.4.3.

The rest is clear from the definition and the remark after Proposition 5.3.3. �

We show a compatibility with tame base change.

Corollary 5.4.2. — Let f : V → U be a finite étale morphism of regular schemes over S
such that the generic fiber VK → UK is tamely ramified with respect to K. Let g : U′ → U be a finite

étale morphism of regular schemes over S. Let V′ ⊂ V ×U U′ be an open and closed subscheme and

g′ : V′ → V denote the projection.

Then, if g : U′ → U is tamely ramified with respect to S, the diagram

(5.4.2.1)

Z0(V ×U V \ �V)
(( ,�V))log−−−−−→ F0G(∂V/UV)Q

(g′×g′)∗
⏐⏐

⏐⏐g′∗

Z0(V′ ×U′ V′ \ �V′)
can◦(( ,�V′ ))log

−−−−−−−→ F0G(∂V/UV′)Q

is commutative.

Proof. — By Lemma 2.1.3, the canonical map F0G(∂V′/U′V′) → F0G(∂V/UV′) is
defined. By Proposition 5.4.1.1 applied to V′ → V = V → U, the diagram (5.4.2.1) with
Z0(V′ ×U′ V′ \ �V′) replaced by Z0(V′ ×U V′ \ V′ ×V V′) is commutative.

By the assumption that g : U′ → U is tamely ramified with respect to S, there
exists an object X′ of the category CU′/S of compactifications of U′ and a finite family D′

of Cartier divisors X′ such that �D′
U′/UX′ is empty. For an object Y′ → X′ of CV′→U′ , the

closure of the inverse image V′ ×U V′ \ V′ ×U′ V′ of U′ ×U U′ \ �U′ does not meet with
the log diagonal �Y′ in the log product (Y′ ×S Y′)∼

D′ for the pull-back D′ of D. Hence,
we have ((�,�V′))log = 0 in F0G(∂V′/U′V′)Q if � is in V′ ×U V′ \ V′ ×U′ V′.
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By the assumption V′ ⊂ V ×U U′, we have (V′ ×U′ V′) ∩ (V′ ×V V′) = �V′ . Hence
the assertion follows. �

In the case where K is of characteristic 0, the variant defined in Theorem 5.3.9
satisfies properties analogous to Proposition 5.4.1 and Corollary 5.4.2, by the same proof.

The logarithmic different and the logarithmic Lefschetz class defined in Sec-
tion 5.1 are defined without assuming the existence of a regular model.

Definition 5.4.3. — Let f : V → U be a finite étale morphism of regular flat separated schemes

of finite type over S such that the generic fiber VK → UK is tamely ramified with respect to K.

1. We call

(5.4.3.1) Dlog
V/U = ((V ×U V \ �V,�V))log ∈ F0G(∂V/UV)Q

the logarithmic different of V over U. We call

(5.4.3.2) d
log
V/U = f∗Dlog

V/U ∈ F0G(∂V/UU)Q

the logarithmic discriminant of V over U.

2. Let σ be an automorphism of V over U such that the fixed part Vσ is empty and let �σ ⊂
V ×U V be the graph of σ . We call

(5.4.3.3) ((�σ ,�V))log ∈ F0G(∂V/UV)Q

the logarithmic Lefschetz class.

We show that the log different satisfies a chain rule and that, for a Galois covering,
the logarithmic different is the sum of Lefschetz classes.

Lemma 5.4.4. — Let f : V → U be a finite étale morphism of regular flat separated schemes

of finite type over S such that the generic fiber VK → UK is tamely ramified with respect to K.

1. Let U′ be a finite étale scheme over U such that the generic fiber U′
K → UK is tamely ramified

with respect to K and let g : V → U′ be a finite étale morphism over U. Then, we have

(5.4.4.1) Dlog
V/U = Dlog

V/U′ + g∗Dlog
U′/U

in F0G(∂V/UV)Q.

2. Assume that V is a G-torsor over U for a finite group G. Then we have

(5.4.4.2) Dlog
V/U =

∑

σ∈G, σ �=1

((�σ ,�V))log

in F0G(∂V/UV)Q.
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3. Assume that V is a G-torsor for a finite group G. Let N ⊂ G be a normal subgroup of G
and let g : V → V′ be the corresponding N-torsor. Then, for an element σ ′ ∈ G′ = G/N, �= 1, we

have

g∗((�σ ′,�V′))log =
∑

σ∈G,σ �→σ ′
((�σ ,�V))log

in F0G(∂V/UV)Q.

Proof. — 1. It follows from V ×U V \ �V = (V ×U′ V \ �V) � (g × g)−1(U′ ×U U′ \
�U′) and Proposition 5.4.1.1 applied to U′ ×U U′ \ �U′ .

2. Clear from V ×U V \ �V =∐
σ∈G, σ �=1 �σ .

3. It follows from (g × g)−1(�σ ′) =∐
σ �→σ ′ �σ and Proposition 5.4.1.1. �

Corollary 5.4.5. — Let the notation be as in Lemma 5.4.4.1. Let f ′ : U′ → U denote

the morphism and assume that the map g : V → U′ is of constant degree [V : U′]. Then, for the

discriminants defined in Definition 5.4.3.1, we have

(5.4.5.1) d
log
V/U = f ′

∗d
log
V/U′ + [

V : U′] · d
log
U′/U

in F0G(∂V/UU)Q.

Proof. — We take the push-forward of (5.4.4.1). Then, similarly as Lemma 5.2.4.2,
we obtain (5.4.5.1). �

Conjecture 5.4.6. — Let f : V → U be a finite étale morphism of regular flat separated schemes

of finite type over S such that the generic fiber VK → UK is tamely ramified with respect to K. Let σ be

an automorphism of V over U such that the fixed part Vσ is empty.

Then, for an integer i prime to the order of σ , we have

((�σ ,�V))log = ((�σ i ,�V))log.

Proposition 5.4.7. — Conjecture 5.4.6 is true if dim VK ≤ 1.

Proof. — By the resolution of singularity for two dimensional schemes, regular ob-
jects Y of the category CV/S are cofinal in CV/S. Further, the regular objects Y such that
the action of σ is extended to an admissible action on Y are cofinal in CV/S. Hence, the
assertion of Conjecture 5.4.6 follows from Corollary 5.1.6. �

6. Formulas for invariants of wild ramification

In this section, we establish formulas for the invariants of wild ramification defined
in the previous section. We state and prove the results for the map (5.3.8.3). However,
they also hold for the map (5.3.8.7) by the same argument.
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We prove an excision formula Theorem 6.2.2 and a blow-up formula Proposi-
tion 6.2.1 in Section 6.2. We establish some preliminary formulas in Section 6.1. In Sec-
tion 6.3, we prove a formula Proposition 6.3.2 for some semi-stable families applying the
log Lefschetz trace formula Theorem 1.4.7, which will play a crucial role in the proof of
the conductor formula.

6.1. Divisors and projective space bundles. — The results in this subsection will be used
in the proof of the blow-up formula and of the excision formula in the next subsection. In
Propositions 6.1.1 and 6.1.2, we compute the log localized intersection product of some
classes supported on the inverse image of a divisor. In Proposition 6.1.3 and Lemma 6.1.4,
we give formulas for a projective space bundle.

We keep the notation that f : V → U denotes a finite étale morphism of regular
flat separated schemes of finite type over S and n = dim VK + 1 and the assumption
that the generic fiber VK → UK is tamely ramified with respect to K (Definition 2.4.1).
Although we also state corresponding formulas for finite étale morphism f : V → U of
smooth separated schemes of finite type over F, the proof is similar and easier and will be
omitted.

We prepare to state Proposition 6.1.1. We consider a Cartesian diagram

(6.1.0.1)

V
f−−−→ U

g

⏐⏐
⏐⏐

V0
f0−−−→ U0

of regular flat separated schemes of finite type over S where f0 is finite étale and the
vertical arrows are proper. We assume that the generic fiber f0,K : V0,K → U0,K is tamely
ramified with respect to K. If the map g : V → V0 is birational, the diagram

(6.1.0.2)

GrF
n G(V ×U0 V \ V ×V0 V)

(( ,�V))log−−−−−→ F0G(∂V0/U0V)Q

(g×g)∗
�⏐⏐

⏐⏐g∗

GrF
n G(V0 ×U0 V0 \ �V0)

(( ,�V0 ))log

−−−−−→ F0G(∂V0/U0V0)Q

is commutative.

Proposition 6.1.1. — Let f : V → U be a finite étale morphism of regular flat separated

schemes of finite type over S and n = dim VK +1. Suppose that we have a Cartesian diagram (6.1.0.1)
such that V0,K → U0,K is tamely ramified with respect to K.

Let U1 ⊂ U be a regular divisor and i denote the immersion U1 → U and its base changes.

Assume that either U1 is a scheme over K or a scheme over F. We put V1 = V ×U U1. Then, for



RAMIFICATION THEORY FOR VARIETIES OVER A LOCAL FIELD 123

�1 ∈ GrF
n G(V1 ×U0 V1 \ V1 ×V0 V1), we have

(6.1.1.1) ((�1,�V))log =
{

−i∗((�1 · c1(pr∗
2NU1/U),�V1))

log if V1 = V1,K

−i∗(�1 · c1(pr∗
2NU1/U),�V1)

log if V1 = V1,F

in F0G(∂V0/U0V)Q.

Proof. — Let Y → Y0 be an object of CV→V0 and let D0 be a finite family of Cartier
divisors such that �

D0
V0/U0

Y0 = �V0/U0Y0. Let Y1 ⊂ Y be the closure of V1. By replacing Y
by the blow-up at Y1 if necessary, we may assume Y1 is a divisor of Y. We take an object
Z → Y of AV→U. Let g∗V1 = ∑

j ejWj be the decomposition by irreducible components
and let Zj denote the closure of Wj . Replacing Z if necessary, we may assume that

∑
j Zj

has simple normal crossings and meets D = Z \ W transversely.
Let (Y ×S Y)∼ be the log product with respect to the pull-back D of D0 and

(Z ×S Z)∼ be the log product with respect to the divisor D with simple normal cross-
ings. We consider the map (ḡ × ḡ)∼ : (Z ×S Z)∼ → (Y ×S Y)∼ and its restriction
g × g : W ×S W → V ×S V. For an irreducible component Zj , let ij : Zj → Z be the closed
immersion and ḡj : Zj → Y1 be the restrictions of ḡ : Z → Y. Let gj : Wj = W ∩ Zj → V1

be the restriction of ḡj . The intersection Dj = Zj ∩ D is a divisor with simple normal
crossings.

Let (Zi ×S Zj)
∼ denote the fiber product (Zi ×S Zj) ×Z×SZ (Z ×S Z)∼. Define

(gi × gj)
∗ : GrF

n G(V1 ×U0 V1 \ V1 ×V0 V1) → GrF
n G(Wi ×U0 Wj \ Wi ×V0 Wj) as the pull-

back by gi × gj : Wi ×S Wj → V1 ×S V1. Then, by Corollary 4.1.8.1, we obtain

(6.1.1.2) (g × g)∗(�1) =
∑

i,j

eiej · (gi × gj)
∗(�1)

in GrF
n G(W1 ×U0 W1 \ W1 ×V0 W1).
Let A0 ⊂ (Y0 ×S Y0)

∼
D0

be the closure of V0 ×U0 V0 \ �V0 and let A ⊂ (Z ×S Z)∼

be the intersection of the pull-back of A0 with (Z ×X Z)∼. For each i, j, we put Aij =
A ∩ (Zi ×S Zj)

∼ ⊂ (Z ×X Z)∼. We have A ∩ (W ×S W) = (W ×U0 W) \ (W ×V0 W)

and Aij ∩ (Wi ×S Wj) = (Wi ×V0 Wj) \ (Wi ×U0 Wj). We take �ij ∈ GrF
n G(Aij) lifting

(gi × gj)
∗(�1). Then, by (6.1.1.2), we have

(6.1.1.3)
((

�1,�
log
Y

))= 1
[W : V]

∑

i,j

eiej · ḡ∗
((

�ij,�
log
Z

))
(Z×SZ)∼ .

We continue the proof assuming U1 = U1,K. The proof of the other case U1 = U1,F

is similar and omitted. Let IZj
⊂ OZ be the invertible ideal defining Zj ⊂ Z. For each i, j,

we show

(6.1.1.4) ḡ∗
((

�ij,�
log
Z

))
(Z×SZ)∼ = −ḡ∗ii∗

(((
�ii,�

log
Zi

))
(Zi×SZi)

∼ · c1(IZj
)
)
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in F0G(�V0/U0Y0 ×Y0 Y)Q. If i = j, the equality (6.1.1.4) follows from Lemma 4.3.7.1. (In
the case U1 = U1,F, we apply Lemma 4.3.7.2.)

We assume Zi �= Zj . We put Zij = Zi ×Z Zj,Wij = Wi ×W Wj,Ai,ij = A∩ (Zi ×S Zij)
∼

and let gij : Wij → V1 be the restriction of g. Then, the immersions (Zi ×S Zj)
∼ →

(Z ×S Z)∼ and iij : Zij → Z are regular immersions of codimension 2. Hence by
Lemma 3.3.4, we obtain

((
�ij,�

log
Z

))
(Z×SZ)∼ = iij∗

((
�ij,�

log
Zij

))
(Zi×SZj )

∼ .

Further, the immersion (Zi ×S Zij)
∼ → (Zi ×S Zj)

∼ is a regular immersion of codimension
1. Hence by Lemma 3.3.4, we obtain

((
�ij,�

log
Zij

))
(Zi×SZj )

∼ = (((
�ij, (Zi ×S Zij)

∼)
(Zi×SZj )

∼,�
log
Zij

))
(Zi×SZij )

∼ .

Since both (�ij, (Zi ×S Zij)
∼)(Zi×SZj )

∼ and (�ii, (Zi ×S Zij)
∼)(Zi×SZi)

∼ ∈ GrF
n−1G(Ai,ij) are

liftings of (gi × gij)
∗(�1), we have

(((
�ij, (Zi ×S Zij)

∼)
(Zi×SZj )

∼,�
log
Zij

))
(Zi×SZij )

∼

= (((
�ii, (Zi ×S Zij)

∼)
(Zi×SZi)

∼,�
log
Zij

))
(Zi×SZij )

∼

similarly as Proposition 4.3.5. By applying the associativity Lemmas 3.3.6 and 3.3.7 to
the diagram

(Zi × Zij)
∼ ←−−− Zij

⏐⏐
⏐⏐

(Zi × Zi)
∼ ←−−− Zi,

we obtain
(((

�ii, (Zi ×S Zij)
∼)

(Zi×SZi)
∼,�

log
Zij

))
(Zi×SZij )

∼ = (((
�ii,�

log
Zi

))
(Zi×SZi)

∼,Zij

)
Zi
.

Thus, we obtain
((

�ij,�
log
Z

))
(Z×SZ)∼ = iij∗

(((
�ii,�

log
Zi

))
(Zi×SZi)

∼,Zij

)
Zi

= −ii∗
(((

�ii,�
log
Zi

))
(Zi×SZi)

∼ · c1(IZj
)
)

and the equality (6.1.1.4) is proved.
Therefore, the sum in the right hand side of (6.1.1.3) is equal to

(6.1.1.5) −
∑

i

ei · i∗ḡi∗

(((
�ii,�

log
Zi

))
(Zi×SZi)

∼ ·
∑

j

ej c1(IZj
)

)
.
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Since g∗V1 = ∑
j ejWj as a divisor of W, the restriction

∑
j ej c1(IZj

)|Wi
is equal to

c1(ḡ
∗
i NY1/Y)|Wi

. Hence by Proposition 4.3.5, we have

((
�ii,�

log
Zi

))
(Zi×SZi)

∼ ·
∑

j

ej c1(IZj
)

=
((

�ii ·
∑

j

ej c1

(
pr∗

2 IZj

)
,�

log
Zi

))

(Zi×SZi)
∼

= ((
�ii · pr∗

2c1

(
ḡ∗

i NY1/Y

)
,�

log
Zi

))
(Zi×SZi)

∼ .

If Zi → Y1 is surjective, it defines an object of AV1→U1 and we have

ḡi∗
((

�ii · pr∗
2c1

(
ḡ∗

i NY1/Y

)
,�

log
Zi

))
(Zi×SZi)

∼

= [Wi : V1] · ((�1 · pr∗
2c1(NY1/Y),�

log
Y1

))
.

We show that, if Zi → Y1 is not surjective, the left hand side is 0. By replacing Zi by an
alteration, we may assume that there is an object Z0 → Y1 of AV1→U1 and that Zi →
Y1 factors through π : Zi → Z0. Since π∗π∗ is multiplication by rank Rπ∗OZi

= 0 on
F0G(�V0/U0Y ×Y Z0), the assertion follows from Corollary 5.3.4. Thus, by

∑
i ei[Wi :

V1] = [W : V], (6.1.1.5) is equal to the right hand side of (6.1.1.1). �

We consider a regular divisor U1 ⊂ U as in Proposition 6.1.1. Let (U ×U U)∼

denote the log product with respect to the Cartier divisor U1. It is the union of U with E =
Gm,U1 meeting at U1. It is canonically identified with the fiber product (U ×S U)∼ ×U×SU

�U. The closed subscheme E = Gm,U1 ⊂ (U ×U U)∼ is the inverse image of U1 ⊂ U =
�U by the canonical map (U ×U U)∼ → U, as in Lemma 1.3.2.1. Let (V ×U V)∼ =
(V ×U V) ×U (U ×U U)∼ denote the log product with respect to V1 = V ×U U1. Then,
we define the localized log intersection product

(6.1.2.1) (( ,�V))log : GrF
n G((V ×U V)∼ \ (�V ×U (U ×U U)∼)) → F0G(∂V/UV)Q

similarly as follows, in order to state Proposition 6.1.2.
We consider an object Y of CV/S and a finite family D of Cartier divisors of Y such

that �U/VY = �D
U/VY. Let Y1 ⊂ Y denote the closure of V1 and D1 denote the restriction

of D. By replacing Y by the blow-up at Y1 if necessary, we assume Y1 is a divisor of Y.
We also consider an object ḡ : Z → Y of AV→U. We assume that it also define an object
of A(V\V1)→(U\U1). In particular, W0 = ḡ−1(V \ V1) is the complement of a divisor D′ ⊃ D
of Z with simple normal crossings. Let Z → X be a proper morphism of schemes over S
such that X contains U as the complement of a Cartier divisor B.

We define the log products (Y ×S Y)∼ and (Y ×S Y)≈ with respect to D and to the
union D′ of D with Y1 respectively. Similarly, we define the log products (Z ×S Z)∼ and
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(Z ×S Z)≈ with respect to D and to D′. They form commutative diagrams

(Y ×S Y)≈ (ḡ×ḡ)≈←−−− (Z ×S Z)≈
⏐⏐

⏐⏐

(Y ×S Y)∼ ←−−− (Z ×S Z)∼

(V ×S V)∼ (g×g)∼←−−− (W ×S W)∼

q

⏐⏐
⏐⏐

V ×S V ←−−− W ×S W

where the right square is obtained by taking the base change to V ×S V.
We define a closed subset A ⊂ (Y ×S Y)≈ to be the closure of (V ×U V)∼ \ (�V ×U

(U ×U U)∼) ⊂ (V ×S V)∼ and put AZ = (ḡ × ḡ)≈−1(A) ∩ (Z ×X Z)≈. Here (Z ×X Z)≈

denote the log product defined with respect to D′ and B. For � ∈ GrF
n G((V ×U V)∼ \

(�V ×U (U×U U)∼)), we take an element �̃ ∈ GrF
n G(AZ) lifting the pull-back (g×g)∼∗(�)

by (g×g)∼ : (W×S W)∼ → (V×S V)∼. Then, ((�,�
log
Y )) is defined as ḡ∗((�,�

log
Z ))(Z×SZ)≈

divided by [Z : Y]. The map (6.1.2.1) is defined as the projective limit.
By the associativity Lemma 3.3.7 applied to (Z ×S Z)∼ ← (Z ×S Z)≈ ← Z, we

obtain a commutative diagram

(6.1.2.2)

GrF
n G(V ×U V \ �V)

(( ,�V))log−−−−−→ F0G(∂V/UV)Q

q∗
⏐⏐

∥∥∥

GrF
n G((V ×U V)∼ \ (�V ×U (U ×U U)∼))

(( ,�V))log−−−−−→ F0G(∂V/UV)Q

for the pull-back q∗ by the projection q : (V ×S V)∼ → V ×S V.
We put U0 = U \ U1,V0 = V \ V1 and we consider the diagram

(6.1.2.3)

GrF
n G(V ×U V \ �V)

⏐⏐

GrF
n G((V ×U V)∼ \ (�V ×U (U ×U U)∼))

(( ,�V))log−−−−−→ F0G(∂V/UV)Q
⏐⏐

⏐⏐

GrF
n G(V0 ×U0 V0 \ �V0)

(( ,�V0 ))log

−−−−−→ F0G(∂V/UV0)Q

where the upper left vertical arrow is induced by the immersion V ×U V → (V ×U V)∼

and the lower left vertical arrow is the restriction. Since the log product (Z ×X Z)∼ is
defined with respect to B whose complement is U, the closed subset AZ need not satisfy the
condition (B) in Proposition 4.3.5 with respect to the components of D′ \D. Consequently,
the square is not necessarily commutative. However, the compositions with the upper
vertical arrow form a commutative diagram since the image of the composition V ×U

V → (V×U V)∼ → (X′ ×X′ X′)∼ lies in the image of the log diagonal X′ → (X′ ×X′ X′)∼

for a compactification X′ of U containing U0 as the complement of a Cartier divisor B′

extending U1 and the log product (X′ ×X′ X′)∼ defined with respect to B′.
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Proposition 6.1.2. — Let f : V → U be a finite étale morphism of regular flat separated

schemes of finite type over S and n = dim VK + 1. We assume that VK → UK is tamely ramified with

respect to K.

