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ABSTRACT

In the present paper, we advance considerably the current knowledge on the topic of bifurcations of heteroclinic
cycles for smooth, meaning C*, parametrized families {g, | ¢ € R} of surface diffeomorphisms. We assume that a quadratic
tangency ¢ is formed at ¢ = 0 between the stable and unstable lines of two periodic points, not belonging to the same
orbit, of a (uniformly hyperbolic) horseshoe K (see an example at the Introduction) and that such lines cross each other
with positive relative speed as the parameter evolves, starting at ¢ = 0 and the point ¢. We also assume that, in some
neighborhood W of K and of the orbit of tangency o0(¢), the maximal invariant set for gy = g is K U 0(¢), where o(¢)
denotes the orbit of ¢ for gy. We then prove that, when the Hausdorff dimension HD(K) is bigger than one, but not much
bigger (see (H.4) in Section 1.2 for a precise statement), then for most ¢, |#| small, g, is a non-uniformly hyperbolic horseshoe
in W, and so g has no attractors in W. Most ¢, and thus most g, here means that ¢ is taken in a set of parameter values with
Lebesgue density one at ¢ = 0.
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1. Introduction

1.1. The context. — One of the most challenging problems in the theory of dynam-
ical systems is to understand some of the main features, like creation of attractors, of the
orbit structure of the dynamics arising from bifurcations of homoclinic or heteroclinic
cycles. Typically, the cycles we consider display an orbit of non-transversal intersection
between some stable and unstable manifolds of fixed or periodic orbits, whose unfolding
leads to dynamics with a rich orbit structure. For surface diffeomorphisms, such orbit of
non-transversal intersection of stable and unstable lines correspond to a homoclinic or
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heteroclinic tangency. The existence of cycles was much emphasized by Poincaré in late
19th century, in his classic Nouvelles Méthodes de la Mécanique Céleste [Po], where he
stated that “rien n’est plus propre a nous donner une idée de la complication de tous les
problemes de dynamique”. The question of bifurcations of cycles often arises when we
consider parametrized families of dynamics, like in the present work: they are created
and then bifurcate, as the parameter evolves.

In the case of surface diffeomorphisms, the richness of the dynamics obtained from
unfolding a homoclinic or heteroclinic tangency is implicit in the work of Cartright-
Littlewood [CL] more than sixty years ago and thereafter in several articles by the au-
thors, especially the latter; see Levi [L] for an account of some explicit consequences of
these works. In between, in the early sixties, and along the same line, a new and funda-
mental dynamical structure was exhibited by Smale [S]: the horseshoe map associated
to a transversal homoclinic orbit. Besides that, Levi also made use of the following re-
markable result of Newhouse [N]: under some mild conditions, the unfolding of a ho-
moclinic tangency for C’, r > 2, surface diffeomorphisms leads, in the C’ topology, to
open sets of diffeomorphisms such that none of its elements is (uniformly) hyperbolic.
That is, hyperbolic diffeomorphisms are not dense in the set of all such maps, which had
been an important conjecture by Smale. He also showed that such an unfolding leads to
the existence of open sets of diffeomorphisms with a dense (actually, Baire second cate-
gory) subset of elements displaying each of them infinitely many simultaneous periodic
attractors (sinks) or repellors (sources). We refer especially to [BDV], for a comprehensive
presentation of the concepts and results that we have just mentioned.

Abundance of other more intricate kind of attractors, the so called Hénon-like
ones, was proved to be also present in the unfolding of such cycles. This was another strik-
ing fact. It resulted from the pioneering work of Benedicks-Carleson [BC], and those of
Mora-Viana [MV] and Colli [C]. Attractors here mean invariant sets that attract future
orbits of points of a positive Lebesgue measure set in the phase space (space of events).

In view of all these intricacies inherent to homoclinic and heteroclinic bifurcations,
a new global conjecture has been proposed in [P1] (see also [P2] and [P3]) concerning
the orbit structure of a typical dynamical system: in particular, systems with finitely many
attractors should be dense in the universe of dynamics, i.e. C" flows, diffeomorphisms
and maps, with 7 > 1. Also, their basins of attraction should cover the whole phase space,
except for a Lebesgue zero measure set. Several other conjectures were formulated in the
above works that together compose a global scenario for dynamics.

As mentioned in the Abstract, the present paper represents a contribution to the
understanding of the dynamics arising from bifurcating a cycle of a C* surface diffeo-
morphism. We consider one-parameter families of diffeomorphisms g, containing the
initial bifurcating diffeomorphism, say gy at parameter value ¢ = 0. We assume that g, is
hyperbolic for ¢ < 0 and |¢| small. We suppose that the cycle is formed by a (hyperbolic)
horseshoe K and an orbit of tangency o(g) between stable and unstable manifolds of
different periodic orbits of K. We assume the maximal invariant set in a small neighbor-
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hood W of K U 0(g) to consist precisely of K U o(¢). A main novelty is that we allow the
Hausdorff dimension of K to be larger than one, but not too far from one. We show that
right after the bifurcation, 1.e. for ¢ > 0 small, most diffeomorphisms are non-uniformly
hyperbolic in W and so they display no attractors nor repellors in the neighborhood W of
K U o(¢). This means that the parameter values corresponding to diffeomorphisms dis-
playing no attractors nor repellors should have total density, that is density one, at ¢ = 0.
The concept is again discussed in the next subsection.

An example of the creation of a heteroclinic cycle associated to a (hyperbolic)
horseshoe is indicated in Figure 1. Initially we have the classic Smale’s horseshoe map
(diffeomorphism) on the two-sphere S? with two saddle fixed points p;, p, with positive
eigenvalues, a fixed point repellor outside the figure and two fixed point attractors s, and
9. The rectangle inside the figure is sent by the map to the snake-shaped piece, while
the bigger top half-disk is sent to the small one around s, and the lower bigger half disk
is sent to the small one around s;. At the right hand side of the figure, we show how to
move a small neighborhood of a point in the stable line of p, so as to create a tangency
with the unstable manifold of p,. This is done through a one-parameter family of diffeo-
morphisms; until we create such a tangency the corresponding map remains hyperbolic,
1.e. having a hyperbolic limit set with no cycles among its basic sets.

Our results considerably extend those in [PT], [NP] obtained for the case when
the Hausdorff dimension HD(K) is smaller than one. They were announced in [PY3].

Of course, we expect the same results to be true for all cases 0 < HD(K) < 2.
To achieve that, it seems to us that our methods need to be considerably sharpened:
we have to study deeper the dynamical recurrence of points near tangencies of higher
order (cubic, quartic ...) between stable and unstable curves. We also expect our results
to be true in higher dimensions (see [MPV]). Finally, we hope that the ideas introduced
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in the present paper might be useful in broader contexts. In the horizon lies a famous
question concerning the standard family of area preserving maps (see [BDV]): we ask
whether we can find sets of positive Lebesgue probability in parameter space such that the
corresponding maps display non-zero Lyapunov exponents in sets of positive Lebesgue
probability in phase space.

1.2. The setting and a first formulation of the main result. — Let f be a smooth, 1.e. C*
diffeomorphism of a smooth surface M.

Recall that a basic set is a compact hyperbolic transitive locally maximal invariant
set. A basic set 1S a horseshoe if it is infinite and is neither an attractor nor a repellor.
A horseshoe is topologically a Cantor set.

We assume that there exists a basic set K for f, points p;, p, € K, g € M — K such
that the following properties hold:

(H1) p, and p, are periodic points and belong to distinct periodic orbits;
(H2) W’(p,) and W*(p,) have a quadratic tangency at ¢;
(H3) there exists a neighbourhood U of K, a neighbourhood V of the orbit O(g) of ¢,
such that KU O(g) is the maximal invariant set in U U V.

We would like to understand, when U, V are appropriately small and g is C* close
to f, the maximal invariant set

(1.1) A,={)g"(UUV).
z

Observe that the smaller set

(1.2) K=[g"U)
z

is a horseshoe which is the hyperbolic continuation of K.

Let U be an appropriately small neighbourhood of f in Diff™*(M). We still denote
by p;, p. the continuation of these hyperbolic periodic points in /. The condition that
W:(p,), W“(p,) have a quadratic tangency near ¢ defines a codimension 1 hypersurface U,
through /" in Y. It divides U into regions U, U_ such that, for g € U_, W*(p,) and W"(p,)
do not intersect near ¢ while, for g € U, W’(p,) and W*(p,) have two transverse intersec-
tion points near ¢ (for obvious dynamical reasons, the intersection is actually infinite in
this case; we are really considering here the intersection derived from the continuation of
large compact curves contained in W’ (p,) and W*(p,)).

When g € U_, we clearly have

(1.3) A, =K,.
When g € U, we have
(1.4) A, =K, UO(q),
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where ¢, is the tangency point close to ¢ given by the definition of U. In the subsequent
sections, we will omit the dependence on g in the notation and just write ¢ for ¢, when
gc Z/{o.

The interesting case is therefore g € U, .

It is actually not realistic to try to understand A, for all ¢ € U,.. One of the reasons
is the so-called Newhouse’s phenomenon [N]: there exists an open set N' C U, with
Uy C N, such that, residually in A, A ¢ has infinitely many periodic sinks or sources and
so its full dynamical description appears to be beyond reach. See also [BC], [MV], [C]
for similar results involving Hénon-like attractors.

Still, we can and shall consider most g € (/. in the following sense.

We will say that a subset P C U, contains most g € U, if, for any smooth 1-
parameter family (g,),e(—s.4) Which is transverse to U at ¢ = 0 (with g, € U, for ¢ > 0), we
have

1
(1.5) lina n Leb(s€ (0,t],g, € P)=1.
1—

Denote by W/(K) (resp. W*(K)) the stable set (resp. unstable set) of K for f. This is
a partial foliation with a C'* Cantor transverse structure; denote by " (resp. d°) the
transverse Hausdorff dimension of W*(K) (resp. W*(K)). The Hausdorff dimension of K
is equal to d” + d_. We then have, in some contrast to Newhouse’s phenomenon:

Theorem. — [P, [NP] Assume that d° +d° < 1. Then, for mostg € Uy, A, is a horseshoe.

On the other hand, by [PY1], the same conclusion does not hold when " +d" > 1.
The paper [MY] gives substantially more geometric information in this case, specially
concerning tangencies between stable and unstable manifolds (lines) in the hyperbolic
continuation K, of K. These results have been extended to higher dimensions, as an-
nounced in [MPV] and complete proofs to appear in the near future.

In the present work, we investigate the maximal invariant set A,, for most g € U,
provided that the dimensions @°, d° satisfy (see Figure 2)

(H4) (& + d0)? + (max(d?, d)))? < d* + d{ + max(d’. d").

Our results can essentially be summarized as:

Main Theorem. — Assume that (H1), (H2), (H3), (H4) hold. Then, for most g € U, A, is
a non-uniformly hyperbolic horseshoe.

The meaning of a non-uniformly hyperbolic horseshoe in the present context will
be explained somewhat in the next section and more completely in the rest of the paper.
We can, however, comment that, for most g € U, A, will be a saddle-like object in the
sense that both the stable set W(A,) and the unstable set W*(A,) have Lebesgue measure
zero and, so, it carries no attractors nor repellors. It will be (non-uniformly) hyperbolic
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in the sense that we will construct geometric invariant measures, a la Sinai-Ruelle-Bowen
[Si, Ru, BR], on A, C W'(A,) and A, C W*(A,) with non-zero Lyapunov exponents.
Such properties of the invariant set A, are made especially precise in Sections 10 and 11,
the last ones in the paper. They yield some rephrasing of the main result in these terms,
which is presented at the end of Section 11.

Remark 1. — 1. In the case when d” + d° < 1, mentioned above and studied in
[PT], [NP], it is not necessary to assume that p,, p, belong to distinct periodic orbits. It is
probably not necessary in our case either, at least as far as the qualitative statements are
concerned. But, this assumption seems to make the technicalities significantly easier in
what is already a very long construction.

2. The properties that we are proving for non-uniformly hyperbolic horseshoes are
also true for uniformly hyperbolic ones, and indeed it is possible for A, to be uniformly
hyperbolic for a positive proportion of parameters even when d° 4+ d° > 1. Therefore we
will assume in the following that @ + d" > 1.

3. The tools that we develop probably allow to give, after some more work, fur-
ther geometric and dynamical information on A, (for most ¢ € U,) beyond that given in
Sections 10 and 11. This could be the subject of subsequent investigations.

1.3. A summary of the next sections of the paper. — Sections 2—4 consist mainly of
preparatory work.

In Section 2, we introduce a Markov partition by smooth disjoint rectangles
(Ry)seq for the horseshoe K. The dynamics in the neighbourhood U of K is given by
the transition maps from one rectangle to another, which enjoy a nice hyperbolic be-
haviour. To understand the dynamics in the larger set U UV, we need to control the
dynamics along a finite part of the orbit of ¢, stretching from the moment this orbit goes
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out of R := | |R, until it comes back to R. The region of exit of R and the region of
entry into R are two parabolic tongues L, and L, and the transition map

G :gN“ L, — L,

is a folding map which share many features with the Henon quadratic polynomial diffeo-
morphisms of the plane.

Section 3 is essentially a summary of our previous work [PY2] (which was written
having the present paper in mind). The important concept of affine-like map is intro-
duced. The basic idea, which goes back to the early stages of the hyperbolic theory, is to
describe maps that present hyperbolic features in an implicit way exhibiting preference
for coordinates with a macroscopic range. Concretely, if a two-dimensional diffeomor-
phism contracts the vertical coordinate y and expands the horizontal coordinate x, we use
90 and x; as independent variables associated with a point (xo, y9) and its image (x;, »;),
writing X, and »; as functions of yy and ;.

Cone conditions are easy to formulate in this setting. A nice feature of this implicit
representation of the dynamics is that it is time-symmetric: the map and its inverse satisfy
symmetric formulas. Another even more important feature is that this formalism is well-
adapted to the right concept of distortion (for 2-dimensional maps), yielding appropriate
control on the partial derivatives of order two.

Composition of two affine-like maps which satisfy the same cone condition is also
affine-like, and the distortion is only slightly bigger than the distortion of the two maps.
Besides this “simple” composition, we study “parabolic” compositions of the form F, o
G o Iy, where Fy, F, are affine-like and G is the folding map of Section 2. When the
relative positions of the parabolic strip G(Qy) (where Qg is the image of Fy) and P, (the
domain of I,) are appropriate, the domain of I'; o G o Iy has two connected components
and the restrictions F* of F; o G o F;y to each component is affine-like. A control of the
distortion of F* and F~ is also obtained.

In Section 4, the general structure of the parameter space is introduced. The pa-
rameter coordinate is normalized by the relative speed at the quadratic tangency of the
tips of the stable and unstable manifolds. Then, with g, very small, the starting interval
Iy := [€0, 2¢0] for the parameter selection process is introduced. A small parameter ©
(with T < 1 but still 5 < 1) determines a sequence of scales (&;);> in parameter space
through the formula &, = &,7". Atlevel k, we have disjoint parameter intervals of length
&y (starting from level 0 with Ij). Each parameter interval of level £ that has been selected
is divided into [g; "] disjoint candidates of length &;,,. These candidates will pass a test
to decide whether they are selected at level £ 4 1.

The test takes two forms. First, in Section 5, a property of the parameter inter-
val called regularity (see below) will be introduced; candidates which do not possess this
property are discarded. Such a property is sufficient to develop in Sections 5-8 some ba-
sic combinatorial and quantitative properties, but it is not well-adapted to an inductive
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scheme. Hence, in Section 9, a stronger property called strong regularity is introduced,
and candidates have to satisfy this property in order to be selected.

Sections 5—7 constitute in some sense a single logical step: in Section 5, certain
classes of restrictions of iterates of g, are inductively defined, and the definition is only
possible because of properties that are inductively proved in Sections 6 and 7.

In Section 5, the goal is to define, for each parameter interval I which is a candi-
date (i.e. its parent interval at the immediately upper level has been tested as regular), a
class R(I) of I-persistent affine-like iterates. An I-persistent affine-like iterate is a triple
(P, Q, n) where P is a vertical-like strip in some rectangle R, depending on 1 € I, Q) is a
horizontal-like strip in some rectangle R, depending on ¢ € I, and the restriction of g/ to
P is a diffeomorphism onto Q) which is affine-like.

However, we do not want to have in R(I) all I-persistent affine-like iterates: we
will argue about them by induction (on #, for instance) and in order to do this, we want
to obtain them in some explicit constructive way. Therefore, a number of Axioms, (R1)-
(R7), are introduced and together they completely determine the class /R(I). The most
important feature of these Axioms is the following: every element of R(I) consisting of
more than one iteration of g, can be obtained from simpler elements of R(I) by simple
or parabolic composition; in this context, the notions of parent and simple or non-simple
child introduced here, play a relevant role; simple composition is allowed in R (I) when-
ever it makes sense; and parabolic compositions of elements of R (I) is allowed if and only
if a certain transversality relation is satisfied.

Thus, the definition of R (I) is reduced to the definition of this transversality rela-
tion, which is presented in Section 5.4. The intuitive notion behind the formal definition
is the following: an element (P, Q, n) (with Q) crossing the domain L, of G) should be
I-transverse to an element (P, Q', ') (with P’ crossing the image L of G) if the distance
3(Q, P') between the tip of the parabolic-like strip G(Q N L,) and P’ satisfies

5(Q, P) = max(|Q)'~", |P|'7)

for all ¢ € I, where |Q)], |P'| are the widths of the strips Q) and P’. Actually, as the distance
8(Q, P') is expected to vary with the parameter with derivative close to one, and we want
a uniform control in I, it is more natural to ask that

8(Q,P) > mIaX(IQl_", [P T

for all ¢ € I. Here 7 is a small positive constant, fixed once and for all. However, a number
of properties, presented in Section 6, are very helpful, and they require a formal defini-
tion of the transversality relation that is more complicated than this. In Appendix C, we
explain why this seemed complication is rather necessary. We use the notation Q i P’ to
say that Q is I-transverse to P'.

For the starting interval Iy, it follows from the formal definition that the transver-
sality relation is never satisfied; therefore, parabolic composition is not allowed and the
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class R(I) is exactly the one associated with the symbolic dynamics given by the Markov
partition. Thus, the construction of R(Iy) is easy. For smaller parameter intervals, what
is clear from the defining axioms (R1)-(R7) is that there can be at most one class R(I)
satisfying them. That such a class exists (for candidate intervals whose parent is regular)
is stated in Section 5.4 but will only be completely proven at the end of Section 7.

We conclude Section 5 with the introduction of some concepts that play an impor-
tant role in the rest of the paper. We say that a strip P (from an element (P, Q, n) € R(I),
with P crossing L) is I-transverse if one can find finitely many elements (P, Q,, 1y) € R(I)
such that

— every point in L, which stays in U U V under negative iteration is contained in
one of the Q,;

— every Q, 1s I-transverse to P.

Strips P crossing L, which are not I-transverse are said to be I-¢ritical. The I-critical strips
can be viewed as representing some “critical region” at the |I|-scale. One defines sym-
metrically I-transversality and I-criticality for horizontal strips Q) crossing L,. Elements
(P, Q, n) € R(I) such that both P and Q are I-critical are said to be I-bicritical and corre-
spond to returns from the critical region to itself (in time 7). Given a constant 8 > 1, one
says that the parameter interval is B-regular if any I-bicritical (P, Q, n) satisfies |P| < |I|7,
|QJ < |1|# for all ¢ € 1. Intuitively, this means that no short return to the critical set is
allowed. The value that we choose for 8 > 1 is announced in Section 5.6 and explained
in Section 9.3. It depends only on the transverse Hausdorff dimensions d°, d° and the
eigenvalues of the periodic points py, p,. It is easy to see that the starting interval I is
PB-regular.

In Section 6, we prove a number of properties of the transversality relation and the
classes R(I).

The first one 1s natural (but already requires some non trivial induction): children
are born from their parents. Let us explain what it means. Let (P Q, n) € R(), and let
(P Q,N) be the element of R(I) such that P C P P +# P and P is the thinnest rectangle
with this property; one says that P is a child of P and that P is the parent of P. There
are two cases; either n =7+ 1 and one says that P is a simple child; (P, Q, n) is obtained
by simple composition of (P, Q'ﬁ) with an element of length 1; or n > 7 + 1 and one
says that P is a non-simple child; one then proves that (P, Q, n) is obtained by parabolic
composition of (ﬁ Q'ﬁ) with some element (P, Q,, n)).

An easy and very natural property of the transversality relation, proved in Sec-
tion 5.6, is that transversality is hereditary: let P} C Py, Q) C Qy, I’ C I; if Qg rhy P; holds,
then Qy rhy P} also holds. A non-intuitive property of the transversality relation, but one
which is useful at many places, is a partial converse called concavity (Section 6.3): with Py,
P, Qp, Qp, I, I as above, if both Q h; P} and Q; rhy Py hold, then Qg My Py also holds; if
both Qy ty Py and Qj h; P hold, then Q rhy Py also holds; if both Qj thy P and Qg rhy P}
hold, then Qy rh; P, also holds.
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The most important result in Section 6 1s a structure theorem for new rectangles in
Sectlon 6.5. One considers an element (P, Q), n) which belongs to /R (I) but not to 'R(I),
where Tis the parameter interval containing I of the level immediately inferior (one says
that T is the parent of I). Then there is a unique way to write (P, Q, n) as the result of a
sequence of £ > 1 parabolic compositions, possible in R(I) but not in R(T), of elements
(Po, Qo, 10), « ..y (Pr, Qpy ) € R(T). This fundamental result is used with decisive effect
at several places in Sections 7 and 9.

In Section 6.6 are proven several estimates on the width of strips, based on the
structure theorem. As elements of /R(I) are constructed using parabolic composition,
one cannot hope for a uniform exponential estimate for the width of the strips in terms
of the number 7 of iterations. However, we are able to prove a stretched exponential
uniform estimate in Section 6.6.2. Another important result of Section 6.6 is that “thick”
I-critical rectangles actually belong to some class R(I*) for a parameter interval much
bigger than I. Actually, because the definition of I-criticality supposes the knowledge of
the full class R(I), which has not been constructed at this point, we introduce a substitute
for this: a strip P (with (P, Q, n) € R(I)) is I-special if the thinnest T-defined strip P (with
T the parent of I) is T-critical.

We complete in Section 7 the proof of the existence of the class R(I), for a can-
didate interval whose parent is B-regular. Actually, the long calculations are performed
in Appendix A and we use in Section 7 the estimates derived from these calculations.
We check that the uniform cone condition of the affine-like iterates in R(I) is satisfied,
and that their distortion is bounded. After obtaining in Section 7.4 estimates for the class
R(Iy) of the starting interval (which are simpler and better because no parabolic com-
position is involved), we prove in Section 7.5 a technical estimate related to parabolic
composition. In Section 7.6, we deal with the relative speed of the strips when the para-
meter varies (the derivative of the quantity §(Q, P’) which comes up in the transversality
relation); this is clearly of capital importance if we are to succeed. A point which is worth
mentioning is that we are not able to obtain speed estimates for all pairs of strips (actually,
it is easy to see that such estimates do not exist); we have to restrict ourselves to I-special
strips, a case which, fortunately, is sufficient for our purposes. In Section 7.7, we investi-
gate the oscillation of the widths of the strips with the parameter. While it is just not true
that the relative oscillation is bounded (in the sense that the maximum over a parameter
interval is bounded by a constant times the minimum), the result that we get (again only
for I-special intervals) will allow us to argue as if it was.

At the end of Section 7, the Constructlon of the classes R(I) is completed, for every
parameter interval I whose parent Tis regular. But we still don’t know whether a single
interval I is regular.

Section 8 is a transition between the construction of the classes R(I) in Sections 5—
7 and the heavy work of parameter selection in Section 9. We collect a number of prop-
erties of the transversality relation and the classes 7R (I) that were not needed before, but
will be useful later. We also develop several quantitative estimates that will turn out to
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be crucial both in the parameter selection process of Section 9 and in the analysis of the
dynamics for strongly regular parameters in Sections 10 and 11. We investigate in partic-
ular (Section 8.2), for a given element (P, Q'\) the number of elements (P, Q, n) such
that P is a non-simple child of P; we show that, for every € > 0, there are at most & =
such non-simple children with width |P| larger than €|P|. The constant 1 here is small
and is the one occurring in the definition of the transversality relation. The meaning of
this estimate 1s that the presence of non-simple children is not too significant from the
point of view of Hausdorff (or box) dimension, as it is made clear in Section 8.3. Us-
ing Poincaré (or Dirichlet)-like series, we show that, for every (P*, Q*, n*) € R(I), every
g > 0, the number of elements (P, Q, n) € R(I) with P C P*, |P| > ¢|P*| is at most £ ™%,
with d* very close to @°. In Section 8.4, we transfer this information to parameter space,
combining it with the result on relative speed of strips in Section 7.6: we show that, for
any thin enough I-critical strip QF, the proportion of candidates I C I such that Q* is

o . . ~ _ +
I-critical is at most |I|'~%

, where again d' is close to d".

Section 9 is the longest one in the paper and deals with the parameter selection
process. The concept of regularity is very useful to develop a number of properties of the
classes R(I), as we did in Sections 5-8. Unfortunately, we are not able to prove (and it 18
probably false) that, given a B-regular interval T, most candidates I C T at the next level
are B-regular. [It is a consequence of the structure theorem of Section 6 that all candi-
dates are B—regular, where B =B(1 + 1) is very close to B; this allows us to obtain all
qualitative consequences of regularity for all candidates; but obviously we cannot repeat
this at many successive levels of parameter intervals, because we need to keep g > 1.]
The problem with the concept of regularity is that it is dealing with only one scale 1|2
it could happen a priori that for a regular parameter interval I we have many T-bicritical
(P,Q,n) € R(D) with |P| or |Q] only slightly below the threshold |ff|'3 (and therefore
above the next threshold |I|# for candidates I CT); for each such (P, Q, n), we have to
eliminate candidates I such that (P, Q, n) is I-bicritical, and no candidate will survive this
selection process if there are too many (P, Q, n).

The solution to this difficulty is to introduce the condition of strong regularity,
which implies regularity and gives a quantitative control at all scales. Actually, the strong
regularity condition involves two parts, and three sets of inequalities (SR 1), (SR2), (SR3).

In the first part (Section 9.1), one controls the size of the critical locus, in two
slightly different ways expressed by (SR1), (SR2); both amount to say that the “dimen-
sion” of the critical locus is not much larger than d° 4+ d° — 1, but (SR1) is a direct “box-
counting” estimate, while (SR2) is more subtle.

The second part of the strong regularity condition, by far the most subtle one, is
a quantitative estimate for the number of bicritical elements at all scales. Because of the
inductive nature of the argument, which relies in an essential way on the structure theo-
rem of Section 6, we need to control the number of elements (P, Q, n) € R(I) such that
P is I,-critical, Q) is I,-critical and |P| > x for some ¢ € I. Here, I, and I, are parameter
intervals containing I, and the control will depend on I, I,, and x. The formulas in Sec-
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tion 9.2 present a phase transition with respect to the width parameter x. Discussing this
phase transition in Section 9.3 leads naturally to the hypothesis (H4) on the transverse
dimensions d°, d°: a small calculation shows that (H4) is exactly what one needs to obtain
B-regularity with 8 > 1. We also show in Section 9.3 that a strongly regular parameter
interval is regular.

In Section 9.4, we show that the starting interval is strongly regular. Then, in Sec-
tion 9.5, we show that most candidates in a strongly regular parameter interval satisfy
(SR1); The argument for parameter selection is based on the result of Section 8.4 men-
tioned above. The same is done in Section 9.6 for condition (SR2), but the proof is more
complicated and involves (SR3).

In the rest of Section 9 we prove that, given a strongly regular parameter interval
I most candidates I C T at the next level satisty (SR3) (the proportion of failed candidates
turns out to be not larger than ClI|™; the same is true for (SR1) and (SR2)). The easy
cases are dealt with in Section 9.7. In Section 9.8, we estimate the number of bicritical
elements in R(I) that are not I-defined (l is the strongly regular parent of I). This is a
rather long but straightforward calculation based on the structure theorem of Section 6.5.
Then, we are left with the most difficult case I =1, =1, x small (below the threshold of
phase transition), but not too small (the estimate is trivial in this last case). In this case,
and 1in this case only, we are forced to take into account that for an T-bicritical element
(P, Q, n) to be I-bicritical, the two events (of the “random” variable I) “P is I-critical”
and “Q is I-critical” must occur simultaneously. The strategy (explained at the end of
Section 9.7) to deal with this case is to divide the class of I-bicritical rectangles in a (large,
but not too large) number of adequately defined subclasses. These subclasses are defined
in Section 9.9, their number is estimated in Section 9.10 and the calculation which val-
idates the strategy is performed in Sections 9.11 and 9.12. In Section 9.13, we explain
which (very few) modifications have to be made when dealing with the condition [Q] > x
instead of |P| > x (the setting is not symmetric at this level because the formulations of
(SR3) when & > d” and d° < d) are different). Finally, in Section 9.14 we conclude by
defining precisely the exponents appearing in (SR1), (SR2), (SR3) which were so far only
approximately defined. At this point, we know that all parameters in the starting interval
Io = [0, 2¢0], except for a subset of relative measure < 0852, are strongly regular.

It is worth mentioning that up to the end of Section 9, we never consider the
dynamics for a single parameter, only for parameter intervals. In the last two sections,
we study the dynamics for a strongly regular parameter value, i.e. the intersection of a
decreasing sequence (I,,) of strongly regular parameter intervals.

In Section 10, we study the dynamics on the set of stable curves. A stable curve w
is the decreasing intersection of a sequence of vertical-like strips Py, where (Py, Q;, 7) €
R =J,, R(L,). The set of stable curves is denoted by RS, their union by R°. We show
in Section 10.5 that Ro" is a lamination by C!'™ curves with Lipschitz holonomy. In or-
der to define a map on Roo (which is not invariant under g), we introduce in Section 10.1
the concept of prime element in R, i.e. one which cannot be written as the simple compo-
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sition of shorter elements. The number of prime factors in a decomposition is controlled
in Section 10.2. Let then @ be a stable curve which is not contained in infinitely many
prime elements P;, and let (P, Q, n) be such that P is the thinnest prime element con-
taining . The image g"(w) is contained in a stable curve @' and we set TT(w) = o,
T*/w = g"/w. This defines a map T from a subset D, of RS onto R which lifts to a
map T+ from the union 'D+ of curves in D, to ROO

The map T is Bernoulli in the following sense: its domain D, splits into countably
many pieces RS (P) indexed by prime elements, and each piece is sent homeomorphi-
cally by T™ onto the intersection of RS° with some rectangle R, of the Markov partition.

The map T is uniformly expanding (with countably many branches) and we in-
troduce a one parameter family of weighted transfer operators in the spirit of classical
uniformly hyperbolic maps. One has only to be careful because the presence of count-
ably many branches is the source of some problems, which are dealt with in Section 10.3
using the estimates of Section 8 on the number of children.

As expected, the transfer operators L,, considered in the appropriate function
space, turn out to have a positive eigenfunction /%, associated with a dominant eigen-
value A, > 0. There is a unique value d; such that A, = 1. This value turns out to be,
unsurprisingly, the transverse Hausdorff dimension of the lamination 'R°° This is proved
in Section 10.10 (Theorem 4), but the proof is more difficult than in the class1ca1 case, be-
cause the transverse geometry of RS is complicated and requires some delicate handling,

The transfer operator also allows us to identify, as usual, a measure u, with pre-
scribed Jacobian and an invariant measure v; = f;,. Yor d = d;, the p,-measure (or
v,-measure) of the set of stable curves contained in any vertical-like strip P is propor-
tional to |P|%. _ _

The set RS — D, where T+ is not defined, has transverse dimension smaller than
d;, hence is negligible in a geometrical sense. One can lift the T*-invariant measure
V=y, toa T*-invariant measure ¥ which is ergodic and then spread it to a g-invariant
measure on A.

In Section 11, the last in the paper, we pursue the study of the dynamics of g, on
A = A, for a strongly regular parameter ¢, looking now beyond the well-behaved set
'R°° whlch was studied in Section 10. In the first part (Sections 11.1-11.5), we study
the intersection of the invariant set A with an unstable curve w* (defined as a stable
curve, exchanging P’s and Q)’s). The main part of this intersection is a countable disjoint
union of dynamical copies of the set R studied in Section 10. There are also at most
countably many critical points, corresponding to quadratic tangencies between stable
curves and images under G of unstable curves. And, finally, there is an exceptional set
(formed by points which come very close to the critical locus infinitely many times); but
this exceptional set is small; its Hausdorfl’ dimension is explicitly controlled by a value
smaller by a definite amount than the dimension 4, of w* N A.

In the second part of Section 11, we prove that the invariant set A is a saddle-like
object in the metric sense: both its stable set W*(A) and its unstable set W*(A) have
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Lebesgue measure 0. So, no attractors nor repellors are present on A. One actually ex-
pects more: certainly the Hausdorft dimension of W*(A) should be strictly less than 2,
probably it is close to 1 4 d;, and perhaps even equal to 1 + 4;. However, we stick to
the simpler, but still very meaningful result: it implies that A, carries no attractor nor a
repellor for most g.

One has a nice combinatorial decomposition of the restricted stable set W*(A, R),
but to compute Lebesgue measure (or Hausdorff dimension), one has to transport the
pieces of this decomposition by affine-like iterates of g of high order. This is easy to do
as far as Lebesgue measure is concerned, because bounded distortion of affine-like maps
mean also bounded distortion of measure (bounded relative oscillation of Jacobians). This
1s much more delicate with respect to Hausdorft' dimension: the geometry of the pieces
after iteration can get very distorted.

In Appendix A, we recall all formulas related to the implicit representation of
affine-like maps; many of them can already be found in [PYZ2], but we have also to con-
sider the derivatives with respect to parameter, a setting which was not considered in
[PY2]. We also perform a number of estimates, both for simple and parabolic composi-
tion, which are used in Section 7.

In Appendix B, we prove a result related to Proposition 51 in Section 10.5, which
states the transversally Lipschitz regularity of the lamination R

In Appendix C, we give some justification for what seems to be a convoluted defi-
nition of the transversality relation in Section 5.4.

We wish to thank Sylvain Crovisier for carefully reading a first version of this text
and making many valuable suggestions to improve several conceptual parts of the paper,
hopefully making it more amenable to read. We also wish to thank W. de Melo and
M. Viana for fruitful conversations.

2. Markov partition and folding map

2.1. Markov partition and related charts. — We will choose once and for all a finite
system of smooth charts

IxI"=>R,CM, aca

indexed by a finite alphabet a. Each chart depends smoothly on g € U; the intervals I’ I
are compact; the rectangles R, are disjoint.

Let R = J,R,. We choose the charts in order to have:
(MP1) for each g € U, K, is the maximal invariant set in int R; for each ge U, a € a,
one has

(2.1) gL x 1Y NR =9,
(2.2) g (@ x ) NR =¢;
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(MP2) for each g € U, the family (R, N K,).eq induces a Markov partition for the
horseshoe K,. Moreover, no rectangle R, meets both the orbit of p, and the orbit of p,.
Let

(2.3) B={(a,d)ed, f(R)NR, NK;# 07}

The Markov partition provides a coding which is a topological conjugacy between the
horseshoe K, and the subshift of finite type of @* defined by B.

2.2. The parabolic tongues L., L,. — Denote by a, a, € a the letters such that p; €
R, p. € R,,. We choose the corresponding charts in order to have:

(MP3) for each g € U, the equation of the local stable manifold W} _(p,) is {x, = 0}, the
equation of the local unstable manifold Wi, (p,) 1s {»,, = 0}.

We have written x, (resp. y,) for the coordinate in I’ (resp. I!). We also choose the
rectangles R, in order to have, for some integer Ny > 2:

(MP4) for each g € Uy, there are points ¢,, g, in the orbit of ¢ such that

— forn>0, g"(¢g,) and g"(p,) belong to the interior of the same rectangle;
— for n <0, g"(¢g,) and g"(p,) belong to the interior of the same rectangle;
— ¢,=g"(g,) and g'(g,) does not belong to R for 0 <7 < Nj.

Consider small pieces of W*(p,), W*(p,) which are tangent at ¢, for g € Uy. When
g € U, these pieces will meet in two points and bound a compact lenticular region L, C
intR,,. Taking the image under g™, we get another lenticular region L, C intR, . These
regions are called parabolic tongues. See Figure 3.

Define then, for g € U,

(2.4) R=RU U (L.
0<i<Njp
~ Ly

4
A 5

1

1

1
A @S

FiG. 3. — The parabolic tongues L, L,
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The maximal invariant set we are interested in 1s

(2.5) A= ®).

z
Observe that Wi, (p,) bounds the set K, in R, and Wloc(/’u) bounds the set K, in R,,.
The maximal invariant set A, meets the boundary of R (in fact, the boundary of L, L,,
and their images), but it is still locally maximal because it would also be the maximal
invariant set in a slight enlargement of R.

We also define
(2.6) WA, R) =g ®),
n=>0
(2.7) WAL R) =[¢"®R).
n<0

The dynamics in R are generated by

— the transition maps related to the Markov partition:
2:R,Ng"Ry) = gR)NR,, for(a,d)€B;

— the folding map G := g™ from L, onto L.

2.3. The folding map G. — For simplicity, we write (xy, 9;), (x,,9,) for the coordi-
natesin R, DL, R, DL,

The folding map G is parabolic in the sense of [PY2]; let us recall this definition.

Consider the graph I'g of the restriction G of g\ to the component of R, N
2 N(R,,) which contains L, (for g € U, ; we then follow this component in the rest of /).
Using the corresponding charts, we can view I'g as a surface in I, X I} x I} x I} . Denote
by 7 the projection from I, x I x I, x I} onto I} x I . For Z/l small enough ‘from the
quadratic tangency at ¢ and (MP3) we deduce that

(P1) the restriction of 7 to I'g is a fold map (in the sense of singulary theory).

Denote by T’y C T, X I, the smooth curve which is the image of the critical locus
of this fold map. It d1v1des L, X [, into two regions 'y, I'_ such that I'y UL is the image
of the fold map. We can reformulate (P1) as:

(P'1)

(i) for (0", x°) € Ty, the image G({y, =)"}) meets {x, = x°} in a single point, inte-
rior to both curves, at which the curves have a quadratic tangency;
(ii) for ()°, °) € I'_, the curves G({y, =»"}) and {x, = 1’} do not intersect;
(iii) for ()°, x°) € 'y, the curves G({y, =»"}) and {x, = x"} intersect transversally
In two points.
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As G 1s a diffeomorphism, the tangents to I'y are never vertical or horizontal.
Therefore, we can and will choose a smooth function 6 on I x I} such that

(P2) 6=00onTly,0>00onl,,0 <O0onl_;

(P3) the partial derivatives 6,, 6, of 6 do not vanishon Ij, x I, .

Remark 2. — The choice of 0 is far from unique. One could for instance choose 6
of the form

(2.8) Oy x5) = €90 + € X (%)),

with ¢, &, € {—1, +1} and x monotone increasing. We prefer not to specify a particular
choice in order to keep a time-symmetric setting between positive and negative iterations.

From 6, we define a smooth function w on I by
(P4) w'=0om

(there are two choices for w; the other is —w).
Then, from (P3) we obtain smooth maps Y,, X, implicitly defined by

(P3) w? = 0(Y,(w, %), %)
=00, X,(w, ).

On the graph I', we can use either (x,, »,) or (xy, 7;) or (w, »,) or (x;, w) as coordinates;
therefore we can factorize G as Gy 0 Gy o G_:

(2‘9> (xuvyu) i) (W,J/u) ﬂ) (xsv w) &) (Xs,))s)
with
(P6) Go(w, ) = X, (w, 2.), w),

Gy (e w) = (w, Y, (w, 1)),

G (G w) = (x, Yi(w, 1)),

GZ'(w, ) = KXW, 2.),0.)-
The last two formulas define smooth maps Y;, X, and the partial derivatives Y ,,, X,
do not vanish as G, G_ are diffeomorphisms. Observe that the map G is very similar

to a quadratic Hénon-like map.
A simple explicit example for G,G,,G_,Gy,0 is given in [PY2].
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3. Affine-like maps
This section is essentially a summary of [PY2].

3.1. Definition and implicit representation. — Let Iy, Ifj, I}, I{ be non trivial compact
intervals, xy, 0, X1, 1 the corresponding coordinates. Consider a smooth diffeomorphisms
I whose domain is a vertical strip

P={p"00) <x <@ 00} CL xIj
and whose image 1is a horizontal strip

Q= () <n <y ()} ch xI.
We say that I is affine-like if

(AL1) the restriction to the graph of I of the projection onto I x I} is a diffeomorphism
onto I x I3.
This allows us to define smooth maps A, B on Ifj x Ij such that

XOZA()’o»Xl),

3.1 F(xo,70) = (1,
(3.1 (0, 00) = (v, 1) &= 1=B0Oo, x1).

The pair (A, B) is the wmplicit representation (or definition) of the affine-like map F. See
Figure 4. In the formulas below, we shall most of the time omit the arguments of
the functions considered, which should be obvious from the context. We will write
A, Ay Ay, By, By, ... for partial derivatives.

On the graph of F, we have
dX() = Ayd)}o + Axdxl s

(3.2)
qul = B),dyo + Bxdxl P
T
Yo & " Y14 0
e -
.' F
\ T T
- R TR
1
l
1
:
x X

F1G. 4. — An affine-like map
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which leads to

_ a1 ] _Ay
(3.3) DF = A” (Bx AB,—AB.)"
AB, —AB, A
—1 _ p-1 Xy Ay Dy Ly
(3.4) DF ' =B, ( B, 1>,
(3.5) detDF = A7'B,.

The main advantage of the implicit representation is the symmetry between positive and
negative iteration.

3.2. Cone condition and distortion. — Let A, u, v > 0 satisfy
(3.6) 1 <uv < A2

Let (Xo, Y) be a tangent vector at some point in the domain of F, and let (X, Y}) be its
image under TF. The usual cone condition with parameters (A, u, v) is:

(AL2)
(i) if Yol < ulXol, then Y] < v™'[X;| and [X,] = A1Xol;
(i) if [Xi] < v[Y)l, then [Xo| <™ '[Yol and [Yo| = A[Y)].
This is readily seen to be equivalent to
(AL2) MAL +ulA) <1,
AB[+v[B <1,
everywhere on Ijj x Ij.
We will also need to control partial derivatives of second order of A, B. By (3.5),

the partial derivatives A, B, do not vanish on Ijj x I}. It turns out that the right way to
look at partial derivatives of second order is to consider the six functions

d,1og|A,], 3,log |A,], A,
9,log|B,], 3,1og B, |, B.,.

We define the distortion of an affine-like map F, and denote by D(F), the maximal absolute
value attained by any one of these six functions on If; x Ij.
We also define the width of the domain P of F by

3.7 |P| ;= max|A,],
and the width of the image Q by
3.8) |QJ :=max|B,|.

Observe that we have max |A,| < Cmin|A,|, where the constant C only depends on D(F)
and the lengths of the intervals I{j,I{. The same estimate holds for B,.
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Yo YA P’ Y §
0 0’

S S

— |
b b
pP" — 1

Q i
> > >
xO Xl x2
FiG. 5. — Simple composition
3.3. Sumple composition. — The composition of two affine-like maps is not always

affine-like. However, the composition of two affine-like maps which also satisfy the same
cone condition (AL2) will again be affine-like and satisfy the same cone condition (actually
a better one).

More precisely, let I, If, I}, If, I, I be compact intervals. Let F: P — Q and I’ :
P’ — Q) be affine-like maps with domains P C I} x I, P" C I} x I} and images Q C I} x I},
Q' C I x I§. We assume that both F and I satisfy (AL2) (or (AL'2)) with parameters
A, u, v. The composition F/ = F' o F has domain P" = PN F~!(P) and image Q" =
Q' NF(Q). It satisfies (AL1) and (AL2) with parameters A%, u, v (cf. [PY2]). See Figure 5.

Let (A, B), (A’, B'), (A”, B”) be the implicit representations of F, F', F” respectively.
Define

(3.9) A=1-AB,>1—u'v"'>0,

The partial derivatives of first order of A”, B” are given by

Al =AA AT
(3.10) 1
B/ =B,B A",
A=A, +AABAT,
(3.11)

B'=B + BXA;B;A_I.
From (3.10), we get

C_l - |P//|
P[P

C—l < |Q | < C,
Q)]

<G,
(3.12)
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where the constants are uniform once u, v are fixed and the distortions are uniformly
bounded.

The formulas for the partial derivatives of second order are derived in [PY2] and
recalled in Appendix A. From formulas (A.12) to (A.21), one obtains the following esti-
mate for the distortion:

3.13) DEF)< max{D(F) + ClQJ(D(F) + D(F)), D(F) + C|P'|(D(F) +D(F’))},
where C depends only on %, v.

3.4. Properties of the Markov partition. — We choose charts for the Markov partition
discussed in Section 2.1 in order to have the following property, for some A, u, v satisfying

(3.6):
(MP5) for any (a,d’) € B, any g € U, the transition map g, s from P,, =R, Ng ' (R,)
onto Q,» =R, Ng(R,) is affine-like and also satisfies the cone condition (AL2).

These values of (A, u, v) will be fixed in what follows.
To any finite word a = (a, . . ., a,) with transitions in BB, we have a composition

8a = 8ay—10, © + - - O 8wy

which satisfies also (ALI) and (AL2).

Moreover, as the widths decrease exponentially with the number of iterations, it
follows from (3.13) that there exists Dy > 0 such that all g, satisty

(MP6) D(g,) < D,.

Finally, the following simple property will be useful in Section 8.
(MP7) for any (a,d) € B, any (x,9) € P,y, any (¥, ') € Q,,, we have

xa_—i—C_l <x<x:—C_l,
oG <y <y -G
where I! =[x, x/], 1% = [y, /] and C is an appropriate large constant.

3.5. Parabolic composition. — Let G be the folding map of Section 2.3, satisfying
properties (P1)—(P6).

Let also Ij), If, I}, If be compact intervals; let Iy be an affine-like map from a
vertical strip Py C I X Ifj to a horizontal strip Qg C I}, X I} ; let I be an affine-like map
from a vertical strip P; C I, X I to a horizontal strip Q; C I} x If.

We recall from [PY2] how, under appropriate hypotheses, the composition F; o

G o Fy defines two affine-like maps F* with domains P* C Py and image Q* C Q,. See
Figure 6.
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yO A yll A
p-
F
+ -1
P — G (P)
9
PO
XO Xu
l G
4+ -
Y1k 0 1 0 0 s A Py
G (Qp)
Fl
a
J\
X, X
Fi. 6. — Parabolic composition

Let (Ao, By), (A}, B)) be implicit representations of Fy, I, respectively. We assume
that

(PCI> |A1,y| < bv |A1,yy| < ba
|B0,x| < ba |B0,xx| < b,
with b < 1. In the system

Xy = Xu(wJ/u),
3.14)

D= Bo(yo, xu),
we can, as |By | < 1, eliminate y, and solve for x, to define
(3.15) x, = X(w, y).

Similarly, in the system

_ys = Y.Y(w7 x&)’
(3.16)
Xs =A1(ys, Xl),
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we eliminate x;, solve for y; to get
(3.17) 9, =Y(w, x1).

The next step is to define

(3.18) Cw, 9, %) 1= w? — G(Bo(yo, X(w, 30))s Ay (Y (w, 1)), xl)).

This quantity has the following geometrical interpretation. Fix values yfj, x7 for yy, x.
The image G_ o Fy({yg =}}) is the graph

3.19) 7= =Bu0 X, |
symmetrically, G} ' o Fi'({x; = «7}) is the graph
(3.20) y = {x = AL(Y(w, ), xT)}.

Then, C(w, yi, x¥) gives the relative position of the two curves ¥, and Gy ' (y)) (or equiv-
alently Go(yp) and y,). More precisely, it is positive for all w if the two curves do not
intersect; it vanishes at the intersection points and is negative between the intersection
points.

It follows from (PC1) just above that

(3.21) ICy — 2w| < 1,
(3.22) ICw — 2| < 1.

Therefore, for fixed values of yy and x;, C has a unique minimum as a function of w; we
denote by C(y, x;) the corresponding minimum value. We have C (5%, x*) > 0 (resp. = 0,
resp. < 0) if and only if the curves ¥, and Gy ' (y,) do not intersect (resp. are tangent, resp.
have two transverse intersection points).

In order to consider parabolic compositions, we shall require that C(y, ;) < 0
everywhere on Ijj x Ij. Setting

(3.23) 8 =58(Qy, P;) = min —C(yp, 1)
J0,X1

we actually want to have
(PC2) 8> 67" (1P +1Qu)).

The geometric interpretation of this requirement is clear: the displacement of one of
the rectangles and the image of the other should be much bigger than the sum of their
widths. In other words, the distance between the tip of the parabolic strip G;'(P;) and
the horizontal strip Qg should be much bigger than the widths of these strips.
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Assume now that (PC1) and (PC2) are satisfied; the equation G(w, yy, x;) = 0 de-
fines two smooth functions

(3.24) w = W=y, x1)

with W¥ > W~. One then defines

(3.25) A£G, 1) :=A0<yo,X(Wi(yo,x1),y0)),
(3.26) B (0, 1) = Bl(Y(Wi(yo,xl),xl),m).

As shown in [PY2], the pair (AT, B%) (resp. (A, B7)) implicitly defines an affine-like
map F* (resp. F7).

Denote by P* (resp. P7) the domain of F* (resp. F7) and by QF (resp. Q") the
image of F* (resp. F~). Then P* and P~ are the two components of Py N (G o Fy) ™' (P)),
Q' and Q are the two components of Q; N (F; 0 G)(Qy); F* (resp. F7) is the restriction
of F; 0 G o Fy to P (resp. P7).

The formulas for the partial derivatives of A*, B* are derived in [PY2] and recalled
in Appendix A (see in particular (A.42)). The partial derivative C,, in these formulas is

1

of order §2 at the points under consideration (see (A.84) in Appendix A). From this one
obtains the following estimate for the widths:

P:l:
(3.27) S L )
Py|[P1]5 7
+
3.28 e ¢
Q152

where the constants are uniform once b is fixed and the distortions are uniformly
bounded.

From [PY2, Theorem 3.7], we also have the following estimate for the distortion
of F* (see also Appendix A.4): assuming that 4 is small enough (in terms of the partial
derivatives of first order of X,,, Y|, 6), we have

(3.29) D(F*) < max| D(Fy) + CIQuls™", D) + CIP 16~ .

1
provided that D(Fy) +D(F;) <™ 2. The constant C in (3.29) depends only on the partial
derivatives of first order of X,, Y,, 0.

Let us observe that, while conditions (PC1), (PC2) are necessary in order to consider
parabolic composition, they will not be sufficient for our construction: in Section 5, the
requirement for parabolic composition will be much more restrictive than (PC2).
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3.6. Sumple properties of 5(Qy, Py) and related quantities.

3.6.1. The setting in the same than in the last Subsection, with maps Fy, I, sat-
isfying the hypotheses as in that Subsection. We have defined

(3.30) 8(Qy, P;) = minmin —C (g, x).
Jo X1

In the following sections, we also need to consider

(3.31) 01.(Qy, Py) := maxmin —G(yo,xl),
Jo X1

(3.32) 8r(Qy, P)) := min max —C(y, 1),
2o X1

(3.33) 81r(Qp, Pp) := maxmax —C (y, x1).
20 X1

All together, &, 8_L, Sk, 81 are the values of —C at the four corners of the rectangle If x I
of definition of C. From the formula (A.78) of Appendix A, we have, for any ¢ in I

(3.34) P < |G < CIPy|,

(3.35) QI < IG)I < ClQyl.

This gives

(3.36) _1|%| < 8L(Qy, Pr) = 3(Qy, P1) < CIQyl,
(3.37) TPy < 8r(Qy. P1) — 8(Qp, Py) < CIPy,
(3.38) - I%I < IR (Qp, P1) — 8r(Qy, P1) < C|Qyl,
(3.39) Py < 8r(Qy, Py) — 81(Qy, Py) < CIPy).

Let I}, be another affine-like map, implicitly represented by (Ao, By), satisfying the
same hypotheses than Fy. Let C" be the function constructed from ¥, and F, as C was
from Fy and F;.

3.6.2. We first assume that the image Qj, of I}, is disjoint from the image Q) of Fy.
Assume for instance that Q) is above Q. For any 35 € If, y;" € Iif, the curve G_ o
Fy({h, =00 }) is above the curve G_ o Fo({yy =;}). This means that we have, for any w

(3.40) By, X(w,55)) < B0, X'(w, ().

As 6 is monotone in the first variable, we will have, for all w, x;, y;, v

(3.41) C(w, g, x1) < C'(w,y5, 1),
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if 6, > 0, and the opposite inequality if 6, < 0. In the first case, we will have
3.42) 5(Qy, Py) > 81.(Q) Py),

(3.43) 3r(Qp, P1) > 1R (Qp, P1).

In the second case, the same is true with Qy, Qj exchanged.

3.6.3. Assume now that the image Qj of I is contained in Q.
Let 55 be the endpoints of I, For any y, the curve G_ o Fj({y}, ={"}) is between
the curves G_ o Fo({yo = ygt }). This means that we have, for any w

(3.44) Bo Oy, X(w, 9)) < Byog, X' (w, 6)) < Bo Oy, X(w, 57)

(assuming By, > 0; otherwise, exchange y; and ).
As 6 is monotone in the first variable, we have, for all w, x;,

(3.45) min C(w, o, 1) < C'(w, ], x1) < max C(w, yp, x1).
Jo J0

This now gives

(3.46) 3(Qy, Py) < 38(Q), Py),

(3.47) Sr(Q, P1) < 8r(Qy, P1),
(3.48) 51.(Qy, P)) = 61.(Qy, Py),
(3.49) Sir(Qy, Py) = 81r(Qy, Py).

3.6.4. The setting is the same than in Section 3.6.2 and we will obtain slightly
stronger estimates (which will be useful in Section 8) under a slightly stronger hypothesis.
We not only assume that the image Qj, of I is contained in Qy, but that one has, for any

(x0,.00) € Fy ' (Qy)
(3.50) 9, +C T <y <y =G,
for some fixed large constant C. We will now obtain, instead of (3.44)
By(y + G X(w,yy +C7) < B0, X (w, )
(3.51) <BoOf —C7 X(w,f —C7Y)
or the reverse inequalities. This gives
By (5, X(w, 7)) + C7HQul < BL0f, X (w, )
(3.52) <Bo0. X(wop)) = Q|
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(if By, > 0; otherwise, exchange yj and y;). As the partial derivative 6, is bounded away
from 0, we get also, for all w, x;, y;

(3°53) minc(wy_y()a xl) + C_l |Q,0| < C/(u),)?;), xl) < maXC(w7_y07 X]) - C_l |QD|
2o Jo

which finally gives

(3.54) 8(Qp, P1) +C71Qy| <8(Q), Py),

(3.39) Sr(Qy, P) + C7'Qy| < 8r(Qy, P),

<3°56> 814(%9]?1) _C_1|%| 2511(%91)1)9

(3.57) §1r(Qp, P) — C7Qp| = 81x(Q), Py).

3.6.5. All the discussion in Sections 3.6.2, 3.6.3, 3.6.4 have an obvious symmetric
counterpart exchanging Q)’s and P’s.

4. Structure of parameter space

4.1. One-parameter families. — From now on, we fix a one-parameter family
(@)ie(—1.1p In U. We assume that the family is transverse to Uy at ¢ =0, with g € U,
fort>0and g elU_ fort <O.

Observe that gy satisfies exactly the same assumptions as f, provided U is small
enough. Therefore, we may and shall, assume that gy = /.

We will first reparametrize the family in order to make some computations simpler.
Consider the folding map G, = g of Section 2.3. If f, is small enough, G, is a fold map
for all values of ¢ € (—{, ). Moreover, we can in properties (P2), (P3) of Section 2.3
choose a function 6 which depends smoothly on ¢.

From (MP3), Section 2.2, the values y, = 0, x;, = 0 of the arguments of # correspond
(p.) and W (p,) respectively. Therefore, the transversality of the family to U is

loc

to Wt

loc

equivalent to

0
(4.1) —0(0,0,¢) [,=> 0.
ot
Taking £, small enough, we can therefore reparametrize our family in order to have
(4.2) 00,0, =t te(—h ).
4.2. Some important constants. — The constants A, u, v, Dy, b of Sections 3.4 and 3.5

depend only on the initial diffeomorphism f* provided ¢ is small enough and are now
fixed.
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Throughout the rest of the paper, we will use three main constants &g, 7, T which
satisfy

(4.3) D<Kt KL L
We roughly explain the meaning of each constant:

— & 1s the maximal width of the parabolic tongues L,, L. It is also the size of the
parameter interval we start with.

— 1 1s involved in the transversality relation (defined in Section 5) which allows
parabolic composition: instead of the condition (PC2) of Section 3.5, roughly
speaking we will ask that

(4.4) 8= (1P| +1QuD' ™"

As the widths |P;| and |Qy| are not larger than &, which is much smaller than
1, this requirement is much more restrictive than (PC2) and will allow to control
distortion.

— 7 relates the successive scales of the parameter intervals we will consider through
the formula g, = &,""

Another important number B appears in the definition of regularity in Section 3,
which controls the recurrence of the “critical locus”. This number will be chosen explic-
itly in Section 9.3 (see also Section 5.6) in terms of d°, d° and the eigenvalues of / at the
periodic points p;, p,; the condition (H4) involving do dO in Section 1 is required because
we must have 8 > 1.

Finally, we will use the generic letter C (with indices or other decorations) for vari-
ous constants which depend on the initial diffeomorphism f, but not on €y, n, T

4.3. Parameter intervals. — The starting parameter interval will be
(4.5> I() = [80, 280],

where, as explained above, &; will be taken very small. This is the only parameter interval
at level 0.

At level £, we will deal with parameter intervals of length ¢;, where the sequence
of scales ¢, 1s defined inductively by

<4:.6) Era1 :8;_‘—1'

The constant 7 is small, but &, is much smaller and in particular we will have 882 < 1.
Every parameter interval of level £ is divided into [&, ] parameter intervals with disjoint
mnteriors of level £+ 1.

The remaining part, if any, is discarded; it is of length < &;4,; the total length
discarded in this way is smaller than &, < &.

Let T be a parameter interval of level £ and I be a parameter interval of level £+ 1
contained in T. We say that Tis the parent of I and that I 1s a ¢huld of T
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4.4. The selection process. — In Section 5, we will define what it means for a para-
meter interval to be regular. The starting interval I, will be regular.

Given a regular parameter interval T of level £, we divide it into its children: these
parameter intervals of level £ + 1 are the candidates. We then test each candidate for reg-
ularity and discard those which are not regular. We then proceed to level £+ 1 with each
surviving candidate.

The regular parameters are those which are the intersection of a decreasing se-
quence of regular parameter intervals. For such parameters, we are able to carry out
some analysis of the maximal invariant set A,,.

4.5. Strongly regular parameters. — The regularity property is, in some sense, the
minimal requirement that is needed to keep control on the geometry and dynamics of
the maximal invariant set. However, this requirement is of an essentially qualitative char-
acter and this leads in particular to the following difficulty: we are not able to estimate
which proportion of the children of a regular parameter interval are also regular.

To circumvent this problem, we define in Section 9 a stronger property for pa-
rameter intervals, called strong regularity. It implies regularity, and is better adapted to the
inductive selection process. It also gives additional geometric information on the maximal
invariant set.

WhenTis a strongly regular parameter interval of level £, we will show in Section 9
that most candidates of level £+ 1 contained in T are also strongly regular. The proportion
of discarded candidates is less than o, with

(4.7) Ykl

k>0

the < sign means that the sum gets arbitrarily small as &, goes to zero. Then we can
conclude that most parameters are strongly regular in the sense that they are equal to the
intersection of decreasing sequences of strongly regular parameter intervals.

The non-uniformly hyperbolic horseshoes that are the subject of our study are
exactly the maximal invariant set A, for strongly regular g € U,

5. Classes of affine-like iterates and the transversality relation

5.1. Affine-like iterates. — Let I be a parameter interval of some level.

Defination 1. — An L-persistent affine-like iterate is a triple (P, Q, n) such that

— P s avertical strip in some R, depending smoothly on t € 1;
— Q 15 a horizontal strip in some R, depending smoothly on t € 1;
— 115 a nonnegatie integer;
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— Jor each t € 1, the restriction of g to P, is an affine-like map onto Q, v.e. property (AL1) of
Section 3.1 holds;
— for each t € 1, each m € [0, n], we have g"(P,) C R.

Example 1.

1. For n =0, the I-persistent affine-like iterates are the (R,,R,,0), a € a.

2. For n =1, the I-persistent affine-like iterates are the (P,/, Q. 1), (a,d) € B.

3. More generally, for any finite word a = (ay, ..., @,) with transitions in B, the
map g, of Section 3.4 defined an I-persistent affine-like iterate (P,, Q,, n).

Notation. — If P is a vertical strip {¢_(y) < x < ¢4 (»)} we denote by 0P the vertical part
of the boundary, i.e. the two graphs {x = ¢*()}. Similarly for horizontal strips.

If (P, Q, n) is an I-persistent affine-like iterate and I’ is a parameter interval con-
tained in I, (P, Q, n) also defines by restriction an I-persistent affine-like iterate. A slightly
less trivial property is given by

Proposition 1. — Let (P, Q, n), (P', Q', n') be 1-persistent affine-like iterates. We have

(@) fn=rn, then either P=P and Q =Q' forallt € Lor PNP =0, QN Q' =0 for
alltel.
(b) ofn <, then either P DO P, 0PNP =0 forallt e lor PNP =0, forall t € 1.

Remark 3. — Throughout the paper, except in Section 9 (where we break the sym-
metry assuming d° > d), we will keep a time-symmetric setting. Thus every property
stated for the domains P’s is also valid for the images Q)’s. This apply for instance to part
b) of the proposition.

Proof: — By the definition of an I-persistent affine-like iterate, for all 1€ I, P is a
connected component of R N g7 (R) and also of ﬂogmgngz_m(ﬁ)-

(a) If n=n"and PN P’ # @ for some { € I, we must have P =P’ at ¢ and hence,
PN P # @ for ¢ close to 4. It follows that P=P for all t € I, and also Q = Q' for all t € I.

(b) Assume that n < 7 and PN P’ # @ for some 4 € I, then P' C P at { (since
ﬂogmgn,glg’”(/R\) is contained in ﬂogmgngz;m(ﬁ»a hence P" NP # @ for ¢ close to ¢ and
PCPforallzel.

Let t € I, z € OP; then, g"(z) belongs to the vertical boundary of R and g"' () ¢ ﬁ;
therefore, z ¢ P’. This proves that 9P NP is empty for all ¢ € I. O

5.2. The classes R(1): general overview. — It would be nice to work with the class of
all I-persistent affine-like iterates, but with this approach one faces two problems:

— I-persistent affine-like iterates do not satisfy a uniform cone condition, and they
do not have uniformly bounded distortion;
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— even if we force such uniformity in the definition, a major problem is that we
lack some control on the way in which long I-persistent affine-like iterates are
constructed from shorter ones by simple or parabolic composition.

To overcome these problems, we will construct, for every candidate parameter
interval I (see Section 4.4: it means that I = I, or that the parent interval of I is regular, a
notion that will be defined in Section 5.6) a subset R(I) of the set of all I-persistent affine-
like iterates. All elements of R(I) with n > 1 will be obtained, from the very definition of
R (1), from shorter ones by simple or parabolic composition. The elements of R(I) will
turn out to satisfy a uniform cone condition and have uniformly bounded distortion.

The main ingredient in the definition of R(I) is a transversalily relation which is an
appropriate strengthening of condition (PC2) in Section 3.5. Simple composition is al-
lowed whenever it makes sense, but parabolic composition is only allowed when this
transversality relation holds.

The definition of the transversality relation, given later in this section, is quite
involved; this is because we want some combinatorial properties proved in Section 6 to
be satisfied. Such properties make our later work much easier.

The precise requirements on R(I) are the properties (R1)-(R6) formulated in the
next subsection and property (R7) formulated in Section 5.4.

While it is clear that at most one class R(I) can satisfy (R1)~(R7), it is by no means
obvious that such a class exists. Actually, the proof of this fact, stated at the end of Sec-
tion 5.4, will only be completed at the end of Section 7.

The proof of the existence of R(I) is based on a double induction:

— an induction on the level of the parameter interval I, starting with Iy = [€o, 2¢¢]
at level O (see Section 5.5 for this first step).

— for a given candidate parameter interval I, an induction on the length » of the
I-persistent affine-like iterates under consideration.

In this induction scheme, all properties required for R(I) are proved simultane-
ously. Actually, several other properties (coherence, concavity, ... see Section 6) of the
class R(I) are needed in the induction process; these properties are defined and proved
(inductively!) in Section 6. Of particular importance is a structure theorem in Section 6.5.

5.3. Defining properties for the special class of affine-like iterates R(1). — Let I be a candi-
date parameter interval of some level.

The class R(I) of I-persistent affine-like iterates that we want to construct should
satisfy the following properties (R1)+(R7).

(R1) Yor any word a = (ay, ..., a,) with transitions in B, the element (P,, Q,, n) (see
Example 1 above) belongs to R(I).

For the starting interval Iy = [&y, 2¢¢], it will turn out that one obtains in this way
all elements of R(Iy).
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Recall from (MP5), (MP6) in Section 3.4 that all (P,, Q,, n) with n > 0 satisty for
all € Iy a uniform cone condition (AL2) with parameters A, u, v (satisfying 1 < uv < A?),

and have distortion bounded by Dy. Let «y = W, vy = W

(R2) All (P,Q,n) € R(I) satisty for all ¢ € I the cone condition (AL2) with parameters
A, Uy, vy and have distortion bounded by 2D, for all ¢ € I.