Let U1 ⊂ U be a regular divisor and i : U1 → U denote the immersion. Assume either U1 is a

scheme over K or a scheme over F. Let (V ×S V)∼ be the log product with respect to the Cartier divisor

V1 = V ×U U1 of V. Let q1 : E = Gm,U1 → U1 be the projection and q1 : E ×U1 (V1 ×U1 V1) →
V1 ×U1 V1 also denote the base change. We regard E ×U1 (V1 ×U1 V1) as a closed subscheme of

(V ×S V)∼ as above.

Then, for �1 ∈ GrF
n−1G(V1 ×U1 V1 \ �V1), the product (6.1.2.1) satisfies

(6.1.2.4)
((

q∗
1�1,�V

))log =
{

i∗((�1,�V1))
log if V1 = V1,K

i∗(�1,�V1)
log if V1 = V1,F

in F0G(∂V/UV)Q.

Proof. — We keep the notation in the definition of (6.1.2.1) above. We put g∗V1 =∑
j∈J ejWj . For each irreducible component Wj , let Zj be the closure, ij : Zj → Z be the

closed immersion and ḡj : Zj → Y1 be the restrictions of ḡ : Z → Y. Let gj : Wj → V1 be
the restriction of ḡj . Let DZ = (Dk)k∈I and D′

Z = (Dk)k∈I′ be the families of irreducible
components of D = Z \ W ⊂ D′ = Z \ W0 indexed by I ⊂ I′ = I � J respectively.

For j ∈ J, let (Zj ×S Zj)
∼ and (Zj ×S Zj)

≈ be the log product with respect to the
families Dj = (Dk ∩ Zj)k∈I and D′

j = (Dk ∩ Zj)k∈I′,Dk �=Zj
respectively. Let Ej ⊂ (Z ×S Z)≈

denote the inverse image of Zj ⊂ Z by either of the projections (Z×S Z)∼ → Z. Then, the
canonical map (Zj ×S Zj)

≈ → (Zj ×S Zj)
∼ is of finite tor-dimension by Corollary 4.1.5 and

Ej is flat over (Zj ×S Zj)
≈ by Lemma 1.3.2. Hence, the canonical map q̄j : Ej → (Zj ×S Zj)

∼

is of finite tor-dimension. Let qj : E◦
j → Wj ×S Wj be the base change of q̄j . We consider

the commutative diagram

E1 = (V ×S V)∼ ×V×SV (V1 ×S V1) ←−−−− E◦
j

⊂−−−−→ Ej

q1

⏐⏐ qj

⏐⏐
⏐⏐q̄j

V1 ×S V1
gj×gj←−−−− Wj ×S Wj

⊂−−−−→ (Zj ×S Zj)
∼

where the right horizontal arrows are open immersions.
Let (gj ×gj)

∗ : GrF
n−1G(V1 ×U1 V1 \�V1) → GrF

n−1G(Wj ×U1 Wj \Wj ×V1 Wj) denote
the pull-back by gj × gj : Wj ×S Wj → V1 ×S V1. Then, by Corollary 4.1.8.2, we obtain

(6.1.2.5) (g × g)∼∗(q∗
1�1

)=
∑

j

ej · q∗
j (gj × gj)

∗(�1)

in GrF
n G((W1 ×U0 W1)

∼ \ (W1 ×V0 W1)
∼).

Let AD ⊂ (Y ×S Y)∼
D be the closure of V ×U V \ �V and let A ⊂ (Z ×S Z)≈ be

the intersection of the pull-back of AD with (Z ×X Z)≈ = (Z ×S Z)≈ ×(X×SX)∼ X. For
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each Zj , let Aj ⊂ (Zj ×S Zj)
∼ be the intersection of the pull-back of A with (Zj ×X Zj)

∼ =
(Zj ×S Zj)

∼ ×(X×SX)∼ X. We have A ∩ (W ×S W)∼ = (W ×V W)∼ \ (W ×U W)∼ and Aj ∩
(Wj ×S Wj) = (Wj ×U1 Wj) \ (Wi ×V1 Wj). We take �j ∈ GrF

n G(Aj) lifting (gj × gj)
∗(�1).

Then, by (6.1.2.5), we have

(6.1.2.6)
((

q∗
1�1,�Y

))log = 1
[W : V]

∑

j

ej · ḡ∗
((

q̄∗
j �j,�

log
Z

))
(Z×SZ)≈ .

We continue the proof assuming U1 = U1,K. The proof of the other case U1 =
U1,F is similar using Lemma 4.3.4.2. By Lemma 4.3.4.1, we have ((q̄∗

j �j,�
log
Z ))(Z×SZ)≈ =

ij∗(((q̄∗
j �j,�

log
Zj

))(Zj×SZj )
∼,1Zj

)Gm,Zj
. Since q̄j : Ej → (Zj ×S Zj)

∼ is of finite tor-dimension,

we have ((q̄∗
j �j,�

log
Zj

))(Zj×SZj )
∼ = q̄∗

j ((�j,�
log
Zj

))(Zj×SZj )
∼ by the associativity Lemmas 3.3.6

and 3.3.7 where q̄j : Gm,Zj
→ Zj in the right hand side denotes the restriction of q̄j : Ej →

(Zj ×S Zj)
∼. Thus we obtain ((q̄∗

j �j,�
log
Z ))(Z×SZ)∼ = ij∗((�j,�

log
Zj

))(Zj×SZj )
∼ and

ḡ∗
((

q̄∗
j �j,�

log
Z

))
(Z×SZ)≈ = ḡj∗

((
�j,�

log
Zj

))
(Zj×SZj )

∼

for the right hand side of (6.1.2.6). The right hand side is equal to [Wj : V1] ·
prY1

((�1,�V1))
log if Zj → Y1 is generically finite and is 0 if otherwise similarly as at

the end of the proof of Proposition 6.1.1. Therefore, the sum of the right hand side of
(6.1.2.6) is equal to

∑

j

ej[Wj : V1] · prY1
((�1,�V1))

log.

Since
∑

j ej[Wj : V1] = [W : V], the assertion follows. �

Proposition 6.1.3. — 1. Let f : V → U be a finite étale morphism of regular flat separated

schemes of finite type over S and n = dim VK + 1. We assume that VK → UK is tamely ramified

with respect to K. Let E be a locally free OU-module of rank c, p : P = P(E ) → U be the associated

Pc−1-bundle and PV = P ×U V be the base change. Let � ⊂ V ×U V \ �V be an open and closed

subscheme and we regard �P = � ×U P as an open and closed subscheme of PV ×P PV \ �PV =
(V ×U V \ �V) ×U P.

Then, we have

(6.1.3.1) p∗((�P,�PV))log = c · ((�,�V))log

in F0G(∂V/UV)Q.

2. Let the assumption be the same as in 1. except that we assume f : V → U is a finite étale

morphism of smooth separated schemes of finite type over F and n = dim V.

Then, we have

(6.1.3.2) p∗(�P,�PV)log = c · (�,�V)log

in CH0(∂V/UV)Q.
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Proof. — 1. By the flattening theorem [36], there exist a proper scheme X over
S containing U as a dense open subscheme and a locally free OX-module EX of rank
c extending E . Replacing X by a blow-up, we may assume U is the complement of a
Cartier divisor B.

Let Y be an object of CV and D be a finite family of Cartier divisors of Y such
that �U/VY = �D

U/VY. Let Z → Y be an object of AV→U. Let PZ = Z ×X PX denote the
base change of the projective space bundle PX = P(EX). Let AD ⊂ (Y ×S Y)∼

D be the
closure of V ×U V \ �V and let A ⊂ (Z ×S Z)∼ denote the intersection (ḡ × ḡ)∼−1(AD) ∩
(Z ×X Z)∼ as in Proposition 5.3.3. We regard AP = A ×X PX as a closed subscheme of
(PZ ×S PZ)

∼ = (Z ×S Z)∼ ×X×SX (PX ×S PX) by the diagonal maps X → X ×S X and
PX → PX ×S PX. Then, ((�,�V))log is defined using the image of ((�̃,�

log
Z ))(Z×SZ)∼ by

taking a lifting �̃ ∈ FnG(A) of (g × g)∗�. The product ((�P,�PV))log is defined using the
image of ((p∗�̃,�

log
PZ

))(PZ×SPZ)∼ where p∗ : FnG(A) → Fn+c−1G(AP) denotes the pull-back.
We apply the associativity formula, Lemma 3.3.6, to AP → (PZ ×S PZ)

∼ ← PZ ×Z

PZ ← PZ. Since a projective space bundle PZ is smooth over Z, the diagonal PZ → PZ ×Z

PZ is a regular immersion and hence is of finite tor-dimension. By applying Lemma 3.3.6,
we obtain

(6.1.3.3)
((

�P,�
log
PZ

))
(PZ×SPZ)∼ = (((

�P,�
log
Z

))
(Z×SZ)∼,�PZ

)
PZ×ZPZ

.

Since the projection pZ : PZ → Z is smooth, we have
((

�P,�
log
Z

))
(Z×SZ)∼ = p∗

Z

((
�,�

log
Z

))
(Z×SZ)∼ .

Since (�PZ,�PZ)PZ×ZPZ = (−1)c−1cc−1(�
1
PZ/Z), the right hand side of (6.1.3.3) is equal to

p∗
Z

((
�,�

log
Z

))
(Z×SZ)∼ · (−1)c−1cc−1

(
�1

PZ/Z

)

by the excess intersection formula for the usual intersection product. Since deg(−1)c−1 ·
cc−1(�

1
PZ/Z) = c, by the projection formula, we obtain

pZ∗
((

�P,�
log
PZ

))
(PZ×SPZ)∼ = c · ((�,�

log
Z

))
(Z×SZ)∼

and the assertion follows.
We also omit the similar and easier proof of 2. �

Lemma 6.1.4. — 1. Let f : V → U, E , p : P = P(E ) → U, � ⊂ V ×U V \ �V etc. be

the same as in Proposition 6.1.3. We consider the pull-back (p × p)∗� as an open and closed subscheme

of PV ×U PV \ PV ×V PV. For an integer m, we put cc,m = deg cc−1(�
1
Pc−1(m)).

Then, we have

p∗
((

(p × p)∗� · cc−1

(
pr∗

1�
1
P/U(m) ⊗ pr∗

2 O
(
m′)),�PV

))log
(6.1.4.1)

= cc,m+m′ · ((�,�V))log

in F0G(∂V/UV)Q.
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2. Let the assumption be the same as in 1. except that f : V → U is a finite étale morphism of

separated smooth schemes of finite type over F.

Then, we have

(6.1.4.2) p∗
(
(p × p)∗� · cc−1

(
pr∗

1�
1
P/U(m) ⊗ pr∗

2 O
(
m′)),�PV

)log = cc,m+m′ · (�,�V)log

in CH0(∂V/UV)Q.

An elementary calculation shows

(6.1.4.3) cc,m =
⎧
⎨

⎩

1
m

(
(m − 1)c − (−1)c

)
for m �= 0

(−1)c−1c for m = 0.

Proof. — 1. We keep the notation X, EX,PZ, etc. in the proof of Proposition 6.1.3
above. Since PZ is smooth over Z, similarly as above, we obtain

((
(p × p)∗� · cc−1

(
pr∗

1�
1
P/U(m) ⊗ pr∗

2 O
(
m′)),�log

PZ

))
(PZ×SPZ)∼

= ((
(p × p)∗�,�

log
PZ

))
(PZ×SPZ)∼ · cc−1

(
�1

PZ/Z

(
m + m′))

= p∗
Z

(
(�,�Z)

)
(Z×SZ)∼ · cc−1

(
�1

PZ/Z

(
m + m′)).

By applying the projection formula, we obtain (6.1.4.1).
We also omit the similar and easier proof of 2. �

6.2. Excision formula. — We keep the notation f : V → U etc. as in the previous
subsection. We prove the excision formula, Theorem 6.2.2. We begin with the following
blow-up formula.

Proposition 6.2.1. — Let f : V → U be a finite étale morphism of regular flat separated

schemes of finite type over S such that VK → UK is tamely ramified with respect to Spec K. We put

n = dim UK + 1. Let U1 ⊂ U be a regular closed subscheme of codimension c and p : U′ → U be

the blow-up at U1. Assume either U1 is a scheme over K or a scheme over F. We consider the Cartesian

diagram

V′ p−−−→ V
i←−−− V1

⏐⏐
⏐⏐

⏐⏐

U′ p−−−→ U
i←−−− U1

where we use the same letters to denote the base change.

Let � ⊂ V ×U V \ �V be an open and closed subscheme and we regard �′ = � ×U U′

and �1 = � ×U U1 as open and closed subschemes of V′ ×U′ V′ \ �V′ and of V1 ×U1 V1 \ �V1

respectively.
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Then, we have

(6.2.1.1) ((�,�V))log = p∗
((

�′,�V′
))log + (c − 1)

{
i∗((�1,�V1))

log if U1 = U1,K

i∗(�1,�V1)
log if U1 = U1,F

in F0G(∂V/UV)Q.

Proof. — We consider the pull-back (p × p)∗� by p × p : V′ ×S V′ → V ×S V. We
have

(6.2.1.2) ((�,�V))log = p∗
((

(p × p)∗�,�V′
))log

,

by the commutative diagram (6.1.0.2). We compute (p × p)∗�. Note that p1 : V′
1 → V1

is a Pc−1-bundle. The morphism U′ → U of regular scheme is locally of complete inter-
section. Since (p × p)∗[�U] = [OU′ ⊗L

OU
OU ⊗L

OU
OU′ ] =∑

i(−1)i[T or
OU
i (OU′, OU′)], by

applying Corollary 3.1.6 to the blow-up U′ → U, we obtain

(6.2.1.3) (p × p)∗[�U] − [�U′ ] =
c−1∑

i=1

(−1)i−1
i∑

j=1

[
pr∗

1�
i
U′

1/U1
(i) ⊗ pr∗

2N⊗−j

U′
1/U′

]

in GrF
n G(U′ ×U U′), where prk : U′

1 ×U1 U′
1 → U′

1 denote the projections. Let � denote
the right hand side of (6.2.1.3). We will use the computation

� · c1

(
pr∗

2NU′
1/U′

)=
c−1∑

i=0

(−1)i
[
pr∗

1�
i
U′

1/U1
(i)
]⊗ ([

pr∗
2N⊗−i

U′
1/U′

]
(6.2.1.4)

− [OU′
1×U1 U′

1
])

= (−1)c−1 · (cc−1

(
pr∗

1�
1
U′

1/U1
(1) ⊗ pr∗

2 O(−1)
)

− cc−1

(
pr∗

1�
1
U′

1/U1
(1)

))

in GrF
n−1G(U′

1 ×U1 U′
1) that follows from NV′

1/V′ = O(1).
By (p × p)∗[�U] − [�U′ ] = �, we have (p × p)∗� = �′ + (p1 × p1)

∗�1 · � since �

is flat over U. Thus, by (6.2.1.2), we obtain

((�,�V))log = p∗
((

�′,�V′
))log + p∗

((
(p1 × p1)

∗�1 · �,�V′
))log

.

Let i′ : V′
1 → V′ denote the immersion. If U1 = U1,K, then Proposition 6.1.1 gives us

(6.2.1.5)
((

(p1 × p1)
∗�1 ·�,�V′

))log = −i′∗
((

(p1 × p1)
∗�1 ·� · c1

(
pr∗

2NU′
1/U′

)
,�V1

))log
.

If U1 = U1,F, we replace the double parentheses in the right hand side by a single paren-
theses. By substituting (6.2.1.4) in (6.2.1.5) and applying Lemma 6.1.4.1 to the projective
space bundle p1 : V′

1 → V1, we obtain

(6.2.1.6) p∗
((

(p1 × p1)
∗�1 · �,�V′

))log = i∗(−1)c−1(cc,0 − cc,1)
(
(�1,�V1)

)log
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in F0G(�V/UV)Q. Thus, the assertion follows from cc,0 − cc,1 = (−1)c−1(c −1) (6.1.4.3). �

We state and prove an excision formula.

Theorem 6.2.2. — Let f : V → U be a finite étale morphism of regular flat separated schemes

of finite type over S such that VK → UK is tamely ramified with respect to Spec K. Let U1 ⊂ U be a

regular closed subscheme and we consider the Cartesian diagram

V1
j−−−→ V

i←−−− V0= V \ V1
⏐⏐

⏐⏐
⏐⏐

U1
j−−−→ U

i←−−− U0= U \ U1

For an open and closed subscheme � of V ×U V, we put �0 = � ×U U0 and �1 = � ×U U1.

Then, we have

(6.2.2.1) ((�,�V))log = j!((�0,�V0))
log +

{
i∗((�1,�V1))

log if U1 is flat over S
i∗(�1,�V1)

log if U1 = U1,F

in F0G(∂V/UV)Q.

In the right hand side, j!((�0,�V0))
log and i∗((�1,�V1))

log are elements of
F0G(∂V/UV)Q defined as the image of the map (5.2.3.2).

Proof. — By a standard devissage, we may assume either U1 = U1,K or U1 = U1,F.
By Propositions 6.1.3 and 6.2.1, it suffices to prove the case where U1 is a divisor of U.
We put V1 = V ×U U1. Let (V ×S V)∼ denote the log product (V ×S V)∼

V1
. We consider

the pull-back q∗� by the projection q : (V ×S V)∼ → V ×S V. In the notation of (6.1.2.1),
we have

(6.2.2.2) ((�,�V))log = ((
q∗�,�V

))log
,

by the commutative diagram (6.1.2.2). Let �̃ ⊂ (V ×S V)∼ denote the proper transform
of � and we put �1 = � ×V V1. We also have

(6.2.2.3) ((�0,�V0))
log = ((

�̃,�V

))log

by the commutative part of the diagram (6.1.2.3).
Let q1 : E → V1 ×S V1 be the base change of q and q∗

1�1 be the pull-back. Since
q : (U ×S U)∼ → U ×S U is locally of complete intersection by Corollary 4.1.5 and since
� is flat over U, we have an equality

(6.2.2.4) q∗� = �̃ + ĩ∗
(
q∗

1�1

)
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in G((V ×U V)∼ \ (U ×U U)∼) by Corollary 3.1.7. By Proposition 6.1.2, we have
((q∗

1�1,�V))log = ((�1,�V1))
log if U1 = U1,K and ((q∗

1�1,�V))log = (�1,�V1)
log if U1 =

U1,F. Thus the assertion is proved. �

Similarly and more easily, we have the following analogue of Theorem 6.2.2.

Proposition 6.2.3. — Let f : V → U be a finite étale morphism of smooth separated schemes

of finite type over F. Let U1 ⊂ U be a smooth closed subscheme and U0 = U \ U1 be the complement.

For an open and closed subscheme � of V ×U V, we put �0 = � ×U U0 and �1 = � ×U U1.

Then, we have

(6.2.3.1) (�,�V)log = (�0,�V0)
log + (�1,�V1)

log

in CH0(∂V/UV)Q.

We generalize the definition of the map (5.3.8.3) for not necessarily regular U.
For a noetherian scheme X, let �(X,Z) be the Z-module of Z-valued locally constant
functions on X.

Corollary 6.2.4. — For every finite étale morphism f : V → U of separated schemes of finite

type over S such that VK → UK is tamely ramified with respect to K, there exists a unique way to attach

a morphism

(( ,�V))log : �(V ×U V \ �V,Z) → F0G(∂V/UV)Q

satisfying the following properties:

(1) If U is regular and flat of dimension n over S, it is the composition

�(V ×U V \ �V,Z) −−−→ GrF
n G(V ×U V \ �V)

(( ,�V))log−−−−−→ F0G(∂V/UV)Q

where the first arrow is the natural isomorphism.

If U is smooth of dimension n over F, it is the composition

�(V ×U V \ �V,Z) −−−→ CHn(V ×U V \ �V)
( ,�V)log−−−−→ F0G(∂V/UV)Q

where the first arrow is the natural isomorphism.

(2) Assume U =∐
i Ui is a finite decomposition by regular subschemes. Let ji : Ui → U denote

the immersion and put Vi = V ×U Ui for each i. Then, the diagram

(6.2.4.1)

�(V ×U V \ �V,Z)
(( ,�V))log−−−−−→ F0G(∂V/UV)Q

(j∗i )i

⏐⏐
�⏐⏐
∑

ji!

⊕

i

�(Vi ×Ui
Vi \ �Vi

,Z)

⊕
i(( ,�Vi

))log

−−−−−−−→
⊕

i

F0G(∂Vi/Ui
Vi)Q

is commutative.
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Proof. — The uniqueness is a consequence of the existence of a finite partition by
regular subschemes. To show the existence, it suffices to compare the maps defined by
taking partitions by regular subschemes. By taking a common refinement, it is reduced
to verify the following. Let U be a regular scheme and U =∐

i Ui be a finite stratification
by regular subschemes. Then, the maps defined in (1) make the diagram (6.2.4.1) com-
mutative. It follows from Theorem 6.2.2 and Proposition 6.2.3 by the induction on the
maximum of the codimensions of Ui in U. �

By the same argument, we have the following variant.

Corollary 6.2.5. — Assume K is of characteristic 0. For every finite étale morphism f : V →
U of separated schemes of finite type over K, there exists a unique way to attach a morphism

(( ,�V))log : �(V ×U V,Z) → F0G(∂FV)Q

satisfying the following properties:

(1) If U is regular and flat of dimension n over S, it is the composition

�(V ×U V,Z) −−−→ GrF
n G(V ×U V)

(( ,�V))log−−−−−→ F0G(∂FV)Q

where the first arrow is the natural isomorphism.

(2) Assume U =∐
i Ui is a finite decomposition by smooth subschemes. Let ji : Ui → U denote

the immersion and put Vi = V ×U Ui for each i. Then, the diagram

(6.2.5.1)

�(V ×U V,Z)
(( ,�V))log−−−−−→ F0G(∂FV)Q

(j∗i )i

⏐⏐
�⏐⏐
∑

ji!

⊕

i

�(Vi ×Ui
Vi,Z)

⊕
i(( ,�Vi

))log

−−−−−−−→
⊕

i

F0G(∂FVi)Q

is commutative.

6.3. A semi-stable case. — In this subsection, we establish a crucial step in the proof
of the conductor formula. Namely, in Proposition 6.3.2, we compare the log localized
intersection products ((T,�V))log and ((�,�V′))log for a morphism f : V′ → V using the
Lefschetz trace formula Theorem 1.4.7, assuming among other things that f is extended
to a weakly semi-stable morphism of compactifications.

We consider a commutative diagram

(6.3.1.1)

U′ ←−−− V′
⏐⏐

⏐⏐f

U ←−−− V
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of separated schemes of finite type over S where the horizontal arrows are finite étale and
the vertical arrows are smooth. We further consider a commutative diagram

(6.3.1.2)

� −−−→ V′ ×U′ V′
⏐⏐

⏐⏐

T −−−→ V ×U V

where T ⊂ V ×U V and � ⊂ V′ ×U′ V′ are open and closed subschemes.
Let V′(1)

T and V′(2)

T denote the base change V′ ×V T with respect to the first and the
second projections respectively. We identify the fiber product V′(1)

T ×T V′(2)

T with an open
and closed subscheme (V′ ×U V′) ×V×UV T of V′ ×U V′. Then, (6.3.1.2) implies that � is
a closed subscheme of V′(1)

T ×T V′(2)

T .
We compare the elements ((T,�V))log and f!((�,�V′))log of F0G(∂FV)Q, assuming

that we have a commutative diagram

(6.3.1.3)

U′ ⊂−−−→ X′ ⊃ B′
�⏐⏐

�⏐⏐

V′ ⊂−−−→ Y′ ⊃ D

f

⏐⏐
⏐⏐f̄

V
⊂−−−→ Y ⊃ Ej

of separated schemes of finite type over S satisfying the following conditions:

(6.3.1.4) The schemes Y,Y′ and X′ are proper over S and Y is the disjoint union
of irreducible components. The scheme V is the complement in Y of a
finite family E = (Ej)j∈J of Cartier divisors and U′ is the complement of a
Cartier divisor B′ of X′. The morphism f̄ : Y′ → Y is proper weakly semi-
stable of relative dimension d such that Y′

V = Y′ ×Y V → V is smooth.
The subscheme D is a divisor of Y′ over Y with simple normal crossings
relatively to Y and V′ = Y′

V \ DV.

Let D1, . . . ,Dm be the irreducible components of D. Let Y′(1)

T ,D(1)

1 , . . . ,D(1)
m denote

the base change of Y′,D1, . . . ,Dm over Y by the composition T → V ×U V → V → Y
of the first projection. Similarly, we define Y′(2)

T ,D(2)

1 , . . . ,D(2)
m as the base change using

the second projections. Let (Y′(1)

T ×T Y′(2)

T )∼ denote the log product with respect to the
families of Cartier divisors (D(1)

1 , . . . ,D(1)
m ) and (D(2)

1 , . . . ,D(2)
m ).

Let K′ be a finite extension of K and γ ′ : Spec K′ → T be a morphism over K. By
the valuative criterion, the compositions Spec K′ → T → Y with the two projections are
extended to S′ = Spec OK′ → Y. Let Y′(1)

S′ and Y′(2)

S′ denote the base change with respect
to the two morphisms respectively.
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We regard Y as a log scheme with the log structure defined by the finite family
of Cartier divisors E = (Ej)j∈J. We assume that the restrictions of S′ → Y to the closed
point s′ ∈ S′ define the same log point s′ → Y. Then, we have a canonical isomorphism
ιs′ : Y′(1)

s′ → Y′(2)

s′ . Hence, if the second projection � → V′(2)

T is proper, the alternating sum
Tr((γ ′∗�)∗ : H∗

c (V
′
K̄′,Q�)) (1.4.2.3) is defined for a prime number � invertible on S.

Proposition 6.3.2. — Let the notations be as in (6.3.1.1)–(6.3.1.4) and assume either of

(5.3.2.1a) or (5.3.2.1b) is satisfied. Let T ⊂ V ×U V \ �V be an open and closed subscheme and let

�̃ be a closed subscheme of (Y′(1)

T ×T Y′(2)

T )∼ flat over T such that � = �̃ ∩ (V′(1)

T ×T V′(2)

T ) is an

open subscheme of V′ ×U′ V′. We regard Y as a log scheme with the log structure defined by E = (Ej)j∈J.

Let E ′ be the finite family of Cartier divisors of Y′ consisting of the pull-back of E and the irreducible

components of D. We assume that the generic fibers �E
V/UYK and �E ′

V′/U′Y′
K are empty.

Then, there exist a finite family (Ki)i∈I of finite extensions of K, a family (γi : Spec Ki →
T)i∈I of morphisms over S and rational numbers (ri)i∈I satisfying the following properties:

Let si ∈ Si = Spec OKi
denote the closed point for i ∈ I. Then, for each i ∈ I, the log points

γ̄i : si → Y defined by the unique maps Si → Y extending the composition Spec Ki → T → Y with

the first and the second projections are equal to each other. Further, for a prime number � invertible on S,

we have Tr((γ ∗
i �)∗ : H∗

c (V
′
K̄i

,Q�)) ∈ Q and, for the logarithmic product (5.3.8.4),

((
T,�

log
Y

))=
∑

i

ri

[
γ̄i(si)

]
,(6.3.2.1)

f̄∗
((

�,�
log
Y′
))=

∑

i

riTr
((

γ ∗
i �

)∗ : H∗
c

(
V′

K̄i
,Q�

)) · [γ̄i(si)
]

(6.3.2.2)

in F0G(�V/UY)Q.

Proof. — We take an object ḡ : Z → Y of the category AV→U of alterations. Since
the conditions (5.3.2.1a) and (5.3.2.1b) are stable by the base change, we may assume
that we have a log blow-up Z′ → Z ×Y Y′ as in the conclusion of Lemma 5.3.2. Hence,
the inverse image W′ = V′ ×Y′ Z′ is the complement D′ of a divisor with simple normal
crossings. By the assumption on the upper square in (6.3.1.3), ḡ′ : Z′ → Y′ defines an
object of AV′→U′ .

Let g : W → V be the restriction of ḡ : Z → Y. We put (g × g)∗(T) = ∑
j mjTj ∈

FnG((W ×S W) ×V×SV T) and, for each j, let T̄j ⊂ (Z ×S Z)∼ be the schematic closure.
Then, we have

(6.3.2.3)
((

T,�
log
Y

))= 1
[W : V]

∑

j

mj · ḡ∗
((

T̄j,�
log
Z

))
(Z×SZ)∼ .

We define the log products (Y ×S Y)∼ and (Y′ ×S Y′)∼ with respect to E and
E ′. The log product (Y′(1)

T ×T Y′(2)

T )∼ defined with respect to the pull-backs of the irre-
ducible components of D is canonically identified with (Y′ ×S Y′)∼ ×(Y×SY)∼ T. We define
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(Z′ ×S Z′)∼ to be the log product with respect to the irreducible components of a divi-
sor Z′ \ (Z′ ×Z W) with simple normal crossings and the pull-backs of the irreducible
components of D ⊂ Y′. The inverse image of W ×S W by (Z′ ×S Z′)∼ → (Z ×S Z)∼ is
canonically identified with (Y′ ×S Y′)∼ ×(Y×SY)∼ (W ×S W).

For Tj as above, both (Y′(1)

T ×T Y′(2)

T )∼ ×T Tj and (Z′ ×S Z′)∼ ×(Z×SZ)∼ Tj are
identified with (Y′ ×S Y′)∼ ×(Y×SY)∼ Tj . We regard �̃j = �̃ ×T Tj as a closed sub-
scheme of (Y′(1)

T ×T Y′(2)

T )∼ ×T Tj = (Z′ ×S Z′)∼ ×(Z×SZ)∼ Tj . By the assumption that
�̃ ⊂ (Y′(1)

T ×T Y′(2)

T )∼ is flat over T and by the flattening theorem [36], there exists a
proper modification q̄j : T̄′

j → T̄j for each T̄j satisfying the following conditions: The map
q̄j : T̄′

j → T̄j induces the identity on the dense open subscheme Tj and the schematic
closure �̄′

j of �̃j ⊂ (Y′(1)

T ×T Y′(2)

T )∼ ×T Tj = (Z′ ×S Z′)∼ ×(Z×SZ)∼ Tj in the base change
(Z′ ×S Z′)∼ ×(Z×SZ)∼ T̄′

j is flat over T̄′
j . Then, similarly as (6.3.2.3), we have

(6.3.2.4)
((

�,�
log
Y′
))= 1

[W : V]
∑

j

mj · ḡ′
∗q̄j∗

((
�̄′

j ,�
log
Z′
))

(Z′×SZ′)∼ .

For each j, we put

(6.3.2.5)
((

T̄′
j,�

log
Z

))
(Z×SZ)∼ =

∑
ni

[
s′
i

]

in F0G(T̄′
j ×(Z×SZ)∼ �

log
Z ). Since s′

i ∈ T̄′
j is a closed point and Tj is dense in T̄′

j , there exist
a discrete valuation field Ki and a map γi : Si = Spec OKi

→ T̄j extending Spec Ki → Tj

such that s′
i is the image of the closed point Si of Si . Since the image of si in (Y ×S Y)∼

is in the log diagonal, the log points si → Y defined by the two projections are equal to
each other. Thus, by (6.3.2.3), we obtain (6.3.2.1).

We prove the equality (6.3.2.2). We fix j and let pj : �̄′
j → T̄′

j denote the projection.
First we show

(6.3.2.6) pj∗
((

�̄′
j ,�

log
Z′
))

(Z′×SZ′)∼ =
∑

i

ni deg
(
�̄′

j,si
,�

log
Z′

si

)
(Z′

si
×si

Z′
si
)∼ · [s′

i

]

in F0G(T̄′
j ×(Z×SZ)∼ �

log
Z ). Since Z′ → Z is log smooth, the morphism (Z′ ×S Z′)∼ →

(Z×S Z)∼ is smooth and the log diagonal map Z′ → (Z′ ×Z Z′)∼ = (Z′ ×S Z′)∼ ×(Z×SZ)∼ Z
is a regular immersion. By applying the associativity Lemma 3.3.6 to (Z′ ×S Z′)∼ ←
(Z′ ×Z Z′)∼ ← Z′, we obtain

((
�̄′

j ,�
log
Z′
))

(Z′×SZ′)∼ = (((
�̄′

j ,
(
Z′ ×Z Z′)∼))

(Z′×SZ′)∼,�
log
Z′
)
(Z′×ZZ′)∼ .

Since (Z′ ×S Z′)∼ is smooth over (Z ×S Z)∼, it is tor-independent with Z. Hence by
applying the associativity Lemma 3.3.7 to (Z ×S Z)∼ ← (Z′ ×S Z′)∼ ← �̄′

j as X ← X′ ←
W, we obtain

((
�̄′

j ,
(
Z′ ×Z Z′)∼))

(Z′×SZ′)∼ = ((
�

log
Z , �̄′

j

))
(Z×SZ)∼ .
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Since pj : �̄′
j → T̄′

j is flat, by further applying the associativity Lemma 3.3.6 to
(Z ×S Z)∼ ← T̄′

j ← �̄′
j , we obtain

((
�

log
Z , �̄′

j

))
(Z×SZ)∼ = p∗

j

((
T̄′

j,�
log
Z

))
(Z×SZ)∼ .

Thus, we obtain
((

�̄′
j ,�

log
Z′
))

(Z′×SZ′)∼ = (
p∗

j

((
T̄′

j,�
log
Z

))
(Z×SZ)∼,�

log
Z′
)
(Z′×ZZ′)∼ .

Substituting (6.3.2.5), we see that the right hand side is equal to
∑

i

ni

(
p∗

j

[
s′
i

]
,�

log
Z′
)
(Z′×ZZ′)∼ =

∑

i

ni

(
�̄′

j,si
,�

log
Z′

si

)
(Z′

si
×si

Z′
si
)∼

in F0G(�̄′
j ×(Z×SZ)∼ �

log
Z ). Thus the equality (6.3.2.6) is proved.

For the right hand side of (6.3.2.6), we show

(6.3.2.7) deg
(
�̄′

j,si
,�

log
Z′

si

)
(Z′

si
×si

Z′
si
)∼ = Tr

((
γ ∗

i �
)∗ : H∗

c

(
V′

K̄i
,Q�

))

by applying Theorem 1.4.7 to the base changes Z′ ×Z Si → Si = Spec OKi
. To apply it,

we verify that the assumptions are satisfied. The log blow-up of the product (Y′(1)

T ×T

Y′(2)

T )′ with respect to the families of Cartier divisors (D(1)

1 , . . . ,D(1)
m ) and (D(2)

1 , . . . ,D(2)
m )

contains the log product (Y′(1)

T ×T Y′(2)

T )∼ as the complement of the proper transforms
(D(1)

T ×T Y(2)

T )′ and (Y(1)

T ×T D(1)

T )′. Let �′ be the closure of �̃ in the product (Y′(1)

T ×T

Y′(2)

T )′. We show

(6.3.2.8) �′ ∩ (
D(1)

T ×T Y(2)

T

)′ = �′ ∩ (
Y(1)

T ×T D(1)

T

)′
.

Let (Y′
U ×U Y′

U)′ denote the log product with respect to the families of Cartier
divisors (D1,U, . . . ,Dm,U). We have an open immersion (Y′(1)

T ×T Y′(2)

T )′ → (Y′
U ×U Y′

U)′

as the base change of T → V ×U V. Since � ⊂ V′ ×U′ V′, the image of �′ by (Y′(1)

T ×T

Y′(2)

T )′ ⊂ (Y′
U ×U Y′

U)′ → X′
U ×U X′

U is in the diagonal X′
U. Since U′ ⊂ X′ is assumed to

be the complement of a Cartier divisor B′, we have �′ ∩ (DU ×U Y′
U)′ = �′ ∩ (Y′

U ×U DU)′

by [27, Proposition 1.1.6.2]. Thus, we obtain (6.3.2.8). Consequently, the base change to
Ki satisfies the inclusion (1.4.7.1).

We construct a commutative diagram (1.4.2.4) of monoids for the two base changes
Z′ ×Z Si → Si = Spec OKi

satisfying the condition (P) loc. cit. Since the log structures of
Z and Z′ are defined by divisors with simple normal crossings, we have a commutative
diagram

(6.3.2.9)

Nm −−−→ Nm′

⏐⏐
⏐⏐

�(Z, M̄Z) −−−→ �(Z′, M̄Z′)
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of morphisms of monoids, locally lifted to charts. Since the image of the closed point by
the composition Si = Spec OKi

→ T̄j → (Z ×S Z)∼ lies in the log diagonal, the composi-
tions with the two propositions define the same log points si → Z. Hence there exists one
morphism Nm → N of monoids that makes the diagram

(6.3.2.10)

N ←−−− Nm

⏐⏐
⏐⏐

�(Si, M̄Si
) ←−−− �(Z, M̄Z).

commutative for the compositions with the two projections. We define a monoid P to be
the saturated sum N +sat

Nm Nm′
. Then, the commutative diagrams (6.3.2.9) and (6.3.2.10)

induces a morphism P → �(Z′ ×Z Si, M̄Z′×ZSi
), locally lifted to charts. It defines a com-

mutative diagram (1.4.2.4) of monoids satisfying the condition (P). Thus we may apply
Theorem 1.4.7 and we obtain (6.3.2.7).

Therefore the equality (6.3.2.2) follows from (6.3.2.4), (6.3.2.6) and (6.3.2.7). �

By the same argument, in the case where K is of characteristic 0, we have the
following.

Proposition 6.3.3. — Assume that K is of characteristic 0 and let the notations be as in

(6.3.1.1)–(6.3.1.4). We assume that either (5.3.2.1a) or (5.3.2.1b) is satisfied. Let T ⊂ V ×U V
be an open and closed subscheme and let �̃ be a closed subscheme of the log product (Y′(1)

T ×T Y′(2)

T )∼

flat over T such that � = �̃ ∩ (V′(1)

T ×T V′(2)

T ) is an open subscheme of V′ ×U′ V′. We regard Y as

a log scheme with the log structure defined by a finite family of Cartier divisors E = (Ej)j∈J satisfying

V = Y \⋃j∈J Ej .

Then, there exist a finite family (Ki)i∈I of finite extensions of K, a family (γi : Spec Ki →
T)i∈I of morphisms over S and rational numbers (ri)i∈I satisfying the following properties:

Let si ∈ Si = Spec OKi
denote the closed point for i ∈ I. Then, for each i ∈ I, the log points

γ̄i : si → Y defined by the unique maps Si → Y extending the composition Spec Ki → T → Y with

the first and the second projections are equal to each other. Further for a prime number � invertible on S,

we have
((

T,�
log
Y

))=
∑

i

ri

[
γ̄i(si)

]
,(6.3.3.1)

f̄∗
((

�,�
log
Y′
))=

∑

i

riTr
((

γ ∗
i �

)∗ : H∗
c

(
V′

K̄i
,Q�

)) · [γ̄i(si)
]

(6.3.3.2)

in F0G(Y ×S F)Q.

7. The Swan class and a conductor formula

We keep the notation that K is a complete discrete valuation ring and S = Spec OK

as in the previous sections. We fix a prime number � different from the characteristic p of
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the residue field F of K. First, we define the Swan character classes for Galois coverings
in Section 7.1. We define the Swan class of a locally constant F̄�-sheaf in Section 7.2.
We extend the definition of the Swan class to a constructible sheaf in Section 7.4 using
the excision formula Proposition 7.2.5.2, assuming K is of characteristic 0. We prove a
conductor formula for some relative curves in Section 7.3 and derive the general case
in Section 7.5. In an equal characteristic case, more elementary proof is found in [42,
Corollaries 5.12, 5.13].

In this paper, we state and prove results for F�-sheaves. The corresponding results
for Q�-sheaves are obtained simply by taking reduction modulo �.