Let (P, Q, n), (P', Q/, %) be elements of R(I) such that Q C R,, P" C R, for some
a € a. As both iterates satisty the cone condition (AL2) with parameters A, u, vy, we know
from Section 3.3 that the simple composition defined by

(5.1) P'=PNg"P), Q'=QNg(Q), n'=n+n,

1s an (I-persistent) affine-like iterate.
The next condition states that it should also belong to R(I).

(R3) The class R(I) is stable under simple composition.

We now turn to parabolic composition.

We first define two special elements which belong to R(I) according to (R1): define
P, Qy, ny) (resp. (P,, Q,, n,)) to be the element (P,, Q,, n) with maximal length 7 such
that L; C P, for all ¢ € Ij (resp. L, C Q, for all ¢ € Ij). We have that p, € P, and p, € Q,.
See Figure 7.

We obviously have, for all ¢ € I,

C ey < P, < Ce,
(5.2)
C'eo < 1Qul < Ce.
The next condition guarantees that property (PC1) in Section 3.5 is satisfied.

(R4) Let (A, B) be the implicit representation of an affine-like iterate (P, Q, n) € R(I).

I Qu Lu

FiG. 7. — The special rectangle Q,
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(a) If P C Py, then for all ¢ € I we have

1A < Ceo, 1A, < Ceo.
(b) IfQ C Q,, then for all ¢ € I we have

IB.| < Ceo, IB..| < Céo.

Let (Py, Qy, n9), (P1, Qy, n;) be elements in R(I) with Qy C Q,, P; C P,. In these
circumstances, we will define in Section 5.4 a transversality relation denoted by Qg hy P,
which may or may not hold. When it holds, it implies condition (PC2) of Section 3.5 for
all £ € I (see (R7) below).

(R5) If (Py, Qg, n0), (P1, Qy, 1) as above satisfy Qg rhy Py, then both I-persistent affine-
like iterates obtained from the parabolic composition g o G, 0 g belong to R(I).
Writing (P*, Q*, n) and (P, Q, n) for these two iterates, we have n=ny + n; +
Ny. The domains P* and P~ are the two components of g7 (Qg N Gt_1 (P1)); the images
QF and Q are the two components of g" (P; N G,(Qy)). See Figure 6, Section 3.5.
When (Py, Qq, n9), (P1, Qy, n)) satisfy Qy C Q,, Py C Py, QoM Py, we say that
their parabolic composition is allowed in R(I).

(R6) Any (P, Q, n) € R(I) with n > 1 can be obtained from shorter elements by simple
composition or (allowed) parabolic composition.

Typically, an element of R(I) can be obtained in many ways by composition of
shorter ones. We say that an element of R(I) is prime if it cannot be obtained by simple
composition of shorter ones. Prime elements play a key role in the description of the
dynamics for regular parameters in Section 10.

It 1s pretty clear from conditions (R1), (R3), (R5), (R6) alone that there is at most
one class R(I) satisfying these conditions. The existence of R(I), i.e. the proof of the
consistency of conditions (R1)~(R6), is much more delicate. There is actually a seventh
property (R7) formulated in the next subsection and related to the condition (PC2) for
parabolic composition.

Parent chald termuwlogy and notations for composmons — Let (P, Q n) (P Q 7) € R(I) with
PcP n>% When there is no (P, Q,’)GR(I) withPCPcPandn>7>7%, we say
that P is a child of P and that P is the parent of P.

When n="7 + 1, we say that P is a simple child of P. The i image ¢"(P) is equal to
the intersection of Qw1th some P, , and (P, Q, n) is the simple composition of (P, QA)
with (P, », Q.. 1).

When n > 7+ 1, we say that P is a non-simple child of P. The image ¢"(P) is con-
tained in L, N Q We will prove in Section 6.2 that (P, Q, n) is obtained by parabolic
composition of (?, Qﬁ) with some (P, Q;, 7))
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Let (Py, Qq, o), (P1, Qy,ny) € R(D). If Qy, P; are contained in a same rectangle
R,, the simple composition (P, Q, n) € R(I) of these elements will be written as

(9.3) P, Q, n) = (Py, Qp, ng) * (P1, Qy, my).
If Qyc Q,, P C Py and Qy iy Py, any (/ﬁ, Q?D of the two elements obtained by the

corresponding allowed parabolic composition will be written as
(5.4) (,13’ Q/ﬁ) € (Py, Qg, no) U (P, Qy, ny).

3.4. Definition of the transversality relation. — Let 1 be a parameter interval of some
level, and let (Py, Qp, n9), (P1,Qy,n) be elements of R(I) which satisfy Qy C Q,,
P, CP,.

From (R4) the condition (PC1) of Section 3.5 is satisfied provided &, small enough.
Denote by (xq, y0) (resp. (x1,91)) the coordinates in the rectangle containing Py (resp. Q).
A function a(yo, x1) was defined in Section 3.5, together with

(5.5) 8(Qy, P;) = minmin —G(yo, X1).
20 X1

In Section 3.5, we were asking for 6 to be much larger than |Py| and |Q),]|. Recall from
Section 3.6 the definitions

(5.6) 01.(Qy, Py) := maxmin —G(yo,xl),
0 x]

(5.7 Sr(Qy, Py) ::minmax—a(yo,xl),
Jo X1

(5.8) 81r(Qp, P1) := maxmax —C (g, x1).
o X1

Preliminary Definition. — We write QM Py if the following holds
(T1) foralltel,

Sir (Qy, Py) = 2|1,
(T2) Jfor some ty €1,

§r(Qp, P1) =2|Qp|' ",
(T3) for some t; €1,

8.(Qq, Py) = 2|Py|' 7.

Definition. — We say that Qq, Py are -transverse and write Qg (hy Py if there exist a parameter
inlerve Z~I D 1, elements (PO, QJ ), (Pl, Q ) € R(I) with Py D Py, Q) D Qg such that
QpyP;.
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Remark 4.

l. Taking T=1, Py =Py, Q; = Q) it is obvious that if Qy iy P}, then Qyhy P,.

2. In view of our inductive procedure, all (Py, Qp,7), (P;, Q;,7;) which have to
be considered have been constructed before (Py, Qy, ny), (P, Qy, n1).

3. As mentioned before, the definition of the transversality relation is quite in-
volved. One reason for this is that we wish to obtain several properties (heredity,

concavity, . . .) that will be proven in the next subsections. Some justification for
the choice of quantifiers in (T'1), (T2), (I'3) can be found in Appendix C.

At first sight, it appears that properties (12), (T'3) above are not quite sufficient to
guarantee condition (PC2) of parabolic composition (Section 3.5), because they involve
only one value of the parameter. The next property takes care of this problem.

(R7) If (Po, Qg, no), (P1,Qy,n) € R() satisty Qg C Q,, Py C P, and Qg Py
holds, then, for all ¢ € I, we have

5(Qu P = C (1P 4+ 1Qu 7).
Now that properties (R1)-(R7) have been introduced, we can state the

Theorem 1. — For each candidate parameter interval 1, there exists exactly one class R(1) of

L-persistent affine-like iterates which satisfies (R1)—~(R7).

As mentioned before, uniqueness is clear. The proof of existence will only be com-
pleted at the end of Section 7.

5.5. Theclass R(1y). — We claim that the class R (1) is exactly formed by the iter-
ates associated to the horseshoe K considered in Section 3.4, i.e. the elements (P,, Q,, n)
with a = (ao, . .., a,) a word with transitions in B.

Indeed, such elements must belong to R(Iy) by (R1). They satisfy (R2), (R3) and
(R6). We show below that, for (Py, Qy, 19),(P1, Qy, n1) of this form with Qy C Q,,P, C P,
the transversality relation Qg My P; is never satisfied. Then it follows that (R5), (R7) are
vacuously satisfied. Finally, property (R4) will be proved in Proposition 16 of Section 7.4.

Let (Po, Qy, n9),(P1, Qy, 1) as above (with Qg C Q,,P, C P,). The notations are
those of Sections 3.5 and 5.4. Assume for instance that in R, the foliation W} (K) is

loc

contained in {y, = 0}, and that in R, the foliation W; (K) is contained in {x, > 0}.
This is equivalent to say that 6 is monotone increasing in both variables.

There exists_y; such that the image under G_ o g of the horizontal segment {y =
25} NPy lies in {y, > 0}. Similarly, there exists x{ such that the image under G;' 0 g™ of
the vertical segment {x = x7} N Q, lies in {x, > 0}. Then, from formulas (3.18)—(3.20) of

Section 3.5 and the monotonicity of 6, we have, for all ¢ € I and w

(5.9) C(w,f, ) = —6(0,0, 1).
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As we have 6(0, 0, t) = ¢ by the normalization of Section 4.1, we obtain, for ¢t = &:
(5.10) —C(y, ) < L),

and therefore, for the same value of ¢

(5.11) 8(Qy, P1) < [l

We have also, for all ¢ € I

(5.12) §(Qp, P1) < 2/Iy|.

If condition (T'1) in Section 5.4 is satisfied, we have from (3.36)—(3.39) that at ¢ = g, either
|Qy| or |Py| (or both) is at least of the order of &;. But then Proposition 16 in Section 7.4
guarantees that the same width stays at least of the order of ¢ for all ¢ € Iy. Then either
(T2) or (T'3) will not be satisfied.

We have thus shown that the transversality relation is never satisfied in R(Iy). This
completes the initial step in the proof of the theorem in Section 5.4 (except for the proof
of Proposition 16 in Section 7.4).

3.6. Critwality, bicriticality, and the regularity property. — We introduce some terminol-
ogy and some concepts related to the transversality relation. This includes the regularity
property mentioned in the selection process of Section 4.4.

5.6.1. The following obvious but fundamental property, which we may sum up
by saying that transversality is hereditary, was forced into the definition of the transver-
sality relation.

Proposition 2. — Let 1D be parameler intervals. Let (Py, Qqg, ny), (P1, Qy, 1) € R(I)
and (Py, Qo,%o), P, Q,'ﬁl) e R(0). Assume that Qy C Qp CQ, and P, C P, CP. {]‘QQ

and P, are I-transverse, then Qg and P\ are I-transverse.

Corollary 1. — LT T he parameter intervals, and let (Py, Qg, ny), (P, Qy, nQ € R(T) N
RA) be such that Qy C Q,, Py C Py. If their parabolic composition s allowed in R(1), it is also
allowed in R(1).

Progf- — This 1s the case QQ =Qy, P, =P, of the proposition. 0J
Corollary 2. — Lt 1D 1 be parameter intervals. Then R(T) 15 contained in R(I).

Remark 5. — This 1s a slight abus de langage of no consequence: properly speaking,
we mean that the restriction to I of any (P, Q, n) € R(I) belongs to R(I).
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Proof. — This is a consequence, by induction of the length 7, of Axiom (R6) and
Corollary 1. U

The following result is also an easy consequence of the definition of the transver-
sality relation.

Proposition 3. — Let 1 cT be parameter intervals, and let (Py, Qy, no), (P, Qy,n1) be
elements of R(1) such that Qg C Q, and Py C P;. Assume that Qg 0y Py holds but Qn 3 Py does
not hold. Then there exists t € 1 such that 1 r (Qy, P1) < 2|1].

B Proof.: — Let T 2 I and let elements (Po, QQ ), (’ﬁl, Qy, nl) € R(I) with P1 O Py,
Qy D Qy such that QQ M7 P, holds. As QM7 Py does not hold, T; is strictly contained in
I and QD s P, does not hold. But conditions (T2), (T3) for QD My P, imply the same for

~—_ S

Qy M P;. Hence (T1) for % mAPl does not hold and there exists ¢ € I such that 2[I] >
Six(Qy. P) = 81r(Qy. P)). u

)

5.6.2. LetI be a (candidate) parameter interval, and let (Py, Qy, ), (P1, Q;, ny)
be elements of R(I) such that Qy C Q, and P; C P,. When Qg and P, are not I-
transverse, we say that:

— Qg and P; are I-separated if G,(Qy) NP, N A =@ for all ¢ € I; this happens in
particular when §;r (Qy, P;) <O forall z €1
— Qg and P, are I-critically related otherwise.

5.6.3. We assume in this subsection that I is a parameter interval for which the
class R(I) has been fully constructed with properties (R1)~(R7).

Let (P, Q, n) € R(1). An I-decomposition of P is a finite family (P,, Q,, n,) of ele-
ments of R(I) such that the P/ s are disjoint, strictly contained in P and satisfy, for all
tel

(5.13) W(A,R)NP= |_|(W5(A,§) NnP,),

where W*(A, R) was defined in Section 2.2. We say that P is I-decomposable if it admits an
I-decomposition. Then, there i1s a coarsest one, namely by the children of P.

Remark 6. — We will see in Section 8 that any P has only finitely many children.

Let (P, Q, n) € R(I). We say that Q is I-transverse if either Q N Q, =@ or Q C Q,
and there exists an I-decomposition (P, Qy, ny) of P; such that, for any o, () and P, are
either I-transverse or I-separated.

We say that Q) is I-¢ritical when it is not I-transverse. This is always the case if

Qo 0Q,.
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Let (P,Q,n), (P, Q,n) € R(I) satisty Q' C Q. As transversality is hereditary
(Proposition 2), if Q) is I-transverse, then Q' is also I-transverse.

All these notions are also symmetrically defined exchanging P’s and Q’s,future and
past.

We say that (P, Q, n) € R(I) is I-bwnitical if both P and Q) are I-critical. The corre-
sponding iterate should be thought as a piece of the dynamics corresponding to a return
of the “critical region” to itself.

Defination 2. — Let B > 1. We say that the candidate parameter interval 1 is B-regular (or just
regular when the value of B 1s fixed) if any 1-bicritical element (P, Q, n) € R(1) satisfies, for all t € 1:

(5.14) [P| < |1)%, Q) < 1|7,

5.6.4. TYor =y, u, let A(p) (resp. (p;)) be the stable (resp. unstable) eigenvalue
of the periodic point p;. Define

log |A(p, lo u
o1 T ‘1o§ ||u((//;)>l|’ o loi ||§<(z/j>) ||'
As we have
(5.16) C'ey < |P,| < Cey, C'ey <|Q,] < Cey,
we will have
(5.17) CTleg <1QI<Cey’,  C7leg" <P < Cegt

Remark 7. — The ratios w;, w, are smooth functions of the parameter, therefore
the relative variation of the quantities &;", &5 in I is negligible.

Proposition 4. — Assume that 1 < < 1 + min(w,, w,). Then the starting interval 1, is
B-regular.

Proof. — Let @’ (resp. a") the admissible word in the alphabet @ such that P, = P,
(resp. Q, = Q). By the property (MP2) of Section 2.1, these two words do not have a
letter in common.

Let (P,, Q,, n) an Ij-bicritical rectangle. As P, N P; is non-empty, either a starts
with &' or &’ starts with a. Similarly, either a ends with ¢ or ¢“ ends with a. As &', ¢" do
not have a common letter, g starts with ¢’, ends with ¢* and n > n, + n,. In other words,
we have

(5.18) Py, Quy 1) = (P, Q) (P, Q1) (P, Quy ),
for some (P, Q, ') € R(Iy). We conclude that |P,| < |Ip|?, |Q,| < |Io|? as required. O
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Remark 8. — The final choice of B is made in Section 9.3. Beside the requirement
1 < B <1+ min(w,, w,) we will ask when d? > dl? that
(1-d)(d +d)
O+ d) — 1)

(5.19) B <

(if @° < d°, exchange d° and d°). Condition (H4) in Section 1.2 is actually obtained by
asking that the right-hand term in the last inequality is larger than 1.

5.6.5.

Proposition 5. — Lt T be parameter intervals, and let (P, Q, n) € 'R(T) 1 Q s T
transverse, then it is also 1-transverse.

Proof. — If QN Q, =0, this is obvious. Assume therefore that Q C Q,. Then there
exists an T—decomEosition (P, Qoy ny)q of P; by elements of ’R(T) such that for all o, Q.
and P, are either I-transverse or I-separated.

First observe that (P, Qy, 7,) € R(I) and therefore this is also an I-decomposition
of P;. By Corollary 1, if Q) and P, are T-transverse, they are also I-transverse. On the other
hand, it is obvious from the definition that if Q) and P, are I-separated they are also I-
separated. The result follows. O

Proposition 6. — Let 1 be a parameter interval, and let (P, Q, n) € R(1). If Q is I-transverse,
then P is 1-decomposable.

Proof: — Let us first assume that Q N Q, = ¥. Let a € a be such that Q C R,. We
have

(5.20) R,NW(ARC | (PM, AW(A, ﬁ)) ULy
(a,d)eB

for each @ € a such that (a, d') € B, we have the simple child of P:

(5.21) (P(a’), Q(d), n+ 1) — (P, Q, n) % (Poy, Quu, 1),

and together they form by (5.20) an I-decomposition of P (the canonical one).

Let us now assume that Q C Q,. As Q) is I-transverse, there is an I-decomposition
Py, Qg 110)o of P such that, for each o, Q and P, are not I-critically related. For each o
such that ) and P, are I-transverse, let (ij, Q;t, ny + n—+ Ny) be the two elements pro-
duced by the allowed parabolic composition. Together with the simple children defined
by (5.21), they form an I-decomposition of P. U

Corollary 3. — Let 1 be a B-regular parameter interval and let (P, Q,n) € R(1). If P s
I-critical and |P| > |1|f or |Q] > |1|P for some t € 1, then P is I-decomposable.
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Proof. — Indeed, by the very definition of regularity, Q) cannot be I-critical. 0

The decomposability of “fat” critical rectangles is crucial to our analysis.

6. Some properties of the classes R(I)

6.1. Preliminaries. — In this section,we start the proof of the existence of the class
R(). For I = I, this was done essentially in Section 5.5. Therefore we will, unless spec-
ified otherwise, assume that the level of the interval I is > 0. Moreover, the induction
hypothesis will guarantee that the classes R(T), with T strictly larger than I, have already
been constructed with the required properties (R1)~(R7).

Once 1 is fixed, the construction will be by induction on the length 7 of an element
(P, Q, n). We will denote by Rx(I) the set of elements (P, Q, n) in R(I) with n < N. For
small N, parabolic composition does not come into play, and therefore the elements of
R (D) are those of Rx(Ip).

Assuming that Ryx_; (I) has already been constructed with the required properties,
we will consider elements of length N that can be obtained from shorter elements by
simple or (allowed) parabolic composition. For these new elements, we will not only prove
(R2), (R4), (R7) (in Section 7) as required, but also many other properties that are detailed
in the next subsections. The structure theorem of Section 6.5 is particularly important.
All these properties are assumed for Rx_; (1), and then they will all be proved for Rx(I).

6.2. Children are born_from their parent. — Let (P, Q, n) € Rx(I), and let (ﬁ Q?i) €
Rn_1(I) be such that P is the parent of P. Recall that P is a simple child if n =7+ 1,
non-simple otherwise. When P is simple, there exists (a, ') € B such that (P, Q, n) is the
simple composition of (P, Q,7%) and (P, ., Q,., ).

Proposition 7. — Assume that P is a non-simple child of P. Then there exists (P, Qy,m) €
Rn_1(D) such that Q thy Py holds and

(P,Q,n) € (P,Q,% 0P, Q,,n).

Progf: — 1. We first prove that (P, Q), n) can be written as a parabolic composition
of shorter elements. Otherwise, by (R6), we have

(6.1) (P, Q, n) = (Py, Qg, no) * (P1, Qy, m1),

with ng, n; > 0. AsPisa non—sianle child, we must have n; > 1. Let then (’E, Q,%l) be
the element of R(I) such that P, is the parent of P,. If P; was a simple child, we would
have, for some (a, d') € B

6.2) (P, Qy,m) =Py, Q). 7%) * (P, Quus 1),
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(6‘3> (Pa Qy 7’1) - ((P()a Q,Os ﬂ()) * (rﬁl’ Ql’%l)) * (Ptm’, Qﬂa/v 1)

in contradiction with the hypothesis that P is a simple child. Therefore, P, is a non-simple
child; by induction on the length, we can write

(6.4) (P, Qy,m) € (P, Q), %) O (Py, Qy, my)

for some (Py, Q. 1) € Ry—y(1) with Q My Py. o

Let (Po, Qp, 7o) := (Py, Qg, ng) * (Pl, Q,%l). We then have Qy C ), and hence
Qo i Py from Proposition 2 in Section 5.6.

Thus, the parabolic composition of (PO, Qp ) and (Py, Qy, 7o) is allowed; we
obviously have:

(6.5) (P,Q,n) € (Py, Qp, ) O (Py, Qy, mo)

which proves our claim.

2. We next write

(6.6) (P, Q, n) € (Po, Qp, mo) L (P, Qy, my)

with 7y maximal, and want to show that Py = P.

Assume that this does not hold, which means ny < 7. Let (P, Qy, 1)) be the ele-
ment of R (I) such that P} is the child of Py containing P. As ny <7, we have nj, < n. As
g"(P) C L, by (6.6), Pj must be a non-simple child. Then, from the induction hypothesis,

we can write

6.7) (P, Qi ) € (P, Qg, o) T (P}, Q5 )

for some (P}, Q}, ) € R(I) with Qyrty P}, P; D Py. Let (P, Q). %) be the element of
Rn—o(I) such that P, is the _parent of P, We have thus P} D P1 As % is I-transverse to
P}, it is also I-transverse to Pl (Proposition 2), and we can define (PO, % ) € Rn_1 (D)
by

(6.8) (ﬁo, (107’770) € (Po, Qy, no) UJ (ﬁh (3\1’711),

and ’f’o D P. If P, was a simple child of ’E, P would be a simple child of ,150‘ Therefore, by
the induction hypothesis, we can write

6.9) P, Qy,m) € (’131, ,6‘1,751) U (Py, Qq, n9)
for some (Py, Qy, 1) with Q h; Py. But then from Proposition 2, we have Q i Py and
(6.10) (P, Q, n) € Py, Qy. %) O (Py, Qy. 1m5)

which contradicts the maximality of ny. The proof'is complete. O
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6.3. Coherence and concavity.

6.3.1. We present together the following two properties of R(I) because the
proofs are interwoven.

The coherence property, asserted in the next proposition, means that larger rec-
tangles are constructed before thinner ones.

_ Proposition 8 (Coherence). — Let (P, Q,L n) € Rn(D), T be the parent of 1, and (P', Q', ') €
RA). If P CP, then (P, Q, n) belongs to R(1).

The coherence property implies that the parent-child relationship is independent
of the parameter interval under consideration, provided the child is already constructed.

Proposition 9 (Concavity). — Let T be the parent of 1.
1. Let (P, Qj, ng,), (P’ILQ’, n,) be elements of Rx(D), (Py, Qg, np), (P1, Qy, ny) be ele-
ments of Rx (1) URA) (with possibly ny or ny > N) such that

QyC Q,CQ, P, CP,CP.

If both Qg hy P and Qj thy Py hold, ﬂleiQOé) i P also holds.
2. Let X' be a parameter interval containing 1, let (P, Qg, ng), (P1, Qy, ny) be elements of
R, (Py, Qq, n9) an element of R(I') (with possibly ny > N) with

QyCQ,CQ, P, CP,.

If both Qg thy Py and Qg thy Py hold, z‘heﬁ Q, thy Py also holds.
3. Let I be a parameter interval containing 1, let (Py, Qp, ny), (P}, Q}, n)) be elements of
Ra), Py, Qy, ny) an element of R(') (with possibly ny > N) with

P, C P, CP, QyCQ,.
If both Qg thy Py and Qg thy Py hold, then Qg thy P} also holds.

The concavity property is very helpful in the sequel. The proof of the proposition
will help to explain why the definition of the transversality relation had to be complicated.
In the following subsections, we will successively:

— prove Proposition 8 for Rx(I), assuming Proposition 8 and Proposition 9 for
Rx-1(D;
— prove Proposition 9 for Ry(I), assuming Proposition 8 for Ry (I).
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6.3.2. Proof of Proposition 8. Progf. — Let (P, Q,'V) be the element of R(I) such that
Pis the parent of P’ in RA). By enlarging P’ if necessary, one can assume that P C P C P
P£P.

If P’ is a simple child, we have P =P" and we are done. Assume that P’ is a non-
simple child of P.

Let (P QA) be the element of Ryx(I) such that Pis the child of P in R() contain-
ing P; as P also contains P’ it has to be a non- simple child.

Applying Proposition 7 twice, we find (Py, Qy, 7)) € R (D), (P, Q). 7)) € R(T)
such that Q iy Py, Q 7P} both hold and

(6.11) ®.Q,me® 0, 0@, Q,m),
(6.12) (P, Q. n) e ® Q0 ®.Q.n).

As P’ cPcC P we have P| C P,. By Proposition 8 for Rx_;(I), we have (P, (%l ny) €
R(I) By Proposition 9, part 3, for Rx-1(I), we have th P, and (P QA) € R(I)

As P CPCPand P is a child of P in T\’,(I) we must have P’ = P = P and the
proof is complete. U

6.3.3. Proof of Proposition 9.

1. With (Py, Qp, ny), (P, Qg n5), (P1, Qy,mp), (P}, Q},n)) as in the first part of
Proposition 9, we assume that both Qg My P} and Q}, ;P hold.

By definition of the transversality relation, there exist parameter inter-

vals 1, IQ containing I, elements Py, % ) € R(,), (’ﬁ’l ,Q),1) € Ra(L),

(P/, Q‘) ) (S RN(Iz) (Pl, QJ 721) € R(Iz) such that QQ C QQ, P/l C P/l’ QE) C

QO P1 C P] and
(6.13) Qyhy, P,
(6.14) Q) My, Py.

If we have either Q) C @ orP| C P,, we can already conclude that Qg hy P;.
Assume therefore that QQ C Qy, P, C P} Assume also for instance that I} C
I,. We have (P,, Ql %) € R(,) and (P, Q’l ) € RN(Il) By the coherence
property (Proposition 8) for Rn(1;), the element (Pl, Q4 ;) belongs to R(Iy).
We will show that

(6.15) Q, M, P,

which implies that Q, and P} are I-transverse.
We check properties (T'1)—-(T3) of Section 5.4. For all ¢ € I, by the estimate
(3.49) of Section 3.6 and (T'1) for Qj rhy, Py, we have

(6.16) Sir(Q), P)) = 8ir(Q), P)) > 2|1,
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(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)
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Next, by (3.47) and (12) for Q]EIQ Py, there exists { € I, such that
Sr(Q). ) > 8r(Q P) > 2101

Finally, by (3.48) and (T3) for Q)Eh P’l, there exists ¢ € I} C Iy such that
5 P) > 60(Q. P > 2P,

We have proved (6.15) and this concludes the proof of the first statement in
the proposition.

. We assume now that, with I', (Py, Qg, ny), (P, Qg, n), (P1, Qy,ny) as in the

second part of the proposition, both Qg hy Py and Qg t; P; hold.

By definition of the transversality relation, there exist parameter intervals 1o
I, I’ 2 I' and elements (Po, Qy. %) € ’R(I’) (P, QJ m) € Ra(@), (P’, Q) 7
(P Q )ERN(I) suchthatQQCQg Q)CQ) P, CP, P, CP and

Qy My Py,

&P,
both hold. If either Q C Qg or I/ - I we conclude immediately that Q, hy P,
holds. Assume therefore that Q) C Q; and TcUI. Let P} be the largest
of Pl, P .

We clalm that (Pj QL n}) always belongs to R(I ). This is clear if P - Pl ;on
the other hand, if Pl C P, it follows from coherence (Proposition 8) for Ra(D).
As Qo - Qo it also follows from coherence for RN(I) that (P’ , QQ 7,) belongs
to R(I’ ).

We will show that

Q, My P;

holds, which implies the required conclusion Qj thy P;.
We check properties (T'1)~(13) of Section 5.4. For all ¢ € T, we have, from
(3.49) and (T1) for Qy M7 P,

Six(Q). P > 61x(Qo. P) > 2T
From (12) for QBETP’I, there exists 4 € I C I' C T such that
o (@ P) > 21,
Then, by (3.47), for the same %, we have
8x(Q) PD) > 8r(Q), P)) > 2/G51' .
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When P} = ’ﬁ’l , it follows directly from (1'3) for Q) m’fﬁﬁ that we have
(6.25) 8.(Qy, PY) > 2|Py|' "

for some 4 G’I\ET/ o R
When P} = P, we use (T'3) for Qg hy Py and (3.48) to find 4 € I' such that

(6.26) 8.0y, P) > 81.(Qp, P)) > 2P|,

We have thus proved (6.21). This proves the second part of the proposition. The
third part is proven in a symmetric way, exchanging P’s and Q’s.

6.3.4. Lurther forms of concavity. — One obtains more general statements than in
Proposition 9 by combining its different parts.

Corollary 4. — Let ' be a parameter interval containing the parent of 1, and let (Pyy, Qy, ny),
(P}, Q) 7)), (Po, Qq, o), (Pr, Qy, my) be such that

QyCQyCQ, P, C P, CP.

1. Assume that (Py), Qg ), (P, Q}, n}) € Rn(I), and that (Py, Qp, ny), (P1, Qy,n1) €
RA). If both Qg thy Py and Q thy P} hold, and min(ny, ny) < N, then Qj thy P} also
holds.

2. Assume that (P, Qg, ny), (P}, Q}, 7)) € Rn(I), and that (P, Qy, ny) € Rn(1'),
(P1, Qy,m) € R(X') (with possibly ny > N). If both Qj thy Py and Qg P, hold, then
Q, thy P also holds.

3. Assume that (Py, Qj, ny), (P, Qy,n) € Ra(l), and that (P}, Q), 7)) € Ra(I),
(Po, Qp, m9) € R(I') (with possibly ng > N). If both Qg thy P} and Qj, Py hold, then
Qj rhy P} also holds.

Proof: — 1. For the first statement of the corollary, we first observe that, by coher-
ence for Ry(I), the elements (Py, Qj, ny), (P}, Q}, #}) belong to R(I').

Assume for instance that ny < N. From QM P and Proposition 2, we have
Qp M P}. Then, from Qyh P and Qgrhy Py, we have Qqrhy P| by Proposition 9 for
Rx(@). Finally, from Qg rhy P} and Q) P}, we have Qj My P} again by Proposition 9
for Rn(D).

2. For the second statement of the corollary, we first observe that, by coherence for
Rn(), the element (P}, Q}, #}) belong to R(I').

From Qj my P, and Proposition 2, we have Qg rhy P|. Then, from QM P| and
Qg hy Py, we have Qyrhy P| by Proposition 9 for Rx(I). Finally, from Qg rhy P} and
Q, thy Py, we have Qj ry P again by Proposition 9 for Rx(I).

3. The proof of the third statement of the corollary is the same than for the second,
exchanging P’s and Q’s. O
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6.4. Another transversality criterion.

Proposition 10. — Let (Py, Qy, ny), (P1, Qy, nm1), (P, Q), ) be elements of Rx(1) such
that Qg C Q, and P, C P, C P,. Assume that Qqythy Py holds and that 2|P;|'~" < || for some
ty € L. Then Qg and P are also I-transverse.

__Proof. — By definition of the transversality relation, there exist o1, (B, QQ ),
(P, Ql ) € R(I) such that Qy C QO P, C P, and Q) MiP,.

If P C P, this already implies that Qg M; P}. Let us assume that P C P}. We will
show that Q) My P) holds. By coherence (Proposmon 8), we have (P}, Q}, 7)) € R(I)

Let us Check (T1)—(T3).

By (T'1) for Qg rh; Py and (3.49) in Section 3.6, we have, for all ¢ eT:

(6.27) 3LR((5\0» P) > SLR(QOa P) > 2.
By (T2) for Qg h; P, and (3.47), there exists 4 €T such that
(6.28) 8 (Qo, P}) = 8r(Qy, Pr) = 21Qy' .

Finally, we have, for all ¢ € I, by (3.39)

5.(Qy. P)) = 811 (Qy, P}) — C[P/|
(6.29) > 2|1| — C|P,].

But, for t = ¢}, we have, if &, 1s small enough
(6.30) 21| — CIP;| > 4P|~ — CIP}| > 2/P;|'"~".

We have shown that Q) My P} holds, and this implies that Qy rh; P! holds as required. [
6.5. A structure theorem for new rectangles.

6.5.1. Associativity of parabolic composition. — Let I be a parameter interval, and let
(Po, Qg, n9), (P1, Qy, n1), (Py, Qg, n9) be elements in R(I) such that Qy C Q,, Q; C Q,,
P, C P,, Py C P,. We assume that both Qg ; P, and Q; Py hold.

Parabolic composition of (Py, Qp, n), (P, Q;, n;) produces two elements (P,
Qg mg1)s (Poy, Quy, mgy)-

As Qff, and Qj, are contained in Qj, it follows from Proposition 2 that both
le rhI PQ and Qal rhl PQ hold.

In the same way, parabolic composition of (P, Q,, n;), (P, Qy, n9) produces two
elements (P}, Qf,, ), (PTy, Qpy, n3y) such that both Qg My PY, and Qg hy Py, hold.