7.1. Swan character classes. — We define the Swan character class for a Galois cov-
ering.

Definition 7.1.1. — Let U be a separated regular flat scheme of finite type over S and f : V →
U be a finite étale G-torsor for a finite group G such that the generic fiber VK → UK is tamely ramified

with respect to K. Then, for an element σ ∈ G, we define the Swan character class sV/U(σ ) ∈
F0G(∂V/UV)Q by

(7.1.1.1) sV/U(σ ) =
{

Dlog
V/U for σ = 1

−((�σ ,�V))log for σ �= 1.

By Corollaries 5.1.3 and 5.1.8, for a finite Galois extension L of K of Galois group
G and U = Spec K,V = Spec L, we have

(7.1.1.2) sV/U(σ ) =
{

lengthOL
�1

OL/OK
(log/ log) for σ = 1

−lengthOL
OL/Jσ for σ �= 1

in F0G(∂V/UV) = Z, where Jσ is the ideal of OL generated by σ(a) − a for a ∈ OL and
σ(b)/b − 1 for b ∈ L×.

Lemma 7.1.2. — Let the notation be as in Definition 7.1.1. Then, the following hold:

1. We have

∑

σ∈G

sV/U(σ ) = 0.

2. Let H be a subgroup of G and g : V → U′ be the corresponding H-torsor. Then, for σ ∈ H,

we have

sV/U(σ ) =
{

sV/U′(1) + g∗Dlog
U′/U if σ = 1

sV/U′(σ ) if σ �= 1.
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3. Let N be a normal subgroup of G and G′ = G/N be the quotient. Let g : V → V′ be the

corresponding N-torsor. Then, for σ ′ ∈ G′, we have

g∗sV′/U

(
σ ′)=

∑

σ∈G,σ̄=σ ′
sV/U(σ ).

Proof. — 1. Clear from Lemma 5.4.4.2.
2. For σ = 1, it follows from Lemma 5.4.4.1. For σ �= 1, it is clear from the defini-

tion.
3. Clear from Lemma 5.4.4.3. �

Corollary 7.1.3. — If the order of σ ∈ G is not a power of p, we have

sV/U(σ ) = 0.

Proof. — By Lemma 7.1.2.2, we may assume that G is the cyclic group generated
by σ . Assume the order of σ is not a power of p. Let N ⊂ G be the p-Sylow subgroup and
U′ → U be the corresponding G′ = G/N-torsor. Then, since the order of G′ is prime to p,
the finite étale morphism U′ → U is tamely ramified with respect to S by Corollary 2.4.5.
Hence, it follows from Corollary 5.4.2 applied to V′ = V. �

For an element σ ∈ G of order a power of p and an integer i prime to p, Conjec-
ture 5.4.6 predicts

sV/U(σ ) = sV/U

(
σ i
)
.

Corollary 7.1.4. — Let the notation be as in Definition 7.1.1. Let X be a normal proper scheme

over S containing U as a dense open subscheme and let Y be the normalization of X in V. Let σ ∈ G
be an element not contained in any conjugate of a p-Sylow group of the inertia group Iȳ ⊂ G for any

geometric point ȳ of Y. Then, we have

sV/U(σ ) = 0.

Proof. — By Corollary 7.1.3, it suffices to consider the case where the order of σ

is a power of p. As in the proof of Corollary 7.1.3, we may assume that G is the cyclic
group generated by σ . Let N ⊂ G be the unique maximal proper subgroup generated by
σ p. Let V′ → U be the corresponding G′ = G/N-torsor and let Y′ be normalization of X
in V′. Then, by the assumption, the inertia group at every geometric point is a subgroup
of N and hence Y′ → X is étale. Hence the assertion follows from Corollary 5.4.2. �

7.2. Swan class of a locally constant sheaf. — We briefly recall the Brauer trace of an
�-regular element [18]. Let G be a finite group and � be a prime number. An element
σ ∈ G is called an �-regular element if the order of σ is prime to �. Let G(�) denote the
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subset of G consisting of �-regular elements. For an element σ of a pro-finite group, we
say that σ is �-regular if it is a projective limit of �-regular elements.

Let M be an F�-vector space of finite dimension n and σ be an automorphism of
M of order prime to �. Then the Brauer trace TrBr(σ : M) ∈ Zur

� is defined as follows. Let
α1, . . . , αn ∈ F̄×

� be the eigenvalues of σ on M counted with multiplicities and α̃1, . . . , α̃n ∈
Zur×

� be the liftings of finite orders prime to �. Then the Brauer trace is defined by
TrBr(σ : M) =∑n

i=1 α̃i.
Let f : V → U be a finite étale G-torsor for a finite group G such that the

generic fiber VK → UK is tamely ramified with respect to K. By Corollary 7.1.3, we
have sV/U(σ ) = 0, if the order of σ is not a power of p. In the following, let G(p) de-
note the subset of G consisting of elements of order a power of p. For � �= p, we have
G(p) ⊂ G(�). We put F0G(∂V/UV)Q(ζp∞ ) = F0G(∂V/UV)Q ⊗Q Q(ζp∞),F0G(∂V/UV)Z[ζp∞] =
F0G(∂V/UV) ⊗Z Z[ζp∞] etc.

Definition 7.2.1. — Let U be a regular flat separated scheme of finite type over S = Spec OK

and let F be a locally constant constructible F�-sheaf on U. Let f : V → U be a finite étale G-torsor

for a finite group G such that f ∗F is a constant sheaf on V. We assume that the generic fiber VK → UK

is tamely ramified with respect to K. Let M be the F�-representation of G corresponding to F .

Then, we define the Swan class SwV/U F ∈ F0G(∂V/UV)Q(ζp∞ ) by

(7.2.1.1) SwV/U F =
∑

σ∈G(p)

TrBr(σ : M) · sV/U(σ ).

By Lemma 7.1.2.1 and TrBr(1 : M) = dim M, the defining equality (7.2.1.1) is
equivalent to the following:

(7.2.1.2) SwV/U F =
∑

σ∈G(p),�=1

(
dim M − TrBr(σ : M)

) · ((�σ ,�V))log.

Recall that in [27], the Swan class is defined similarly for a locally constant sheaf on a
smooth scheme over a perfect field and is called the naive Swan class and is denoted
by Sw′. Modifying the notation, we remove “′”. If we assume Conjecture 5.4.6 asserting
that sV/U(σ ) = sV/U(σ i) for an integer i prime to p, the Swan class SwV/U F is in fact
defined in the subspace F0G(∂V/UV)Q ⊂ F0G(∂V/UV)Q(ζp∞ ).

If we assume a strong form of resolution of singularity, the Swan character class is
defined integrally (5.3.8.6) and hence the Swan class SwV/U F is defined as an element
of F0G(∂V/UV)Z[ζp∞]. Further, if we assume Conjecture 5.4.6, the Swan class SwV/U F is
in fact defined integrally in the subgroup F0G(∂V/UV) ⊂ F0G(∂V/UV)Z[ζp∞]. When, we
emphasize that it is defined integrally, we write SwZ

V/U F and call it the integral Swan
class. Note that Conjecture 5.4.6 itself is a consequence of a strong form of equivariant
resolution of singularities.

Similarly as [27, Lemma 4.3.10], we have the following analogue of [18, Théo-
rème 2.1].
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Proposition 7.2.2. — (cf. [43, Corollaire 3.4]) Let U be a regular flat separated scheme of

finite type over S = Spec OK and F1 and F2 be locally constant constructible sheaves of F�-modules on

U. Let f : V → U be a finite étale G-torsor for a finite group G such that f ∗F1 and f ∗F2 are constant

on V and that the generic fiber VK → UK is tamely ramified with respect to K.

Let X be a proper normal scheme over S containing U as a dense open subscheme. Assume

that, for every geometric point x̄ of X, the restriction to a p-Sylow subgroup of the inertia group Ix̄ of

the representations M1 and M2 of G corresponding to F1 and F2 are isomorphic. Then, we have

SwV/U F1 = SwV/U F2.

Proof. — It follows from (7.2.1.1) and Corollary 7.1.4. �

Lemma 7.2.3. — Let U,V,G and F be as in Definition 7.2.1. Let f ′ : V′ → U be a finite

étale G′-torsor for a finite group G′ such that f ′∗F is a constant sheaf on V′. We assume that V′
K → UK

is tamely ramified with respect to Spec K. Let g : V′ → V be a morphism over U compatible with a

group homomorphism G′ → G. Then, we have

SwV′/U F = g∗SwV/U F

in F0G(∂V/UV′)Q(ζp∞ ).

Proof. — It follows from the definition and Lemma 7.1.2.3. �

By Lemma 7.2.3, the Swan class SwV/U F is G-invariant and hence 1
|G| f∗SwV/U F ∈

F0G(∂V/UU)Q(ζp∞ ) is independent of the choice of a Galois covering V trivializing F .
Thus the following definition makes sense.

Definition 7.2.4. — Let U be a regular flat separated scheme of finite type over S = Spec OK

and F be a locally constant constructible sheaf of F�-modules on U.

1. We say that F is tamely ramified on the generic fiber if there exists a finite étale

surjective morphism f : V → U such that f ∗F is constant on V and that the generic fiber VK → UK

is tamely ramified with respect to K.

2. Assume that F is tamely ramified on the generic fiber and that U is connected. Let f : V → U
be a finite étale G-torsor for a finite group G such that f ∗F is constant on V and that F corresponds to

a faithful F̄�-representation of G.

Then, we put

F0G(∂F U)Q(ζp∞ ) = F0G(∂V/UU)Q(ζp∞ )

and define the Swan class

SwU F = 1
|G| f∗SwV/U F
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to be the image by the isomorphism from the G-fixed part

1
|G| f∗ : F0G(∂V/UV)G

Q(ζp∞ ) → F0G(∂V/UU)Q(ζp∞ ) = F0G(∂F U)Q(ζp∞ ).

If U is not connected, we define the Swan class componentwise.

For the G-torsor V in Definition 7.2.4.2, we have SwV/U F = f ∗SwU F by Lemma
5.2.5.2. If K is of characteristic 0, every locally constant sheaf on U is tamely ramified on
the generic fiber. In the case where U = Spec K and F is wildly ramified, the Swan class
SwU F ∈ F0G(∂F U)Q(ζp∞ ) = Q(ζp∞) is nothing but the Swan conductor

SwK F = 1
|G|

∑

σ∈G(p)

TrBr(σ : M) · f∗sL/K(σ )

by (7.1.1.2), known to be an integer ≥ 1.
The Swan classes satisfy the following additivity and the excision formula.

Proposition 7.2.5. — Let U be a regular flat separated scheme of finite type over S = Spec OK

and F be a locally constant constructible sheaf of F�-modules on U. We assume that F is tamely

ramified on the generic fiber.

1. For an exact sequence 0 → F ′ → F → F ′′ → 0 of locally constant constructible sheaves

of F�-modules on U, we have

(7.2.5.1) SwU F = SwU F ′ + SwU F ′′

in F0G(∂F U)Q(ζp∞ ).

2. Let U1 ⊂ U be a regular closed subscheme and U0 = U \ U1 be the complement. For the

immersions i : U1 → U and j : U0 → U, we have

(7.2.5.2) SwU F = j!SwU0 F |U0 + i∗SwU1 F |U1

in F0G(∂F U)Q(ζp∞ ).

Proof. — 1. Clear from (7.2.1.1).
2. It follows from (7.2.1.1) and the excision formula Theorem 6.2.2. �

For a smooth Q̄�-sheaf F on U, its Swan class SwU F is defined as the Swan class
SwU F̄ of the reduction F̄ = F0/λF0 modulo �. Though the F̄�-sheaf F̄ itself depend on
the choice of a lattice F0, is defined as the Swan class SwU F̄ is well-defined by Proposi-
tion 7.2.5.1.

We prove an induction formula for the Swan classes. The following results are
regarded as the relative conductor formula in the case of relative dimension 0.
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Proposition 7.2.6. — Let U be a regular flat separated scheme of finite type over S and f : V →
U be a finite étale G-torsor for a finite group G such that the generic fiber VK → UK is tamely ramified

with respect to K. Let H ⊂ G be a subgroup and g : V → U′ be the corresponding H-torsor. Let F be

a locally constant constructible sheaf of F�-modules on U′ such that g∗F is a constant sheaf on V and

let h : U′ → U denote the canonical map.

Let T ⊂ G be a complete set of representatives of G/H. Then, we have

(7.2.6.1) SwV/Uh∗F =
∑

τ∈T

τ∗
(
SwV/U′ F + rank F · g∗Dlog

U′/U

)

in F0G(∂V/UV)Q(ζp∞ ).

Proof. — Let M be the representation of H corresponding to F . Then, we have
TrBr(σ : IndG

HM) =∑
τ∈T,τ−1στ∈H TrBr(τ−1στ : M). Hence, by the definition of the Swan

class, the left hand side of (7.2.6.1) is equal to
∑

σ∈G(p)

TrBr
(
σ : IndG

HM
) · sV/U(σ )(7.2.6.2)

=
∑

σ∈G(p)

∑

τ∈T,τ−1στ∈H

TrBr
(
τ−1στ : M

) · sV/U(σ )

=
∑

τ∈T

τ∗

( ∑

ρ∈H(p)

TrBr(ρ : M) · sV/U(ρ)

)
.

Thus, it follows from Lemma 7.1.2.2. �

Corollary 7.2.7. — Let f : U → V be a finite étale morphism of regular flat schemes of finite

type over S such that the generic fiber UK → VK is tamely ramified with respect to K. Let F be a locally

constant constructible sheaf of F�-modules on U such that there exists a finite étale morphism g : U′ → U
over S such that g∗F is constant on U′ and that U′

K → VK is tamely ramified with respect to K.

Then, we have

(7.2.7.1) SwVf∗F = f∗SwU F + rank F · d
log
U/V.

In particular, for F = F�, we obtain

(7.2.7.2) SwUf∗F� = d
log
U/V.

Proof. — It follows immediately from (7.2.1.1), (5.4.3.2), Proposition 7.2.6 and the
remark on the Galois closure after Definition 2.4.1. �

We expect the following generalization of the Hasse-Arf theorem to hold.
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Conjecture 7.2.8. — The Swan class SwU F is in the image of the map F0G(∂V/UU) →
F0G(∂V/UU)Q(ζp∞ ).

Note that Conjecture 7.2.8 is much stronger than the statement that the Swan class
SwV/U F is in the image of the map F0G(∂V/UV) → F0G(∂V/UV)Q(ζp∞ ), which is, as we
have seen above, a consequence of a strong form of equivariant resolution of singularities.
We will prove Conjecture 7.2.8 in the case dim UK ≤ 1 later at Corollary 8.3.8.

Conjecture 7.2.8 is related to the following conjecture of Serre.

Conjecture 7.2.9 ([41, Section 6]). — Let A be a regular local noetherian ring and G be

a finite group of automorphisms of A. Assume that the fixed part AG is noetherian and that for every

σ ∈ G, σ �= 1, the quotient A/Iσ by the ideal Iσ = 〈σ(a) − a; a ∈ A〉 is of finite length. Then the

Z-valued function aG of G defined by

aG(σ ) =
{

length A/Iσ if σ �= 1
−∑

τ∈G,τ �=1 aG(τ ) if σ = 1

is a character of G.

We prove Conjecture 7.2.9 in the case where dim A = 2 at the end of Section 8.3.

Lemma 7.2.10. — Assume that the fraction field of A is of characteristic 0 and that the residue

field F of A is of characteristic p > 0. Then, Conjecture 7.2.8 for U such that n = dim UK +1 implies

Conjecture 7.2.9 for A of dimension n.

Proof. — First, we consider the following special case. Let Y be a regular flat sep-
arated scheme of finite type over S = Spec OK and y ∈ Y be a closed point in the closed
fiber as in Proposition 5.1.7. Let G be a finite group of automorphisms of Y over S such
that, for every σ ∈ G, σ �= 1, the fixed part Yσ is equal to {y} set-theoretically. We assume
that the quotient X = Y/G exists as a scheme of finite type over S. We put V = Y \ {y}
and f : V → U = V/G ⊂ X.

We show that Conjecture 7.2.8 for f : V → U and G implies Conjecture 7.2.8
for A = OY,y and G. We consider the image sG(σ ) ∈ Q of sV/U(σ ) ∈ F0G(∂V/UV)Q by
F0G(∂V/UV)Q → F0G(�V/UY)Q → F0G({y})Q = Q. Conjecture 7.2.8 implies that the
function sG(σ ) is a character of G. By Proposition 5.1.7, we have aG = rG − uG + sG

where rG and uG denote the characters of the regular and the unit representations of G
respectively. Hence, the assertion is proved in this case.

We reduce the general case to the special case above similarly as in the proof of [28,
Lemma (5.3)]. By replacing A by the completion, we may assume A and hence AG are
complete. Let C be a complete valuation ring such that p is a prime of C and the residue
field k is the same as that of AG. Then, by [12, Chapitre 0, Théorème 19.8.8 (ii)] there
exists a finite injection C[[t1, . . . , tn−1]] → AG. Let W(k̄) be the ring of Witt vectors and
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we take a local homomorphism C → W. By replacing A by a factor of the completion
A⊗̂CW, we may assume k is algebraically closed and C = W. Then, the rest of the argu-
ment is the same as that in the proof of [28, Lemma (5.3)] by replacing k[[t1, . . . , tn−1]]
by W[[t1, . . . , tn−1]] and k{t1, . . . , tn−1} by the strict localization W{t1, . . . , tn−1}. �

Conjecture 5.4.6 implies the weaker statement that the Swan class SwU F is in
the image of the map F0G(∂V/UU)Q → F0G(∂V/UU)Q(ζp∞ ). Since we do not know the
proof of Conjecture 5.4.6 in general, we make the following definition. Let prQ(ζp∞ )/Q :
F0G(∂V/UU)Q(ζp∞ ) → F0G(∂V/UU)Q be the projection induced by lim−→n

1
[Q(ζpn ):Q]TrQ(ζpn )/Q.

Definition 7.2.11. — The rationalized Swan class SwQ
U F ∈ F0G(∂V/UU)Q is the image of

the Swan class SwU F by the projection prQ(ζp∞ )/Q : F0G(∂V/UU)Q(ζp∞ ) → F0G(∂V/UU)Q.

In [27], the rationalized Swan class is called the Swan class and is denoted by Sw.
By modifying the notation there we write the Swan class by Sw and the rationalized Swan
class by SwQ.

7.3. Conductor formula for a relative curve. — Let f : U′ → U be a smooth morphism
of separated regular flat schemes of finite type over S and F be a locally constant con-
structible sheaf of F�-modules on U′. Let π ′ : V′ → U′ be a finite étale morphism such
that the pull-back π ′∗F is a constant sheaf on V′. We assume that the following conditions
are satisfied:

(7.3.0.1) There exists a proper smooth scheme X′ over U containing U′ as the
complement U′ = X′ \ D of a divisor D with simple normal crossing rel-
atively to U. The finite étale morphism π ′ : V′ → U′ is tamely ramified
with respect to X′.

Then, by [17], the higher direct images Rqf!F� and Rqf!F are locally constant sheaves
on U. Further, for the alternating sum of ranks, we have

(7.3.0.2) rank Rf!F = rank F · rank Rf!F�.

We assume that the locally constant sheaves Rqf!F on U are tamely ramified on
the generic fiber and that F on U′ is tamely ramified on the generic fiber. Then the Swan
class

SwURf!F =
∑

q

(−1)qSwURqf!F

∈ F0G(∂F U)Q(ζp∞ ) is also defined as the alternating sum and the Swan class SwU′ F is de-
fined. A conductor formula should express the Swan class SwURf!F in terms of the class
SwU′ F . We prove a conductor formula for a relative curve under a certain assumption in
Corollary 7.3.6 and in general in Section 7.5, assuming K is of characteristic 0.
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First, we give a general formalism Proposition 7.3.3 to prove a conductor formula.
We consider a commutative diagram

(7.3.0.3)

U′ π ′←−−− V′

f

⏐⏐
⏐⏐g

U
π←−−− V

of regular flat separated schemes of finite type over S satisfying the following condition:

(7.3.0.4) The horizontal arrows are finite étale, V is a G-torsor over U and V′ is a
G′-torsor over U′ for finite groups G and G′. The arrow g is compatible
with a morphism ϕ : G′ → G of finite groups in the sense that, for σ ∈ G′

and τ = ϕ(σ) ∈ G, we have g ◦ σ = τ ◦ g.

Lemma 7.3.1. — We consider a commutative diagram (7.3.0.3) of separated regular flat

schemes of finite type over S satisfying the conditions (7.3.0.1) and (7.3.0.4). Assume that the higher

direct image Rqg!F� is a constant sheaf on V for every q ≥ 0.