It is clear that the four elements of R(I) obtained by parabolic composition of (P,
Qi nd) or (Py;, Qpp, ngy) with (Py, Qy, ny) are the same as the four elements obtained
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by the parabolic composition of (P, Qy, n9) with (Pf,, QF, n}3) or (Pfy, O, 775). Their
domains are the components of Py N (G, 0°)"'P1N(G,0g" 0 G,0g") ' Py. If (P, Q, n)
is any of these four elements, we will write

(6‘31) (P’ Q n) € (PO’ QD? nO) |:| (Pl’ Q7 nl) |:| (PQ’ Q?a nQ)'

The same considerations extend immediately, by induction on £, to the case of elements
(Po, Qp, m0), ...y, (P, Qp, ) such that P, C Py for 0 <2<k, Q; C Q, for 0 < < £,
and Q; M P, holds for 0 < ¢ < k. Then the successive parabolic compositions of

(Po, Qo, m0), - .., (Pr, Qy, m) produce 2% elements and we will write for any such element
(P, Q, n):
(6.32) (P,Q, n) € (Py, Qy, np) O---00 (P, Oy, ny).

6.5.2. Statement of the structure theorem. — We have seen in Section 5.5 that parabolic
composition is never allowed in the class R(Iy) associated to the starting interval Iy =
[€0, 2¢0]. This class consists exactly of the affine-like iterates associated to the Markov
partition of the initial horseshoe K,,.

On the other hand, for elements (P, Q, n) belonging to some class R(I) but which
are not (restrictions of) an element of R(Iy), parabolic composition must occur. The
following theorem gives some rather precise information on this process.

Theorem 2. — Let 1 be a parameter interval of level > 0, T be the parent interval, and let
(P, Q, n) be an element of Rx(1) which is not (the restriction of) an element of R(T). Then there exists
k> 0, elements (Py, Qg, no), - .., (Pr, Qy, 1) g”R(T) such that Q; C Q, for 0 <1<k, P, C P
Jor 0 < i <k, Q;M Piyy holds for 0 < i <k, Q;thi P,y does not hold for 0 < i < k and

(P1 Q; 7’1) € (PO’ QD? n()) g---g (Pka Qk? nk)-

Moreover, these elements are uniquely determined by these conditions, P; ts T-critical Jor 0 <1<k and
Q; s L-critical for 0 < v < k. The rectangle Py 1s the thinnest 1-defined vertical rectangle containing P,
the rectangle Q. s the thinnest 1-defined horizontal rectangle containing Q.

The rest of Section 6.5 is devoted to the proof of the theorem.

6.5.3. Proof. — We will first introduce a concept, relative to an element (P, Q, n)
as in the theorem above, that leads to the determination of the (P;, Q;, n;).

Let m, p be integers such that 0 < m < p < n. We say that [m, p] is an T-interval if
there exists (P, Q %) € R(D) such that

g'(P) cP forall/eTandn=p— m.

Lemma 1. — The union of two T-intervals with non emply intersection is an T-interval.
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Progf. — Let [m, pl, [, p'] be two T-intervals with non-empty intersection, and let
(P, Q") P, Q %) be the corresponding elements of RA). Without loss of generality,
we may assume that m < m’ < p < f'. Replacing if necessary p by a larger rectangle, we

also assume that the element (P Q,n) of R(I) such that P is the parent of P satisfies
m+7n < m'. There are now two cases:

(@) p=m'. -
Let R, be the rectangle containing Q Then R, D Q g “(P) D adP) = g’”/ (P);
thus P’ is also contained in R, and the simple composition

(6.33) P, Q” W) = (P, Q,N) * (P, Q w
is defined. We have m+7%" = p' and g""(P) C P".

(b) p>m'.

Then, P is not a simple child of P, because otherwise we would have 7 =7 — 1 >
m' — m. By Proposition 7, there exists (Po, Q\o ) in R(I) such that
(6034) (Pa Q;’h) € (Pa Q;;D U (POa QDa/;iO)

The element (E), Q) ny) of R(T) is associated to the T-interval [m, p], where m =m+n+
No. We have m +7 < m’ and g"*"(P) C L,, hence also m+7+ Ny =m < .

To conclude the proof, we argue by induction on the total length p* — m of the
interval considered. The case p m = 01s trivial. In the other case, we have the T-intervals
[m p] and [m/, p'] with m < m < m’ and hence by 1nduct10n [m, p] s an _ T-interval. Let
(Pl, QJ ) be the Correspondlng element of R(I), we have g (P) C P1 - PO From (6.34),
thI Py holds, hence also does thI P, by Proposition 2. Then, the parabolic composition
of (P Q’n) and (Pl, ,Ql 7)) is allowed and defines an element of R(I) which guarantees
that [m, p'] is an T-interval. ]

6.5.4. We will now show that the (P;, Q;, 7;) in the theorem are uniquely deter-
mined by their properties. Indeed, define my =0, py = ny and for ¢ > 0:

(6.35) m; =pi—1 + No, pi=m; + n;.

Lemma 2. — The maximal 1-intervals are exactly the [my, p:], 0 < ¢ <k, with associated

elements (P;, Q;, n;).

Proof. — First, the [m;, p;] are indeed T-intervals with associated elements P:, Q;, my).
To complete the proof; it is sufficient to show that no T-interval [rm, p] can intersect a gap
(pis miy1). Assume by contradiction that there exists such a [m, p] with associated ele-
ment (ﬁ Q") and minimal 7 = p — m. As g"(P) C glZ “7(1,) does not intersect R for
pi <€ < mjyy, we must have m < p; and m;; < p. By property (R6) of R() (Section 5.3)
and the minimality of 7, there exists (Po, Q) ), (Pl, Q 7)) in R(I) such that

(6'36) (fi’ QJ;Z) € (§09 Qﬂa’;i()) ] (fﬁla Qla;zl)
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inth ny = pi — <m, m = p — myyy < nq1. But then, from QO D Q, ﬁl D P, and
Qy Py, we deduce from Proposition 2 that Q; M7 P;;; holds, a contradiction. O

6.5.5. Lemma 2 allows us to define k as being the number of maximal T-intervals
minus one, and to define the (P;, Q;, ;) € R(T) as the elements of R(T) associated to
the successive maximal I-intervals. Observe that the maximal I-intervals [m;, pi], (0 <
1 < k) must 1ndeed satisfy my = 0, m;, —pl + Ny for 0 << £k every £ € [0, n] not
contamed in an T-interval is such that gl - (P) Cc L, for some 0 < N; < Ny and then
no I-interval intersects with (£ — N, £ — N, + Ny), while the degenerates intervals{¢ —
N}, {€ —N; 4+ Ny} are T-intervals. We observe also that Q, M7 P;;; does not hold because
otherwise [m;, p;+1] would be an T-interval.

6.5.6. Let 0 < < £. Let us assume by induction over ¢ that P; is T-critical for
0<5<, Qs T-critical for 0 <J < i, Qi Py holds for 0 <j < 7 and that we have an
element of Ry (I):

(6.37) (P, QY p) € (Py, Qp,no) O---0 (P, Q;, )

such that P C P®. The assumption is vacuously true for = 0. We will prove it at step
¢+ 1. For : = £, it gives the properties stated in the theorem for the (P;, Q;, ;).

6.5.7. We ﬁrsgprove that Q; is T-critical. Assume by contradiction that Q; is T-
transyerse. Then P; is 1- decomposable Let then (PZ, QZ 7;) be an element of R(I) such
that P is a child of P; intersecting g/ (PN A). Let (P(l) Q(l) 7?) be the element of Rx (1)
such that P? is the child of P® containing P. Both P, and P are non-simple children by
Section 6.5.5.

We apply Proposition 7 twice. We find (PZ+1, QZJH, %) in Ry (D), (Pl Iy
Q+], W) in R(I) such that both Q; h7 P, 1 and QY My P4, hold and

<6°38) (Plv Q ﬂ) 6 (Pl7 Q n) |:| (PZ+1’ Qg+17’ﬁ;+l)a
(6.39) P2, Q0,27 e PP, QP p) O Py, Qpar, Tig)-

We must have m; +7; > n, because otherwise [m;, m; + ;] would be an T—interval
strictly larger than [m, p;]. Thus we have 7. > i1 - But then, from Q;yP,, and
QY Piyy, we deduce by Corollary 4 (part 2) that Q,; M7 P;,,. Parabolic eomposmon
ylelds an element (P;, Q n;) € R(I) with P; 3P P in contradiction with the definition
of P

6.5.8. The proof that P, is T-critical is rather similar. We assume by con-
tradlctlon that it is Itransverse Then Q;y; is Idecomposable and we can find
Py, QL) € R() such that Q| is a child of Q4 intersecting g+ (P N A). It
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is a non-simple child as g"*'(P N A) is contained in L,. By Proposition 7, there exists
(P9, QY. 29y € R(I) such that Q¥ My P, holds and

(6.40) Pr L O ) € (PO, QY ) O Py, Qiprs i)

We must have n(l) > p;, because otherwise [p; — n ), pir1] would be an T-interval strlctly
larger than [m;, p;11]. Then, by coherence for RN (I), we have (P?, QW, ;) € R() and
thus : = 0.

Let (P(’) Qf’) ™), (P,+1, Q+1, 7i+1) be as in Section 6.5.7. From ka) MiPiy, and
QY thy P i+1, we deduce by Corollary 4 (part 2) (if 741 = n:y) or Proposition 9 (if 71 < <
ni+1) that Q@ My P,,,. This means that QyM7P; and we conclude that [0, 4] is an I-
interval, a contradiction.

6.5.9. We now prove that Q®” and Py, are I-transverse. Let (PO, C)fi),/ﬁ(i)),
(EH, QH,EH) be as in Section 6.5.7. If ;41 < n;,1, we have Q@ EH by (6.39) and
thus also in) hy P;y1 by Proposition 2. Let us assume that 7, > n;,;.

We claim that, under this hypothesis, Q;, is T-critical. Indeed, if it was I- transverse,
P,y would be T- -decomposable and we would find an element (Pz+la QH, Tiy1) of R(I)
such that PZ+1 is a child of Py intersecting g™+ (PN A). By coherence (Proposition 8),
we should have PH—I D Pl+1 and [m1, my1 + 7] would be an T-interval larger than
[mit1, piy1], @ contradiction which proves our claim.

As (Piy1, Qpir, migy) 18 T—bicritical, and the parent interval Tis always assumed to
be B-regular, we have, for all ¢ el

(6.41) |Pi| < [1f
and thus also (with & small enough)
(6.42) 2P| < I1I.

It now follows from Proposition 10 and in) My EH that Cl(i) and P,y are I-transverse.

6.5.10. We finally show that Q); and P, are I-transverse. When : = 0, we have
Q® = Qy, so this has been done in Section 6.5.9. _
When ¢ > 0, (P;, Q;, n;) is I-bicritical and, therefore, we have for all ¢ € I:

(6.43) QI < TP,
and thus also
(6.44) QIQ,-IH7 < |IJ.

It follows from Proposition 10 and Qv(i) i Py that Q; and P, are I-transverse.
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To conclude the induction step of Section 6.5.6, we simply observe that the par-
abolic composition of (PO, Q(i), n®) and (P, Qji1, ni41) 1s allowed in R(I); it produces
an element (P, Q@D p. 1) € R(I) such that P“" intersects P and therefore con-
tains P.

The last assertion in the theorem follows from Section 6.5.5. The proof of the
theorem is now complete.

6.6. Widih estimates.

6.6.1. I-special rectangles. — As long as R(I) has not been fully constructed, we
cannot decide whether a rectangle P or Q is I-critical or not. On the other hand, we can
decide whether P or le T-critical or not when T strictly contains I and (P Q n) € R(I)
The following definition is therefore useful.

Let (P, Q,n) € Rx(I). We say that P is I-special if either (P, Q, n) € T\’,(Io) (le.
no parabolic composition is ever involved in the construction of P) or, denoting by T the
parent of I and by (P Q, 7) the element of R(I) such that P C P and P is smallest possible,
we have that P is T-critical. We define similarly the property for Q.

There are therefore three cases:

- P, Q,n) e 'R(IO), in this case, P is always I-special.

- P, Q,n € R(I) R(Io), in this case, P is I-special iff it is T-critical.

- (P, Q,n) e RI) — R(I) in this case, we apply the structure theorem in the last
subsection and see that ﬁ is the rectangle Py in the statement of this theorem;
thus P is I-special iff Py is T-critical.

Let us also observe that if (P, Q, n) € R(T) and P is I-special, i.e. T—critical, then it
is T—special by Proposition 3 of Section 5.6.

The same discussion holds for Q, replacing Py by Q; in the case where (P, Q, n) €
R — R®).

The following result will be useful in Section 7.

Proposition 11. — Let (Py, Qp, np), (P1, Qy,n1) € Rn(D) such that Qy C Q,,
P, C P,. Assume that Qo Py holds and that 1, Qq, Py are maximal with this property: any
T L @, Qp,70), P, 0y, 7) € Ru(D) with Qy C Qy C Q,, P, C P, C P, such that
@ e Py holds must vmﬁTz I, Q) = Q’o,/ﬁl =P,. Then Qy and P, are 1-special.

_Proof: — We may assume that the level of T'1s > 0. Let T be the parent of I, and
(fﬁo, Qy, o), (Pl, Ql ) € RN(I) be such that % (resp. Pl) 1s the smallest I-defined rec-
tangle containing Qy (resp. P;). We have to show that Qy, P, are T-critical.

Assume for instance by contradiction that QQ is T-transverse. Let (Po, Qg 1)
an Idecomposmon of P; such that, for each «, Q) and P, are either Iseparated
or I-transverse. Let o such that P, N P; % @. Then QD and P, are I-transverse. If



52 JACOB PALIS AND JEAN-CHRISTOPHE YOCCOZ

P, C P,, it follows from Proposition 2 that QJ and Py are T-transverse. If P, D P,, then
P, Qy,m) € R\I(I) by coherence for Rx(I), and it follows then by Corollary 4 from
Qy My P, and Qg rhy P, that Q) M1 P, holds.

Thus Qp My P, always holds, in contradiction with the assumption of the lemma.
This shows that Q) is I-critical. The proof that P, is T-critical is similar. U

6.6.2. Uniform stretched exponential estimates for widths. — The next proposition is a
substitute for the uniform exponential estimates for widths that are characteristic of the
uniformly hyperbolic dynamics. We denote by y the constant

log g

6.45 =
(6.45) Y= g2

€ (0,1).

Proposition 12. — Let (P, Q, n) be an element of Rx(1). For all t € 1, we have
IP| < Cyexp(—n")
with the stronger estimate
|P| < Cyexp(—2n")
when P 15 1-special.

The constant Cj depends only on the constants in the formulas (3.12) and (3.27)
for the widths in simple and parabolic composition.

Proof. — For (P,Q,n) € R(Iy), we have an exponential estimate for |P| which
implies the weaker estimate of the I-special case of the proposition.

We assume now that the level of I is > 0.

For (P, Q,n) € R(I) Ry) (with T the parent of I), the result is true by the in-
duction hypothesis (as observed in Section 6.6.1, if P is I-special, it 1s also 1I- special).

We now assume that (P, Q, n) € R(I) — R(I) and apply the structure theorem of
Section 6.5. We write

(6.46) P, Q, n) € (Py, Qp, np) U+ -- T (P, Qp, )

as in the statement of the theorem. Let us denote by (P}, Q;, n}) the rectangle in Ry (D)
defined by (P, Qy,n) O---0O Py, Qy, 7)) such that Q is contained in Q). As P is I-
critical, P} is I-special. We have

(6.47) (P, Q, n) € (Py, Qy, np) O (P}, Q. 1).

We use (3.27) (Section 3.5), condition (R7) for Rx_1(I) (Section 5.4) and the induction
hypothesis to write

(6.48) |P| < P[P} |2 < C)F exp(—nl, — 7).
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As n=ny + n} + N, this gives the first statement of the proposition.

Assume now that P is I-special. Then Py is T-critical, hence I- special (cf. Sec-
tion 6.6.1).

When ny > n}, we have from the choice of y that

(6.49) %l 417 > 2ny 4 1)),

and therefore the same estimate |P| < |Py||P] |'/2 now leads to |P| < Cgexp(—2n").
On the other hand, when ny < 7}, we proceed as follows. We now have

(6.50) w420 = 2ng+ 1) .

As (Py, Qp, np) is I-bicritical and T is regular, we have |Py| < [T} for all ¢ € T. From (3.27),

we have
(6.51) |Po| < CIP|[P}[8(Qy, P2

From QM P}, and (T'1), (R7) (Section 5.4), we have §(Qy, P}) > [I] for all # € I. Using
also |Py| < |I|#, we obtain

(6.52) IP| < |Py|2|P,| < CF* exp(—n] — 21))

and we conclude again that |P| < Gy exp(—2r”) from (6.50). ]

6.6.3. The following simple estimate says that the width of any rectangle not in
R (1) is uniformly small with &.

Proposition 13. — Let (P, Q, n) € Rx(1). If (P, Q, n) does not belong to R(1y), it satisfies,
Joralltel

|P| <€01/Q, Q] <<‘301/2

_Progf. — We may assume that the level of I1s > 0 and that (P, Q, n) does not belong
to R(I), where I is the parent of I. Write

(6.53) (P, Q, n) € (Py, Q, o) O (P}, Q5 1))

as in the proof of Proposition 12. The estimate (6.51) is still valid. From condition (R7)
for Rx_1(I) (Section 5.4), we obtain |P}| < §(Qy, P}) and thus |P| < |P|(8(Qy, P)))"/2.
As §(Qy, P)) is at most of the order of gy and |Py| is small, we get the required estimate
for P. The proof for |(Q)] is symmetric. O

Lemma 3. — Let (Py, Qq, no), (P, Qy,ny) be elements of Rx—1(1) such that Qy C Q,
and Py C P,. If Qg thy Py holds then we have §(Qg, P1) > |1| for all t € 1.
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Proof. — Let T [ D I, and let elements (PO, QD ), (ﬁl, Q,, ) € R(I) with Pl Dby,
Qo D Qy such that QD M7 P, holds. From condition (T'1), we have 5LR(Q1) P)) > 2[T] for
all ¢ € I. Using (3.36)—(3.39) and property (R7) for Rx_;(I) we obtain, for all ¢ € I

8(Qy. P)) > 8(Qy, P))
~ o~ 1 ~ o~ ~
(6.54) 2 §ir (Qg, P1) — C(|Qpl + [P1]) > ESLR(QOv P = =11 o

In the following proposition, the setting and the notations are those of the structure
theorem in Section 6.5: T is the parent interval of I, (P, Q, n) is an element in Ry(I) but
not in R(T), k> 0and (P, Q;,n) € R(T), 0 < < £ are as given by the conclusion of the
theorem.

Proposition 14. — For all t € 1, we have

|P| < CHPg| [P ] -- IP/CIIII_g
Moreover, for all t € 1, we have
IP;| < [II# for0<i<H#, IP,| < T].
In particular, we have always |P| < |Pol|1]'/3.
Proof. — For 0 < i< k, let (P?, QP, p,) be the element in Rx(I) such that

(P(i), Cl(i),pi) e (P, QD’ ng) .- (P, Qia n;)

and P C P, We show by induction on ¢ that

(6.55) [P < CPy| - P17 2.
As PO = Py, this is true for : = 0. By Lemma 3 above, we have, for all # € 1,

8(QY, Piyy) > 1],

so the required estimate for P,y follows from (3.27) in Section 3.5. This proves the first
statement of the proposition.

The estimate |P;| < |T|’3 for 0 < ¢ < £ 1s true because (P;, Q;, ;) is T-bicritical and
Tis B-regular. To estimate |P;|, we first observe that, by Proposition 3 in Section 5.6.1,
there exists ¢ € I such that SR (Qy1, Pk) < 2|I| Then, from Corollary 8 for R(I) (in Sec-
tion 7.6), we obtain, as Q;_;, P, are T- critical, hence T- -special, that §ir(Q—1, Py) < 4|I|
forallzeT. Finally, by property (R7) for Rx_;(I), |P;| is much smaller than 8;x (Q;—1, P;)
for all ¢ € I, which gives the required estimate.

The last statement in the proposition is an easy consequence of the first two. [
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In the following corollary, the setting is the same that in the proposition. For 0 <
i <k, (PP, QW p,;) is the element defined in the proof of the proposition.

Corollary 5. — Assume that P 1s 1-special. Then, for all t € 1, we have

(+1)

PO < TIPTS5 fro<i<k,
|P| < |’flﬁk+l_(l§ﬂk.

In particular, one has always |P| < |T1|F+1/3,

Proof As P is I-special, Py is T-critical. Therefore, (Py, Qy, n9) is T -bicritical and
|Po| < |I|ﬁ for all ¢ € I. The estimates of the corollary now follow easily from those of the
proposition and (6.55) above. O

Corollary 6. — Let (P*, QF, n*) € Rn(I). Assume that P* is 1-special and that |P*| >
B3 for some t € L IF|P*| = €87 for some t € 1, let ¥ = 1. Otherwise, let 1* D 1 be the
smallest parameter interval such that |P*| < |I*|P+Y3 for all t € 1. Then (P*, Q*, n*) € Rx(I¥).

Progf: — If I = I, there 1s nothing to prove. Assume that the level of I1s > 0, and let
T be the parent interval. Corollary 5 above show that we must have (P*, Q*, n) € Rx (I)
Then P* is T-critical, hence I- -special. Iterating the argument gives the corollary. U

Observe that, once the existence of the class R(I) is established (for every candidate
I'in a B regular parent interval I) the corollary implies that every candidate is B-regular,
with B=(+ 7)” ! 8. Indeed, I-critical elements are either very thin (< |I|f), or already
T- defined, and |I|ﬁ =|1)%.

7. Estimates for the classes R (I)

7.1. Uniform cone condition. — In this subsection, we will check that all elements
(P, Q, n) € Rx(I) satisfy the cone condition (ALQ) of Section 3.2 for the parameters A,
Uy, Vo of Section 5.3: we have uy = where all (P, Q, n) € R(Iy) satisty
(AL2) with parameters A, u, v.

Let (A, B) be the implicit representation of the affine-like iterate (P, Q, n); we have
to prove that

u
oy 177> Vo = (uv)m )

(AL2) AL+ uwlA ] < 1,
AB, |+ voB,| < 1.

Let u; = W, v = W We will prove that, for all ¢ € I, we have

(7.1) Al <u!, B <wpl
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This is sufficient to obtain (AL2): we already know that if (P, Q, n) € R(Iy) them (AL2)
1s satisfied; on the other hand, if (P, Q, n) ¢ R(Iy), then, for all ¢ € I, we have from
Proposition 13

1

(7.2) A, | < 8(;2, IB,| < .

N =

With g small enough, (7.1) and (7.2) give (AL2).
Let us now proceed with the proof of (7.1). When (P, Q, n) € R(I;), we have the

stronger estimate:
(7.3) A < T IB,| < v

Assume that (P, Q, n) ¢ R(Iy). By the structure theorem (Section 6.5), (P, Q, n) is ob-
tained from tlle Barabolic composition of shorter elements (’13, Q ), (’13, Q,@ € Ra_i1(D).
Denote by (A, B) the implicit representation of the affine-like iterate (P, Q, 7). We use
formula (A.86) of Appendix A to obtain

~ ~ o~ ~ o~ _l
(7.4) A, — A < CIP|[QJ(8(Q, P)) 2.
From (R7), § (Q P) is much larger than |@. We have therefore
(7.5) 1A, = A <[P < Coexp(=71),

where we have used Proposition 12 in the last inequality. We only use (7.5) when 7 is
large (because QC Q,), and the series Y _ exp(—m?”) is convergent. Therefore (7.1) is a
consequence of (7.3) and (7.5).

The proof of (AL2), i.e., the first part of condition (R2) in Section 5.3, is now
complete.

7.2. Bounded distortion. — We now check the second half of property (R2) in Sec-
tion 5.3. We have to prove that, for all (P, Q, n) € Rx(I), we have the following estimate
on distortion:

(7.6) D(¢'/P) < 2D

Here, the constant D corresponds to the stronger estimate we obtain from (MP6) when

P, Q,n) e R(Iy):

(7.7) D(g'/P) < Dy.
Define
(7.8) Di(N) = sup  supD(g'/P).

P,Q,meRx() tel
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From (7.7), we have Dy(N) < Dy for N = o(log&; '), because no parabolic compo-
sition 1s involved in this case. We set

(7.9) D;(N) := max Dj(n, )
n>0,7">0
n+(1l/§N
with
(7.10) Dj(n, n') := Dy(n) + Cexp(—n")(Dy(n) + Dy(x)).
We also set
(7.11) DI(N):= max D{(n,7)
230,130
n+n'+No<N
with
(7.12) DY (n, #') := Dy(n) + Cexp(—nn").

We claim that, if D;(n) for n < N is not too large so that the condition in (3.29)
(Section 3.5) 1s satisfied, we have

(7.13) Di(N) < max(D{(N), D!(N)).

Indeed, this follows from (3.13) (Section 3.3) for simple composition and (3.29)
(Section 3.5) for parabolic composition; the term C|P;[§~! in (3.29) is smaller than |P;|"
by condition (R7) for Rx_;(I); then one uses Proposition 12.

It is now clear that (7.6) follows from Dy(N) < Dy for N = o(loge; ') and (7.9)-
(7.13).

7.3. Estimates for the special rectangles P, and Q). — In Section 7.5, we will check the
estimates contained in condition (R4) of Section 5.3 concerning the class R(I).

These estimates, which are related to parabolic composition, are valid for an ele-
ment (P, Q, n) of R(I) which satisfies Q C Q, (or P C P)).

In the present section, we will be concerned with the affine-like iterates which are
directly associated with the elements (P, Q,, n,) and (P,, Q,, n,).

We will make the computations for (P;, Q,, n,) the other case is obviously symmet-
ric. We will assume that the periodic point p; is fixed: the general case is completely similar,
but the notations are more awkward.

In this subsection, we just write (x, ») for the coordinates in the rectangle R, con-
taining p,; we denote by (A, B) the implicit representation of the affine-like iterate

(7.14) G :(R,)Ng 'R, = gR,)NR,.
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For n > 0, we denote by (A™, B™) the implicit representation of the nth iterate of
this restriction.
As the equation of W, _(p,) 1s {x = 0} (cf. (MP3) in Section 2.2), we have

(7.15) A(»,0,0) =0,
from which we deduce

1A, 0, %, D)
A0, x, )]
1A 05 %, )]
A0, x, D

(7.16)

Denote by u = u(#) the unstable eigenvalue of Dg, at p,. For all ¢, x, y, n, we have
(7.17) C'u " <A (g, x, 0] < Cu™.

Let (%, ) 0<i<. be an orbit of g, in R,,. For all 0 < £ < m < n, we have:

(7.18) C " ] < il < G-

Proposition 15. — The following estimates hold:

(7.19) IAY (g, %, £)] < Claxg] < Cpe ™|
(7.20) |A<"><yo,xn,z>|<cn|xo| Cnp™"|x,,
(7.21) IAD (30, %, )] < Clxo] < Cpt ™|, .

P

Proof of (7.19). — From formula (3.11) in Section 3.3, we have:
(7.22) AP Oo, %0, 1) = A"V 0, 5,21, 1) + AATTVBITV AT
with By(”*l)A*1 exponentially small with 7 and, using (7.16)—(7.18):
(7.23) 1A Ot %0 DAY (0, 2,01, ) | < Clag.
The inequality (7.19) is now clear. 0J
Proof of (7.20). — We use here formulas (A.6), (A.10) of Appendix A which give
|A§n)(yo, Xy 1) — A,(”_l)(yo, X1, 1) |

(7.24) <CU (18O 1% D1 1B 00, %1 DA G120 ]),
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(7.25) B G, 24 ) — B, 3,0 0| < CBOY |C0(1 +]ACD |Co>.
As |B}(,”) |c, 13 exponentially small, we deduce from (7.25) that
(7'26) |B§n)(yO’xna t)l < C’
and then, from (7.24), (7.16) that (7.20) holds. UJ

Proof of (7.21). — We use formulas (A.6), (A.11), (A.18), (A.20) of Appendix A to
obtain

(7.27) Aj(y") = A;;—U + zAg—DX_,, + Ag—”xj + A" X,
with

(7.28) X, =AB' VAT,

(7.29) A=1-AB"",

X, =B VA (A,BI VA + A, log B

(7.30) +A,X,0,log|B" | — A,AATY,
(7.31) —A, =A,B"VBIVAT L ABUTY + ABUTVX

In these formulas, A“"Y, B""D and their derivatives are taken at (yo, x,_1,%), A, B
and their derivatives are taken at (y,_1, x,, £). The terms BV B0 g longy(”_l)|,
0, 10g|B)(,”_1)|, A~ are bounded by the uniform cone condition and the uniform dis-
tortion; the terms B}(,”_l), Bg_l), A=Y AC=D Agf_l) are exponentially small. Also, from
(7.16) we have:

|Ay(})n71a Xns t) | < Clxﬂ|9
(7.32)
|1A)gy(yn—la Xns t) | < Clxnl
We conclude that we can write
(7.33) ALY o, %0 1) = AL o, %01, D) + 1507,
with 7, exponentially small; this leads to (7.21). U
Corollary 7. — For the special rectangle (P, Q, n;), we have:
A |eo < Cy,
Ao < o,

A |0 < Ceglogey .
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Proof: — We have only to observe that ©=™ 1s of order &. 0

Obviously, the same estimates hold for the other special element (P,, Q,, n,).

7.4. Further estimates for the class R(Ily). — In this subsection, we derive estimates
for the class R(Iy) from the estimates for (P, Q,, n,), (P,, Q,,n,) obtained in the last
subsection and from the estimates for simple composition found in Appendix A.3. These
estimates are typically better than the estimates for classes R(I) with smaller I, which will
be obtained in the end of Section 7, because only simple composition is involved into the
construction of elements of R(Iy).

Proposition 16. — Let (P, Q, n) be an element of R(1y), and let (A, B) be the associated
implicit representation. For all ¢, y, x, we have

|At| X a |B | < )
|Ajt| < C’ |BXL‘| < ’
10 log |A|| < Cn, 10, 1og |B,|| < Cn

1f moreover P C Py, we have, for all t, y, x

1A < Geo, IAy] < Ceo, 1Al < Geollogeol.
Stmalarly, if Q C Q,,, we have, for all ¢, y, x

IB.| < Ceo, B..| < Ceo, 1B| < Ceollogeol.

Proof. — The widths of rectangles in R(I;) are exponentially small with the
number of iterations. Then, the estimate for A, B, follow by a simple induction
on n from formula (A.67) in Appendix A.3. Similarly, one derives the estimates for
Ay, By, 9,log|A,], 9,1og |B,| from formulas (A.72), (A.73).

When P C P,, we write

(P, Q,n) =P, Qy,n) (P, Q, n)
for some (P, Q',n") € R(ly). As |P,| < Cgy, the estimates for A, A,,, A, follow from

A

Corollary 7 and formulas (A.66), (A.71), (A.67) in Appendix A.3. The case where Q C Q,
1s similar. 0J

7.5. Proof of the property (R4) of Section 5.5. — We have to show that, for an element
(P, Q, n) in Rx(I), with associated implicit representation (A, B), we have

(7.34) IA| <Cep  |A,] < Cé
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whenever P C P, and
<7'35) |BX| < CSO» |Bm| < C:80

whenever Q C Q),. We will deal only with (7.34), the other case being symmetric.

We have already proved (7.34), (7.35) when (P, Q, n) belongs to R(I;). We may
therefore assume that (P, Q, n) does not belong to R(Iy). We assume that P C P; and
prove (7.34).

In this case, the structure theorem of Section 6.5 guarantees that (P, Q), n) can be
obtained from the parabolic composition of shorter elements (Py, Qy, 70), (P, Q;, ny).
Let (Ag, Bo), (A}, B)) be the implicit representations associated to these iterates.

From formulas (A.86), (A.91) in Appendix A.4, we have

A, — Ag,| < CIP|1Qy8(Qy, P12,
Ay — Ag | < CIP|1Qul8(Qy, P~

As P C P;, we have also Py C P, hence |Py| < Cgy. On the other hand, by property
(R7) for Rn—1(D), |Qy] is for all ¢ € I much smaller than §(Qy, P;). We have then, from
Proposition 12 in Section 6.6.2

A A 1
(7.36) 1Qpl8(Qy, P2 < Q] < Cexp(—in’/),

which gives
1
(7.37) |1A), — AQJ,l < 080, exp(—yz%j),

1
(7.38) 1A, — Ao,y | < Cey exp(—an”).

As Py C P, the estimate (7.34) follows immediately by induction on 7 (starting with Propo-
sition 16) from (7.37), (7.38). The proof of (7.35) is similar.

7.6. Relative speeds of special rectangles. — Let (Py, Qq, n9), (P1, Qy, n1) be elements
of Rx(I) such that Qy C Q,, P, C P..

The displacements 6 (Qy, Py), 61.(Qy, P1), r (Qp, P1), §ir(Qy, P1) were introduced
in formulas (3.30)-(3.33) of Section 3.6 and are the values at the four corners of the
rectangle of definition of the function a(yo, x7) Introduced in Section 3.5 as

(7.39) C(yo, %) = min C(w, 3o, x1).