Let σ ∈ G′ be an element and we put τ = ϕ(σ) ∈ G. Let η̄ be a geometric point of V and τ̄ be

an automorphism of η̄ compatible with τ . Let σ ∗ ◦ τ̄ ∗ denote the automorphisms of Hq
c(V

′
η̄,Q�) and

Hq
c(V

′
η̄,F�) defined by the pull-back by σ × τ̄ on V′

η̄ = V′ ×V η̄.

1. The automorphism σ ∗ ◦ τ̄ ∗ of Hq
c(V

′
η̄,F�) is independent of the choice of τ̄ .

2. Assume that σ and τ̄ are �-regular. Let σ ∗ denote the automorphism σ ∗ ◦ τ̄ ∗ of H∗
c (V

′
η̄,F�)

independent of τ̄ . Then, the alternating sum Tr(σ ∗ ◦ τ̄ ∗ : H∗
c (V

′
η̄,Q�)) is independent of τ̄ and is

equal to the alternating sum TrBr(σ ∗,H∗
c (V

′
η̄,F�)) of Brauer traces.

Proof. — 1. By the assumption that Rqg!F� is constant, the action of σ ◦ τ̄ on
Hq

c(V
′
η̄,F�) is independent of the lifting τ̄ of τ .
2. Since σ and τ̄ are assumed �-regular, the actions of σ ∗ ◦ τ̄ on H∗

c (V
′
η̄,Q�) and

on H∗
c (V

′
η̄,F�) are of finite order prime-to-�. Hence the assertion follows. �

Lemma 7.3.2. — We consider a commutative diagram (7.3.0.3) of separated regular flat

schemes of finite type over S satisfying the conditions (7.3.0.1) and (7.3.0.4). Let F be a locally constant

constructible sheaf of F�-modules on U′ such that the pull-back π ′∗F is a constant sheaf on V′. Assume

that the higher direct image Rqg!F� and the pull-back π∗Rqf!F are constant sheaves on V for every

q ≥ 0.

Let τ ∈ G be an �-regular element. Let ξ̄ be a geometric point of U and lift it to a geometric

point η̄ of V. Let M be the F̄�-representation of G′ corresponding to F . Then, we have

(7.3.2.1) TrBr
(
τ,H∗

c

(
U′

ξ̄
, F

))= 1
|G′|

∑

σ∈G′(�), ρ∈G;
ϕ(σ )=ρτρ−1

TrBr
(
σ ∗ : H∗

c

(
V′

η̄,F�

)) ·TrBr
(
σ ∗ : M

)
.
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Proof. — By the assumption that π∗Rqf!F are constant on V, we may regard
Hq

c(U
′
ξ̄
, F ) as an F̄�-representation of G and the Brauer trace TrBr(τ,H∗

c (U
′
ξ̄
, F )) is de-

fined.
We consider Hq

c(V
′
ξ̄
, F̄�) as an F̄�-representation of G′ by the pull-back action of

G′ on V′
ξ̄
= V′ ×U ξ̄ . By [18, Lemma 2.2], the alternating sum H∗

c (V
′
ξ̄
, F̄�) defines an

element [H∗
c (V

′
ξ̄
, F̄�)] of the Grothendieck group P�(G′) of the exact category of finitely

generated projective F̄�[G′]-modules ([40, Partie III 1.3]).
Since τ is assumed �-regular, we have a decomposition

H∗
c

(
V′

ξ̄
, F̄�

)=
⊕

χ∈〈̂τ 〉
H∗

c

(
V′

ξ̄
, F̄�

)
χ

by characters of the cyclic subgroup 〈τ 〉 ⊂ G and an equality
[
H∗

c

(
V′

ξ̄
, F̄�

)]=
∑

χ∈〈̂τ 〉

[
H∗

c

(
V′

ξ̄
, F̄�

)
χ

]

in P�(G′). Similarly as [18, Lemma 2.2], we obtain

(7.3.2.2) dim H∗
c

(
U′

ξ̄
, F

)
χ

= dim
([

H∗
c

(
V′

ξ̄
, F̄�

)
χ

] · [M])G′
.

Thus, we have

(7.3.2.3) TrBr
(
τ,H∗

c

(
U′

ξ̄
, F

))=
∑

χ∈〈̂τ 〉
χ(τ) · dim

([
H∗

c

(
V′

ξ̄
, F̄�

)
χ

] · [M])G′
.

Similarly as [18, Lemma 2.3], the right hand side of (7.3.2.3) is equal to

∑

χ∈〈̂τ 〉
χ(τ) · 1

|G′|
( ∑

σ∈G′(�)
TrBr

(
σ ∗ : H∗

c

(
V′

ξ̄
, F̄�

)
χ

) · TrBr
(
σ ∗ : M

))

= 1
|G′|

∑

σ∈G′(�)

(∑

χ∈〈̂τ 〉
χ(τ) · TrBr

(
σ ∗ : H∗

c

(
V′

ξ̄
, F̄�

)
χ

)) · TrBr
(
σ ∗ : M

)

= 1
|G′|

∑

σ∈G′(�)
TrBr

(
σ ∗ × τ̄ ∗ : H∗

c

(
V′

ξ̄
,F�

)) · TrBr
(
σ ∗ : M

)
.

For ρ ∈ G, let V′
ρ(η̄) denote the geometric fiber of V′ → V by the composition of

η̄ → V with ρ : V → V. Then, the geometric fiber V′
ξ̄
= V′ ×U ξ̄ is the disjoint union∐

ρ∈G V′
ρ(η̄) and we have

TrBr
(
σ ∗ × τ̄ ∗ : H∗

c

(
V′

ξ̄
,F�

))=
∑

ρ∈G; ϕ(σ )=ρτρ−1

TrBr
(
σ ∗ ◦ τ̄ ∗ : H∗

c

(
V′

ρ(η̄),F�

))
.
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We have TrBr(σ ∗ ◦ τ̄ ∗ : H∗
c (V

′
ρ(η̄),F�)) = TrBr(σ ∗ : H∗

c (V
′
η̄,F�)) since Rqg!F� are assumed

constant on V. �

Proposition 7.3.3. — We consider a commutative diagram (7.3.0.3) of separated regular flat

schemes of finite type over S satisfying the conditions (7.3.0.1) and (7.3.0.4). Assume that U,U′,V
and V′ are irreducible and that VK → UK and V′

K → U′
K are tamely ramified with respect to K.

Let � be a prime number invertible on S and F be a locally constant constructible sheaf of F�-

modules on U′. Assume further that the pull-backs π∗Rqf!π ′
∗F� and π∗Rqf!F are constant on V. Let

ξ̄ be a geometric point of U and η̄ be a geometric point of V above ξ̄ . For an �-regular element σ ∈ G′,
define TrBr(σ ∗ : H∗

c (V
′
η̄,F�)) as in Lemma 7.3.1. Then, we have the following.

1. Assume that, for each non-trivial �-regular element σ ∈ G′ and τ = ϕ(σ) ∈ G, we have

(7.3.3.1) TrBr
(
σ ∗ : H∗

c

(
V′

η̄,F�

)) · ((�τ ,�V))log = g!((�σ ,�V′))log

in F0G(∂U/VV)Q. Then, we have

(7.3.3.2) SwURf!F − rank F · SwURf!F� = g!SwU′ F

in F0G(∂V/UU)Q(ζp∞ ).

2. Assume K is of characteristic 0 and suppose U and hence V,U′,V′ are schemes over K.

Assume that, for each �-regular element σ ∈ G′ and τ = ϕ(σ) ∈ G, we have

(7.3.3.3) TrBr
(
σ ∗ : H∗

c

(
V′

η̄,F�

)) · ((�τ ,�V))log = g!((�σ ,�V′))log

in F0G(∂FV)Q. Then, we have

(7.3.3.4) SwURf!F� = −f!((�U′,�U′))log + χc

(
U′

ξ̄

) · ((�U,�U))log

in F0G(∂FU)Q(ζp∞ ).

Proof. — 1. Let M denote the representation of G′ corresponding to the locally
constant F�-sheaf F on U′. By (7.3.0.2) and by the definition of the Swan class (7.2.1.2),
the equality (7.3.3.2) is equivalent to the following:

1
|G|

∑

τ∈G(�),τ �=1

(
TrBr

(
τ,H∗

c

(
U′

ξ̄
, F

))− rank F · TrBr
(
τ,H∗

c

(
U′

ξ̄
,F�

)))
(7.3.3.5)

× π∗((�τ ,�V))log

= 1
|G′|

∑

σ∈G′(�),σ �=1

(
TrBr(σ,M) − dim M

) · f!π ′
∗((�σ ,�V′))log.
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Substituting (7.3.2.1), we see that the left hand side of (7.3.3.5) is

1
|G|

∑

τ∈G(�),τ �=1

1
|G′|

∑

σ∈G′(�), σ �=1, ρ∈G;
ϕ(σ )=ρτρ−1

TrBr
(
σ ∗ : H∗

c

(
V′

η̄,F�

))
(7.3.3.6)

× (
TrBr(σ,M) − dim M

) · π∗((�τ ,�V))log

= 1
|G′|

∑

σ∈G′(�),σ �=1

(
TrBr(σ,M) − dim M

)

× 1
|G|

∑

ρ∈G

TrBr
(
σ ∗ : H∗

c

(
V′

η̄,F�

)) · π∗((�ρ−1ϕ(σ )ρ,�V))log.

By the assumption (7.3.3.1), each term in the second summation in the second line of
(7.3.3.6) is

π∗ρ∗g!((�σ ,�V′))log = f!π ′
∗((�σ ,�V′))log.

Thus the equality (7.3.3.5) follows.
2. Similarly as above, the left hand side of the equality (7.3.3.4) is equal to

− 1
|G|

∑

τ∈G(�)

TrBr
(
τ,H∗

c

(
U′

ξ̄
,F�

)) · π∗((�τ ,�V))log(7.3.3.7)

+ 1
|G|

∑

τ∈G(�)

dim H∗
c

(
U′

ξ̄
,F�

) · π∗((�τ ,�V))log.

Substituting (7.3.2.1), we see that the first term in (7.3.3.7) is equal to

1
|G′|

∑

σ∈G′(�)
TrBr(σ : 1) · 1

|G|
∑

ρ∈G

TrBr
(
σ ∗ : H∗

c

(
V′

η̄,F�

))

× π∗((�ρ−1ϕ(σ )ρ,�V))log.

Hence, similarly as above, by the assumption (7.3.3.3), it is further equal to

1
|G′|

∑

σ∈G′(�)
f!π ′

∗((�σ ,�V′))log = f!
1

|G′|π
′
∗π

′∗((�U′,�U′))log

= f!((�U′,�U′))log.

Similarly, the second term in (7.3.3.7) is equal to χc(U′
ξ̄
)times 1

|G|
∑

τ∈G(�) π∗((�τ ,�V))log =
((�U,�U))log and the equality (7.3.3.4) follows. �
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We derive from the crucial step Proposition 6.3.2 a sufficient condition on a relative
curve for the assumptions (7.3.3.1) and (7.3.3.3) of Proposition 7.3.3 to be satisfied.

Proposition 7.3.4. — Let f : U′ → U be a smooth morphism of relative dimension 1 of

separated regular flat schemes of finite type over S. Let � be a prime number invertible on S and F be a

locally constant constructible sheaf of F�-modules on U′. We consider a commutative diagram (7.3.0.3)
satisfying the conditions (7.3.0.1) and (7.3.0.4). Assume that the pull-back π ′∗F is constant on V′ and

that π∗Rqf!π ′
∗F� is constant on V for every q ≥ 0.

We assume that V and V′ are integral. Let η denote the generic point of V and let η̄ be a geometric

point above η. Let σ ∈ G′ and τ = ϕ(σ) ∈ G be non-trivial �-regular elements.

We also consider a commutative diagram

(7.3.4.1)

V′ ⊂−−−→ Y′ ⊃ D
⏐⏐g

⏐⏐ḡ

V
⊂−−−→ Y

of separated schemes of finite type over S and a finite family E of Cartier divisors Y satisfying the following

condition:

(7.3.4.2) The schemes Y and Y′ are proper over S. There exist d sections (tk : Y → Y′)k

such that the pair (Y′, (tk)) is a d pointed stable curve of genus g over Y and that

D ⊂ Y′ is the disjoint union of the sections tk(Y). The open subscheme V ⊂ Y is

the complement of the union of E . The restriction Y′
V = Y′ ×Y V → V is smooth

and V′ ⊂ Y′
V is the complement of DV. The action of G on V is extended to an

admissible action on Y and on E , in the sense that the quotient X = Y/G exists as

a scheme.

Let E ′ denote the family of Cartier divisors of Y′ defined as the union of the pull-

back of E and the sections (tk(Y))k . Then, �E
V/UYK and �E ′

V′/U′Y′
K are empty.

Then, we have

(7.3.4.3) ḡ∗
((

�σ ,�
log
Y′
))= TrBr

(
σ ∗,H∗

c

(
V′

η̄,F�

)) · ((�τ ,�
log
Y

))

in F0G(�V/UY)Q,

Proof. — Since the smooth compactification Y′
V ⊃ V is unique, the action of G′ on

V′ is extended uniquely to that on Y′
V compatible with the action of G on V. Further,

since an extension Y′ ⊃ Y′
V is unique, the action of G′ on Y′

V is extended uniquely to that
on Y′ compatible with the admissible action of G on Y. Since Y′ → Y is projective and
G′ acts on the relatively ample sheaf �1

Y′/Y(log D), the action of G′ on Y′ is admissible in
the sense that the quotient X′ = Y′/G′ exists as a scheme. Hence, by Lemma 5.3.6, the
quotients X = Y/G and X′ = Y′/G′ contains U and U′ as the complements of Cartier
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divisors respectively. In particular, we have a commutative diagram (6.3.1.3) satisfying
(6.3.1.4).

Let T ⊂ V′ ×V V′ be the graph �τ of τ . The base changes Y′(1)

T and Y′(2)

T defined as
in Proposition 6.3.2 are isomorphic to Y′

V. We define the log product and the log blow-up
(Y′(1)

T ×T Y′(2)

T )∼ ⊂ (Y′(1)

T ×T Y′(2)

T )′ with respect to the log structure defined by the sections
(tk(T))k. Since the automorphism σ of Y′

V = Y′(1)

T permutes the sections (tk(T))k of Y′(1)

T ,
the intersection tk(T)∩σ(tk(T)) is either empty or equal to a divisor tk(T) of Y′(1)

T . Hence
by the universality of blow-up, the closed immersion γ = (1, σ ) : Y′(1)

T → Y′(1)

T ×T Y′(2)

T is
uniquely lifted to a closed immersion γ ′ : Y′(1)

T → (Y′(1)

T ×T Y′(2)

T )′. Let �′ ⊂ (Y′(1)

T ×T Y′(2)

T )′

denote the image of γ ′ and �̃ = �′ ∩ (Y′(1)

T ×T Y′(2)

T )∼ be the intersection. Then, �′ and
hence �̃ are flat over T.

We regard Y as a log scheme with the log structure defined by E and define the
log product (Y ×S Y)∼. By applying Proposition 6.3.2 to Y′ → Y, we obtain a finite
family (Ki)i∈I of finite extensions of K, a family (γi : Spec Ki → T)i∈I of morphisms over
S extended to (γ̄i : Spec OKi

→ (Y ×S Y)∼)i∈I such that the image of the closed points
γ̄i(si) are in the log diagonal �

log
Y ⊂ (Y ×S Y)∼ and a family (ri)i∈I of rational numbers

satisfying ((T,�
log
Y )) =∑

i ri[γ̄i(si)] and

(7.3.4.4) f̄ ′
∗
((

�,�
log
Y′
))=

∑

i

riTr
((

γ ∗
i �

)∗ : H∗
c

(
V′

K̄i
,Q�

)) · [γ̄i(si)
]
.

Thus, it suffices to show

(7.3.4.5) TrBr
(
σ ∗,H∗

c

(
V′

η̄,F�

))= Tr
((

γ ∗
i �

)∗ : H∗
c

(
V′

K̄i
,Q�

))

for each i.
We regard the composition si → (Y ×S Y)∼ → Y as a morphism of log scheme.

Since γ̄i(si) ∈ (Y ×S Y)∼ are in the log diagonal, the composition si → Y
τ→ Y of the

morphisms of log schemes is the same as the original morphism si → Y of log schemes.
Let s̄i be a log geometric point above si and let Ỹs̄i

be the log strict localization. Let τ̃

be the automorphism of Ỹs̄i
induced by τ . We lift the generic geometric point η̄ → Y

to a geometric point η̄ → Ỹs̄i
dominating the generic point η̃ ∈ Ỹs̄i

. Let k0 be the fixed
subfield of κ(η̃) by an automorphism τ̃ of order prime to �. We take an �-regular lifting
τ̄ ∈ Gal(η̄/k0) of τ̃ ∈ Gal(η̃/k0) = 〈τ̃ 〉. By applying Lemma 7.3.1.2., we obtain

TrBr
(
σ ∗,H∗

c

(
V′

η̄,F�

))= Tr
(
σ ∗ ◦ τ̄ ∗,H∗

c

(
V′

η̄,Q�

))
.

We deduce (7.3.4.5) from Proposition 1.6.2. We show that the assumption of
Proposition 1.6.2 is satisfied. The intersection �̃ ∩ (V′(1)

T ×T V′(2)

T ) is the graph �σ of
σ . Hence, the second projection �̃ ∩ (V′(1)

T ×T V′(2)

T ) = �σ → V′(2)

T is proper and �σ is flat
over T. Thus �σ satisfies the conditions in Proposition 1.6.2. We define a map Ys̄i

→ S0

to a regular noetherian scheme satisfying the condition (1.6.2.2) for Yt̄ → S in the nota-
tion there. We consider the map Y → M̄g,d to the moduli of d pointed stable curves of
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genus g defined by the pointed stable curve (X, (tk)). Let S0 be the strict localization of
M̄g,d at the geometric point s̄i. Then, the map Ys̄i

→ S0 satisfies the condition (1.6.2.2).
Since τ̄ is compatible with τ̃ , we may apply Proposition 1.6.2 and we obtain

Tr
(
σ ∗ ◦ τ̄ ∗,H∗

c

(
V′

η̄,Q�

))= Tr
((

γ ∗
i �

)∗ : H∗
c

(
U′

K̄i
,Q�

))
.

Thus, the equality (7.3.4.5) is proved. �

Similarly, if K is of characteristic 0, the same argument gives us the following vari-
ant.

Proposition 7.3.5. — We assume K is of characteristic 0. Let the assumption be the same as

in Proposition 7.3.4 except that U is a scheme over K and that we do not assume σ or τ be non-trivial.

Then, the equality (7.3.4.3) holds in F0G(YF)Q.

We derive a conductor formula for relative curves from Proposition 7.3.3 assuming
char K = 0.

Corollary 7.3.6. — Assume that K is of characteristic 0. Let f : U′ → U be a smooth

morphism or relative dimension 1 of separated regular flat schemes of finite type over S and let � be a

prime number invertible on S. We assume that U and U′ are connected. Let f̄ : X′ → U be a proper

smooth curve with geometrically connected fibers of genus g and let D be a divisor of X′ finite étale of

degree d over U such that U′ = X′ \ D and 2g − 2 + d > 0.

1. Let F be a locally constant constructible sheaf of F�-modules on U′. Then, there exists a finite

étale covering π : V → U such that we have an equality

(7.3.6.1) SwURf!F − rank F · SwURf!F� = f!SwU′ F

in F0G(∂V/UU)Q(ζp∞ ).

2. Assume that the schemes U and U′ are schemes over K. Then, we have

(7.3.6.2) SwURf!F� = −f!((�U′,�U′))log + χc

(
U′

ξ̄

) · ((�U,�U))log

in F0G(∂FU)Q(ζp∞ ) for a geometric point ξ̄ of U.

Proof. — By the assumption char K = 0, the locally constant sheaf F on U′ and
the locally constant sheaves Rqf!F and Rqf!F� on U are tamely ramified on the generic
fiber.

We define a commutative diagram (7.3.0.3) satisfying the condition (7.3.0.4). Since
we assume K is of characteristic 0, the sheaf F is tamely ramified along D by Abhyankar’s
lemma [37, Proposition 5.5]. Hence, we may take a G′-torsor π : V′ → U′ for a finite
group G′ that is tamely ramified along D such that the pull-back π∗F is a constant sheaf
on U′. Let Y′ be the normalization of X′ in U′. Then, since V′ → U′ is tamely ramified
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along D, the proper curve Y′ is smooth over U and V′ ⊂ Y′ is the complement of a divisor
D′ finite étale over U by Lemma 7.3.7 below.