All these quantities also depend on the parameter ¢, and we want in this section to esti-
mate the variation with the parameter of the displacements, which amounts to estimate
the partial derivative C,.



62 JACOB PALIS AND JEAN-CHRISTOPHE YOCCOZ

Let (Ag, By), (A}, By) be the implicit representations for (Py, Qy, ny), (P1, Q;, ;)
respectively. As will be seen below, an estimate for C, depends very much on estimates for
the partial derivatives A ;, B ;. Good estimates for these two quantities are not available
for all (Py, Qy, 1), (P, Qy, n1). We will obtain good estimates when Qy, P, are I-special,
which is sufficient in the applications.

Proposition 17. — Let (P, Q, n) be an element of Rx(1) with P C Py. Let (A, B) be the
umplicit representation of (P, Q, n). If P us I-special, we have for all t, y, x

1
Al <
Proof. — If (P, Q, n) € R(Iy), we have from Proposition 14 the stronger estimate:
|A,| < Cegy 10g80 .

We now assume that the level of Tis > 0. Let T be the parent of I. If (P, Q, n) € R(I) Pis
also I- -special (cf. Section 6.6.1) and the estimate of the proposition is true by induction.

We now assume that (P, Q,n) ¢ R{). We apply the structure theorem in Sec-
tion 6.5: let £ > 1 and (P;, Q;, n;), 0 < 2 < £, be the elements of R(’f) given by the state-
ment of the theorem. We also denote, for 0 < ¢ < £, by (P, Q®, n”) the element of R(I)
such that P C P® and

(7.40) (PP, QY. 1"y € (Py, Qg, no) O---0 (Pi, Q;, 7).

We have (P®, Q®, #®) = (P, Q, n). As P is I-special, Py is T—Critical, hence P is I-special
for 0 < ¢ < k. Moreover, for 0 <z < £, Q;, Piyy areT—critical, hence Q(i), P, are I-special.

Let (A, BY), (A;, B,) be the implicit representations associated to (P@, Q®, n?),
(P;, Qj, n;). The estimate (A.96) in Appendix A.4 gives

(7.41) ASD — AD| < CIPY1S(Q®, Piy) ™ A(1 + [Asyr| + [BP)).

Here we have from the induction hypothesis IB’| < Cé, since QW is I-special and
|Ai+1.] < Cgg since Py is I-special.

From Lemma 3 in Section 6.6.3 we have §(Q?, P;;;) > |I| for all ¢ € 1. From
Corollary 5 in Section 6.6.3, we have

(471)i
2 .

(7.42) PO < CHT|PED-
Plugging these estimates into (7.41) above gives
I+t

(7.43) |A§i+1) A(z)l < Cz+1|I|(z+l)(ﬂ——)

As B — 1“ > %, we obtained the required estimate for |A;| by first summing over ¢ and

then on the successive levels of the parameter intervals under consideration.
The proof for B, is similar. 0J



NON-UNIFORMLY HYPERBOLIC HORSESHOES ARISING 63

Corollary 8. — Let (Py, Qp, ng), (P, Qy,ny) be elements of Rx(1) with Qy C Q,,
P, C P,. Assume that Qy and Py are 1-special. Then, the partial derivative with respect to the pa-
rameler of the function C. (introduced in Section 3.5) satisfies

1
IC,+ 1] < Cel.

Proof. — From formula (A.35) in Appendix A, using the notations there, we have

(7.44) —C,=60X,+6Y,+6,
(7.45) Xi=(A+ALY,)A,
(7‘46> ?l = (BO,I + BO,qu,l)A_l,

with Ay, A7" uniformly bounded. The value of 6, is taken at (X, Y, £), with

(7.47) 1X| < Cey, Y] < Ce,.

On the other hand, we have, in Section 4.1, normalized the parameter in order to have
(7.48) 0,(0,0,0) = 1.

We, therefore, have

(7.49) 10,X,Y, 1) — 1] < Ce.

1
In (7.45) and (7.46), we have |A,| < Cé, |By.| < Cego, by (R4) and |A, ;| < &7, |Bo,| <
1
g, by Proposition 17. The Corollary follows, as 6,, 0,, Y, , X, are uniformly bounded. []

Corollary 9. — Let (Po, Qq, no), (P, Qy,n1) be elements of Rn() with Qy C Q,,
P, C P,. Assume that Qg and Py are I-special and that Qg thy Py holds. Then, we have

mIaX5LR(Qo, P) < QmIin Sir(Qy, Py).

Progf: — Indeed, by condition (T'1) of Section 5.4, we have min; d1r (Q, P,) = 2|]|
and by Corollary 8 above, we have max; §1r (Qg, P1) — min; §;r (Qy, P;) < 2|1]. O

We will have a more general version of this statement in the next Subsection
(Proposition 19).
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7.7. Variation of width of special rectangles. — Our main purpose now is to prove prop-
erty (R7) of Section 5.4:

(R7) If (Py, Qp, n9), (P1,Qy,n1) € R(I) satisty Qy C Q,, P; C P, and Qg M P; holds,
then, for all ¢ € I, we have

5(Qu Py > G (P17 410 ).

A priori, the transversality condition gives some control through (T2), (T'3) in Section 5.4
only for some values of the parameter. However, from Corollary 9 above, we know that the
order of magnitude of §(Qy, Py) is the same through I, at least when Qy, P, are I-special
and Qg y P, holds. Therefore, to obtain (R7), we do need to control how the widths |P |
and |Qy| vary through I. Good estimates will be obtained when Qy, P, are I-special, and
this will turn out to be sufficient due to Proposition 11 in Section 6.6.1.

Proposition 18. — Let (P, Q, n) be an element of Rx (1) with P C Py, (A, B) be the associ-
ated implicit representation. If P is I-special, we have, for all t, y, x
log |P|

7.50 dloglA,l| < C :
(7.50) |9, log |A.]] Tog 1]

(7.51) Al <C
Obviously, there is a similar statement exchanging P and Q), A and B, x and .

Proof. — When (P,Q,n) € R(Iy), n and |log|P|| are of the same order; as
|I||log |I|| 1s always smaller than & log g, ! the estimates in Proposition 16 of Section 7.4
imply the inequalities above.

We will now assume that the level of I'is > 0. Let Thbe the parent of L If (P, Q, n) €
'R(I) P is also I- -special (cf. Section 6.6.1) and |I||log [I|| < |I||log |I||. Therefore the
estimates of the proposition follow from the induction hypothesis.

We now assume that (P, Q,n) ¢ R(). We apply the structure theorem in Sec-
tion 6.5: let £ > 1 and (P;, Q;, n;), 0 < 2 < £, be the elements of 'R(I) given by the state-
ment of the theorem. We also denote, for 0 < ¢ < £, by (P?, Q©, #) the element of R()
such that P C P® and

(7.52) P2, QY, ") € (Py, Qp, no) O---0O (P, Qj, m).

We have (P®, Q® »®) = (P, Q, n). As Pis I-special, Py is T—Critical, hence P is I-special

for 0 < i < k. Moreover, for 0 <7 < £, Q;, P,y are I-critical, hence Q©, P;, | are I-special.
Let (A®, B?), (A,, B,) be the mmplicit representations associated to (P9, Qi), n®),

(P;, Q;, n;). The estimates (A.103), (A.104) in Appendix A.4 give, with § = §(Q?, P;;)

18,log [AUTD| — 3, log |A?|

I
(7.53) <CE™ +872(BY 1+ 1A D) + 18 log A 4D,
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A , 1 .
(7.54) IAGFD — AT < Cs72PY(1 +1QVIK),
with

1 . . .
(7.55) K=36""+8"2(BY| + [Ais 1) + 19, 1og AP 49, log [B”|[.

Assume, by the induction hypothesis, that we have

(7.56) IBY| < Gy,
(7.57) |Ai1,] < Co,
log P4
(7.58) 18,10 [Ais1 4] < Com L
I log |1
: log [PV
7.59 9,log AV < C ,
( ) Itogl x|| O|I|1 |I|
: QY]
7.60 3, 10s B[ < ¢, 0812”1
(7.60) 10, log [B)"] "Mlog 1

1
Here Cj is large but independent of €. This means that the term §~ 2 (IB(Z)I + [Aif1 ) in
(7.53) and (7.55) is dominated by § 7', As |I| = 1|7, in order to prove (7.50) by induction,
we need to have, in view of (7.53):

(7.61) ClI|[log [T}|6~ +CCO|I||10g|Pz+1||+Co|10g|P(l)|l Co| log [PV

We have here § > |I| from Lemma 3 in Section 6.6.3 and, by (3.27):
: , 1
(7.62) [10g [P"[| > [10g [P || + [10g [Pis1 || = 5 log]1]| = C
Therefore, (7.61) will hold as far as
Co ~
(7.63) (5 +€)og 1l +€oC < o1 = G Hog Pu
From (R7) for Rx_; LI), we know that |P;, | is much smaller than §. On the other hand, as
Q; and P,y are not I- transverse, by Proposmon 31n Section 5.6.1, 61 r (Q;, Piy1) (which s
larger than §) is smaller than 2 11| for some ¢ /€ T; it then follows from Corollary 8 in the last

subsection applied to Q;, Piyy (which are 1- critical, hence T- -special), that d;r (Q;, Pit1),
and thus also §, stay smaller than C|I| for all £ € T. We therefore have

(7.64) llog [P ] = log I = (1 + 1) log 1],
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from which (7.63) follows if we take Cy > 3C (provided ¢ is small enough). This com-
pletes the proof of the induction step for (7.50).

To prove (7.51), we estimate the right-hand side of (7.54). From Corollary 5 in
Section 6.6.3, we have

(7.65) P9 < Cz‘mﬁ(z‘+1)_<1+2r)i.
From (R7) for RN 1(I), we know that |Q(l) | is much smaller than §. We have seen
above that |I] < § < C|I|
This gives, as B > 1

(7.66) %|P‘Z)| < |I|(z+1)/3/2
(7.67) 573 P00 < [0+ V82,
(7.68) % IP?11Q?|18,log AV || < TGRS
(7.69) %|P(Z)||Qfl)||8,log|B(l)|| < [T|+Der2,
This leads to:

(7.70) A —AD| < C[T|B/26+D,

We can now sum over ¢ and then over the different levels of parameter intervals to obtain
(7.51). The proof of Proposition 18 is complete. UJ

Proof of Property (R7). — Let (P, Qq, n9), (P1, Q;, n1) be elements of Rx(I) such
that Qy C Q,, P; C P, and QM P, holds.

IF1o1, (P, ()\0 ), (P, Q m) € RN(I) satisfy Qg C QQ cQ, P C P, CP,
and the inequality in (R7) is satisfied for T, QD P, then it is also satisfied for I, Qy, P;.

We can therefore assume that I, Qg, P; are maximal with the property Qg M P;.
From Proposition 11 in Section 6.6.1, Qq, P, are then I-special.

The maximality property implies that Qg thy P, holds. Then, from Corollary 9 in
Section 7.6, we have

(7.71) mIaX(SLR(Q’O, P) < QmIin Sir(Qy, Py).

We have also min; §;r (Qg, Py) = 2|1 from (T'1) for %EI P,.
From Proposition 18, we have either max; |Qy| < |I|* or max; |Qg| < C ming |Qyl,
and similarly for P;. Tt then follows from (T2), (T3) for Qg My P, that, for all £ € T

8(Qy, P) = CTH(1Qu!' ™" + P17

foralltel.
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The proof of property (R7) is complete. UJ

Once (R7) has been obtained, we have a stronger form of Corollary 9 in Sec-
tion 7.6:

Proposition 19. — Let (Py, Qg, ny), (P, Qy, n1) be elements of Rx(1) with Qy C Q,,
P, C P,. Assume that Qg thy Py holds. Then, we have

maXSLR(Q\O P) < 3m1n8(()\0 P)).

Proof. — IF1>1, (P, QD ), P, Q Q;,m) € Ra(D) satisfy Qo C Qg cQ, P C
P, C P, and the inequality in the Proposition is satisfied for T, % P, then it is also satis-
fied for I, Qy, P;.

We can therefore assume that I, Qg, P; are maximal with the property Qg My P;.
From Proposition 11 in Section 6.6.1, Qg, P, are then I-special. The maximality property
also implies that Qy My P, holds. By Corollary 9 and (R7), we have then

mIaX(SLR(%, P) < QmIiINSLR(Q), P))
< QmIin((S(Qg, P) + C|Qy| + C|Py])

<3mlin$(Qo,P1). O

The existence and properties of the classes R (I), for a candidate parameter interval
I are now fully justified and the proof of the theorem in Section 5.4 is complete. What
we do not know at this moment is whether there exists, besides I, any regular parameter
interval at all! This will be the subject of Section 9. Before, we develop in the next section
some results that will turn out to be essential in Sections 9, 10 and 11.

8. Number of children and dimension estimates

In this section (except in Section 8.4), we fix a candidate parameter interval I (in
particular, the parent interval I is always assumed to be B-regular) and obtain some prop-
erties of the class /R (I) which will be important in Sections 9 and 10.

In Section 8.1, we collect some results that could have been proved earlier, but
whose proof was deferred because the results were not necessary for the construction of
the class R(I).

In Section 8.2, we establish some bounds on the number of children of a given
rectangle which will be useful both in Sections 8.3, 8.4 and in Sections 9, 10 and 11.

In Section 8.3, we prove that, in some appropriate sense, the transverse stable and
unstable “dimensions” of the class R(I) are very close to those of R(Iy).

Finally, in Section 8.4, we establish an estimate in parameter space which will be
essential in Section 9.
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8.1. Further criteria for transversality. — The following results are useful variants of
Proposition 10 in Section 6.4.

Proposition 20. — Let (Py, Qy, np), (P1, Qy, my), (P}, Q), 7)) be elements of R(1) such
that Qo C Q,, Py C P, C Py. If P! is I-transverse and Qg hy Py holds, then Qg thy P also holds.

There is a symmetric statement exchanging P’s and Q’s.

Progf- — There exists an I-decomposition (P,, Q,, 1) of Q, such that, for any o,
Q, and P are either I-transverse or I-separated. There exists o such that QQ, and Q) do
intersect. As Qg My Py holds, Q, and P} must be I-transverse. If Q,, D Qy, it follows from
Proposition 2 that QQy and P} are I-transverse. If Q, C Qy, the same conclusion follows
from concavity. O

Proposition 21. — Let (Py, Qy, ny), (P1, Qy, my), (P}, Q), 7)) be elements of R(1) such
that Qy C Q,, Py C P} C P,. Assume that Qg Py holds and that |P|| < 5|Qy| for all t € 1.
Then Qg and P are also 1-transverse.

Again, here 1s a symmetric statement exchanging P’s and Q’s.

Progf: — 'This follows closely the proof of Pr03051t10n 10. By definition of the
transversahty relation, there exist o I, (Py, Qp, ), (P1,Qy,71) € R(I) such that Qy C
QD P, C P, and QprhIPl

IfP, C P, this already implies that Qg h; P|. Let us assume that P, C P}. We will
show that QD My P) holds. By coherence (Proposmon 8), we have (P}, Q}, n)) € R(I)

Let us Check (TH(T3).

By (T'1) for Qyrhy P, and (3.49) in Section 3.5, we have, for all £ € T:

8.1) Sir(Qu, P)) = 81r(Qy, P) > 211
By (T2) for Qg h; Py and (3.47), there exists 4 €T such that
8.2) 8(Qy. P) > 8r(Qy, P1) > 21",

Finally, for this same value %, we have

81.(Qy, P)) = 8r(Qy, P}) — C|P)]|

>2|Qp|' " — C|P)|
>2(2[P))'" — QP
(8.3) > 2|P ',

if &y 1s small enough. This proves that QQ M7 P, holds and thus also Qy hy P, holds. [
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Corollary 10. — Let (Py, Qy,n) € R(1). Assume that Py is 1-critical. Then there exists
(Po, Qp, n9) € RA) such that Qy and P, are 1-critically related and |Qy| < max(|1|#, 2|P,|) for
some t € 1.

Proof- — Let (P, Q, n) € R(I) such that Q and P, are I-critically related and |Q] >
2|P,| for all ¢ € I. We claim that Q) is I-critical. Indeed, assume on the contrary that Q) is
I-transverse. Let (P;, Q;, 7;) be an I-decomposition of P; such that, for each ¢, Q) is either
I-separated from P; or I-transverse to P;. If P; is contained in some P;, () is I-separated
from P, if it 1s I-separated from P;, and I-transverse to P; if it is I-transverse to P;. If
P, contains some P; such that Q) is I-transverse to P;, then Q) is I-transverse to P, by
the proposition above. The remaining case is where the P; contained in P, form an I-
decomposition of P, and Q) is I-separated from each of them; then Q) is I-separated from
P;. In all cases, we get a contradiction. This proves the claim.

Consider now the following inductively constructed sequence of I-decompositions
of Q,, starting with the canonical one by children of Q),. We stop the process when one
element (P,, Q,, n,) atleast in the decomposition is such that Q,, ; P; does not hold and
|Q,| < max(|I|f, 2|P;|) for some ¢ € I: it satisfies then the conclusion of the Corollary.

To go from one I-decomposition to the next one, we keep those (P, Q,, 1,) such
that Q,, is I-transverse to P, or I-separated from P,. Because P, is I-critical, there are
other elements (Py, Qy, 1) in the decomposition, which are I-critically related to P; and
satisfy |Q,| = max(|I|?, 2|P,|) for all ¢ € I by assumption. The claim above shows that
Q, 1s I-critical and therefore I-decomposable (Corollary 3 in Section 5.6.5). We replace
such a Q,, by its children.

It is clear that the process has to stop, and the proof of the Corollary is complete. []

Proposition 22. — Let I D 1 be a parameter interval and let (Py, Qy, ny), (P1, Qy, ny)
be elements of R(I') such that Qy C Q,, Py C P,. Assume that Qy My Py holds and that we have
2T < [Py, forall t € I'. Then Qg and Py are also I'-transverse.

Again, there is a symmetric statement exchanging P’s and Q’s.

Progf. — Let (P, Qp. ), (Pr, Q. 7)) € R(I) satisfy Qy € Qy € Q,, Py C Py CP;
then 2|T'| < |P |'"" for all € I, and 1fQ) and P1 are I'-transverse, then QQy and P, are
I’-transverse.

It 1s therefore sufficient to consider the case where Qy, Py, I are maximal with the
properties Qy M P, I CT.

If I=T, we are done. We therefore assume that I is strictly smaller than I'. In
this case, by Proposition 11 in Section 6.6.1, Qg and P, are I-special. Maximality also
guarantees that Q h; P,.

We show that Qg rhy P,. Properties (T2), (T3) for Qi P, imply the same for

Qy iy Py.
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For the value ¢, given by (T'3), we have

(8.4) Sir(Qpy Py) = 81.(Qp, P) = 2[Py |7 > 4T,

By Corollary 8 in Section 7.6, this implies
Sir(Qy, Py) > 2|T'|, Viel,

which is (T'1) for Qg hy P,. This contradicts the maximality of I and proves the proposi-
tion. 0J

8.2. Estimates on the number of children. — We start with some preliminary results.

Proposition 23. — Let ' D 1 be a parameler interval, and let (P, Q ) be an element of R(L').
We assume that st I'-transverse. Then, any element (P, Q, n) in R(I) such that P is a child of Pis
already an element of R(I').

Progf: — We can assume that P is a non-simple child. Then (P, Q, n) is obtained
by parabolic composition in R(I) of (’ﬁ, Q'ﬁ) with some (Py, Q;,n;) € R(I). As Qis
I'-transverse, there exists an I'- decomposition Py, Qy, 1) of Py such that each P, is
I'-separated or I'-transverse with Q Let a0 be such that Py, and P, intersect. Then,
le/ P,, holds, and also Qm1P1, if we had P1 Py, this would imply that Q is I-
transverse to the parent P1 of P; and P would not be a child of P. Therefore, we must

have Py, C P;. By coherence (Proposition 8), we have that (P, Qy, n1) € R(I'). By con-
cavity (Proposition 9), from Q hy P, and Q thy P,,, we deduce that Q thy Py also holds and
(P,Q,n) e R(I'). O

Proposition 24. — Let 1y D I, D I be the largest parameter interval such that

1
1 =
(8.5) i’ < (5m)"

Let (P Q ), (P, Q, n) be elements of R(1) such that P is a non-simple child of P. Let P, Qy, ny),
(Pl, , 1) be the elements of R(1) such that

(P,Q,n) e (P,Q, % 0 (P, Qy,m)

and P, is the parent of P,. ~ ~
Then, (P, Qy, ny) belongs to R(1,), Py is I-critical, Q 1s 1y -transverse and we have

(8.6) 2B, |1 > |1

Jorallt €l
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Remark 9. — As parabolic composition is possible, we have I # Ij; then, as g >
(1 —n)~', we must have I, 2 I'and I, is B-regular.

Progf: — As P 1s a child of P, leﬁ does not hold. Then, it follows from Propo-
sition 19 above that P, is I-critical, and from Proposition 11 that (8.6) holds. Then, by
definition of I, we have:

(8.7) ek

for all ¢ € I. Let us show that (E, Q,%l) belongs to R(Il) Otherwise, there would exist
L D I, with parent interval TQ C I;, such that (E, Q,,m) belongs to R(Iy) but not to
R(Ig) Then, we would have from Corollary 5 in Section 6.6.3 (as P1 is I-critical, hence
Iy-special) that |P1| < |12|ﬁ+1/ 5 for all ¢ € I, in contradiction to (8.7).

Therefore, (PI,Q ;) belongs to R(I;). As L LI is B- regular (PI,QJ )
cannot be I,-bicritical in view of (8.7); P, is Il—critical and hence QJ is I;-transverse.
Proposition 23 then shows that (P, Q;, n) € R(I}). O

__ Corollary 11. — Assume that the level of 1 is > 0, and let T be the parent interval of 1. Let
(P, Q,n) be an element OJ:R(I), such that |Q)'=" > 2|1| for all t € 1. Then all children of P in
R belong already to R(1).

Proof. — Indeed, let (P, Q, n) € R(I) such that Pis a child of P. We can assume that
P is a non- 51lee child. Let I, (Py, Qy, ny), (Pl, QJ 71) € R(1) be as in Proposition 24.

We have I; D 1. As QmIPl, we can apply Proposition 21 in Section 8.1 to obtain that
QP holds and (P, Q, n) € R(D). O

Corollary lg. — Let (fﬁ, Q n) be an element of R(1). The number of (P, Q, n) € R(I) such
that P s a child of P is finite.

Progf: — We argue by induction on the level of the parameter interval 1.

If I is the starting interval I, P has only simple children and the assertion is obvious.
Assume that I G Iy. The number of simple children is finite, and we have to show that the
same 1s true for the number of non-simple children. For every non-simple child P of P, let
L, (P, Qy, ny), (Pl, Q, ) € R(1;) be as in Proposition 24. By the induction hypothesis,
there is for cach fixed P, only a finite number of possibilities for P;. On the other hand,
in view of relation (8.6), there are obviously only a finite number of possibilities for P,.
The induction step is complete, and this completes the proof. 0

We want to make the finiteness assertion quantitative, and will do that in two dis-
tinct ways. In each case, we have to estimate in the proof of Corollary 12 the number of
possibilities for Py, and the number of possibilities for P, once P is fixed.
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Proposition 25. — Let (’ﬁ, Q?i) be an element of R(1). The number of (P, Q, n) € R(I)
such that P is a chuld of P 1s at most |1|~".

The constant ¢, as the other constants denoted by C, and the content ¢’ in the next
proposition, depends only on the initial diffeomorphism f, not on 7 >> 1 > &.

Progf: — We argue again by induction on the level of I, following the proof of
Corollary 12. The notations are those of Proposition 24. When I = I, the number of
(simple) children is at most the number of rectangles in the Markov partition, which is
much smaller than e, when g is small enough.

When I # I, the number of possibilities for P, when P1 1s fixed in at most |I |~
by the induction hypothesis. We have to estimate the number of possibilities for P,. We
know that thl ﬁl does not hold, but le P, holds.

As Py is I-critical, it is I-special. We have from (8.6) and Proposition 18 in Sec-
tion 7.7

(8.8) rnIaX|P1| Cm1n|P [

From Proposition 19 in Section 7.7, we have also, using (8.8)

(8.9) maXS(Q,P ) < maxS(Q P)) < Cm1n8(Q p)) < Cmm((S(Q P) + P ).
Lemma 4. — We have for all t € 1
(8.10) 5(Q, P <Cp|' .

Proof. — As Qﬁfﬁl does not hold, at least one of the following three properties

must be true:

(8.11) §ir(Q,P) <2|I| for some f €1;
(8.12) 5(Q,P)) <2|Q)"" forallte;
(8.13) 81.(Q,P)) < 2|P,|'™" forall el

If (8.13) holds, we are done.

If (8.12) holds, we argue as follows. As thl P, holds but thIﬁ does not hold, it
follows from Proposition 20 in Section 8.1 that |§1| > %l@ for some #, € I. Then, from
(8.8) and (8.9), we have

maxé(Q Pl) Cmm((S(Q Pl) + |P1|) Crrun(|@1 "4 |P D

<CmIaXIP1| - <lein|P1| -
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Finally, assume that (8.11) holds. As Qrh; Py holds but Qhy P, does not hold, it
follows from Proposition 9 in Section 6.4 that 2|P;|'~7 > |I| for all ¢ € I. Then, from (8.8)
and (8.9), we have

max(Q, P1) < Cmin(8(Q, By) + [Fr]) < C(I| + max [Py)

<leax|§1|l_'7 < Cmin P, 0

We are now able to estimate the number of possibilities for P; and show that this
number is at most

_n

(8.14) Cl1) T,

This indeed follows from (8.9), (8.6) and the fact that if two distinct P, are not disjoint,
the ratio of their widths is bounded away from 1 (so the P, at a given scale are disjoint;
one then sums over scales). The total number of children is thus bounded by

_n
(8.15) C+2C[1] =L,

where I, was the largest parameter interval satisfying

1

1 Fp—
(8.16) L) < (§|1|)1 ,

If |I| > 285(17"), we have I, = Iy; in this case, the term |I;|7” in (8.15) i1s unnecessary

because P, has only simple children. If |I| < 285 (1_"), we have
1 1
(8.17) |Il|ﬂ(l+r)*‘ > <§|I|> -
and the term in (8.15) is bounded by [I| ™7 provided that &, is small enough and
l+7
(8.18) n>— g
l—n I —n

As n, T are very small, any choice of ¢ > % yields (8.18). Then, as ¢ > 1, such a choice
is also convenient when |I| > 285 (=7 "and this concludes the proof of Proposition 25. []
In Proposition 25, we have estimated the total number of children in terms of the
level of the parameter interval.
In the next proposition, we are interested, not in the total number of children, but
in the number of children of a given width. The estimate is independent on the level of
the parameter interval.
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Proposition 26. — Let (’ﬁ, Q ) be an element (y: R). Forany € > 0, the number of elements
(P, Q,n) € R() such that P is a non-simple child of P satisfying |P| = €|P| for some t € 1, is at
most €.

Proof- —Alfet e > 0, and let (P, Q, n) be an element of R(I) such that P is a non-
simple child of P. We assume, for some ¢ € I, that:

(8.19) |P| > ¢|P|.

Let (P;, Qy, n), (P, Q,, %) € R() be as in Proposition 24. From (3.27), we have, for all
tel:

~ ~ _l
(8.20) [P| < C|P||P,[6(Q, P)) 2.
Property (R7) guarantees that, for all ¢ € 1
(8.21) §(Q,P) =C7 Py

Combining (8.19), (8.20), (8.21), we have, for some 4 €1

l—n

(8.22) 5(Q,P) > C e T,
As we always have

(8.23) 8(Q, P)) < Cey,

1
there is no non-simple child satisfying (8.19) unless € < &, ; we will assume that this holds

in the sequel.
From Lemma 4 above, we have, for all ¢ € I:

(8.24) 8(Q, By <CIPy',
and thus, from (3.36), also

5(Q,P)) < 8(Q, P))
<8(Q,P) +C[P|
(8.25) < Q[P

Combining (8.22) and (8.25), we get, for some # € I

~ 2
(8.26) |P| > C e l+n,

an inequality which actually holds for all ¢ € I in view of (8.8).
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As in the proof of Proposition 25, the number of (fﬁl, Ql ,my) for which both (8.25),
(8.26) hold is easily seen to be at most

2n

(8.27) Ce 1.

To estimate the number of P, for a given Py, we will apply Proposition 25 in an appro-
priate way.

Define a parameter interval To1 as follows. If I1)# > &2 letT— L If 1) < &2, let
T>1be the largest parameter interval such that T# < &2 We have thus in any case

~ 2(1+1)

(8.28) T > min(eg, e 7).

As P i s I-critical, hence I-special, it follows from (8.26) and Corollary 6 in Section 6.6.3
that (Pl, Q 7;) belongs to R(I) Moreover, when I # 1, we have |P1| > |I|ﬂ for all tel
from (8. 26)vand the definition of T. Therefore, (Pl, Ql 7)) cannot be T-bicritical. As Pl 1S
T- critical, Q) 1s I-transverse and we conclude from Proposition 23 that (Py, Q, n1) also
belongs to R(I). The same is also obviously true when I =L

We apply Proposition 25: for each fixed (Pl, Q, 7), the number of children P, is
at most |AI|7”7.

From (8.28), we have, for some appropriate ¢,

o~

(8.29) T~ < e,

Combining this with the previous estimate in (8.27) for the number of possibilities for P,
gives therefore the required estimate. U

8.3. A dimension estimate. — The goal of this subsection is to obtain a bound on
the number of elements (P, Q, n) in R(I) with width |P| bounded from below. This is a
first step towards estimating the transverse dimension of the stable set W*(A), which is
necessary in order to achieve our parameter selection in Section 9.

Let I be a parameter interval, and let (P*, Q*, n*) be an element of R(I). We
introduce, in the spirit of Laplace, Dirichlet and Poincaré, the series

(8.30) O(P*, L, 5) = ZmIaX|P| ,

where the sum runs over elements (P, Q, n) € R(I) such that P C P*. Here s is a complex
variable and the series is at first a formal object, but we will soon see that it is uniformly
convergent in a half-plane {Res > o0y}. The goal of this subsection is to obtain a nice
estimate for oy and for ® in this half-plane.

The dependence of the estimate on P* is also quite straightforward, through the
simple scaling factor max; |P*|’.

Let us recall that we denote by ” the transverse Hausdorff dimension of the stable
foliation W*(K) of the horseshoe K for the value 0 of the parameter. Let us also denote
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by d! the transverse Hausdorff dimension of the stable foliation W'(K,,) for the value
t of the parameter. It is well-known that ¢’ depends smoothly on the parameter. The
transverse Hausdorff dimension controls in a precise way the number of cylinders (for the
Markov partition) of a given size; more precisely, as these cylinders correspond exactly
to the elements of R(Iy), we know that, for any ¢ € Iy and all ¢ > 0 the number of
(P, Q, n) € R(Iy) such that |P| > ¢ is exactly of the order of g4,

Let us say that P (with (P, Q, n) € R(I)) is a simple descendant of P* if (P, Q, n) is
the simple composition of (P*, Q*, n*) by an element of R(I;). Consider the series

(8.31) O (P*, 5) = ZmIaX|P| :

where the sum runs over simple descendants of P*. By what we have just recalled, for any
t € 1y, the series converge in a half-plane {Re s > d" + Cg} and satisfies, for s > d° + 2Cé,

(8.32) |©0(P*, )| < CmIaX |P*I'(Res — d”) .

For ©(P*, 1, s) with a parameter interval I # I, we have to allow a slightly larger
margin with relation to the initial value @°.

Proposition 27. — Let (P*, Q*, n*) € R(1). The series © (P*, 1, s) ts uniformly convergent
10 1.0
in the half-plane {Re s > d° + & g } and we have, for s = d° + & g

L0

|®(P*, I, S) — @U(P*, S) | < mIaX |P*|.rsgo .

Proof. — Let (P, Q, n) be an element of R(I) with P C P*. Consider the interme-
diary rectangles

PP=PO)CP(l)C---CcPU)=P
with P(2) the parent of P(z + 1). Let
(8.33) by <) <<ty

be the indices such that P(¢; + 1) is a non-simple child of P(£;). Obviously, P is a simple
descendant of P* iff £ = 0.
We also define for 0 < j < £ elements (P, QY n%) € R(I,) by the following prop-
erties
(8.34) (P(£0), Q(L0), n(£o)) = (P(0), Q0), 2(0)) * (P, Q) 1),
(P(£), Q) n(€)) = (P—1 + 1), Q1 + 1), n(€;—y + 1))
(8.35) % (PO, Q0 "),
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(P, Q,n) = (Pls—1 + 1), Ql;—1 + 1), n(f—y + 1))

(8.36) * (PP, QW 1™y,
We now estimate the widths from (3.12), for all ¢ € I:

(8.37) IP(£o)| < CIP*[[PY],

(8.38) IP(£)| < CIP(L—y + 1)|[PY],

(8.39) [P| < C|P(¢,_, + D||P®].

From (3.27) and property (R7), we also have:
‘l
(8.40) IP(¢; + 1)| < &5 [P(£)].
Define mj for 0 <j < & to be the largest integer such that, for all t €
1
(8.41) P( + 1] <2 "ej [P(E)].

From Proposition 26, for each fixed P(¢;), the number of non-simple children P(¢; + 1)
satisfying (8.41) is at most

(8.42) (2071e; %)M.

Combining (8.37), (8.38), (8.39) and (8.41), we also have
k
. k F—1
k41 * () .
(8.43) mIax|P| <C mIax|P |<|0| mIax|PJ |>s§2 oM,

with the usual convention that Zéflmj =0 when £ =0.
We will take this to the power s and sum over P. We introduce (corresponding to
the term |PY|")

()= Y. max P’

P,Q,meR )

(8.44) =Y OR,.Ly),
a
and also
<8.45) 0(;) = Z(Ceg277'2)3(2m+1807§)¢”7_
m=0

The function O is controlled by (8.32), while 6 satisfies

(8.46) 0(s) = 21Crey (1 —2 M)
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and therefore, for C™! < 5 < C:

1 5G=dn $G—dn)
(8.47) C g <O(s) < Cgg .
From (8.32), we have, for s > d” + 2Caé:

(8.48) Oo(s) < C(s —d*) .

. 1/3d?
In particular, for s > d" + 80/ *, we have

_1
(8.49) O(s) < Cey ** |

1
(8.50) Oy(5)0(s) < Cel™™ .

But, from (8.43), we have for real s
(8.51) OP*, 1, 5) — Oy(P*, s) < melax [P*|° Z AL (5)0%(s),
k>0

and therefore we deduce from (8.50) that the series defining ® is uniformly convergent in
1.0
the half plane {Res > d° + &7 }.
1.0
For s > d” 4 £, , we have, from (8.48), (8.47);

0

_1
(8.52) Oy(s) < Ce, 7,
€L
(8.53) ®20(s) < Cep™"
which gives the second part of the proposition. UJ

1
Coollary 13. — Lot d* = & + &), (P, Q",n*) € R(D, & > 0. The number of
(P, Q,n) € R(A) with P C P*, |P| > £|P*| is at most e~

Progf: — Indeed, the number of simple descendants P with max; |P| > ¢ max; |P*|

. _ 04 " . .
is of order < &% ¢ and the number of non-simple ones with max; |P| > & maxp |P*| is
&« ™% from the proposition. U

8.4. Transfer to parameter space.

8.4.1. Our goal in this subsection will be to prove the following result, which
expresses a transfer of the dimension estimate of Section 8.2 to parameter space.



NON-UNIFORMLY HYPERBOLIC HORSESHOES ARISING 79

_ Proposition 28, — Let T be a regular parameter terval. Let (P*, Q*, n*) be an element of
RA) such that QF is I-critical and

I ~ _
(8.54) Q< M

J?,T allteT. Then, the number of candidates 1 C T of the next level, such that Q* s 1-critical, is at most
|I|_”ls+ , where dt = d° + Cnt ™" can be made arbitrarily close to d°.

Recall that the total number of candidates is |I|~*. Proposition 28 is the key esti-
mate that will allow us in Section 9 to proceed with the selection process for parameters.
The rest of the section is devoted to the proof of Proposition 28.

8.4.2. We make some general observations, that could have been made much
earlier, but are only useful now.

Let (P, Q, n), (Py, Qp, n9), (P, Qy, 1), be elements of R(I) such that P C P,, Q) C
Qy C Q,, and P # Py. From property (MP7) of the Markov partition (Section 3.4), it is
easy to see that the condition (3.50) of Section 3.6.4 is satisfied. As explained in this
subsection, we have then, for any ¢ € 1

(8.55) 8(Q, P) + C7'|Qyl < 8(Q;, Ps),
(8.56) 8r(Qy, P) + C71Qy| < 8r(Q, P),
(8.57) 8L.(Qy. P) — C7'Qy| = 8.(Q. P),
(8.58) Sir(Qp, P) — C7HQy| = 81:(Q), P).

Let now (P, Q, n), (Py, Qg, n9), (P1, Qy, n1), be elements of R(I) such that Q C
Q,, Po C P, P, C Py and Py N P; = @. From the discussion in Section 3.6.2, we have
either

Sr(Q, Py) < 3(Q, Py),
air(Q, Po) < 61.(Q, Py),

or the same inequalities after exchanging Py and P;.

(8.59)

Proposition 29. — Assume that (8.59) holds (see Figure 8).

1. If Q and P, are 1-separated, then Q) and Py are 1-separated.
2. If Q and Py are 1-transverse, and |P1|' =" < |1| for some t € 1, then Q and Py are 1-

transverse.

Progf: — 1. Fix t € I. We will assume that G(Q N L,) NP, N A 1s empty and show
that G(Q N L,) NPyN A is also empty.
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F1G. 8. — Proposition 29, part 2

Let y a vertical-like curve which is the intersection of a decreasing sequence of
simple descendants of P,. The curve y is contained in W’(A, ﬁ) NP,.

If y does not intersect G(Q N L,), Py does also not intersect G(Q N L,) and the
conclusion holds.

On the other hand, if the intersection of y with G(QQ N L,) is not connected, y
intersects the image G(y’ N L,), where y’ is any intersection of a decreasing sequence of
simple descendants of Q); the intersection would be contained in G(Q NL,) NP, N A,
which is empty by hypothesis.

Therefore we can assume that the intersection y; of y with G(QNL,) is non empty
and connected. Let Oy be the Jordan domain whose boundary is the union of ¥, and the
arc in the boundary of G(Q N L,) with the same endpoints than y.

The intersection of Py with G(QNL,) is contained in Oj. We will show that OyN A
1s empty, which implies that G(Q N L,) NPy N A is empty.

Consider (G o g)7'(Op) C P. Part of the boundary of this Jordan domain is an
horizontal segment contained in the boundary of P. The other part of the boundary
is (G o g") () which does not intersect W*(A, ﬁ). In particular, it does not intersect
L; (in case L, N P is not empty), and it does not cross any Q, ,, (a, a’) € B. Therefore,
either it does not intersect any ), » at all, in which case we can already conclude that
(G og") ™' (Op) N A is empty, or it intersects a single Q, . In this last case, there exists a
simple child Q" of Q (defined by (P, Q,.», 1) * (P, Q, n) = (P, QW n+ 1)) with the
following property: let y; be the subarc of y; defined by y; = y, N G(Q’ N L,), and O,
be the Jordan domain whose boundary is the union of ¥, and the arc in the boundary of
G(Q(l) N L,) with the same endpoints than y;; then OyN A =O; N A.

We now apply to Q, Oy, y, the same arguments that we used for Q, O, ¥;.
Either we conclude that O, N A is empty or we find a simple child Q® of QV, a sub-
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arc ¥, C ¥ and a Jordan domain Oy whose boundary contains y» such that Oy N A =
01 NA.

Iterating, either we conclude at some stage that O, N A 1s empty (and then we have
OyNA =0O;N A =), or we construct a decreasing sequence Q" of simple descendants
of Q such that y N G(Q” N L,) is not empty for all /. But this 1s impossible, because the
intersection y’ of the Q) is contained in W"(A, R) and the intersection y N G(y’' N L,)
would be contained in G(QNL,) NP, NA.

2. Assume now that Q) and Py are I-transverse, and that |P, |7 < |1 for some ¢ € I.

Let T51 and (P QA‘) (Py, QJ %) € R() be such that QD Q, P, O P, and
thl P, holds. If P, C Py, we c immediately conclude that Q) and Py are I-transverse. We
assume, therefore, that P; N PO ?; replacing (Py, Qy, 1) by (PO, QQ ), and (P, Q, n)
by (P Q’\) we can also assume that (P, Q, n), (Po, Qg, np) € R(I) and %ﬁy P, holds.

Let (Pl, Ql ), be the elerleent 0£R(I) with P; C P; and smallest P;.

We will prove that Q and P, are I-transverse. We assume by contradiction that it
is not the case. We have, for all ¢ € 1, that

(8.60) 8ir(Q, P) > 81 (Q, Py) > 2],

and also for some #, €1,

(8.61) 8r(Q, P1) > 8r(Q, Py) >2/Q)' .
Therefore, we must have, for all ¢ Ei that

(8.62) 81.(Q, P)) < 2P| .

We cannot have in this case ﬁl = Py, because, for all € 1,

(8.63) 8.(Q, P)) > 81r(Q, Py) = 2[T],

and (8.62), (8.63) together would contradict the hypothesis of the proposition. Therefore,
Py strictly contains Py and I strictly contains I. But, then, applying the structure theorem
of Section 6.5 to the child of Py which contains Py, we obtain that Q) is I-critical. As I'is
B-regular, it then follows from (8.62), (8.63) and (3.39) that P, isT- transverse. This implies
that there exists (P', Q’, ') € R(I) with Qﬂ Q' # ¥ such that Q' rhy P, holds.

When Q C Q/, it follows that Q hy P, holds.

When Q¥ CQand Py C Py, it follows by concavity from Q' My P, and QM Py that
QmIPl holds.

When Q&C Qand PyN P1 f, we consider a thin simple descendant P} of Pl such
that |P*|1 T < |I| for some ¢ € T We have, as in (8.60), d1r (Q, PT) > 2|I| for all l EI and,
asin (8.61), 6r (Q, P}) = 2|QJ'" for some {4, € T. But we have also, at 1) € I o0 (Q, PY) >
(SLR(Q_, Py) > 2|I| > 2|P%|'~". Therefore, Q M7 P} holds. We conclude by concavity from
Q' 7P, and QhyP* that QM7 P, holds.

We thus obtain a contradiction in all cases. This proves that Q My P, holds and thus
also Qb Py. O
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8.4.3. We now switch back to the setting of Proposition 28.

Let (P,Q,n) € R() with P C P,. We say that P is eventually T transverse to QF 1f
there exists an I- -decomposition (P, Q,, ny) of P such that Q* and P, are T-transverse
for every ov. We say that P 1s eventually T—Q* -cnitical if 1t 1s neither ’Iv—separated from Q* nor
eventually T-transverse to Qr.

Lemma 5. — If P 1s eventually T-transverse to Q* and 2|P|'™" < |T| holds for some t € i
then Q* thy P holds.

Proof. — This is an immediate consequence of Proposition 10 in Section 6.4. [
Lemma 6. — If P is eventually T—Q* ~critical, then P is T-critical.

Progf: — Assume on the contrary that P is T-transverse. Let (Py, Qg 1) be an
Idecomposmon of Q, such that, for each o, Q, and P are either T- separated or T-
transverse.

IfQ* C Q, for some o, Q* and P would be T—separated if Q, and P areT—separated,
and T-transverse if Q, and P are T-transverse.

If there exists & such that Q, C Q* and Q,, 7P holds, then Q* My P also holds by
Proposition 10 in Section 6.4.

In the remaining case, the Q, C Q" form an I- -decomposition of Q* and they are
all I-separated from P; this imply that Q* itself is I-separated from P.

In all cases, we get a contradiction. The proof of the lemma is complete. UJ

Lemma 7. — If P is eventually T—Q* -crttical and |P| > |T|’3 holds for some t € T, then some
chuld of P s also eventually 1-Q* -critical.

Proof. — We assume by contradiction that none of the children is eventually T—Q*—
critical.

By Lemma 6 and Corollary 3 (in Section 5.6.5), P is T-critical and thus I-
decomposable. If all children of P were eventually T-transverse to Q*, we would put to-
gether the corresponding T- -decompositions and obtain that P 1s eventually T-transverse
to Q. If all children of P were T- separated from Q, P would be T- -separated from Q*
Therefore some child of P is eventually T-transverse to Q*, and some other child of P is
T—separated from Q.

We will show that QF is T- transverse. We will construct an 1I- -decomposition
(Pe, Qg 1) of Py such that every Py, 1s either T- -separated from Q* or T-transverse to Qr.

Actually, 1t 13 sufficient to have an T- -decomposition such that every P, 1s either
T—separated from Q* or eventually T-transverse to Q.

Starting from the trivial decomposition of P;, we have at step 7 an ’f-decomposition
(Pfj), QS), ng)). As long as there 1s one (Pg), Qg), ng) ) with P C Pg), we observe that Pg) 1S
T-critical and therefore T—decomposable and break it into its children to go to step ¢ + 1.
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After a finite number of steps, each P is either a child of P or disjoint from P.

The P® which are children of P are either eventually T-transverse to QF or 1I-
separated from Q¥ by assumption.

The P? which are disjoint from P may sit on one or the other side of P. On one
side, we apply the first part of Proposition 29 to Q, P® and a child of P which is T-
separated from Q* to conclude that P% is I- -separated from 1 Q.

We claim that those on the other side are eventually T-transverse to QF. Indeed, let
pPY be such arectangle. If it is T-transverse to Qr, we are done. Assume this is not the case.

Let P be a simple descendant of P(l) such that |P |1 T < |I| for some ¢ € T. By Propo-

sition 29 (part 2) applied to 1, Qr, Py, P , we have QF rhIP(l) As Pfg is not I-transverse
to QF, it must be T-critical (by Proposmon 20 in Section 8.1), hence I-decomposable. We
replace P by its children and repeat the argument till the rectangles are thin enough to
apply directly Proposition 29 (part 2) to 1, Q*, Py, PO,

This proves our claim and the proof of the lemma is complete. U

Lemma 8. — If Py, P, are eventually T- QF-critical and disjoint, then we have |Py| < C|I|,
|P| < C|I|foralltel

Progf: — Exchanging Py, P, if necessary, we can assume that (8.59) holds for

Qr, P, Py.
From Lemma 7, , we can find (PO, QD o), (P1, Qp,7) in R() with Py C Py, P, C
P, such that both PO, P1 are eventually T Q*-critical and we have

(8.64) Po| < 1¥, [P)|<[I|f forallzel
As ?0 is not T—separated from Q*, we must have
(8.65) Sir(QF, Py) = 0

for some el .
From (8.54) and (8.64), as Q* M7 P; does not hold, we must have

(8.66) 8 (QF, P)) < 2f|

for some 4 € 1. B N
Observe that Q* is I-critical by assumption and that Py, P, are I-critical by
Lemma 6. From Corollary 8 in Section 7.6, it follows that, for =0, 1

(8-67) max 5LR(Q*, P;) — m~in 5LR(Q,*, P) < 2|T|,
I I

(8.68) maXSL(Q P)—m1n8L(Q P) < 2|I|
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From Proposition 18 in Section 7.7, for : =0, 1, we have either |P;| < |T| forallte1 (the
required conclusion), or

(8.69) max |P;| < min |Py.
1 1

Recall that, by (8.55)—(8.58), we have, for : =0, 1, if P, 75’131-
(8.70) SLr(Q*, P) > 8 (QF, P) + C7' [Py,
(8.71) 5.(Q*%, P) < 8.(QF, P) — C' [P,

for any ¢ el ~
If Py = Py, we have |Py| < |I| by (8.64). If Py # Py, we have

C Py < C7'Py| + 812 (Q*, Py)  at 4y, from (8.63)
81r(Q*, Py)  at 4, from (8.68)
5.(Q*,P)) atf

8.(Q%, P)) 4+ C[I| at¢, from (8.65)
Sir(Q.P) +ClT| aty

C[I| from (8.64).

/

INCINCIN NN

If P, =P, we have |P,| < [T| by (8.64). If P,  P,, we have

oI — C"|Py| = 810 (Q*, P)) — C'|Py| at 4, from (8.64)
>8.(Q"P)—C' P aty
>61.(Q,P)) att, from (8.69)
> 8.(Q", P) —C[I| at t, from (8.65)
> 8i(Q" Py) — CfT| aty
> —CfI| from (8.63).
We have proven the required estimates. 0J

8.4.4. Consider the set IT of elements (P, Q, n) € R(T) which are eventually T
Q*-critical, satisfy

(8.72) |P| < [T

for all £ € T and are maximal (in P) with respect to these two properties.
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Lemma 9. — We have
#IT< [,
where dt = d° + Cnt " is as in the statement of Proposition 28.

Proof. — Assume that IT is non-empty. From Lemma 8, there exists Gy > 0 and a
unique element (Py, Qy, ny) € R(I) with the following properties:

- PCPy forall (P, Qn)el_[

— |Py| > CO|I| for some t € T

— every child P; of Py which contains a rectangle P with (P, Q, n) € IT satisfies
IP,| < Co[I| forall 1€ T.

As Py is eventually T—Q*—Critical, P, is I-critical by Lemma 6.
There are two kind of elements (P, Q, n) € IT:

— those such that P is a child of Py; the number of such elements is at most |fIV|_“7
by Proposition 25;
— those such that the parent P of P is contained in some child P, of Py.

In this last case, from the definition of T we have
(8.73) IP| > [1|'"*"  forsometel.

As P is T-critical by Lemma 6, P is also T—critical, hence T—special and we have, from
Proposition 18 in Section 7.7, that

(8.74) IP|>C '™ forallzel

Let P; be a child of Py; we have |P;| < CO|I| forallteT by the definition of Py. For given
P,, the number of possible P is therefore bounded by C|I** from Corollary 13, with
d* =d" +s[; ‘.

The number of P for glven P and the number of children P, of Pj, are both
bounded from Proposition 25 by 1= Summing up, the total number of elements of IT

is bounded by
T + [ cn =,

in accordance with the statement of Lemma 9, choosing appropriately the constant in
the definition of . O
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8.4.5. Proof of Proposition 28. — By Lemma 6 and Corollary 3 (in Section 5.6.5), if
P, Q,n) € R(I) 1s such that P is eventually T- -Q*-critical, and |P| > |I|’3 for some ¢ € I
then P is T- -decomposable. _

Therefore, there exists an I-decomposition (P,, Q,,n,) of P, such that every
Py, Qg, ny) 1s either eventually T—separated from Q* or eventually T-transverse to Qr
or an element of TI.

Let I C T be a candidate interval of the next level, 1e. |I| = |T|1+’, such that Q* is
I-critical.

We claim that there exists (P, Q, n) € IT such that P is eventually I-Q*-critical.

Indeed, every (P, Qy, n,) which is eventually T-transverse to Q7 (resp. eventually
T—separated from Q) is a fortiori I-transverse to Q (resp. I-separated from Q). If every
Py, Qg ny) € IT was also either eventually I-transverse to Q* or eventually I-separated
from Q*, we would obtain a decomposition of P; which expresses that Q* is I-transverse.
This proves the claim.

On the other hand, fix (P, Q, n) € I1. We show that there are at most C; candidates
I T such that P is eventually I-Q*-critical. Together with Lemma 9, this will imply the
statement of Proposition 28 (after modifying the value of the constant in the definition of
&)

Both P (by Lemma 6) and Q* (by assumption) are T-critical, hence T—special. By
Corollary 8 in Section 7.6, we have, for all ¢ el
1

d
(8.75) ‘ESLR(Q*, P) — 1‘ < Qe

If, for all ¢ € I, we have
(8.76) Sir(QF,P) <0,

then P is I-separated from QF.
We claim that if, for all ¢ € I, we have

(8.77) §(Q7,P) > 21,

then P is eventually I-transverse to Q*. As we have [P| < [I] from the definition of IT and
|Q] < [I] from the assumption of the proposition, we have, for all z € 1

(8.78) Sir(Q, P) <8(Q7, P) + C(P[+ Q7)) < 8(Q7, P) + Cl],

which allows to conclude.

Finally, we prove the claim.

Observe first that, if (P, Q’, #') € R(I) satisfies P C P, |P'| < %m(l”)(l*"rl for all
t ET, then Q*EI P’ holds. Indeed, 8;x (QF, P'), 61.(QF, P'), g (QF, P) are all larger than
8(Q*, P); then (T'3) follows from (8.75) above; as both [Q*|'" |P|'~" are smaller than |I|,
(T'1) and (T2) also follow from (8.75).



NON-UNIFORMLY HYPERBOLIC HORSESHOES ARISING 87

On the other hand, if (P', Q’, ') € R(]) satisfies P’ C P and P’ is not I-transverse to
Q7*, from the observation (applied to a thin simple descendant of P’) and Proposition 20,
we deduce that P’ is I-critical hence I-decomposable, and we can replace it by its chil-
dren. Starting with P, we iterate the process till getting rectangles thin enough for the
observation to apply. This proves the claim and thus also Proposition 28.

9. Strong regularity and parameter selection

As it was mentioned in Section 4.5, regularity is a rather qualitative property which
1s not appropriate for the quantitative estimates needed for parameter selection. We will
introduce in this section, a stronger quantitative property, that we call strong regularity.

Think of each bicritical element as a return from the “critical region” to itself. We
want to control the number of bicritical elements of a given width (including, of course,
that there are no “fat” bicritical elements). In order to do this, we also need a control on
the size of the critical region itself.

In the whole of Section 9, we fix a parameter interval Twhich is assumed by induc-
tion to be strongly regular (the definition is given at the end of Section 9.2). In Section 9.3,
we check that strong regularity implies B-regularity for an appropriate B > 1. Therefore
the properties proven in Sections 5-8 will be applicable. The aim of Section 9 is to esti-
mate how many candidates I C T fail to be strongly regular.

In Section 9.1, the estimates (SR1), (SR2) on the size of the critical region are
presented. In Section 9.2, the estimates (SR3) on the number of bicritical elements are
introduced. This leads to the definition of strong regularity at the end of this Subsection,
namely that the full set of estimates (SR1), (SR2), (SR3) must be satisfied, and to the
choice of B in Section 9.3, where condition (H4) of Section 1.2 is finally explained. It is
also proven in Section 9.3 that strong regularity implies - regularity In Section 9.4, we
check that the starting interval Iy is strongly regular. Then, in Section 9.5, we estimate
how many candidates I C T fail to satisfy (SR1). Condition (SR2) is more delicate and is
dealt with in Section 9.6.

In the rest of Sections 9, 9.7-9.13, we estimate the number of candidates which
fail to satisfy (SR3); a general overview of the strategy to do this is first presented in
Section 9.7. The conclusions of the process of parameter selection are presented in Sec-
tion 9.14.

9.1. Partitions and size of the critical locus.

Definition 3. — We denote by C (1) the set of (P, Q, n) in R(I) such that P is -critical,
|P| < 1| for all t € 1, and P is maximal with this property: the parent P of P satisfies |P| > |1
Jor some t € 1.

Obviously, if (P, Q, n), (P, Q' n') are distinct elements in C+ (I), P and P’ are dis-
joint. Moreover, if (P QA) belongs to R(I) Pis I- critical, and |P| < | forall £ €1,
there is a unique (P, Q, n) € C(I) such that PcCP.
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Exchanging P’s and Q’s, we define C_(I) in a similar way. The sets C, (I), C_(I)

|1+1:

correspond to the I-critical locus at the [I|™™" scale.

We will need in the sequel to consider T -criticality (for some parameter interval
1o I) for rectangles in R(I) but not in R(I)

Definition 4. — Lesz D 1 be parameter intervals, and let (P, Q, n) € R(I). We say that P is
thin T-critical if there exists (P Q,A) € R(I) with P C P P is 1-critical and

min [P|'~" < 2]TI.
1

The notion is useful in connection in Proposition 22 of Section 8.1, as in the fol-
lowing

Lemma 10. — Let 1 be a candidate parameter interval (with regular parenﬁ), and let (P, Q, n)
be an element of R(1) which is not the restriction of an element of R(T). Let k> 0 and (P;, Q;, n;),
Jor 0 <@ < k, be the elements of R() given by the structure theorem (of Section 6.5). Then Q; and
P,y are thin T-critical Jor 0 <1< k.

Proof: — As Q) 1s I-transverse but not I-transverse to P, this follows from Propo-
sition 22 in Section 8.1. 0J

Definition 5. — Let 1 be a regular interval, (P, Q, n) € C(1). We denote by Cr(P) the set
of candidates 1 C 1 such that P contains a thin I-critical rectangle. We define symmetrically Cr(Q) for
(P, Q,n) e C_(I).

Lemma 11. — Let T be the largest parameter interval contammgT with [T < |T|(1+T) Let
IcT be a candidate mterval and let (P Q,n) € C+ (D). Then (P, Q, n) belongs to 'R(I), and there
exists (P Q,N) eC, (I) withP C P and 1 € Cr(P)

Progf: — We first prove that (P, Q, n) belongs to R{). Let I DIbe a parameter
interval distinct from Iy with parent T; assume that (P, Q, n) belongs to R(I') but not to
R(I ). By the structure theorem of Section 6.5, the element (Py, Qy, ng) € 'R(I/ ) with Py
smallest containing P is T-bicritical and satisfy |Py| < |I’|ﬂ for all # € T. This contradicts
the maximality of P with respect to the property max; [P| < 111+ if [T)# < II'*" and
shows that (P, ), n) belongs to R(I)

In particular, (P, Q, n) belongs to R(T) and P IST -special. From Proposmon 18 in
Section 7.7, we have |P| < CII|**" < [I|'** for all / € T. Therefore, there exists (P, Q,N) €
Cy (I) with P C P. Finally, we observe that P is thin I-critical and therefore I belongs to
Cr(P). O

We will state several inequalities related to the size of the sets C, (1), C_(I). All these
inequalities are part of the definition of strong regularity: they have to be satisfied by a
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strongly regular parameter interval. In Sections 9.3, 9.6, we will see that they are satisfied
by most candidates in a strongly regular parameter interval I. These estimates are used
in Sections 9.12, 9.13 in the control of the number of bicritical elements.

We will control the cardinalities of C, (I), C_(I), through:

I|\o _.p0
(SR1), #C, (D) <C('8—') &,

0

N,
(SR1), #C_(1) < c(-) e
&o
The exponent o will be completely specified in Section 9.5. It is very close to 1 — d” — &'
when t, n, &g are small.
We need also to control C,(I), C_(I) in another, more complicated, way.

I Ou
<SR2>s Z mIax|Qa|Pu < C|Q|pu(u> ’
(P, Qq.,71g)€C+ (1) &o
1]\~
SR2), P,|” < C|P, p;(_) .
( ) Z miax| | |P,| .

(Po, Q1) €C—(I)

The exponents p;, p,, 0,, 0, will be specified in Sections 9.6 and 9.14. When 7, 1, &, are
small, they are respectively close to d”, d), 1 —d°, 1 — d°. We write |P,|, |Q,]| for the max-
imum of these quantities over .

We actually need a stronger version of (SR2);, better suited for induction purposes.
Let I C I be a candidate interval.

Defimation 6. — We denote by é:r (D) to_be the set of (P, Q, n) € Ci(T) such that I € Cr(P).
We define symmetrically C_(1). We also define C, (1) := {(Py, Q,, n))}, C_(Io) :={(P,, Q,, n,)}.

Let (P, Q;,m)); be a finite family of elements of R(1) with the P; disjoint and each P;
contained in some P with (P, Q, n) € C(1). We ask that, for any such_family

1]\ o
SR2), Y r<ar(S)
(SR2){ : max Q| Q] -
We define symmetrically (SR2)! .

Observe that, by Lemma 11, (SR2); is a consequence of (SR2)'.
The heuristics behind (SR2); is the following: in the mean, one expects that ele-
ments of R(I) more or less satisfy

9.1) P ~ Q)
and, for (P, Q, n) € @ (I) , one should have
(9.2) [P| ~ 1|

which explains the relation between (SR 1); and (SR2);.
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9.2. Classes and number of bicritical rectangles. — Once the size of the critical locus
is under control, we must pay attention to the number of bicritical rectangles, which
represent the returns of the critical locus to itself under the dynamics.

In order to have an appropriate induction scheme, we need to bound the number
of bicritical rectangles according to all width scales and also according to the level of
criticality (i.e., the distance to critical locus) of both P and Q). As we will see in the next
subsection, the number of bicritical elements experiments a “phase transition” which is
crucial for our argument but brings a lot of complications.

Let I be a candidate interval as above, and let I, I, be parameter intervals such
that I C I, N1,. Let also x be a positive number.

Definition 7. — We denote by By (1, 1y, L,; x) the set of elements (P, Q, n) € R(I) such that
P us thin 1y -critical, Q 1s thin 1,-critical and \P| = x for some t € 1.

Stmalarly, Bi_(1, 1y, Ly; x) s the set of elements (P, Q, n) € R(1) such that P s thin 1,-
eritical, Q) 1s thin L,-critical and |Q)) = x_for some t € 1.

At this point, we have to break the symmetry between past and future, P’s and
Q’s, stable and unstable directions: the estimates are indeed not symmetric, except when
d° = d°, i.e., in the conservative case of area-preserving diffeomorphisms.

We will assume that @ > d° (and d° + d° > 1). The case d° > d is obviously sym-
metric.

For I, 1, I, x as above we want to have, for a fixed large enough constant A (we
will see in Section 9.14 that A = 3 is a convenient choice)

(SR3), #Bi, (I, I, I,; ) < &,V B,
with
9.3) B = max(By, B;),

s () ()

x NN L] e\
55 n=() () ()
80|Pu| &y &o &o

Here |P,| denotes the supremum over I of the width of P,: the exponents py, p1, 09, 03
will be specified more precisely later, but anyway they satisfy

9.6) po=4d. +o(1),

0

ds 0 0
9.7) pr= gy QA= D+,
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(9.8) oo =1—d" +o(1),
9.9) oy =d’ —d +o(l).
The meaning of the o(1) terms in these formulas is that they become arbitrarily small

when 7 > 1 > g are small enough.
For the Bi_ sets, we should have:

(SR3), #Bi (1,1, L,; %) < 6B,
with
(9.10) B’ = max(Bj, B)),

9.11) Bg::(ggﬁi])pé(gil)mﬁgl(%il)w,

9.12 B, = (gofgl)_pi (%) (min(%, %))

4
(9.13) %=3Wm=£+an,
d° d°
(9.14) p#:ﬁm:dmﬁp@£+ﬁ—lHﬂﬂl

Observe that the formulas (9.7), (9.14) for p,, p| are not symmetric.

Definition 8. — A parameter interval 1 us strongly regular if its parent s (when 1% 1) and if
it satisfies the conditions (SR1), (SR2)" (hence also (SR2)) of Section 9.1 and (SR3),, (SR3), for all
I,LOLI, DL 0<x<1.

Remark 10.

1. At this point, the definition of strong regularity is not complete because the
exponents Oy, P1, P, P1, 00, 01, A have not been completely specified. These
exponents should be viewed for the present time as parameters constrained by
(9.6)+9.9) and (9.13), (9.14).

2. The inequalities (SR3);, (SR3), form a family parametrized not only by I, but
also by the parameter intervals I, D I and I,, D I and the real number 1 > x > 0.
Because each inequality, at least when I =1, or I =1, is only obtained after
parameter selection, we will discretize the continuous variable x by considering
only the values x = 27, / > 0. There is still an infinite number of inequalities,
but we will see that they are trivially satisfied if / is large enough.
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9.3. Phase transition and the choice of B. — We comment on the estimate (SR 3),. First,
observe that B does not depend on 1. The reason will appear in Section 9.8 when we show
that most elements in Bz, (I, I, I,; x) belong actually to R(T).

From the formulas (9.6), (9.7), we have

(9.15) P1 < Po-

Set
L |L,

9.16) X, .—80|Pu|(max(| ] '))"” o
80 €

Then, we have B = By, for x < 1, and B = B, for x > x,,: this is the “phase transition”
mentioned earlier. Roughly speaking, the reason for this phase transition is that, when
I1=1, =1,, we are able to eliminate, in the scale transition from Tto I, more bicritical
elements of small width (x < x,,) than of large width (x > x,,).

We have
(1 —d°)
(9.17) Po— p1 = W‘i‘ o(1),
(on} d0'+'d3
(9.18) @ +o(1) > 1.
For x = x,,, we have
L [\eotor /|1, ]\ Ll LI\ 7
9.19) B=B, = (M) ’ l<u) O(max(u, u)) orr
>N & >N >N
Assume I, =1,; we then have
| &
(9.20) B, = (_"‘) ﬂ() n
€o
Here, the exponent satisfies
-2
(9.21) o +00%=2—2d?—2d3+0(1) <0.
0~ P1

As |I,| < €9, we have B, > 1. As B is a decreasing function of x, we have &, AMB < 1 (in
which case (SR3), means that the B, set is empty!) iff B, < &)7 which corresponds to

Go+01

— . _1+At/p |I |
9.22) x> Ti= e AP, |( o )
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The exponent here satisfies

O'o‘f‘O']_l—di? d?—l—dl?

9.23
23 PR

+ o(1).

We are finally able to justify the assumption (H4) of our Main Theorem stated in Sec-
tion 1.2! Indeed, with d? > df, it means that

(H4) 2(d°)? + (d))* + 2d°d) <24’ + d)
and this is exactly what is needed to guarantee that

O'0+O'1

P1

9.24) > 1.