Since Y′ → U is proper smooth, its Stein factorization D′′ → U is finite étale [11,
Remarque (7.8.10)]. Let π ′ : V → U be a finite étale G-torsor trivializing the Stein factor-
ization of the finite étale coverings D′ and D′′. Replacing V′ by a connected component
of U′ ×U V and G′ by the stabilizer in G′ ×H, we obtain a commutative diagram (7.3.0.3)
satisfying the condition (7.3.0.4).

The proper smooth curve Y′ → V has geometrically connected fibers of genus g′

and D′
V is the union of d ′ disjoint sections. By the assumption that 2g −2+d > 0, we have

2g′ − 2 + d ′ > 0. Hence, with an ordering of sections V → D′, the pair (Y′,D′) defines
a d ′ pointed smooth stable curve of genus g′. Further replacing V if necessary, we may
assume that π ′∗Rqf!F�, π ′∗Rqf!F and π ′∗Rqf!Z/nZ are constant on V for some integer
n ≥ 3 invertible on S.

Let Y be a proper scheme over S containing V as the complement of a family E
of Cartier divisors such that �V/UY = �E

V/UY. Let V → Mg′,d ′,n be the morphism to the
moduli space defined by the d ′ pointed smooth curve Y′ of genus g′ over V. By replacing
Y by the schematic closure of the graph of the map V → Mg′,d ′,n in Y×Z M̄g′,d ′,n, we may
assume that V → Mg′,d ′,n is extended to a morphism Y → M̄g′,d ′,n. Further by replacing
Y if necessary, we may and do assume that the action of G on Y is admissible in the
sense that the quotient Y/G exists as a scheme and that E carries an action of G. The
pull-back of the universal family by the map Y → M̄g′,d ′,n is a pointed stable curve over
Y and satisfies the condition (7.3.4.2).

Thus, the assumptions in Propositions 7.3.4 and 7.3.5 are satisfied. By Proposi-
tions 7.3.4 and 7.3.5, the assumptions (7.3.3.1) and (7.3.3.3) in Proposition 7.3.3 are
satisfied respectively. Thus the assertion follows. �

Lemma 7.3.7. — Let S be a normal scheme and X be a smooth curve over S. Let D be a

divisor of X étale over S and U = X \ D be the complement. Let V → U be a finite étale morphism

tamely ramified along D and Y be the normalization of X in V. Then, Y is smooth over S and V is the

complement of a divisor E of Y étale over S.

Proof. — Let x̄ be a geometric point of X and t be a function on a neighborhood
defining D. Let ȳ be a geometric point of Y above x̄. Then, by Abhyankar’s lemma [37,
Proposition 5.5], Y is étale locally isomorphic to X[T]/(Tn − t) for an integer n ≥ 1
invertible at x̄ on a neighborhood of ȳ. Hence the assertion follows. �

7.4. Swan class of a constructible sheaf. — In the rest of this section, we assume that
the characteristic of K is 0. We define the Swan class for a constructible sheaf on a scheme
over K.

For a separated scheme U of finite type over K, let K(U,F�) be the Grothendieck
group of constructible F�-sheaves on the étale site of U. More precisely, it is the quotient
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of the free abelian group generated by the isomorphism classes [F ] of constructible F�-
sheaves F on the étale site of U divided by the relations [F ] = [F ′] + [F ′′] for exact
sequences 0 → F ′ → F → F ′′ → 0.

Lemma 7.4.1. — The abelian group K(U,F�) is generated by the classes [i!F ] where i :
Z → U is a locally closed immersion of smooth subscheme and F is a locally constant constructible

sheaf of F�-modules on Z. The relations are given by

(7.4.1.1) [i!F ] = [
i!F ′]+ [

i!F ′′]

for exact sequences 0 → F ′ → F → F ′′ → 0 of locally constant constructible F�-modules on Z and

(7.4.1.2) [i!F ] = [i0!F |Z0] + [i1!F |Z1]
for smooth locally closed subschemes Z1 ⊂ Z where i0 : Z0 = Z \ Z1 → U and i1 : Z1 → U are the

immersions.

Proof. — We consider the free abelian group generated by the classes [i!F ] where
i : Z → U are locally closed immersions of smooth subschemes and F are locally constant
constructible F�-modules on Z. Let K′ denote its quotient by the relations (7.4.1.1) and
(7.4.1.2). Clearly, we have a canonical map K′ → K(U,F�). The inverse is defined as
follows.

For a constructible sheaf F on U, there exists a finite partition U = ∐
i Ui by

smooth schemes such that F |Ui
are locally constant. It follows from (7.4.1.2) that the

sum
∑

i[F |Ui
] is independent of the partition. Thus, the class [F ] = ∑

i[F |Ui
] ∈ K′ is

well-defined. Further, the equalities (7.4.1.1) and (7.4.1.2) implies [F ] = [F ′] + [F ′′] for
exact sequences 0 → F ′ → F → F ′′ → 0. Thus, the map K(U,F�) → K′ is well-defined
and is the inverse of the map K′ → K(U,F�) above. �

Proposition 7.4.2. — For separated schemes U of finite type over K, there exists a unique way

to attach morphisms

(7.4.2.1) SwU : K(U,F�) → F0G(∂FU)Q(ζp∞ )

satisfying the following properties:

(1) If U is smooth over K and if F is a locally constant constructible sheaf of F�-modules on

U, we have SwU([F ]) = SwU F .

(2) For an immersion i : U′ → U, the diagram

(7.4.2.2)

K(U,F�)
SwU−−−→ F0G(∂FU)Q(ζp∞ )

i!
�⏐⏐

�⏐⏐i!

K(U′,F�)
SwU′−−−→ F0G(∂FU′)Q(ζp∞ )

is commutative.
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Proof. — By (1) and (2), the map SwU is characterized by SwU([i!F ]) = i!SwU′ F for
a locally constant constructible sheaf F on a regular subscheme U′ and the immersion
i : U′ → U. Hence the uniqueness follows from Lemma 7.4.1. Further by Lemma 7.4.1,
the existence follows from Proposition 7.2.5. �

We define a modification of the map SwU with stronger compatibility for push-
forward. For a separated scheme U of finite type over K, let Const(U) be the Z-module
of constructible Z-valued functions on U. For a constructible F�-sheaf F on U, let
rank F ∈ Const(U) be the constructible function defined by rank F (x) = dim Fx̄. Let
rank : K(U,F�) → Const(U) be the homomorphism sending the class [F ] to the func-
tion rank F .

Similarly as Proposition 7.4.2, we have a map ChU : Const(U) → F0G(∂FU)Q

characterized as follows.

Proposition 7.4.3. — For separated schemes U of finite type over K, there exists a unique way

to attach morphisms

(7.4.3.1) ChU : Const(U) → F0G(∂FU)Q

satisfying the following properties:

(1) If U is smooth over K, for the constant function 1U, we have ChU(1U) = ((�U,�U))log.

(2) For an immersion i : U′ → U, the diagram

(7.4.3.2)

Const(U)
ChU−−−→ F0G(∂FU)Q

i!
�⏐⏐

�⏐⏐i!

Const(U′)
ChU′−−−→ F0G(∂FU′)Q

is commutative.

Proof. — It follows from the excision formula Theorem 6.2.2. �

Definition 7.4.4. — Let U be a separated scheme of finite type over K. For a constructible

F�-sheaf F on U, we define the total Swan class SwU F ∈ F0G(∂FU)Q(ζp∞ ) by

(7.4.4.1) SwU F = SwU F − ChU(rank F ).

Corollary 7.4.5. — 1. Assume U is smooth and F is a locally constant constructible F�-sheaf

of constant rank on U. Let f : V → U be a finite étale G-torsor for a finite group G such that π∗F is

a constant sheaf. Then, we have

(7.4.5.1) SwU F = − 1
|G|

∑

σ∈G

TrBr(σ : M) · f∗((�σ ,�V))log.
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2. For separated schemes U of finite type over K, the collection of the maps SwU : K(U,F�) →
F0G(∂FU)Q(ζp∞ ) is characterized by the following properties:

(1) Under the assumption in 1, we have

(7.4.5.2) SwU

([F ])= − 1
|G|

∑

σ∈G

TrBr(σ : M) · f∗((�σ ,�V))log.

(2) For an immersion i : U′ → U, the diagram

(7.4.5.3)

K(U,F�)
SwU−−−→ F0G(∂FU)Q(ζp∞ )

i!
�⏐⏐

�⏐⏐i!

K(U′,F�)
SwU′−−−→ F0G(∂FU′)Q(ζp∞ )

is commutative.

Proof. — 1. We have

(7.4.5.4) SwU F = SwU F − rank F · ((�U,�U))log.

Thus, the equality (7.4.5.1) follows from definition (7.2.1.2) of the Swan class and the
equality |G| · ((�U,�U))log =∑

σ∈G f∗((�σ ,�V))log.
2. We define the map SwU by SwU = SwU − ChU ◦ rank. Then, the commuta-

tive diagram (7.4.5.3) follows from (7.4.2.2) and (7.4.3.2). The uniqueness is clear from
Lemma 7.4.1. �

7.5. Conductor formula. — We keep the assumption that K is of characteristic 0.
We show that the diagram (7.4.5.3) is commutative for arbitrary morphisms over K.
Changing the notation, f : U → V denotes an arbitrary morphism over K of separated
schemes of finite type over K.

Theorem 7.5.1. — Let f : U → V be a morphism of separated schemes of finite type over K.

Then, the diagram

(7.5.1.1)

K(U,F�)
SwU−−−→ F0G(∂FU)Q(ζp∞ )

f!
⏐⏐

⏐⏐f!

K(V,F�)
SwV−−−→ F0G(∂FV)Q(ζp∞ )

is commutative.
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Proof. — It suffices to show the equality

(7.5.1.2) SwVf![F ] = f!SwU[F ]
for a constructible sheaf F on U. We prove this by induction on the dimensions of U and
V. By a standard devissage using the excision formula, it suffices to show that there exist
dense open subschemes U′ ⊂ U,V′ ⊂ V such that f (U′) ⊂ V′ and that we have

SwV′ f |U′![F |U′ ] = f!SwU′ [F |U′ ].
Hence, we may assume the following condition is satisfied.

• The sheaf F is locally constant and the scheme V is smooth.

The formula (7.5.1.2) is compatible with the composition of morphisms. Hence, by the
induction on relative dimension, we may further assume the following.

(7.5.1.3) The morphism f : U → V is smooth of relative dimension ≤ 1.

Since we are allowed to shrink V, we may assume that V is connected and that
there exists a proper smooth curve X over V containing U as the complement of a divisor
D finite étale over V. Since the formula (7.5.1.2) is proved for a finite étale morphism in
Corollary 7.2.7, by replacing V by the Stein factorization of X → V, we may assume that
the relative dimension is 1 and that the geometric fibers of X → V is connected. Further
shrinking U and V, we may replace the condition (7.5.1.3) by the following.

(7.5.1.4) There exist a proper smooth and geometrically connected curve f̄ : X →
V of genus g and an open immersion U → X such that U is the com-
plement of a divisor D ⊂ X finite and étale over V of degree d such that
2g − 2 + d > 0.

Then, applying Corollary 7.3.6, we obtain the equalities (7.3.6.1) and (7.3.6.2). The
equality (7.5.1.2) follows from them together with (7.4.5.4). �

We derive some consequences of Theorem 7.5.1.

Corollary 7.5.2. — Let f : U → V be a smooth morphism of smooth separated schemes of

finite type over K. Assume that Rqf!F� is locally constant for every q ≥ 0.

1. Let F be a constructible sheaf of F�-modules of constant rank on U. Assume that Rqf!F is

locally constant for every q ≥ 0. Then, we have

(7.5.2.1) SwVRf!F = f!SwU F + rank F · SwVRf!F�

in F0(∂FV)Q(ζp∞ ).

2. We have

(7.5.2.2) SwVRf!F� = rank Rf!F� · ((�V,�V))log − f!((�U,�U))log

in F0(∂FV)Q(ζp∞ ).
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Proof. — 1. Since rank Rf!F = rank F · rank Rf!F�, it suffices to apply Theo-
rem 7.5.1 to [F ] − rank F · [F�].

2. It suffices to apply Theorem 7.5.1 to [F�]. �

If there exist a proper smooth scheme f̄ : X → V and a divisor D of X with nor-
mal crossings relatively to V such that U is the complement X \ D, the assumption of
Corollary 7.5.2 is satisfied. Further, if d denotes the relative dimension of X over V we
have

rank Rf!F� = (−1)ddeg cd

(
�1

X/V(log D)
)
.

In particular, for V = Spec K, we have the following.

Corollary 7.5.3. — Let U be a smooth separated scheme of finite type over K and F be a

smooth F�-sheaf of constant rank on U. Then, we have

SwKR�c(UK, F ) = deg SwU F + rank F · SwKR�c(UK,F�),(7.5.3.1)

SwKR�c(UK,F�) = −deg((�U,�U))log.(7.5.3.2)

The equality (7.5.3.2) implies the conductor formula of Bloch in the case proved
in [26] as follows. We assume that U is proper smooth over K and X is a proper regular
flat scheme over S = Spec OK such that U = XK and the reduced closed fiber XF,red is
a divisor with simple normal crossings. Then, by Proposition 4.3.8 and [26, (5.4.2.6)],
we have ((�U,�U))

log
(U×SU)∼ = ((�U,�U))

log
(U×SU)∼ = (−1)dcd(�

1
X/S(log/ log))XF . Thus, in

this case, the equality (7.5.3.2) is equivalent to [26, Theorem 6.2.5] and hence to the
conductor formula of Bloch [3]. This proof of the conductor formula of Bloch uses the
same tools including the localized intersection product. However, the excision formula
allows us to reduce the proof to relative curves.

8. A computation in the rank 1 case

We state Conjecture 8.3.1 comparing the Swan class of a sheaf of rank 1 with
the cycle class defined in [24, Section 5.1] and prove it in Theorem 8.3.7 assuming
dim UK ≤ 1. Using it, we prove the integrality conjecture Conjecture 7.2.8 under the
assumption dim UK ≤ 1. In Section 8.2 and in the second half of Section 8.3, we will
assume that K is of characteristic 0.

8.1. Ramification of characters. — We briefly recall the theory of ramification of
characters of Galois groups in [21]. For a field K, let XK denote the dual group
H1(K,Q/Z) = H2(K,Z) of the abelian quotient Gab

K of the absolute Galois group
GK = Gal(K̄/K). The cup-product defines a canonical pairing

(8.1.1.1) ( , )K : XK × K× = H2(K,Z) × H0(K,Gm) → Br(K) = H2(K,Gm).
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Assume K is a henselian discrete valuation field and let F be the residue field of
characteristic p > 0. In this subsection, we drop the assumption that F is perfect. We
briefly recall the definition of the exact sequence

0 → �F → �F(log)
res→ F → 0

of F-vector spaces. A canonical map d log : O×
K → �F = �F/Fp is defined by a �→ ā−1dā.

The F-vector space �F(log) is defined as the amalgamate sum of �F with F ⊗Z K× over
F ⊗Z O×

K with respect to the map d log : O×
K → �F and the inclusion O×

K → K×. The
valuation K× → Z induces the residue map res : �F(log) → F. The map d log : O×

K →
�F is canonically extended to d log : K× → �F(log).

We identify a character χ ∈ XF with the corresponding unramified character
χ ∈ XK and regard XF as a subgroup of XK. For a ∈ F, let χa ∈ XF be the character
defined by the Artin-Schreier equation Tp − T = a. We define a map χ : F → XK by
sending a ∈ F to χa ∈ XF ⊂ XK. In [21, (1.4)], it is shown that there exists a unique map
λK : �F(log) → Br(K) that makes the diagram

(8.1.1.2)

F × K× (a,b)�→a·d log b−−−−−−→ �F(log)

χ×1

⏐⏐
⏐⏐λK

XK × K× ( , )K−−−→ Br(K)

commutative.
The main construction in [21, Definition (2.1)] is the increasing filtration F• of

XK indexed by r ∈ N. We have XK = ⋃
r≥0 FrXK. The subgroup F0XK consists of the

characters at most tamely ramified. For r ≥ 1, we put Ur
K = 1 + mr

K ⊂ K×. Then, the
pairing ( , )K : XK × K× maps FrXK × Ur

K for r ≥ 1 and F0XK × K× to Im λK ⊂ Br(K).
For an extension L of henselian discrete valuation field such that OK = K ∩ OL and
mK OL = me

L, the canonical map XK → XL sends FrXK to FreXL.
For r ≥ 1, we put GrF

r XK = FrXK/Fr−1XK. A canonical injection

(8.1.1.3) rswr,K : GrF
r XK → HomF

(
m

r
K/mr+1

K ,�F(log)
)

is defined in [21, Corollary (5.2)]. It is characterized by the following properties:

(1) For χ ∈ FrXK and c ∈ mr
K, we have

(8.1.1.4) (χ,1 − c)K = λK

(
rswr,K(χ)(c̄)

)
.

(2) Let L be an arbitrary extension of henselian discrete valuation field such that
OK = K ∩ OL and mK OL = me

L. Let FL denote the residue field of L. Then,
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the diagram

(8.1.1.5)

GrF
r XK

rswr,K−−−→ HomF(m
r
K/mr+1

K ,�F(log))
⏐⏐

⏐⏐

GrF
erXL

rswer,L−−−→ HomFL(m
er
L/mer+1

L ,�FL(log))

is commutative.

For an element χ ∈ FrXK \ Fr−1XK, the injection

(8.1.1.6) rswr,K(χ) : m
r
K/mr+1

K → �F(log)

is called the refined Swan conductor of χ and will be denoted by rswχ .
We compute the refined Swan conductor of a Kummer character of degree p ex-

plicitly. Assume that K is of characteristic 0 and the residue field F is of characteristic p.
Assume further that K contains a primitive p-th root ζp of 1. We identify Z/pZ = μp by
ζp and the p-torsion part XK[p] = H1(K,Z/pZ) with K×/K×p = H1(K,μp) by the iso-
morphism θ : K×/K×p → XK[p] of Kummer theory. For a ∈ K×, let θa ∈ XK[p] denote
the corresponding character.

We put z = ζp − 1. Then, we have zp + pz ≡ (z + 1)p − 1 = 0 mod pz2 and
ord zp = ord pz > ord pz2. Hence, for an element a ∈ OK, the reduction of the Kum-
mer equation (1 − zt)p = 1 − azp gives the Artin-Schreier equation tp − t = ā and the
unramified character χā ∈ XK[p] is identified with 1 − azp ∈ K×/K×p. In particular, we
have 1 + zpmK ⊂ K×p. Consequently, we have a commutative diagram

K×/K×p θ−−−→ XK[p]
ā �→1−azp

�⏐⏐
�⏐⏐

F
χ−−−→ XF[p].

Proposition 8.1.2. — Let K be a henselian discrete valuation field of mixed characteris-

tic (0, p) containing a primitive p-th root ζp of 1. We put e′ = p · ordK(ζp − 1) = ordKzp. We

define a decreasing filtration F• on K×/K×p by Fm(K×/K×p) = Image Um
K for m ≥ 1 and by

F0(K×/K×p) = K×/K×p.

1. ([21, Proposition 4.1]) The isomorphism θ : K×/K×p → XK[p] induces an isomor-

phism

(8.1.2.1) Fm
(
K×/K×p

)→ FrXK[p]
for 0 ≤ m = e′ − r ≤ e′. In particular, we have Fe′XK[p] = XK[p].

2. For a ∈ K× such that d log a �= 0 in �F(log), the map

(8.1.2.2) rswe′,K(θa) : me′
K/me′+1

K → �F(log)
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sends c · zp to −c · d log a for c ∈ OK.

3. For 1 ≤ m = e′ − r < e′ and a = 1 − b ∈ Um
K, /∈ Um+1

K , the map

(8.1.2.3) rswr,K(θa) : mr
K/mr+1

K → �F(log)

sends c · zp/b to c · d log b for c ∈ OK.

Proof. — We identify the p-torsion part Br(K)[p] = H2(K,μp) with H2(K,μ⊗2
p ) by

ζp. Then, for a, b ∈ K×, the cup-product (θa, b)K ∈ Br(K) is identified with the Galois
symbol {a, b} defined as θa ∪ θb ∈ H2(K,μ⊗2

p ). Let a ∈ K× and let L be an arbitrary
extension of henselian discrete valuation field. Then, for c ∈ OL, we have

(8.1.2.4)
(
θa,1 − zpc

)
L
= {

a,1 − zpc
}= −{

1 − zpc, a
}= −(χc̄, a)L = −λL(c̄ · d log a).