The discussion for (SR3), is similar; the critical threshold is

ro. |Iot| |Ia)| p{)(ijpi
(9.25) x, = &0 Q,|{ max| —, — ,
2N N
with
(9.26) po—plzw+0(l):d_o(p0_pl),
o oo d° d°+d°
(9.27) p Op/:p Op d_soz Sdo L4 o(l) > 1.
0o M 07— M %y u
When I, =1, we have
£G—2p]
9.28) B = (@)a'w A B, > 1.
&o
Thus, we have &, "B’ < 1 iff
— 14+At/p] |Iot| UU;_’UI
9.29) K> = |Q.|<—) 1
&o

We have here

0y + 0, 00—|-(71djO 0y + 0]
= 2
P P1 du P1

(9.30)
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Choice of B. — We will choose the constant B (related to the regularity property) in order
to have

1 —d) d'+d)
) 240 +d) -1

5

(9.31) l<pB<

and also, from Proposition 4 in Section 5.6.4
(9.32) B <14+ min(w,, w,).

From (9.31), we will have

oy+o oy+o
0 1<o 1

o P

9.33) B <

Then, in (9.22), (9.29), we will have
(9.34) ¥ < |17, ¥ < |LJP.

Proposition 30. — If a candidate interval satisfies (SR3); and (SR3),, then it is B-regular. In
particular, strong regularity implies B -regularity.

Progf: — We argue by induction on the level of the parameter interval. For the
starting interval Iy, we already know from Proposition 4 that it is -regular (independently
of (SR3);, (SR3),). Assume that I # I, satisfies (SR3),, (SR3), and that (P, Q, n) € R(I) is
I-bicritical. Assume also, for instance, that

(9.35) max Q] < max |P|
and, by contradiction that

(9.36) In?lel)lIW.

From Corollary 5 in Section 6.6, we know that (P, Q, n) € R{) (T being the parent of I).
As (P, Q, n) 1s I-bicritical, we must have, by the induction hypothesis

(9.37) max |P| < [T|f.
1

Therefore, P would be thin I-critical; similarly () would be thin I-critical. But in view of
(9.34), the estimate (SR3); says that such a (P, Q, n) satistying (9.36) does not exist.  [J
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9.4. The starting interval. — We establish in this subsection the starting point of an
inductive construction of strongly regular parameters. We assume that the p exponents
satisfy

(9.38) Ou > dl? + Cegy, 05 > d? + Cegy, 0Oo > df,) + Cegy, Py > df + Cey,

with C large enough. The exponents o do not come into play for the starting interval.
Proposition 31. — The starting interval is strongly regular.

Proof. — We start by checking (SR1) for I,.

The set C, (Iy) consists of the elements (P, Q, n) € R(Iy) such that P C Py, |P| <
gy for all £ € 1, and which are maximal with this property. Such a (P, Q, n) is there-
fore the simple composition of (P;, Qy, ;) with an element (P', Q, n') € R(I) satisfying,
according to (3.12) in Section 3.3

C'el < |P| < Cg]

for all ¢ € I. As recalled in the beginning of Section 8.3, for each ¢ € Ij, the number of
—d! C . —td’ .
P’ with |P'| > C~'¢] is of order ¢, “ which is also the order of £ . This proves (SR1);.
The estimate (SR1), is obtained in the same way.
We turn to (SR2)’. Let ((P;, Q;, ;)); be a finite family of elements of R(I,) with
the P; disjoint and contained in P;. We have to prove that

/ _pu< Ps
(SR2), > max|Ql” < CIQI”.

We can write each (P;, Q;, n;) as the simple composition of (P, Q;, ;) with an element
(P, Qi n) € R(y). The P! are disjoint. We need to have

. 17 < C.
9.39) > max| Q)" < C

This will be a consequence from the existence of equilibrium measures for Holder po-
tentials on regular Cantor sets defined by expansive C'™ maps: fix a parameter ¢ € I;
choose an horizontal segment in each rectangle of the Markov partition, and let J be their
union; the intersection of J with the local stable foliation W*(K, R) is a regular Cantor set
K; there exists on K; a probability measure (a Gibbs state for the appropriate potential)
such that, for each (P, Q,n) € R(ly), the measure of the cylinder of K defined by P,
divided by |Q|%, is uniformly bounded away from 0 and oco. As the P! are disjoint, this
proves that, for each ¢ € I, we have

(9.40) Yl <c.
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But Proposition 15 in Section 7.4 shows that, for each (P, Q, n) € R(1y)

1+Ceo
(9.41) min |Q) > (max|Q/l) .
Therefore (9.39) is a consequence of (9.40), (9.41) as
(9.42) p. > d° + Cey.
The estimate (SR2), is proved in the same way, under the requirement
(9.43) p, > d’ + Ce.

Let us now prove (SR3); and (SR3),. The only case to consider is I, =1, = .
Then Biy (Iy, Iy, Ip; x) (resp. Bi_(Iy, Iy, Io; x)) is the set of (P, Q, n) € R(Iy) such that P C
P;, Q C Q, and |P| > «x (resp. |Q] = x) for some ¢ € Ij. We write (P, Q, n) as a simple

composition

(9.44) (P,Q,n) =(P,Q,,n) *(P,Q',n) x (P, Q,, n,)

(cf. (5.18) in Section 5.6.4). The same argument than for (SR 1); above now gives

X > —(d)+Ceo)

9.45 #Bi. (1. 1o, Ly: gc(
( ) Z+(0 0, Los x) eo[P)]

b

and similarly

x )—(d,9+(150)
€0l Q|
Therefore, we obtain (SR3); and (SR3), as we have:

(9.46) #Bi_(Iy, I, Io: x) < c(

(9.47) po > d° + Cey,
(9.48) o, > d. + Cey. O

9.5. The induction step for (SR1). — In Proposition 28 of Section 8.3, we introduced
d"=d"+ Cnt~'. Letalso dF = d° + Cnt~". The exponent o in the estimates (SR1) will
be defined as

(9.49) o=min(l—d —(1+0)d—1t—ent ", 1 =d" =1 +0)d— 71— ").
The aim of this Subsection is to prove the following result.

Proposition 32. — Assume that the parent interval T is B-regular and satisfies one of the two
equalities (SR1). Then all candidates I C 1 satisfy the same inequalily except perhaps for a proportion
not larger than C |I|f2.
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Before proving the Proposition above, we first state and prove
Proposition 33. — For any (P, Q, n) € C,. (T), we have

#Cr(P) < CT| ™.
Proof.: — Let (P*, Q*, n*) € R(T) be an element such that P* C P and

I ~ _
(9.50) IP*| < §|I|(1+r)(1*n) !

for all ¢ €T. By Proposition 28 in Section 8.3, there are at most 1" candidates I C T
such that P* is I-critical.

Let now I € Cr(P). We will prove that I is within distance ClTl 7 either from the
boundary of T, or from a candidate I’ C T such that P* is I'-critical. This implies the
estimate of the Proposition.

By definition, there exists (P, Q,, n;) € R(I) such that P, C P, P, is I-critical and

(9.51) IP,|'"" < 2|1 for some ¢ € L.

We take such a (P, Q;, n;) with P, maximal. Then, (P, Q nl) belongs in fact to R(I)
1ndeed otherwise, by the structure theorem, the clement (Pl, QJ ) € R(I) w1th small-
est P1 D P, would be T-bicritical and we would have |P] | < |I|5 <2|l| forall t € T.

As Py 1s I-critical, it is I-special. From Proposition 18 in Section 7.7, we obtain that

(9.52) P, < C|I| forallzel.

By Corollary 10 in Section 8.1, there exists (Py, Qg, 79) € R(I) such that Qy, P, are
I-critically related and |Qy| < max(|I|?, 2|P;|) for some # € 1. In particular, we have

(9.53) |Qy|'"™" < CJI| for some £ € 1.

We take such a ~(PO, Qy, np) with Qy maximal. We claim that (Py, Qy, n9) belongs to 'R,(T)
and that Q) is I-critical.

Indeed, let (fﬁo, QQ,%) the element of R(T) such that @ contains QQy and is the
smallest with this property.

Assume by contradiction that @ 1s Z—transverse. Let (Py, Qq.nq) be an I—
decomposition of P, such that, for each «, Qy and P, are either I-separated or I-
transverse. If P1 C P, for some o, we would Conclude that % and Py are I- separated if
QO and P, are I- separated, and Qo and P, are T-transverse if if Qy and P, are T-transverse.
If there exists o such that P, C Py and Qy 7 P, holds, then Q7 P, holds also by Propo-
sition 10 in Section 6.4. In the remaining case, the P, C P; form an T- -decomposition of
P, and they are all I-separated from % this imply that Py itself'is T- -separated from QD
The contradiction obtained in all cases show that Qg 1s T-critical.
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But then, if Qg # Q, the element (P,, Q) 7o) is I-bicritical by the structure theo-
rem and we would have |Q)| < |I|’8 for all ¢ GT contrad1ct1n&the maximality of Q.

Thus we know that both Qy and P, are T-defined and T- special.In particular, from
Proposition 18 in Section 7.7 and (9.53), we have

(9.54) Q' "< CJI| foralltel.

If we had §;r(Qyg, P;) > CGy|I| for all £ € I and Gy large enough, we would
have QDEIPI from the estimates on |Qyl, |P;| above. On the other hand, if we had
Or(Qyp, Py) < O for all £ € I, Qy and P, would be I-separated. As they are I-critically
related, we must have, for some ¢ € I and Cy > 2

(9.35) S Or(Qo, Pr) < Goll].

Assume that I is not within distance 4Cy|I| from the boundary of T. Let J be the
3Co|I|-neighborhood of I contained in T. From Corollary 8 in Section 7.6, the quan-
tity 8rr (Qg, Py) will be larger than 2C|I| at the upper endpoint of J and less than —Ci|I]
at the lower endpoint. As P, and P* are both contained in P and |P| < |I| for all £ € I, we
have, (taking Cj larger if necessary) that, for all ¢ € I

(9.56) 81 (Qp, P*) = 81r(Qp, P < Col1].

Therefore, the value of §;r (Qg, P*) at the lower endpoint of J is less than 0 and the value
at the upper endpoint is at least Cy|I|. Then, in view of the estimates on |Qy[, |[P*| and
Lemma 3 in Section 6.6.3, there is a candidate interval I" intersecting J such that P* is
I'-critical. As explained above, this allows to obtain the conclusion of the proposition. [J

Proof of Proposition 52. Let (P QA) €Cy (1); we bound the number of (P,Q,n) € CL(D
(for some candldate I1C I) with P C P. Recall that (P, Ca)i n) € R(I) by Lemma 11 in
Section 9.1. Let P be the parent of P (if P # P) It satlsﬁes |P| > |I|“+T) for some [ € I. By
Corollary 13 in Section 8.3, the number of possible P (for fixed P) is at most [I|~470+0)
From Proposition 25 in Section 8. 2 each P has at most |I|_“7 children. We conclude that
the number of possible P for each P is at most |I| —dFTr(4T)—an

We obtain therefore, in view of Lemma 11, Proposition 33 and the induction hy-

pothesis
> #e @ < [t +0E S 10 (B)
IcT ¢
< HC, (DT~ 7 9% max #Cr(P)
< CHC, (D) [T~ —+od:
T o —1d; T, *
(9.57) < C('g_') £ a/?lIl—cn—m’,j'—T(I+1’)a’Y )
0
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As the total number of candidates is [T| 7, we will have, except for a proportion at most
C[I|* of candidates I

T o _ 0~ .
#C, ) < (D) fijrmrt st o
€o

9.58) < <g)"80—r¢9 {7t -en-rdf (L4t o
In order to obtain the required estimate, we want to have
(9.59) t—t"—m—td —t(1+0)d — 10 >0,
which amounts to

(9.60) o<l—d—(+1)d —7v—enr .

In the same way, to obtain (SR1), for all but a proportion CIT|™" of candidates I from
(SR1), for I, we will ask that

9.61) o<l—d —(+0)d =7 —enpr".

In conclusion, we take o to be the largest number satisfying (9.60), (9.61) above and the
proof of the proposition is complete.

9.6. The induction step_for (SR2)'.

9.6.1. Recall that the exponents p; (in (SR3),), p, (in (SR2)) and &' are all close
to d” when T > 1> g, are small. Similarly, py (in (SR3),), p, (in (SR2)) and d* are all
close to d”. We now assume moreover that

(9.62) Py — &4 > Py > d + &, po— &y > ps>d +gf.
The exponents o, 0, in (SR2)" are defined as
(9.63) o,:=1-3t—d", o,.=1-3t—d".

The aim of this subsection is to prove the following result

_ Proposition 34. — Assume that the parent interval T is strongly regular. Then all candidates
I C I satisfy (SR2). and (SR2)' except perhaps for a proportion not larger than .

Proof. — We first explain the general idea (for (SR2)!).
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Let (P, Q, n) € C. (D). Let ((P;, Q;, n,)); be a finite family of elements of R(T) with
the P; disjoint and contained in P. As (SR2){ is satisfied by I, and P is contained in some P*
with (P*, Q*, n*) € C+ (I) by Lemma 11, the supremum over such families of the quantity

E max | Q; |
— T
1

is finite. Denote this supremum by ¢(P). We have, still from (SR2)’, that

9.64) 3 eP) <O|Q|pu<| 0')

¢ (M

Let now I C T be a candidate interval such that I € Cr(P). Let ((P;, Q;, n;)); be a finite
family of elements of R(I) with the P; disjoint and contained in P. Denote by ¢(P, I) the
supremum (in R U 4-00) over all such families of the quantity

E max |Q;|”".
I
i

We also consider two related quantities ¢(P, I, o/d) and ¢(P, I, new) obtained by taking the

supremum of the same quantity ), max; |Q;|”* over a more restricted set of families: we

still ask that the P; are disjoint and contained in P, but for ¢(P, I, 0/d) we ask moreover

that all (P;, Q;, ;) belong to R(T), and for ¢(P, I, new) that none of them belong to R(T).
Clearly, we have

(P, 1) < (P, 1, 0ld) 4 ¢(P, I, new),
and also
(9.65) (P, 1, old) < ¢(P).
On the other hand, by Lemma 11, the candidate I will satisfy (SR2)’ iff

(9.66) Y o@D < C|Q|"“(|I|>

Cr(

In each term of the sum, we separate the old and new part and will deal successively with
these two terms.

9.6.2. The sum over the old parts is easily controlled for most candidates. We

have
DN @ Lod) <Y D e(®) by (9.72)

IcT CL(1) IcT CL(D)
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<Y (PYHCr(P)
()
< Q™% Z ¢(P) by Proposition 33
¢+
~ ’f Ou
9.67) < C|1|ff4f|g.|ﬂu(u) . by (9.71).
&o

Consequently, all candidates I except for a proportion at most 112" will satisfy

(9.68) Zc(P 1, old) < [T _fd+|Q|pu(|IJ>

C(

From the definition 0, := 1 — 37 — ;" we obtain, for all candidates I except for a propor-
tion at most |I|272

(9.69) 3" P, 1, old) < 1Q1” (g)“

C (M)

9.6.3. The sum over the new parts is more complicated.

Let I € Tbe a candidate and let (P, Q’, #') be an element in R(I) but not in R()
such that P" is contained in some P with (P, Q, n) € C(I). For a finite family of such
elements with disjoint P’; we must bound the sum S := ) max; |Q’|".

We apply the structure theorem of Section 6.5. We obtain an integer £ > 0 and
elements (P}, Q), 7)) € R(T) for 0 </ < £ such that

— (P, Q/, ) 1s obtained from the parabohc composmon of the (P}, Q}, n));
— for0< /< k,Qjand Py, are T-critical and Qi P, does not hold;
— forall te L, |Q| < CHI|™*2T] |Q)| (cf. Proposition 13 in Section 6.6.3).

Recall that, by Lemma 10 in Section 9.1, Q) and P}, are thin T-critical for 0 < [ < k.
Observe that P is also thin T-critical because it 18 Contamed in the rectangle P such that
P,Q,n) e C+(I) and P' C P.

We claim that P; is contained in some P with (P Q,N) € C+ (I) As P; is thin T-
critical, it is sufficient to prove that a simple descendant P of P, with max~|P| < |I|1+f
is T-critical. If P was T-transverse, there would exist (P, Q, 7') with Q NQ;_, #¥and
Q MiP. As Q,_, iy P, also holds, we would deduce by concavity that Q|_, h7 P, holds, a
contradiction which proves the claim.

Consider now a finite family of such (P’,Q’,7) with disjoint P’. In the sum
S = Y maxy |Q/|”, we first do the partial sum over those (P, Q, ') which share the
same fixed integer £ and the same fixed (P}, Q, 7)) for 0 </ < k. Except for the fact that
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the parabolic composition of the (P}, Q), n)) for 0 < / < k produces 2" elements, the dis-
jointness of the P" implies the disjointness of the P. Therefore, from the estimate for |Q)']
above, we are able to use (SR2)’ for T to bound the partial sum by

1]\ o .
(9.70) S(Qé)v e, szl) — 2k<c|Q|ﬂu<g) >Ck,0u|1|—/f,0u/2 1_[ mfaX|Q/|ﬂu.

0<i<k

When we now sum over Qy, ..., Q,_,, we are led to introduce
(9.71) S, = ZmTaX|QJp”,

where the sum is taken over all (P, Q,n) € R(T) such that P and Q) are thin T-critical.
This sum will be estimated below. In terms of S}, we have for the full some S

S Y S(Q)--.. Q)

k21 Qp....Qp,
[Tl /2
<C|Q|pu(_> Z(Qcpulll pu/QSbi)k
€07 =
i
9.72 <air (L) s,
0

provided |I|7”/?S,. < C~! with C large enough.
In the next subsection, we will prove the

Proposition 35. — Let 0, be a number (independent of T >> 1 > &o) such that d° /2 < 6, <
1 — d°. Under the hypotheses of the proposition, we have (if T 3> 1 >> o are small enough)

(9.73) S;, < 1%

Remark 11. — Tt is easy to check that hypothesis (H4) on d”, d" implies that d°/2 <
1—d°.
The estimate of the proposition is sufficient to get C|T| =/ QS/ < |I|“’“ and thus

I
9.74) S <O, (' ')
The proof of (SR2); is therefore complete except for the estimate for Sj..

Proof of Proposition 35. It is easy to relate S}, to the cardinality of the sets Bi_(1, T.T; »).
Indeed, we have clearly

9.75) S <> #Bi (LTI 272070,

=0
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To estimate the cardinality of Bi_ (I, T, T; 27%), we will use (SR3), except when [ is very
large; in this case, the following result will provide a slightly better estimate.

Proposition 36. — Assume that (SR1), holds_for T. Then, Jor any candidate interval 1, any
x > 0, the number of (P, Q, n) € R(I) with Q thin I-critical and maxy |Q] = x s at most

T\ e\
() e ()
e/ '\

Progf. — Let (P, Q,n) € R(I) with Q thin I-critical. We claim that Q C Qfor
some (P Q_,N) eC_ (I) Indeed, let (P, Q/, ") € R(I) such that Q C Q', Q' is I-critical,
and ming |Q/|'™" < 2|I|. Replacing if necessary Q' by the smallest T-defined rectangle
containing Q)', we may assume that (P, Q', ') € R() (see Corollary 5 in Section 6.6.3).
Then, as Q' is | spe(:lal we have from Proposition 18 in Section 7.7 that maxg Q' <
C|1I]. Therefore Q’, and also Q is contained in Qfor some (P, QN) eC_(D.

In the estimate of the Proposition, we can now assume that x < |I|, otherwise there
isno (P, Q, n) with the required properties. Let (P, Q %) € C_(I); we have maxy |QJ < I
From Corollary 13 in Section 8.3, the number of (P, Q, n) € R(I) with Q thin I-critical,
Q C Q, and max; |QJ > x is at most (ﬁ)fd:.

fl[)

As the cardinality of C_(I) is at most C([T|/g0)°e; "™ by (SR1),, we obtain the
required estimate. 0

Corollary 14. — One has

X —di |I| Ii_‘( r(d0+ —
#Bi (L1, T; x) <B* := c( ) (—) 0,
aial) e Q

The estimate of the Corollary does not take into account that, for the elements
P, Q,n) € Bi_(I, I, I; x), P is I-critical. Therefore, it is not surprising that it is worse than
(d +- ) k.
T |Q| @ is large

o
\QI

(SR3), for middle- 51zed x. Indeed, on one side, the constant g,
(much larger than &;*%). On the other side, comparing the exponents

in B#, B/, B; when 3> 1 > g, are small, one gets
— —d (close to —do) and ;% + d! (close to 1 — d}) for B#;
(20’0 —i— d’—1) > —d% and oy + 0| (close to 1 —d" > 1 — d")

— —p} (close to —
for B!;
— —py (close to —d) and 20y + o (close to 2 — d° — d° > 1 — d°) for B,

d0+d0

The only range where B* is smaller than B’ = max(B}, B)) is when « is very small be-
cause, although p; and & are both close to a,’l? , we have p) > d¥. Forgetting about powers



104 JACOB PALIS AND JEAN-CHRISTOPHE YOCCOZ

of e, we define ¥ . (for T) by

(9.76) (E(j:a& (Lil) e |Q\§|7d: _ (%)_Pé <£)200+01’

which amounts to

1
v

9.77 = — .
9.77) e [(80) Q-

. - . 0 1
The quantity o, := 20y + 01 — {37 — d; is close to 1 — &, and the exponent & s very

large.
We now come back to the estimation of Sj.. We divide the sum over / in the right-
hand term of (9.82) in three parts:

X227 >4.
14+At/p} i GO-HTI —At/
Here ¥ = ¢, Q1) ?Iis defined (in (9.29)) by the relation ; "B} = 1 and
satisfies X' < |I|’3 The set Bi_ (I I I x) is empty for x > ¥. In the range under considera-
tion, the cardinality of the set Bi_ I,1,T; 27) is bounded by &5 " B). We get, as p| < p,

(9.78) = > #BLITTL 2720 <Cxm

227>,
As ¥ < |I|?, we have

(9.79) S|« 4% < [T

R -1 -/
Xer 2 2 2 Xmin®

~

In this range, the cardinality of the set Bi_( .1,T; 27 is bounded by &5 B),. As
we have p) > p, + &, we get

Sy:i= Y #Bi(@LLT 272070

[722 >X

‘min

v

B B X . Pu— |I| 200+01]
< Cer (o) — o (Z )" e (5,)
0 0 80|Q5| O Q

T (Nt =
(9.80) < Cey D (60| Q, )™ Q,| A ( ) W
€0
Here, 20, + 0, and o are respectively close to 2 — d” — d” and 1 — dl? , 2= 51 belongs to

(0, 1), and p, is close to d°. This allows to obtain, when T >> 1 > &, are small enough
(9.81) S, < [T)%.
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- %, =97

min

~

In this range, we use B* to bound the cardinality of the set Bi_( ,T, T; 271, As we
have p, > d + ¢, we get, using (9.83)

Z #Bi_(I,1.T; 2720~

>2-!

Xmin Z

— (42 X .\ |I| 200+01
< e, gy (LY i (B )
&0l Q| :

« PO—Pu o /’U Pu

—dy T —x% |I| 200+01— i
Gl QD Q0 (=) .
0

t(1+d0+1%)

9.82) < Cey

Up to a meaningless power of &, this is the same bound as for S,.
Summing the three estimates for S}, S5, S} give the required estimate for S .. The
proof of (SR2)! is now complete.

Proof of (SR2)!. — The proof of (SR2) is essentially symmetric to the proof of
(SR2)’, but we have to be somewhat careful because we used (SR3) which is not symmet-
ric.

We divide the sums of the maxp |P;|” (over a finite family of elements of R(T) with
the Q; disjoint and contained in a Q with (P, Q, n) € C_(I)) into an old an a new part as
for (SR2),. The old part is dealt with exactly as above. For the new part, we introduce

9.83 Sy = P|”,
(9.83) =D max|P)

where the sum is taken over all (P, Q, n) € R(T) such that P and Q) are thin T-critical. We
now claim that

9.84) Sy < 1%,

where 6, is any fixed constant in (¢°/2, 1 — d°) independent of T > 1 > &,. The deduc-
tion of (SR2)’ from this estimate is the same as for (SR2)’. To prove the claim, we proceed
as in the proof of Proposition 35. The estimate corresponding to Proposition 36 and its
Corollary is now

I T+ 0 N
(9.85) #Biy (1L T 2) < B* 1= C(— ) (' ') gy (T
&o|P,| &o

The threshold where B* gets better than B = max(By, B;) is X, with

1
_rnin I . | P08
(9.86) Nmin__ [(U) P, | i|ﬂo
80|Pu| &o
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with 0 := 20y + 0] — m —d’ close to 1 — do We have

(9.87) Si< ) #Bi, LT T 272070,

120
and the right-hand sum is divided into three parts:

—x=927>x,.

Here x = SH—AI/’)] |Pu|(m) Pl is defined by the relation 86AIB1 =1 and satisfies

% < [I|#. The set B, 1T, I , x) 1s empty for x > X. In the range under consideration, the
cardinality of the set Bz, (I I I 27"y is bounded by &y ATB,. We get, as p; < p;

(9.88) Sii= Y #BLAMTT27H2" " <cw < 1'%

Cx=2">x,

.y —
- Xer 2 2 2 Xmin -

In this range, the cardinality of the set Bi, (I, T,T; 27) is bounded by £;7By. As
we have py > p, + &§, we get

Sp:= Y #BiL LILT 27207

167’227/>Ymin
_A _ %min ps— s | | 200+01
< Cer oy — p) 7 () M lply (S
80|Pu| &o
« p0=ps 7 ||\ 200+01— *po .
(9-89) < Cey " (eo PR <|8|> -
0

Here, 20( + 0} and ¢* are respectively close to 2 — d° — d” and | — d°, Z 0 ';’jj belongs to

(0, 1), and p; 1s close to d?. This allows to obtain
(9.90) S, < |11,

— the sum S3 over ¥ => 27/ has the same bound as for Sy, up to a meaningless
power of &§.

Summing the three estimates for S, Sy, Sg give the required estimate for S;,. The proof
of (SR2)! is complete. 0
9.7. The induction step for (SR3),: general overview and easy cases.

9.7.1. Very small values of x. — Let 1 C I be a candidate interval. When x is very
small, one obtains directly a (trivial) estimate for the cardinality of Bz, (1, 1, I,; ) which
turns out to be better than (SR3),. Indeed, from Corollary 13 in Section 8.3, one certainly
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has
(9.91) #Bi, (I 1,,1,; x) < Cx ¢

This very rough estimate is nevertheless better than (SR3); when x is very small because
po > d (see (9.69) above). More precisely, we define

(9.92) i 2= [0

with C large enough. For x < x,,,, we have x4 & By for all intervals I, I, containing I.
Therefore we have proved the

Proposition 37. — The estimate (SR3); is satisfied for all candidates 1, all 1, 1, D 1, as soon

as x < Xmin -

9.7.2. Old and new elements. — Let 1 C 1 be a candidate interval.

Deﬁmtzon 9. — Wedenote by Bz”ld (L, Lo, Lo; x) the set of (P, Q, n) € Biy (1, 1y, L5 x) which
belong to T\’,(I) by Biy(1, Iy, 1o; x) the set of (P, Q, n) € By (1, 1, L5 x) which do not belong to
R().

We will estimate separately the cardinalities of the two sets. The estimate for
By, Ly, Ig ; x) 1s based on the structure theorem of Section 6.5 and is valid for all can-
didates I C I. In Section 9.8, we will prove the

Proposition 38. — Assume that 1 is strongly regular. There exists a constant o9 > 0, depending
only on d”, d°, w,, such that one has, for all candidates 1 C 1, all 1,,1,, D 1, all x = xpin

#Bi(L, L, L; %) < [[[B,

where 85" B is the bound for #Bi (1, 1y, 1,; x) predicted by (SR3);.

On the other hand, the estimate for B24“(1, Iy, L; «) is trivial (from the strong reg-
ularity of I) when both I, and I,, contain . Indeed one has in this case

(9.93) B (1, 1y, I; x) € Biy (1, I, 1,5 %)

(we don’t have always equality because the maximum value of |P| is taken over I in one
case and over I in the other case). Combining this with Proposition 38, we get

_ Proposition 39. — Assume that T is strongly regular. Then (SR3); is satisfied for all candidates
I1CL all,, I, D1, all x > xpn.
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Progf. — We have only to observe that the series ), g7’ (where g, = 8(()1-”) is the

length of intervals of generation £), related to the iterated application of Proposition 38 is
. o9
convergent with sum < Ce”. UJ

9.7.3. Thecasel =1, #1,. — Let1 C Tbe a candidate interval. We consider here
a set Bz”’d(l L I,;x) with I, D T. We will estimate the size of this set for most candidates
1cT, assuming that Tis strongly regular.

Let (P, Q, n) be an element of Bi”ld (I,1,1I,; x). As P in thin I-critical, there exists
(P, Q" n*) € R(I) such that P C P*, P* is I-critical and min; |P*|'~7 < 2|1|. By coher-
ence, (P*,Q*, n*) € R(I) and P* is spec1al then, by Proposmon 18 in Sectlon 7.7,
we have max~|P*|l TG It follows that there exists (P Q,A) € C+(I) such that
PcPC P. Moreover, we have I € Cr(P) by definition of Cr(P) Observe also that P* is
T- critical, hence P is thin T critical, and that maxy |P| > max; |P| >

Dg?mtzon 10. — For (P Q'\') € C+(I), we denote by Bl+(P) the set of (P,Q,n) €
Bi, (I I I,; x) such that P C P.

We have just seen that

(9.94) Bi'LLIz0c || Bi@®.

®.QmeC, @)
1eCr(P)

As the sets Big (ﬁ) are disjoint, we have

(9.95) > #Bi, (P) <#Bi, (ILT. 1 %).
i
‘We now sum over candidates I C T the estimate for the cardinality of Biﬁd LL1I,; %)

deduced from the inclusion above. We obtain, using Proposition 33 in Section 9.5 and

(9.102)
> HBI(LL L0 < ) #Bi, (P)HCH(P)
IcT e

<G ) #Bi (P)
cM

(9.96) < CI ™ #Bi (I, T, 1,; x).

From now on, we assume that the exponents oy (close to 1 — @) and o (close to d° — d)
in (SR3) satisty

9.97) o040, <1—3t—d".
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We also assume that

(9.98) >d 46l 2

Proposition 40 — Assume that T is strongly regular. Then, except for a proportion of candidates
not greater than |I|t the estimate (SR3); s satisfied by Biy (I, 1,1, x) for all x = % and all
I,OT

Progf. — In view of Proposition 38, we have only to consider B(L, 1, 1,,; x). For
fixed x = 27" > x,, and fixed I, D I it follows from (9.96) that we have

(9.99) #B(1, 1, 1,; x) < C727 174 #Bi, (1,1, L; %),

except for a proportion of candidates no greater than 12",

90
I —_
Letx, = 80|Pu|(_|£|)”°_pl . For x < x,,, we have

—p0 T ooto1 /|1,,]\ 20
(9.100) #Bi, (LT, 1,: ) < —Af( ! )p(u) (u) ,

&o|P,| &o &o

while for x > x,,, we have

9.101) #Bi, (1T, 1, %) < —Af(gor;”)m (g)mm.

Asoy+o0, <1 -3t —d, we have

(9.102) C v o [|zeo+on,

and therefore, when a candidate I satisfies (9.99), we have
(9.103) #Biﬁd(I, I, 1,; x) < &, "B = g, max(By, B)).

Thus, to get the required estimate, it is sufficient to_remove a proportion < < I o
candidates for each x = 27/ > omin and each I, D T. The number of values of / is

< C(po —d") ' < Cg =2 log2 |I|. The number of possibilities for 1, is the level £ of

(1+0)*

the interval I. From [I| = ¢, , we have

log (%)

log(1 + 7)

Now, we have, for gy, small enough

9.104) k=

log 1]

g Ogl & 72
9.105 cl*e r/21 I|—2%" 1|7,
( ) 1| 0g, | |10g(1+‘r) < |1

and the proof of the proposition is complete. O
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9.7.4. The case 1 =1, # I,. — The case is essentially symmetric to the case that
we have just considered above. We will now assume that (9.98) holds and that

(9.106) oo <131 —d*.

Proposition 41 — Assume that T is strongly regular. Then, except for a proportion of candidates
not greater than |I|t the estimate (SR 3); 15 satisfied by Biy (1, 1y, I; x) for all x = Xy and all 1, D T

Progf. — The only difference with the proof of Proposition 40 is that we now have,
for each x = 27/ > xpm, cach I, D1

(9.107) #B (1,1, T; x) < G|~ 20 #Bi, (1,1, T; ),

except from a proportion of candidates no greater than |I|2’2 , where Bi (I, I, I; x) is now
controlled by

—p0 T o0 7|1, |\ cotor
(9.108) #Bi, (0, 1,,T: x) < —Af( * )p(u) (U) ,

&o|P,| &o &0
for x < x, = £[P,| (1) 57 , and by
—p T o Ia o
(9.109) #Bi, 0,1, T x)<g—Af( * ) (U) (U) -
&o|P,] &o &o

for x > x,,.
Using 0y < 1 — 37 — dF allows to conclude as in the proof of Proposition 40. [

9.7.5. The case 1 =1, =1, x large. — Except for the proof of Proposition 38, the
only case left in the induction step for (SR3), 1s I =1, = I,,, ¥ = %, In this case, we have

9.110) B, = (L)_pu(m)mm,

80|Pu| )
X —p1 7|1\ o0to1
9.111) B = (—) (—) .
80|Pu| )
Observe that we have
9.112) B(I, L, T; x) € B&“(L 1L, T; x).