By the characterization of rswr,K, the equality (8.1.2.4) implies that the map rswr,K is
the zero-map for r > e′. Hence, by the injectivity of rswr,K, we have GrF

r XK[p] = 0 for
r > e′. Thus by XK =⋃

r≥0 FrXK, we obtain Fe′XK[p] = XK[p]. Now, the equality (8.1.2.4)
implies the assertion 2.

To show the remaining assertions, we use the following elementary lemma on the
symbol map.

Lemma 8.1.3 ([20, Lemma 6]). — For b, c ∈ K× \ {1} such that bc �= 1, we have

(8.1.3.1) {1 − b,1 − c} = {1 − bc,−b} + {1 − bc,1 − c} − {1 − bc,1 − b}.
Proof of Lemma. — Since {x, y} = 0 for x, y ∈ K× satisfying x + y = 1, we have

{
1 − b,1 − 1 − bc

1 − b

}
=
{

1 − bc,1 − 1 − bc

1 − b

}
.

Since 1 − 1−bc

1−b
= −b(1−c)

1−b
, the right hand side is equal to that of (8.1.3.1). Further, since

1
1−b

+ −b

1−b
= 1, the left hand side is equal to that of (8.1.3.1). �

We go back to the proof of Proposition 8.1.2. Let 1 ≤ m = e′ − r < e′ be an integer,
b ∈ mm

K and put a = 1 − b. Let L be an arbitrary extension of discrete valuation field

and c ∈ m
−m
K OL be an arbitrary element. Since U

e′L+1
L ⊂ L×p for e′L = ordLzp, we have

{Ue′L
L ,U1

L} = 0 by Lemma 8.1.3. Hence, by b, zpc ∈ mL, we have
(
θa,1 − zpc

)
L
= {

1 − b,1 − zpc
}= {

1 − bczp,−b
}

(8.1.3.2)

= (χbc,−b)L = λL

(
bc · d log(−b)

)= λL(bc · d log b)

further by Lemma 8.1.3.
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Similarly as above, the equality (8.1.3.2) together with the characterization and the
injectivity of rswn,K shows that θ maps Um

K to FrXK[p], by induction on 1 ≤ m = e′ − r ≤ e′.
Further the equality (8.1.3.2) implies the assertion 3. Hence, the composition of the map

Grm
F

(
K×/K×p

)=
{

mm
K/mm+1

K if p � m

mm
K/(mn

K)pm
m+1
K if m = np

Grθ−−−→ GrF
r XK

rswr,K−−−→ HomF(m
r
K/mr+1

K ,�F(log))

sends 1 − b to the map c �→ bc/zp · d log b and is an injection. Since θ : K×/K×p → XK[p]
is an isomorphism, we conclude θ(Um

K) = FrXK[p]. �

8.2. Kummer covering of degree p. — We apply the theory recalled in the previous
section to the following geometric situation. Let K be a complete discrete valuation field
of characteristic 0 with perfect residue field F of characteristic p > 0. Let X be a regular
flat separated scheme of finite type over S = Spec OK and D be a divisor with simple
normal crossings. Let D1, . . . ,Dn be the irreducible components of D. For an irreducible
component Di , let Ki be the fraction field of the completion ÔX,ξi

of the local ring at
the generic point ξi of Di . The residue field Fi = κ(ξi) of the complete discrete valuation
field Ki is the function field of Di . The fiber �1

X/S(log D)ξi
⊗OX,ξi

Fi is identified with the
Fi-vector space �Fi

(log) in the notation of the last subsection.
Let χ ∈ H1(U,Q/Z) be a character. Then, for each local field Ki, the restriction

defines a character χi ∈ XKi
. By the ramification theory recalled in Section 8.1, the Swan

conductor ri = swKi
(χi) ≥ 0 is defined for each Ki . We define the Swan divisor of χ by

Dχ =∑m

i=1 riDi . Let E =∑
i,ri>0 Di be the support of Dχ . For each irreducible component

Di such that ri > 0, the refined Swan conductor rswKi
(χi) defines a non-zero map

OX(−Dχ)ξi
⊗OX,ξi

Fi = m
ri
Ki

/m
ri+1
Ki

→ �1
X/S(log D)ξi

⊗OX,ξi
Fi = �Fi

(log).

In [21, Theorem (7.1), Proposition (7.3)], it is shown that there exists an OE-linear injec-
tion

(8.2.0.1) rswχ : OX(−Dχ) ⊗OX OE → �1
X/S(log D) ⊗OX OE

inducing rswKi
(χi) at each generic point.

Definition 8.2.1. — We say that χ is clean with respect to X if the map

rswχ : OX(−Dχ) ⊗OX OE → �1
X/S(log D) ⊗OX OE

is a locally splitting injection.

Assume χ is clean with respect to X. Then, we say that χ is s-clean with respect to X if, for

each irreducible component Di of E, the composition

OX(−Dχ) ⊗OX ODi

rswi(χ)−−−→ �1
X/S(log D) ⊗OX ODi

res−−−→ ODi
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is either an isomorphism or the zero-map, depending on Di .

It is conjectured in [24] that for any χ , there exists a proper modification X′ of X
such that χ is clean with respect to X′, see Lemma 8.2.6.3.

We compute the Swan divisor Dχ and the map rswχ (8.2.0.1) for a Kummer
character χ of order p explicitly.

Lemma 8.2.2. — Let A be a regular local ring such that the fraction field is of characteristic

0 and the residue field is of characteristic p > 0. Let t1, . . . , tn ∈ A be a part of regular system of

parameters. Assume that A contains a primitive p-th root ζp of 1 and that t1, . . . , tn divide p. Let Ki be

the fraction field of the completion OKi
of the discrete valuation ring A(ti) for each i.

Let m = (m1, . . . ,mn) be a family of integers satisfying 0 ≤ mi ≤ e′i = p · ordKi
(ζp − 1) and

let FmA× denote the subgroup 1 + t
m1
1 · · · tmn

n A for m �= 0 and F0A× = A×. Then, the inverse image

of
⊕

i Fmi(K×
i /K×p

i ) ⊂⊕
i K×

i /K×p

i by the canonical map A×/A×p →⊕
i K×

i /K×p

i is the image

of FmA×.

Proof. — First, we show the case where n = 1. We prove it by induction on m = m1.
It is obvious for m = 0. Assume m = 1 and that the image of a ∈ A× in K×

1 /K×p

1 is in
F1(K×

1 /K×p

1 ). Let F1 denote the residue field of K1. Then, we have ā ∈ F×p

1 . We put
ā = bp for b ∈ F×

1 . Since b is integral over the normal ring A/t1A, we have b ∈ A/t1A and
b ∈ (A/t1A)×. Take a unit c ∈ A× lifting b. Then, a/cp is in F1A× = 1 + t1A.

Assume m ≥ 1 and that the image of a ∈ FmA× = 1 + tm
1 A is in Fm+1(K×

1 /K×p

1 ). If
p � m, we have a ∈ 1 + tm+1

1 OK1. Since A ∩ tm+1
1 OK1 = tm+1

1 A, we have a ∈ Fm+1A×. Assume
p|m and we put a = 1 + tm

1 b. Then, we have b̄ ∈ Fp

1. Similarly as above, there is an element
c ∈ A such that b ≡ cp mod t1. Then, a/(1 + tm/pc)p is in Fm+1A× = 1 + tm+1

1 A.
We prove the general case. Assume that the image of a ∈ A× is in

⊕
i Fmi(K×

i /K×p

i ).

Then, for each i, there exists ai ∈ A× such that a/a
p

i ∈ Fmi A×. Let m′
i ≥ 0 be the smallest

integer satisfying p · m′
i ≥ mi . Then, since the p-th power map (A/t

m′
i

i )× → (A/t
mi

i )× is

injective, the class āi ∈ (A/t
m′

i

i )× is uniquely determined by the condition a/a
p

i ∈ Fmi A×.

Further, for i �= j, the p-th power map (A/(t
m′

i

i , t
m′

j

j ))× → (A/(t
mi

i , t
mj

j ))× is also injective.

Hence, there exists a unique element b ∈ (A/t
m′

1
1 · · · tm′

n
n A)× satisfying b ≡ ai mod t

m′
i

i . Let
c ∈ A× be a unit lifting b. Then, we have a/cp is in FmA×. �

Corollary 8.2.3. — Let χ ∈ H1(U,Z/pZ) be a character of order p and x ∈ D be a point. Let

D1, . . . ,Dn be the irreducible components of D containing x and put Dχ =∑
i riDi on a neighborhood

of x. We put A = OX,x and, for each irreducible component Di , we put e′i = p · ordDi
(ζp − 1) and

mi = e′i − ri .

1. On a neighborhood of x, there exists an element a ∈ �(U, O×
U) such that χ is defined by

tp = a and satisfying one of the following conditions:

(8.2.3.1) ordDi
a is prime to p for at least one Di .
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(8.2.3.2) a is a unit at x and its image in A× is in FmA× for m = (m1, . . . ,mn) in the notation

of Lemma 8.2.2.

2. Assume Dχ =∑
i e′iDi and let a be as in 1. Then, the map

rswχ : OE(−Dχ) → �1
X/S(log D) ⊗ OE

sends zp to −d log a where z = ζp − 1.

3. Assume Dχ <
∑

i e′iDi . Then, the condition (8.2.3.2) holds. Let b be a basis of the invertible

sheaf OX(−∑
i miDi) on a neighborhood of x. We put a = 1 − bc ∈ O×

X where c ∈ OX on a

neighborhood of x as in (8.2.3.2). Then, the map

rswχ : OE(−Dχ) → �1
X/S(log D) ⊗ OE

sends a · zp/b to c · d log b + dc.

Proof. — 1. Let a be a rational function on X such that χ is defined by tp = a on
the generic point. The regular local ring A = OX,x is a UFD. Hence, we may assume
0 ≤ ordya < p for every discrete valuation defined by a point y ∈ X of codimension 1,
after dividing a by the p-th power of a rational function and shrinking X if necessary. For
a point y ∈ X of codimension 1, if the valuation of a at y is not divisible by p, then χ is
ramified at y. Hence, a is a unit on U. Further, if the condition (8.2.3.1) is not satisfied,
then a is a unit at x. Then, by Lemma 8.2.2, after dividing a by the p-th power of a
rational function, the condition (8.2.3.2) is satisfied.

2. 3. Clear from Proposition 8.1.2 and the equality −da/b = c · d log b + dc. �

We give a condition for character χ of order p to be clean.

Proposition 8.2.4. — Let χ ∈ H1(U,Z/pZ) be a character of order p and x ∈ D be a point.

Assume that χ is not tamely ramified at x and that K is of characteristic 0 and contains a primitive

p-th root ζp of 1. Let D1, . . . ,Dn be the irreducible components of D containing x and let C denote the

intersection D1 ∩ · · · ∩ Dn. We put Dχ =∑
i riDi > 0 as in Corollary 8.2.3.

For each irreducible component Di , we put e′i = p · ordDi
(ζp − 1) and mi = e′i − ri . Let

ti ∈ �(X, OX) be an element defining Di .

1. Assume Dχ = ∑
i e′iDi . Then, χ is clean at x if and only if on a neighborhood of x, there

exists an element a ∈ �(U, O×
U) such that χ is defined by tp = a and satisfying one of the following

conditions:

(8.2.4.1) ordDi
a is prime to p for at least one Di .

(8.2.4.2) a is a unit at x and da|C has no zero at x.

2. Assume Dχ <
∑

i e′iDi . Then, χ is clean at x if and only if, on a neighborhood of x, there

exists an element a ∈ �(U, O×
U) such that χ is defined by tp = a and satisfying one of the following

conditions:
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(8.2.4.3) a = 1 − u · t
m1
1 · · · tmn

n for a unit u at x and, for at least one Di , the integer mi is

prime to p.

(8.2.4.4) a = 1 − c · t
m1
1 · · · tmn

n for a regular function c at x such that dc|C has no zero at x.

Proof. — We have an exact sequence 0 → �1
C → �1

X/S(log D) ⊗OX OC →⊕
i OC → 0 and (d log ti)i defines a splitting. Hence, if the condition (8.2.3.1) holds, then

χ is clean and we have Dχ =∑
i e′iDi . Thus, it suffices to consider the case where (8.2.3.2)

holds.
1. Assume Dχ =∑

i e′iDi and hence mi = 0 for every i. Then, χ is clean if and only
da|C has no zero at x.

2. Assume Dχ <
∑

i e′iDi and hence mi > 0 for some i. Then, by Corollary 8.2.3.1,
there exists a regular function c at x such that χ is defined by tp = a for a = 1− c · tm1

1 · · · tmn
n .

By Corollary 8.2.3.3 and by the local splitting above, χ is clean if and only if either
c · (mi)i ∈⊕

i OC or dc ∈ �1
C has no zero at x. The condition that c · (mi)i ∈⊕

i OC has no
zero at x means that c is a unit at x and one of mi is prime to p. The second condition is
equivalent to (8.2.4.4). �

Corollary 8.2.5. — Let the assumption be as in Proposition 8.2.4.

1. Assume Dχ =∑
i e′iDi . Then, χ is clean at x if and only if χ is s-clean at x.

2. Assume Dχ <
∑

i e′iDi . Then, χ is s-clean at x if and only if, on a neighborhood of x, there

exists an element a ∈ �(U, O×
U) such that χ is defined by a and satisfying either the condition (8.2.4.3)

or the following condition:

(8.2.4.4′) a = 1 − c · t
m1
1 · · · tmn

n for a regular function c at x such that dc|C has no zero at x

and, for every Di , the integer mi is divisible by p.

Proof. — 1. If the condition (8.2.4.1) or (8.2.4.2) is satisfied, then χ is s-clean at x.
2. If the condition (8.2.4.3) is satisfied, then χ is s-clean at x. Assume the condition

(8.2.4.4) is satisfied. Then, in the notation of the proof of Proposition 8.2.4.2, χ is s-clean
at x if and only if either c · (mi)i ∈ ⊕

i OC has no zero at x or c|C · (mi)i = 0. The first
condition is equivalent to (8.2.4.3). By the condition (8.2.4.4), we have c|C �= 0. Hence,
the second condition c|C · (mi)i = 0 is equivalent to that mi is divisible by p for every i. �

We recall the main result from [24] and prove a complement.

Lemma 8.2.6. — Let the assumption be as in Proposition 8.2.4. Assume dim XK + 1 = 2
and let � ⊂ �s ⊂ D be the sets of points where F is not clean and not s-clean with respect to X
respectively.

1. The subsets � and �s consist of finitely many closed points of D.

2. [24, Remark 4.13] Let x be a closed point of D and f : X′ → X be the blow-up at x. If

χ is clean at x, then χ is clean on a neighborhood of f −1(x).

3. [24, Theorem 4.1] There exists a successive blow-up f : X′ → X at � such that χ is

clean with respect to X′.
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4. There exists a successive blow-up f : X′ → X at �s such that χ is s-clean with respect

to X′.

Proof. — 1. Clear from the definition.
2 and 3. See [24, Remark 4.13] and [24, Theorem 4.1] respectively.
4. By 3, we may assume χ is clean with respect to X. Let x ∈ �s. If x is a singular

point of D, then χ is s-clean at x. Hence, x is a smooth point of D and we may assume
D is irreducible. We put Dχ = rD and prove the assertion by induction on r > 0. By [24,
Corollary 4.9] and [21, Theorem (8.1)], we have e = 1 in the notation of [24, Corollary
4.9] for the blow-up X′ → X at x. Hence, we have r′ = r − e = r − 1 < r and the assertion
follows by induction. �

We expect that Lemma 8.2.6.3 holds in arbitrary dimension.
For an s-clean character of order p, we give a local description of the normalization

in the corresponding cyclic covering of degree p.

Proposition 8.2.7 (Cf. [38, Lemma 1]). — Let X be a regular flat separated scheme of finite

of finite type over OK and U = X \ D be the complement of a divisor D with simple normal crossing.

Assume that K is of characteristic 0 and contains a primitive p-th root ζp of 1.

Let χ ∈ H1(U,Z/pZ) be a character of order p. Let V → U be the cyclic Galois covering of

order p trivializing χ and Y be the integral closure of X in V.

Assume that χ is s-clean with respect to X. Then, there exists an fs log structure MY on Y such

that (Y, MY) is log regular [25] and that V is the maximum open subscheme where MY is trivial.

We have MY = j∗O×
V ∩ OY where j : V → Y denotes the open immersion.

Proof. — The proof is similar to that of [38, Lemma 1]. Since the question is local,
we may assume that X = Spec A is affine and that the log structure on X is defined by
the chart P = ∏

i Nei → A sending the basis ei to ti defining irreducible components Di

of D. By Corollary 8.2.5, it suffices to consider each case (8.2.4.1)–(8.2.4.3) and (8.2.4.4′).
We take the notation in Proposition 8.2.4.

(8.2.4.1) Assume a = u
∏

i t
mi

i where u ∈ A× and p � mi for at least one i. We put
Q0 = P × Zeu, et = 1

p
(
∑

i miei + eu) and Q1 = Q0 + 〈et〉. Let Q ⊂ Qgp
1 be the saturation of

Q1. We put B1 = A[t]/(tp − u
∏

i t
mi

i ) and define a monoid homomorphism Q1 → B1 by
eu �→ u and et �→ t. We define B = B1 ⊗A[Q1] A[Q], Y = Spec B and define a log structure
MY on Y by Q → B.

We show that Y is log regular and is equal to the normalization of X in V. By
the assumption that there exists mi prime to p, the quotient Qgp

1 /Q×
1 = (Pgp × Zet)/Zeu is

torsion free. The quotient B1/I1 by the ideal I1 ⊂ B1 generated by Q1 \ Q×
1 is equal to

A = A/(ti; i = 1, . . . , n) and is regular. Since B1 is flat over A, we have dim B1 = dim A =
dim A + n = dim B1/I1 + rank Qgp

1 /Q×
1 . Hence, similarly as the proof of [38, Claim], the

log scheme Y is regular by [25, Proposition (12.2)]. Since the normal scheme Y is finite
over X and Y ×X U = V, it is the normalization of X in V.
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(8.2.4.2) Assume a ∈ A× and da|C has no zero. We put B = A[t]/(tp − a), Ā =
A/(t1, . . . , tn) and B̄ = Ā[t]/(tp − ā). By the assumption that dā is non-vanishing, the ring
B̄ is regular and hence B = A[t]/(tp − a) is the normalization on a neighborhood of x.
The open subscheme V of Y = Spec B is the complement of a divisor with simple normal
crossing defined by (t1 · · · tn).

(8.2.4.3) Let u ∈ A× be a unit, 0 ≤ mi ≤ e′i be integers and we put b = u
∏

i t
mi

i and
a = 1 − b. We assume that p � mi < e′i for at least one i. We put z = ζp − 1 as above and
t = 1 − z/s. Then, by an elementary computation, the equation tp = a is equivalent to

sp = 1
b

(
sp − (s − z)p

)
.

We define a polynomial f ∈ OK[S] of degree p − 1 by f = (Sp − (S − z)p)/zp. We have
f ≡ 1 − Sp−1 mod z. We put B1 = A[s]/(sp − zp

b
· f (s)). We put ri = e′i − mi ≥ 0 and define

a unit w ∈ A× by zp/b = w ·∏i t
ri
i . The assumption mi < e′i for at least one i means that

zp/b = w · ∏i t
ri
i is in the maximal ideal at x. Hence, shrinking X if necessary, we may

assume f (s) is a unit of B.
We put Q0 = P × Zew, es = 1

p
(
∑

i riei + ew) and Q1 = Q0 + 〈es〉. Let Q ⊂ Qgp
1 be

the saturation of Q1. We define a monoid homomorphism Q1 → B1 by ew �→ w · f (s)

and es �→ s. We define B = B1 ⊗A[Q1] A[Q], Y = Spec B and define a log structure MY

on Y by Q → B. Then similarly as in the case (8.2.4.1), we see that Y is log regular and
is equal to the normalization of X in V.

(8.2.4.4′) Let c ∈ A, 0 ≤ mi ≤ e′i be integers and we put b = c
∏

i t
mi

i and a =
1 − b. We assume that mi < e′i for at least one i and p divides mi = p · m′

i for every i.

We also assume that dc|C is not 0 at x. We put t = 1 −∏
i t

m′
i

i s. Then, the equation tp = a

is equivalent to (1 −∏
i t

m′
i

i s)p = 1 −∏
i t

mi

i c. We define a polynomial g ∈ A[S] of degree p

by g = (S −∏
i t

−m′
i

i )p +∏
i t

−mi

i . Then, as in the case (8.2.4.2), B = A[s]/(g(s) + c) is the
normalization of A. The open subscheme V of Y = Spec B is the complement of a divisor
with simple normal crossing.

Since (Y, MY) is log regular, we have MY = j∗O×
V ∩ OY. �

We consider the sheaf of differential forms �1
Y,MY/S defined with respect to the log

structure MY and the trivial log structure on S.

Corollary 8.2.8 (Cf. [38, Lemma 1]). — Let the notation and the assumption be as in

Proposition 8.2.7 and σ be a generator of Gal(V/U). Let Iσ denote the ideal sheaf defining the fixed

part Yσ ⊂ Y. Then, we have the following.

1. For each geometric point ȳ of the fixed part Yσ , the action of σ on the stalk MY,ȳ/O×
Y,ȳ is

trivial.

2. We define an ideal sheaf Jσ of OY to be that generated by Iσ and σ(b)/b − 1 for b ∈ MY.

Then, Jσ is an invertible ideal defined by an effective Cartier divisor Dσ . Further, we have

(8.2.8.1) π∗Dχ = pDσ .
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3. We put D′ = (p − 1)Dσ . Then, the coherent OY-module �1
Y/X(log/ log) defined by

�1
Y/X(log/ log) = Coker(π∗�1

X/S(log D) → �1
Y,MY/S) is an invertible OD′-module.

4. Define an OY-linear surjection ϕσ : �1
Y,MY/S → Jσ /J 2

σ by ϕσ (da) = σ(a) − a and

ϕσ (d log b) = σ(b)/b − 1. Then, it induces an isomorphism �1
Y/X(log/ log) ⊗OY ODσ

→
Jσ /J 2

σ = ODσ
(−Dσ ).

5. We put EY = (π∗E)red where E =∑
i,ri>0 Di denotes the support of Dχ . Then, the sequence

(8.2.8.2)
0 → OEY(−π∗Dχ)

rswχ−−−→ π∗�1
X(log D) ⊗OY OEY

−−−→ �1
Y,MY

⊗OY OEY

ϕσ−−−→ OEY(−Dσ ) → 0

is exact.

Proof. — Since the assertions are local, it suffices to consider the cases (8.2.4.1)–
(8.2.4.3) or (8.2.4.4′) respectively.

1. Let π : Y → X be the canonical map. Since the canonical map M̄X,π(ȳ) → M̄Y,ȳ

induces an isomorphism M̄gp
X,π(ȳ) ⊗ Q → M̄gp

Y,ȳ ⊗ Q, the assertion follows.
2 and 3. We take the notation in the proof of Proposition 8.2.7.
(8.2.4.1) The ideal Jσ is generated by σ(x)/x − 1 for x ∈ Q. Hence, it is generated

by ζp − 1. We have Dσ = div(ζp − 1) and Dχ = p · div(ζp − 1) by Proposition 8.2.7.
The OY-module �1

Y/X(log/ log) is generated by d log t and the annihilator is (p).
We have div p = (p − 1) · div(ζp − 1).

(8.2.4.2) The ideal Jσ is generated by σ(t) − t = (ζp − 1)t. Since t is a unit, it is
generated by ζp − 1. We also have Dσ = div(ζp − 1) and Dχ = p · div(ζp − 1) by Proposi-
tion 8.2.7.

The OY-module �1
Y/X(log/ log) is generated by dt and the annihilator is (p). We

have div p = (p − 1) · div(ζp − 1).
(8.2.4.3) The ideal Jσ is generated by σ(s)/s − 1. By s = z/(1 − t), we have

σ(s)/s−1 = (1− t)/(1−ζpt)−1 = (ζp −1)t/(1−ζpt) = zt/(1− t −zt). Since 1− t = z/s,
it is further equal to zt/(z/s − zt) = st/(1 − st). Since 1 − st and t are unit, the ideal Jσ

is generated by (s). Since (sp) = (zp/b), we have p · Dσ = π∗Dχ .
We put g = Sp − zp

b
f (S) ∈ A[S]. Then, the OY-module �1

Y/X(log/ log) is gener-
ated by d log s and the relation is given by p · d log s = d log f (s) and g′(s) · s · d log s = 0.
Since g′(s) = psp−1 − zp

b
f ′(s) = sp−1(p − s · f ′(s)/f (s)), the annihilator is (p − s · f ′(s)/f (s)).

Since g′(s) = ∏p−1
i=1 (s − σ i(s)) and div(1 − σ i(s)/s) = Dσ for each i, we have div(p − s ·

f ′(s)/f (s)) = (p − 1) · Dσ .
(8.2.4.4′) The ideal Jσ is generated by σ(s)− s. By t = 1 −∏

i t
m′

i

i s, we have σ(s)−
s = (ζp − 1)t/

∏
i t

m′
i

i . Since t is a unit, the ideal Jσ is generated by (z/
∏

i t
m′

i

i ). Thus, we
have p · Dσ = π∗Dχ .



RAMIFICATION THEORY FOR VARIETIES OVER A LOCAL FIELD 171

The OY-module �1
Y/X(log/ log) is generated by ds and the annihilator is (g′(s)).

Since g′(s) = ∏p−1
i=1 (s − σ i(s)) and div(s − σ i(s)) = Dσ for each i, we have div g′(s) =

(p − 1) · Dσ .
4. By the assertion 3, the map ϕσ : �1

Y/X(log/ log) ⊗OY ODσ
→ ODσ

(−Dσ ) is a
surjection of invertible ODσ

-modules and hence is an isomorphism.
5. It follows from 4 that the sequence (8.2.8.2) is exact at �1

Y,MY
⊗OY OEY and at

OEY(−Dσ ). Hence, the kernel of the map in the middle is an invertible OEY-module. By
the assumption that θ is clean, the map rsw θ is a locally split injection. The composition
OEY(−π∗Dχ) → π∗�1

X(log D) ⊗OY OEY → �1
Y,MY

⊗OY OEY is the 0-map by (8.1.1.5).
Hence, the assertion follows. �

8.3. A computation in the rank 1 case. — Let X and U = X \ D over S = Spec OK

be as in the previous subsection. We briefly recall the definition of the 0-cycle class cF
in [24] for a smooth sheaf F of F̄�-vector spaces of rank 1 on U. Let D1, . . . ,Dn be the
irreducible components of D and let E =∑

ri>0 Di ⊂ X be the support of the Swan divisor
Dχ =∑

i riDi . We put n = dim XK +1. The divisor E is supported on the closed fiber XF.
Hence, the coherent OE-module �1

X/S(log D) ⊗OX OE is locally free of rank n and the
bivariant Chern class c(�1

X/S(log D) ⊗OX OE) is defined as an operator CH∗(E → E).
Assume χ is clean with respect to X. Then, we define the 0-cycle class cχ ∈ CH0(E)

by

cχ = {
c
(
�1

X/S(log D) ⊗OX OE

)∗ ∩ (1 + Dχ)−1 ∩ Dχ

}
dim 0

(8.3.0.1)

= (−1)n−1
m∑

i=1

ri · cn−1

(
Coker

(
rswi(χ)

))∩ [Di].

By [24, Theorem 5.2], the cycle classes cχ define an element of F0G(∂V/UU) for the finite
étale Galois covering V → U trivializing χ , if dim UK ≤ 1.

We fix an isomorphism F
×
� → Q/Z[ 1

�
] ⊂ Q/Z. For a character χ ∈ H1(U,Q/Z[ 1

�
])

of order prime to �, let Fχ denote the corresponding locally constant constructible sheaf
of F�-vector spaces of rank 1 on U.

Conjecture 8.3.1. — Let X be a regular flat separated scheme of finite type over S and

U = X \ D be the complement of a divisor with simple normal crossings. Let f : V → U be the

étale cyclic covering trivializing χ . Assume that χ is clean with respect to X and that χ is tamely

ramified on the generic fiber.

Then, we have

(8.3.1.1) SwV/U Fχ = f ∗cχ

in F0G(∂V/UV)Q(ζp∞ ).
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We prove a refinement of Conjecture 8.3.1 assuming dim UK ≤ 1 in Theorem
8.3.7 at the end of this section. Similarly as [27, Lemma 5.1.2], Conjecture 8.3.1 implies
Conjecture 7.2.8, by Brauer induction.

We show that the class cχ also satisfies an excision formula.

Lemma 8.3.2. — Let X be a regular flat separated scheme of finite type over S and U = X\D
be the complement of a divisor with simple normal crossings. Let X1 be a regular divisor meeting D
transversely. We put U0 = X \ (D ∩ X1) and U1 = U ∩ X1.

Let χ be a character on U and let χ0 = χ |U0 and χ1 = χ |U1 be the restrictions. Assume that

both χ and χ0 are clean with respect to X. Then χ1 is also clean with respect to X1 and we have

cχ = cχ0 + cχ1 .

Proof. — The union D′ = D ∪ X1 is a divisor of X with simple normal cross-
ings and the intersection D1 = D ∩ X1 is a divisor of X1 with simple normal cross-
ings. Let Di be an irreducible component of E and we put Ci = Di ∩ X1. The image
of the map �1

X/S(log D) ⊗OX OCi
→ �1

X/S(log D′) ⊗OX OCi
is canonically identified with

�1
X1/S(log D1) ⊗OX1

OCi
. Hence, if both χ and χ0 are clean, then χ is strongly clean on

a neighborhood of Ci in the terminology of [21, Definition (7.4)]. Thus, by [21, Theo-
rem (9.1)], χ1 is strongly clean with respect to X1 and Dχ1 is the pull-back of Dχ .

We put E1 = E ∩ X1. Then, by the exact sequence 0 → �1
X/S(log D) ⊗OX OE →

�1
X/S(log D′) ⊗OX OE → OE1 → 0, the difference cχ − cχ0 is equal to

{
c
(
�1

X/S(log D) ⊗OX OE

)∗ ∩ (1 + Dχ)−1 ∩ Dχ

}
dim 0

− {
c
(
�1

X/S

(
log D′)⊗OX OE

)∗ ∩ (1 + Dχ)−1 ∩ Dχ

}
dim 0

= {
c
(
�1

X/S(log D) ⊗OX OE

)∗ ∩ (1 + Dχ)−1 ∩ (X1 ∩ Dχ)
}

dim 0
.

By Dχ1 = X1 ∩ Dχ and by c(�1
X/S(log D))∗ ∩ X1 = c(�1

X1/S(log D1))
∗, the right hand side

is equal to cχ1 . �

Let U′ → U be a finite étale morphism tamely ramified with respect to X and let
X′ be the normalization of X in U′. Then, X′ has a natural log structure such that U′ is
the maximum open subscheme where the log structure is trivial and the map X′ → X is
log étale with respect to this log structure. By taking a regular proper subdivision of the
associated fan [25, Section 10], we obtain a log blow-up X′′ → X′ such that X′′ contains
U′ as the complement of a divisor with simple normal crossings.

Lemma 8.3.3. — Let X be a regular flat separated scheme of finite type over S and U = X\D
be the complement of a divisor with simple normal crossings. Assume dim XK = 1. Let g : U′ → U be

a finite étale morphism tamely ramified with respect to X. Let X′ be a log blow-up of the normalization

of X and ḡ : X′ → X be the canonical map.
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Let χ be a character on U and let χ ′ be the pull-back to U′. Assume that χ is clean with respect

to X. Then χ ′ is also clean with respect to X′ and we have

cχ ′ = ḡ∗cχ .

Proof. — We may assume that the subdivision defining X′ induces a subdivi-
sion of the fan associated to X and defines a log blow-up X1 → X. The induced map
X′ → X1 is finite. Since ḡ : X′ → X is log étale, the map ḡ∗�1

X/S(log D) → �1
X′/S(log D′)

is an isomorphism. At each singular point of D, χ is strongly clean with respect to X.
Hence, by [21, Theorem (8.1)], the divisor Dχ1 is the pull-back of Dχ and the divisor Dχ ′

is also the pull-back of Dχ . Further by [21, Theorem (8.1)], χ ′ is clean with respect to X′

and we have cχ ′ = ḡ∗cχ . �

In the rest of this section, we assume that K is of characteristic 0. The case where
K is of characteristic p > 0 is studied similarly as in [27] and in [38].

We first show that the computation in the previous subsection implies Conjecture
8.3.1 for a character of order p under a slightly stronger assumption. Since (Y, MY) in
Proposition 8.2.7 is log regular, by [25], there exists a log blow-up Ỹ → Y satisfying the
following property: The map Ỹ → Y induces an isomorphism over V and the scheme Ỹ is
regular and contains V as the complement of a divisor DỸ with simple normal crossings.
We regard Ỹ as a log scheme with the log structure defined by DỸ. Then, the map Ỹ → Y
is log étale.

Proposition 8.3.4. — Let X be a regular flat separated scheme of finite type over S = Spec OK

and U = X \ DX be the complement of a divisor with simple normal crossings. Assume that K contains

a primitive p-th root ζp of 1. Let θ be a character of order p s-clean with respect to X.

Let Ỹ → Y be a log blow-up as above and assume that the action of G = Gal(V/U) � Z/pZ
is extended to an action on Ỹ. Let σ be a generator of G and assume that σ is an admissible automorphism

(Definition 5.1.4.2) of Ỹ.

1. We put cσ = ((�σ ,�Ỹ))(Ỹ×SỸ)∼ ∈ F0G(∂V/UỸ). Then, we have

cσ = {
c∗(�1

Ỹ/S(log DỸ)
) · (1 + Dσ )−1 · Dσ

}
dim 0

.

2. Let π : Ỹ → X be the canonical map. Then, we have

(8.3.4.1) SwZ
V/U,Ỹ Fθ = π∗cθ

in F0G(∂V/UỸ).

Proof. — 1. This is Lemma 5.1.5.2.
2. Since Ỹ → Y is log étale, we have an exact sequence 0 → OEỸ

(−π̃∗Dθ ) →
�X/S(log DX) ⊗ OEỸ

→ �Ỹ/S(log DỸ) ⊗ OEỸ
→ OEỸ

(−Dσ ) → 0 by Corollary 8.2.8.2.
Hence the ratio of the total Chern classes c(�Ỹ/S(log DỸ) ⊗ OEỸ

) · c(�X/S(log DX) ⊗
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OE))
−1 is equal to (1 − Dσ )(1 − π∗Dθ )

−1. Thus, by the equality π∗Dθ = pDσ (8.2.8.1),
we have

π∗cθ = π∗{c∗(�1
X/S(log DX)

) · (1 + π∗Dθ

)−1 · Dθ

}
dim 0

= {
c∗(�1

Ỹ/S(log DỸ)
) · (1 + π∗Dσ

)−1 · p · Dσ

}
dim 0

.

By 1, the right hand side is equal to p · cσ .
Since cσ i = cσ for every i ∈ (Z/pZ)×, the integral Swan class SwZ

V/U,Ỹ Fθ is equal to
p · sV/U(σ ) = −p · cσ . Thus the assertion follows. �

We recall an induction step from [38], which will be used in the proof of Theo-
rem 8.3.7 below.

Lemma 8.3.5 (Cf. [38, Lemma 2]). — Let X be a regular scheme and U be the complement

of a divisor with simple normal crossings. Let χ, θ ∈ H1(U,Q/Z) be characters clean with respect to

X. Assume θ is of order p and s-clean. Let V → U be the cyclic covering of degree p trivializing θ and

Y be the normalization of X in V with the log structure defined by V. Let Ỹ → Y be the log blow-up

defined by a regular proper subdivision of the fan of Y and π : Ỹ → X be the canonical map.

Assume χ is clean with respect to X and the pull-back χ ′ = π∗χ is clean with respect to Ỹ.

Assume further that the following condition is satisfied:

(8.3.5.1) For Dχ =∑
i riDi and Dθ =∑

i siDi , the condition ri = 0 implies si = 0, and the

condition ri > 0 implies ri > si .

Then, we have

(8.3.5.2) π∗cχ = cχ ′ + Dlog
U1/V,Y1

in CH0(EỸ).

The proof is the same as [38, Lemma 2] by using the exact sequence (8.2.8.2) and
we omit it.

Corollary 8.3.6. — We keep the notation and the assumptions in Lemma 8.3.5 except that we

do not assume (8.3.5.1). Assume further that χ is of order n = mp and θ = m · χ . Assume that the

Swan class SwZ
V/U1,Y Fχ ′ is defined integrally and that we have

(8.3.6.1) SwZ
V/U1,Y Fχ ′ = ḡ∗cχ ′

Then, the Swan class SwZ
V/U,Y Fχ is also defined integrally and we have

(8.3.6.2) SwZ
V/U,Y Fχ = f̄ ∗cχ .
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Proof. — By the definition of the Swan class and by sV/U(σ i) = sV/U(σ ) for an
integer prime to p, we obtain

SwZ
V/U,Y Fχ − Dlog

V/U,Y = SwZ
V/U1,Y Fχ1 − Dlog

V/U1,Y.

By θ = m · χ , the assumption (8.3.5.1) is satisfied. Hence, by applying Lemma 8.3.5, we
obtain f̄ ∗cχ = ḡ∗cχ1 + ḡ∗Dlog

U1/V,Y1
. Thus, it follows from the assumption (8.3.6.1) and the

chain rule Dlog
U/V,Y = Dlog

U/U1,Y + ḡ∗Dlog
U1/V,Y1

. �

In the rest of the paper, we consider the case dim UK = 1. In this case, the strong
form of resolution of singularity is known and consequently the Swan class SwZ

V/U F is
defined integrally as an element of F0G(∂V/UV).

Theorem 8.3.7. — Assume K is of characteristic 0. Let U be a regular flat separated scheme

of finite type over S such that dim UK = 1. Let F = Fχ be a locally constant constructible sheaf of

F�-vector spaces of rank 1 and χ ∈ H1(U,Q/Z) be the corresponding character. Let f : V → U be

the cyclic covering trivializing χ . Then, we have

(8.3.7.1)
[
K(ζp) : K

] · SwZ
V/U Fχ = [

K(ζp) : K
] · f ∗cχ

in F0G(∂V/UV).

Proof. — Let χ ′ be the p-primary part of χ and V′ → U be the cyclic cover-
ing trivializing χ ′ and let π : V → V′ be the canonical map. Then, since SwZ

V/U Fχ =
π∗SwZ

V′/U Fχ ′ and cχ = cχ ′ , we may assume that the order of χ is a power of p.
We show that we may assume U = UK. Let X be a proper regular flat scheme

over S containing U as the complement of a divisor D with simple normal crossings. By
blowing up some closed points in the closed fiber of X, we may assume that UK ⊂ X
is the complement of a divisor with simple normal crossings. We show the claim by the
induction on the number of irreducible components of UF.

If the number is 0, then UF is empty and there is nothing to prove. Let C be an
irreducible component of UF. Let χ0 be the restriction of χ to U0 = U \ C. By blowing
up X at the boundary of C, we may assume that both χ and χ0 are clean with respect
to X. Then, by the excision formulas Proposition 7.2.5.2 and Lemma 8.3.2, the equality
(8.3.1.1) for χ0 is equivalent to that for χ . Thus, by the induction, the claim is proved.

We assume U = UK. By taking the base change to K(ζp) and by applying Corol-
lary 5.4.2 and Lemma 8.3.3, we may assume that K contains a primitive p-th root of 1.

Assume χ is of order p. Then, by Lemma 8.2.6.4, we may assume χ is s-clean with
respect to X by replacing X by a blow-up. Then, it follows from Proposition 8.3.4.

Assume χ is of order pn and we prove the assertion by induction on n ≥ 1. Similarly
as above, we may assume that θ = pn−1χ is s-clean. Let U1 → U be the cyclic covering of
degree p and g : V → U1 be the canonical map. Let Y1 be the normalization of X in U1
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and Ỹ1 → Y1 be a blow-up as in Corollary 8.3.6. Let π : Ỹ1 → X be the canonical map.
Then, further similarly as above, we may assume that χ ′ = π∗χ is clean with respect to
Ỹ. Then, by the induction hypothesis, we have SwZ

V/U1,Ỹ
Fχ ′ = g∗cχ ′ . Thus it follows from

Corollary 8.3.6. �

We deduce the integrality of the Swan classes and the conjecture of Serre under
the assumption dim UK ≤ 1.

Corollary 8.3.8. — 1. Let U be a regular flat separated scheme of finite type over OK. If

dim UK ≤ 1, Conjecture 7.2.8 is true.

2. For a regular local ring A of dim A ≤ 2, Conjecture 7.2.9 is true.

Proof. — 1. By the Brauer induction and by the induction formula Proposi-
tion 7.2.6, we may assume rank F = 1. Then, it follows from Theorem 8.3.7.

2. Since the positive characteristic case is proved in [28], it follows from 1 and
Lemma 7.2.10. �

As in the classical ramification theory, our proof of the integrality Conjecture 7.2.8
is by the reduction to the rank 1 case using Brauer induction.
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