~ T %0
In the proof of Proposition 40, we have shown that for x = 27/ >%,, := | P,| (LLOI) =1 we
have

(9.113) #BI(L LT, x) <&, By,

except for a proportion < 112" of candidates 1. We get therefore the required estimate
for B#(1, 1, 1; x) when x > %,,.
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Proposition 42. — Assume that T is strongly regular. Then, except for a proportion of candidates
not grealer than 1|™°, the estimate (SR3);, is satisfied by Bi, (1, 1, 1; x) for all x >'x,,, where

~ T\ 77
9.114) 5 = 80|Pu|(—) .
€o

9.7.6. The case 1 =1, = 1, xpin < x <X, idea of the proof. — This remaining
case 1s by far the hardest! In this range of x, the required bound for the cardinality of
By (I, I I; x) 1s given by By (except at the very top of the range); the exponent 20y + o,
(close to 2 — d” — d°) in (9.110) means that we have to take into account the criticality of
both P and Q) in the selection process.

Let I C 1 be a candidate interval and let P,Q,n) € Bii’d(l, LI x). T}}g argument
at the beginning of Section 9.7.3 shows that there exists (Py, Q,, 7y) € C (1) such that
P C P, and I € Cr(P,). Similarly, there exists (P,,, Q,,, 1,,) € C_ (T) such that Q C Q,, and

I € Cr(Q,,). We also observe that (P, Q, n) € Bi, (I, I, T; x).

Definition 11. — For (Py, Qy,ny) € Co(D), (P, Q) € C_(D), we denote by
Biy (Py, Q) the set of (P, Q, n) € Biy (I, 1, I; x) such that P C Py and Q C Q,,,.

We have just seen that, for any candidate I, we have

(9.115) B(L LT, x) C |_| |_| Bi, (Py, Q,).
(Par, Qu,112) €C4 () (P, Qo 10) €C— (D)
1eCr(Py) 1eCr(Qy)

As the sets B, (P, Q,,) are disjoint, we have

(9.116) > #Bi(P,.Q,) <#Bi, I LT ).

c.me-(

If we were able to prove (for a “random” candidate I) that the events I € Cr(P,)
and I € Cr(Q,,) are roughly “independent”, i.e. if the proportion of candidates in
Cr(Py) N Cr(Q,,) was roughly the product |ff|’(2_’i;r =40 of the proportions in Cr(P,) and
Cr(Q,,) (cf. Proposition 33 in Section 9.5), we would be able to proceed as in the proof
of Proposition 40. But this is unfortunately not the case.

Instead, we will use some degree of independence, in the range of x under consid-
eration, of the variables P, and Q,, in B¢, (P, Q). To explain the technique, consider
first the unrealistic model case where we assume that

(9.117) #Bi, (P, Q,) = b, (Po)b_(Q,),

for some functions b, b_ on C,. M, C_ (T), respectively.
From (9.115), we would get

(9.118) #B (I L T; x) < ¢ (Dp_(D),
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with

(9.119) prD= D b(Py).
1€Cr(Py)

(9.120) é_(I) = Z b_(Q,).
1eCr(Qy)

We now average separately ¢ and ¢_. We obtain

®120) 3D < (max#Cr2)) 3 b (P,

.
9122) 3090 < (max#GrQ) o h-(@Q).
1 B c_@

where Cr(P,) and Cr(Q,,) are estimated by Proposition 33 in Section 9.5. From (9.116),
we have

(9.123) D@D Q)= Y #Bi(P,.Q,) <#Bi (LLTw).

0 c-(D CoMxC_(D

It 1s then sufficient to eliminate candidates for which either ¢, or ¢_ is much above its
average value to obtain (SR3); for the remaining intervals.

As (9.117) does not hold, we will find an appropriate substitute as follows.

We will subdivide each class Biy (P, Q,,) into subclasses Biy (P, Q,,, £); the index
¢ runs through a finite large set L. dependent on T and x but independent on P, and
Q,,. Moreover, we will have functions b, (P, £), b_(Q,,,£) on C,(I) x L, C_(I) x L,
respectively, such that,

(9.124) #Bi, (Py, Q,, 0) < . (Py, £), b_(Q,, £).

We then set, for each £ € L.:

(9.125) ¢reD= Y b.(Py, ),

1eCr(Py)

(9.126) D= Y  b.(Q,0).

1eCr(Qy)

We average each of these functions to get, in view of Proposition 33 in Section 9.5,

9.127) Y ¢ (D < CIT™ b, (0),
1

(9.128) > oo (M < CEI b0,
1
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with
(9.129) be(@) =) b.(Pu,0),

C+(D
(9.130) b_(€) = Z b_(Q,, 0).

C_(I)
For each £, we will have
9.131) oD < T4, (0),
(9.132) ¢_o(D < [T 9p_(0)

except for a proportion of candidates not greater than CIT*". Set

(9.133) B=Y " 0.(0)b_(0).
L

Because we need to eliminate candidates for each £, L should not be too large. We will
show in Section 9.10 that

(9.134) HL< 1.

Taking into account that we must eliminate candidates for each x = 27" > X, the total
proportion of the failed candidates is at most |I|* (cf. proof of Proposition 40 in Sec-
tion 9.7.3). On the other hand, for the surviving candidates, the discussion above gives

#BI'(LLL)< Y #Bi(P. Q)

1eCr(Pe)NCr(Qy)

<Y D D (P 0b(Q, 0

L 1eCr(Py) 1eCr(Qy)

=Y ¢r(Dg_ (D)
L

(9.135) < [T)F@-4" 4 -60p,

If we are able to prove that

(9.136) [Tj72 =48 < 6,7 B,

where B is the bound from (SR3);, we get the required conclusion.
In the next four subsections, we will

— prove Proposition 38 (estimate on the size of B\ (I, I, I,,; x));
— define precisely L. and the subclasses Bz, (P, Q,,, £);

bound the cardinality of L (prove (9.134));

obtain an appropriate estimate for B.
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9.8. Size of B"(1, 1., I,,; x).

9.8.1. The goal of Section 9.8 is to prove Proposition 38 in Section 9.7.2. Let us
recall the statement: there exists a constant oy > 0, depending only on d°,d", w,, such

that, if T is strongly regular, one has, for all candidates I C I all I,, I, D L, all x > xn
(9.137) #B2(I, I, L; x) < 1B,

where ;"B is the bound for #Bi, (I, I, I,; x) predicted by (SR3),.

It is sufficient to prove this estimate when Ia, I, contain T Indeed, let I =Tu 1.,
T = IUI We have Bzy“(I, I, L,; x) C By (1, Ia, Ia,, x). On the other hand, the bounds
g, V"B, & ATB predlcted by (SR3); for #Bz+ (I Ly, L; %), #Bey (1, Ia, To; x) respectively sat-
isfy B > |I|C’B Therefore the estimate (9.144) for #Bz} (1, Ia, Iw, x) imply the estimate
for #B\(I, Ly, 1,,; x) with a slightly smaller value of o > 0.

We will therefore now assume that both I, I, contain I.

9.8.2. LetICTbe acandidate interval, let I, I, be parameter intervals contain-
ingT let x = 27" > xi and let (P, Q, n) € #Bi, (I, I, 1,; x).

We apply the structure theorem of Section 6.5. We obtain an integer £ > 0 and
elements (P;, Q;, n;) € R(I) for 0 < ¢ < £ such that

- (P,Q,n) € (P, Qp,mp) J--- DN(P/C, Q. mp);
— for 0 < i<k, Q; and P,y are I-critical and Q; 7P, does not hold;
— forall t €1, |P| < CHI|7#/2 Hogzgk |P;| (cf. Proposition 14 in Section 6.6.3).

For 0 <7< £, denote by x; = 27" the largest integral negative power of 2 such that |P;| >
x; for some ¢ € 1.

Lemma 12. — We have (Py, Qp, ny) € Biy (T 1. T; x0), (Pr. Qg ) € Biy (LT, L3 ),
and (P;, Q;, n;) EBZ+(I I I x;) for 0 <1< k.

Remark 12. — This lemma is the reason why we need to consider different levels of
criticality for P and Q,

Proof. — Yor 0 < i< k, Q; and P,y are thin T-critical by Lemma 10 in Section 9.1.
As P is thin I,-critical, there exists (P, Q', #') € R(I,) with P C P" and miny, [P’ |'=7 <
9|I,]. As I, DT and Py is the thinnest I-defined rectangle containing P, one has P, C P’
and Py is thin I,-critical. Similarly, Q; is thin I,-critical. In view of the definition of the
x;, the proof of the lemma is complete. O

From the definition of the x; and the estimate for |P| above, we get

k
k
(9.138) <cHI2 ] T
0
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Let us write
#(xo) := #Bi, (I, 1, T; xp),
#(x) = #Bi, (LT, L ),
#(x):=#Bi (L1 T x) for0<i<k

Then, as each parabolic composition produces two elements, we have

k
9.139) #BI (1L L, 10 < Y28 Y [ T#W)

k>0 X0seeesxp 0

where the x; in the sum are of the form 27% and must satisfy (9.138). B
The term #(x;) 1s estimated by the induction hypothesis (SR3); for I. The bound
for #(x;) has a phase transition at a threshold x; ,, with (cf. (9.16))

T\ 2
xO,c?':80|Pu|<| |)"0 '01’
&o
|I(1)| /’00_0/’1
(9.140) %o = 0| Pl (_) ,
&o

~ .
) T\ |
o = &0l P — , forO<i<k.

&o

We divide the sum in the right-hand part of (9.139) into two parts. In the first sum,
denoted by S;, we put the terms for which every x; is above the threshold x; . In the
second sum, denoted by S, we put the terms for which at least one of the x; is below x; ,.

9.8.3. Terms with all x; large. — Let us consider a term in S;. All #(x;) are bounded
by ;"B and we have

k k —p1 ~
_ z |Ia| ol |I| (k+1)og+koy
oas e ([Te) wmeon (B (I
0

& &
0 0 0

In view of (9.138), the right-hand side is bounded by

oae o) () ()

with

~

. —9Ar _% Pl m o0+o1
(9.143) 7= Ce2 (&P . .

0
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For all 0 < i < k, from (9.140) and C™'ey" < |P,| < C7'eg” (cf. (9.17) in Section 5.6.4), w
have x; , > |I|(” for some large enough C. Therefore for eaeh k > 0, the number of terms
in S, is at most (C|log, |I||)/C+1 < (Cllog, |I||)2k

We thus obtain for S; the bound

x NN TN
9.144 s,gc( ) (—) (—) 7k,
( ) : 80|Pu| &o &o ; :

with

(9.145) 7, :=2(Cllog, 1)2Z.
In view of (9.143), we have
| [\cotor—p1 ~ 1
(9.146) 7, < ( ) 137",
€o

where the exponent oy + o) — p; is strictly positive from the hypothesis (H4), as we have
seen in Section 9 3 (ct. (9.24)).
As Z) < 5, we obtain from (9.144) that

1 X —p1 |T| 200+01=p1 7 |I, |\t ~ L
e bt (O (e
2 \eo|P,| €0 €0
_ o o] ~ |
gl( ) ’”(mmM,M) °(M) T3
2 \go|P,| g & €0

1. ~1L
(9.147) = §B1|I|3‘”,

where we have used that both I,,,1, contain 1 and oy +o,—p; > 0.
9.8.4. Terms with some x; small. — Consider a term in the sum S;. Let J be the

non-empty subset of indices ¢ € {0, ..., £} for which x; < x; ,, and write j = #].
We first estimate the product [ [, #(x;). As py > p1, we have from (9.138)

kN —p
9.148) ]_[x;m]_[x;”‘g(c-kupx) '
J J

As we also have T C I, Tc I, we obtain

(9.149) H#(x) Ce ™ (— )”°(M)"“+‘”(M)"UY€_1Y§7

0| P, &p &o
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with
(9.150) (80|P |)p0 Pl<| |) 0’
&o
op+o
9.151) Y, = Cey  [1| 7/ (e [P, |>"‘(| l) o
€0

We have
(9.152) YO < 1’
and, as C ey < |P,| < C7ley” (cf. (5.17)), we can rewrite Y| as
(9 153) Y C<T>60+U1épo(1+f)8,01—%Po(l-i-t)—i-plwu_Ar

) I 0 )

€o

The exponent oy + 0| — %po(l + 1) isclose to 1 —d) — 1/2d° when © 3> 1 >> & are small.
We have 1 — d’ — 1/2d° > 0 from (H4) (see also the remark after Proposition 35). The
exponent p; — %po(l 4+ 1) is close to %d?(?)d? + dl? — 2)(d50 + do)_l when T > n > g, are
small. From d° + d° > 1, d° > d°, we have 3d° + d° — 2 > 0 (with equality iff ¢ = " =
1/2). On the other hand, the exponent p;w, is close to w,d”(2d" 4+ d° — 1) (d° + dl?) >0
when 7 3> 1 > ¢; are small. All this means that we can find a number oy > 0, depending
only on d°, d°, w, (and only on d°, d° when (d°, d°) # (1/2, 1/2)) such that

(9.154) Y, < [T)%2,

Consider now, for fixed £, the number of terms in S;. From Proposition 14 in Sec-
tion 6.6.3, we have X S |I| for each 7 then (9.138) and x > x;, imply that x; > X,
for each 7. As x;, = |I|(J('“O ~™"  the number of terms is bounded by

~ k+1
9.155 C(py — d*) 'og, |I|7') .
s gZ

Using £+ 1 < 2k for £ > 0 and (9.149), (9.152), we obtain the following bound for S;

(9.156) S, < (gor;u|)p°(%)”wl (%)“o LZYk

k>0

with
(9.157) Y = 2C(py — )" *(log[T|7")?Y .

From (9.98) in Section 9.7.3, we have (py — d)~ 2K S_T |I| ™ We obtain therefore

1 ~
9.158 Y < — 1),
(9.158) > i< o

k>0
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We have thus shown that

1.~
(9.159) S, < §B0|I|"2.
Taking oy smaller if necessary, we can assume that
1
(9.160) 0< 09 < 5,01

The estimates (9.147) and (9.159) complete the proof of Proposition 38.
9.9. Subclasses of bicritical elements.

9.9.1. Complement to the structure theorem. — The following result will be used several
times in the construction of the classes of bicritical elements.

Proposition 43. — Let 1 C 1 be a candidate terval. Let (P, Q, n), (P', Q' n') € R(1) with
P C P'. Assume that (P, Q, n) does not belong to R(1). Let k > 0 be the integer and (P;, Q;, n;) €
RA) for 0 < ¢ < k be the elements given by the structure theorem.

1. If (P, Q, ) belongs to R(1), we have P' D Py. _
2. If (P',Q, 1) does not belong to R(L), there exists 0 < j < k and (P, q, n}) e R0
with P D P; such that

(P, Q) € Py, Qy,mo) O---0 (Pi_y, Qj—y, m—y) O (P}, Q’-, ﬂj/-)
is the decomposition associated to (P', Q', n') by the structure theorem.

Remark 13. — Taking j = 0 and (P}, Qy, ny) = (P, Q’, ), the first case can be
considered as a special case of the second case.

Proof. — The first case follows from the fact that Py 1s the thinnest T-defined rec-
tangle containing P. B

We now assume that (P’, Q’, ') does not belong to /R(I). By coherence, Py is also
the thinnest I-defined rectangle containing P’. Therefore, (Py, Qy, ny) is also the first
element in the decomposition associated to (P’, Q)', #) by the structure theorem.

Let (/I;, Q?D € (P, Qy,m) O---0O (P, Qy, m) be the element such that

(P, Q, n) € (Py, Qo, mp) O (P, Q, 7).
We claim that, when £ > 1, i.e. when (/15, Q’ﬁ) does not belong to R(T),
(P, QM € (P, Qy,m) OO (P, Qs mp)

1s the decomposition associated to (/I;, Q’ﬁ) by the structure theorem. Indeed, this follows
easily from the characterization of the (P;, Q;, n;) in terms of maximal I-intervals (see
Lemma 2 in Section 6.5.2).
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Define similarly (’f\” , Q’ , 1) such that
(P, Q1) € (Py, Qp, mo) O (P, Q7).

As PC P, we haxe :P;C/ls/. If k=1, we have (/IS,Q%N) = (P, Qy,m), we take j =
1, (P}, Q). 7)) = (P,Q, %) to satisfy the conclusions of the proposition. If £ > 1, the
claim above allows also to conclude by induction on £. UJ

9.9.2. Bound elements.

Definition 12. — Let (Py, Qy, ng) € C4 (1), (P, Q,, 1) € C—(1). An element (P, Q, n)
€ Bip (Py, Q) s bound if n < ng + ny,. Otherwise, we say that (P, Q, n) s _free. We will denote by
Bi, (Py, Qy, Q) the subset of bound elements of Biy (Py, Q).

Thus, ¢ is an element of L. On the other hand, free elements will correspond to many elements
of L. Recall that we have x,3, < x <'x,,. When x K 'x,,, most elements are free. If we would allow
x >>'x,,, on the opposite, most elements would be bound.

Proposition 44. — For any (P% Q. ny), Py, Q1) € R(T), and any n < ng + n,, there
is at most one element (P, Q, n) € R(1) of length n such that P C Py, Q C Q,,.

Proof. — We argue by induction on the level of the parameter interval.

When T is the starting interval I, no parabolic composition is involved and the
result follows from usual symbolic dynamics: as n < n, + 7,, the word associated to a
bound element is determined by its initial and final parts. B

Assume that the result holds for parameter intervals strictly larger than I. Denote
by T, the parent interval of T

Assume first that both (P,, Q,, na)Nand P,, Q,, n,) belong to R(Tl). We claim
that any bound element also belongs to R(I;), which allow us to conclude the proof by the
induction hypothesis. Indeed, if (P, Q, ») satisties P C P,, Q C Q,, and does not belong to
R(Tl), we apply the structure theorem: it gives elements (Py, Qo, 70), (P, Qy, 1) € R(Tl)
such that Py is the thinnest rectangle containing P defined over T, Q) 1s the thinnest
rectangle containing Q) defined over Tl ,and n > ny + n; + Ny. Therefore, ny > ny, n,. > n,
and n > ny + n,.

We now consider the case when, for instance, (P,, Q,,n,) does not belong to
R(}). We now apply the structure theorem to (P,, Q,,7,) and also to an element
P,Q,n) € R(T) with P C P,, Q C Q,,, n < ny + n,. From Proposition 43, we obtain
integers 0 <y < £, elements (P;, Q;, n) € R(Tl) for 0 < ¢ < £ such that

(9.161) (P, Q, n) € (Py, Qy, no) OO (P, Qp, mp)
and also (P;, Q;,%) € R(I}) such that P, > P; and

(9.162) (Py, Qus 7)) € (P, Qg ) O--- 0 (Pi_1, Qi ) O (B, Q) 7).
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Similarly, there exists m with 0 < m < £ and (ﬁn, Qﬁﬂ,?{’ ) in R(Tl) such that Qﬁn D Q,

m

and

— either m =k, (rf’;n, Qn,%;l) = (Po, Qu 10);

— or m < k and we have,

(9.163) (Por Quonp) € (P, Q%) OO (P, Qp, ).

The relations n < ng + 1y, n; =, n,, 27, imply that m <.

If m <, the sequence (P;, Q;, n;) and the choice of the result (out of two possi-
bilities) in each parabolic composition are completely determined by P, and Q,,: the
assertion of the proposition follows.

When m =, the sequence (P;, Q;, n;) for ¢ # m = is determined by P,, Q,,; but
we also have P; C E, Q,=0Q,C Q,. and n <+, so by the induction hypothesis
(P;, Q;, m) is also determined by P, Q,, and n. Again, the choices of the results in the
parabolic compositions are also determined by P,, Q,,. The proof of the proposition is
complete. 0J

Recall that, by Proposition 12 in Section 6.6.2, we have

(9.164) max |P| < Gy exp(—n")
T

for any (P, Q, n) € R(D), with y =log2/log2 > 1.
If (P, Q, n) € B, (P, Q,,, O), we have maxy |P|>x>x,, = |T|C(p"_ds*)71, and there-

fore
(9.165) n < (po — d*) 2(log [T))2.
We thus shall define
(9.166) by (Py, 0) = 0_(Q,,, 0) = (py — &) " log 1] ",

and we will indeed have, from Proposition 44,

(9.167) #Bi, (Py, Q. O) < by (Py, 0)0-(Qy, 0).

9.9.3. Decomposition of a fiee element. — Let (Py, Qy, ny) € C+(T), P,, Q,, 1) €
C_ (T) and let (P, Q, n) € Biy (P,, Q,,) be a free element. We will analyze with respect to
the structure theorem the way in which (P, Q, n), (Py, Qq, 1y), (P, Q,, n,) have been
created. This will allow us in the sequel to define various subclasses of free elements.

Denote byTO the largest parameter interval such that (P, Q, n) € R(i)). Elements
(P, Q, n) for which/I\O is the starting interval I are said to have depth 0. They form a first
free subclass of B, (P,, Q,,) denoted by Bz, (P,, Q,,, 0).
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We now assume that Ty # I, and denote by To the parent interval of To. We apply

the structure theorem. We obtain an integer £ > 0, elements (P, Qg, no), ..., (P, Qy, )
n R(IO) such that
(9.168) P, Q, n) € (Py, Qg, np) -+ - T (P, Qp, ).

By Proposition 43, we find 0 <j < £ and ®, Q W) € R(1y) such that either J=0,
P, 0. 7) = (Par Qu. 1) (if (P, Q. 1) € R(1)) 0r j > 0 and
9.169) (Pu, Qq. 110) € (P, Qg o) O--- 0 (B, Q1. %).

Similarly, we find 0 < m < kand (Pm, Q’ )€ R(IO) such that either m = £, (P Q:ﬂ, 7,
=(P,,Q,,n,) orm<k and

(9.170) (P, Qo) € (P, Q) 7) OO (Py, Oy, 1)

We also have P; C E, Q, C Q]’n Moreover, as (P, Q, n) is free, we must have j < m and,
when j = m, we must also have n; = n,, > + 7.

We say that (P, Q,n) is fully decomposed it one has here j < m or j = m and
(P;, Q;, 7)) € R(1y). Such elements are said to have depth one.

Assume that (P, Q, ) 1s not fully decomposed. Then, we have j = m, P; cP i, Q; C
Q\] and the largest parameter interval 11 for which (P;, Q;, ) € R(Il) 1s not the startmg

interval Iy. We denote by T, the parent interval. We rewrite

(P, Q' n P, Q;, 1)
(9.171) (P). Q). n) == (P, Q. %),
(PL, QL. by = (P, QL7

and proceed with these elements as we did with (P, Q, n), (Py, Qq, 1y), (P, Q,, 1,,): we
will find integers 0 <j; < m < £ (with f/g > 0), elements (Pl-l, Q, nl-l) for 0 <1<k and
also (Pi, Qi, ni), (Pi, Qi, nj)), all in R(I1,), such that

(P', Q,n') € (P, Qqmp) O--- O (P, Q)

(P(L» Qja n;) € (Pl7 Q[) no) D D ( jI 1° Qﬁ*l’njlfl) |:| (pr Q?a ni)a

(P, Q1) € (P, Qo) O (P 1, Qs ) O
O®,.Q;.m).

Again, we say that (P!, Q',»'") is fully decomposed if either j; < m; or j; = m; and
(lel, Q!l, n}l) is defined over the starting interval Ij; otherwise we set

9.173) (P, Q% n?) := (P}, Q,,n),

9.172)



122 JACOB PALIS AND JEAN-CHRISTOPHE YOCCOZ

and we go on. The sequence of parameter intervals Iy C T, C - -+ is strictly increasing and
therefore the process will stop. We define inductively the depth of (P, Q, n) to be the depth
of (P', Q!, n') plus one.

9.9.4. Size of the subclass of depth 0. — We will define in this subsection b, (P, 0),
b-(Q,,, 0) in order to have

9.174) #Bi, (P, Q,., 0) < b, (Py, 0)6_(Q,, 0).

Let (P, Qu, 10) € C4 (D), (Py, Q. 1) € C_(I) and let (P, Q, n) € Biy(Py, Q,, 0). Then
both (Py, Qy, 1), (P, Q. n,) € R(1p) and (P, Q, n) is obtained by a simple composi-
tion

(9.175) (P, Q,n) = (Po, Qq, m) ¥ (P, Q1) % (P, Q) 1)

We have here, by definition of B, (P, Q,,) and C (T)

(9.176) x < max |P| < Cmax |P,| max |P| max |P,| < C|Ff|lth max |P'| max |P,|.
i i i i i i
This gives
- -1
9.177) max [P'] > C*1|1|*“+f>(mgx|1>w|) x.
i i

From the reminder at the beginning of Section 8.3, we can thus define, as @" + Cegy <
i < ps,

<9.178> b+(P 0) = {(lefll—ﬁ—fx—l)ﬂ_&. if (P, %, ny) € R(L).

otherwise,

(maxq|P, ) if (Py,, Qp, 1) € R(lp),

0 otherwise.

(9.179) b_(Q,,0)= {
Then, (9.174) is satisfied.

9.9.5. Subclasses of higher depth. — Let (Py, Qy, ny) € C+(T), (P,, Q,, n,) € C_ (T)
and let (P, Q, n) € By (Py, Q,,) be an element of depth s > 0.

Let us first restate and extend somewhat the notations and the setting of Sec-
tion 9.9.2. We set

P, Q") := (P, Q,n),
(9.180) (P2, QY 1)) := (Py, Qu) 1)
(PS), QEU, ”S)) =Py, Qu,y1y).
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We have

— a strictly increasing sequence of parameter intervals
(9.181) T,clc---cl_ cL=I,

with T C Ty; we denote by T, the parent interval of T, for 0 <7 < s;

a sequence (P, Q’,#"), 0 < r < s such that (P", Q)', n") belongs to R(L) but not

to R(I.) for r < s;also (P°, Q°, n’) € R(i._l);

two sequences (P, Q! ,n), (P, Q! ,n ), 0 <r<s;for each r <5, resp. r =,

the two elements belong to R(1,), resp. R(Ty_l);

— two sequences (PZF,AQ;, n,), (P, Q" ,n"), 0 <r<s; for each 7, the two ele-
ments belong to R(I,_;).

These data are related by the following properties: for each 0 < 7 < 5, we have
(9.182) PLQ T he®.,Q ./ )O®, Q. )3 P, Q,, ),
(9.183) @7 e P,Q L) O (P, QL 1),

(9184 (P Q) ny ) e (P, Qp, m,) O (P, Q).

"The process stops at step s because of one of the two following cases occur
(a) (P, Q’, n’) does not belong to R(Ij 1); then, by the structure theorem, there
exists an integer 4 > 0, elements (P, Q;, »)) - - - (P}, Q;, m;) in 'R(L 1) with

(9.185) P, Q) e Py, Qy,ny) O---O (P, Q;, )
and also
(9.186) pP,CP, Q,cQ.

(b) (P’, Q’, n’) belongs to R(Iy); in this case we set £ = 0.

We also observe that the parabolic compositions in (9.182) through (9.184) take
place n R(I, 1) but not in R(L 1); in (9.185), they take place in R(L 1) but not in
RA.).

A subclass Biy (P,, Q,,, £), i.e. an element of L, distinct from the two ({, 0) that
we already know is determined by the following data

the depth s(> 0);

the sequence/I\o cC--- C’I\J =Iy;

the integer /# > 0;

when /4 > 1, for each 0 < ¢ < A, the largest negative integral power of 2, denoted
by x;, such that maxy |P;| > x;;

when £ > 0, the largest negative integral powers of 2, denoted by x, x;, such that
maxy |P_| > xo, maxy|P,| > x,; here, the elements (P_,Q_,n_), (P4, Q,,n})
are determined by PC P_, Q C Q and
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(P_,Q ,n)e(®,Ql,2)T.--0O0(FP,Q ,n)

(9.187) O P, Q) n).
Py, Qu,ny) € (P, Qpm) (P, Q) ,m) L+
(9.188) O (P, QL. n}).

One has by construction P_ C P,, Q C Q,,.

Thus, we group together in a subclass Be, (P, Q,,, £) the elements of B, (P, Q,,)
who share the same data; the elements of L, distinct from ¢, 0, are the sets of data for
which at least one subclass Bz, (Py, Q,,, £) is non-empty, for some (P, Q,,, n,) in C,(I),
(P, Q,, n,) in C_(D).

The definition of the set L is now complete.

9.9.6. Sizes of subclasses of higher depth. — The context and notations are the same as
above. We want to define b, (P,, £) and 6_(Q),,, £) in order to satisfy (9 124) in Section 9.8.

We first observe that (P,, Q,,n,) determines (P1,Q!,n'),..., (P, Q' ,n’),
(P, Q,, n,) and the result of parabolic compositions between these elements. Similarly,
Py, Q. 1) determines (P! ,Q}F, nﬂr), (P QL ), (P, Q)L my) and the result of
parabolic compositions between these elements. Therefore, the only “freedom™ for the
element (P, Q, n) in the subclass B, (P,, Q,,, £) is through (P’, Q)’, #°), and this freedom
is constrained by the relations P C P, Q° C Q. .

Consider first a subclass with 2= 0, i.e., (P’, Q’, #") € R(Ip). The widths of the
strips are related as follows: for every ¢ GT, we have

O L R P |
[P [1Ps |~ [Py|[P,| P[P

(9.189)

This allows us to take, as in the case of depth 0,

(9.190) b (P, 0) =

otherwise,

{(c Tea e it (P, QL n) e R(L),
0

(9.191) b_(Q,, £) =

otherwise.

{maxrlP WP AP, Q) € R(Ly),

Consider now a subclass with 2 > 0, 1.e., case (a) in Section 9.9.4 above.
By Lemma 10 (Section 9.1), for > 1 and 0 < ¢ < £, P} and Q; are thin T_- critical,
hence element (P}, Q:, n}) belongs to Bz, (L T P L 15 %;). In the parabolic composition

P,Q,m)e(P_,Q_,n )P, Q,2)0---0OF®_.Q_,.n_,)
0 (P+, Q+9n+)v
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we have 8(Q_,P)) > [I_,|,....8(Q}_,,P,) > [I_,| for all €T by Lemma 3 (Sec-
tion 6.6.3), hence, using (3.27)

max |P| < C"[T._;|™* max |P_| max P} - - - max [P .
1 1 I 1
This gives, by definition of the x;
~ _l h
9.192) ¥ < (C|L_1| 2) ——

Thus, the data of every subclass must satisfy (9.192). Assuming that (9.192) holds, we set
by (Py,€) =01f (Py, Qq, ny) ¢ R(1p). When (P, Qy, 1) € R(1), we set

(9.193) by (P, £) = Qh( [ #Bir @ T T x»)#Bu(Pa,i_l; %)

O<i<h

Here, Bz, (Pa,i_l, %) 1s by definition the set of elements (P_, Q_,7n_) in R(T) such that
P_ CP,, Q. is thin I,_,-critical and maxj [P_| > x.

Similarly, when (9.192) holds, we set b_(Q,,, £) =0 if (P,,, Q,,, n,) ¢ 'R(TO). When
P,, Q,, ny,) € R(/I\O), we set

(9.194) b_(Qy, £) = #Biy (1,1, Q,; %),

where now Bi, (’i,_l, Q,,; %) 18 the set of elements (P4, Q4,ny) In R(T) such that Q. C
Q,,, P, is thin I,_,-critical and maxj |P.| > x;.

The factor 2" in (9.193) takes care of the possible results of the “free” parabolic
compositions, 1.e., those compositions which are not constrained by (P,, Q,,n,) or
Py, Q,, 15).

The definition of L, 6, b_ is now complete, and relation (9.124) is satisfied.

9.10. The size of the index set L. — It is not difficult from (9.192) to see that the index
set L is finite, but we need an explicit bound on its cardinality (cf. (9.134)).
We assume that, with C large enough,

logl .
(9.195) po>d* + Cr 228285
‘ loge,
_1
where 25°%8% 72 \vhen g, is small enough.

loge

Proposition 45. — The index set L satisfies

#L< 1.
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Proof. — It is sufficient to count the subclasses of strictly positive depth (there are
only two subclasses besides these ones).

In a first step, we fix the depth s > 0 and the sequence of intervalsTo cC--- C/I:_l C
/I: = Iy. There is one subclass with 2 = 0 and we will estimate the number of subclasses
with £ > 0 (the integer /% itself is not fixed). This number is bounded by the number of
(A + 1)-tuples (xo, ..., x;) (of negative integral powers of 2) which satisfy (9.192).

By Proposition 14 (Section 6.6.3), we have

(9.196) x<|L_ | for0<i<h,

(9.197) 0 < L]

As P_ C P,, we also have, for a non-empty subclass
(9.198) x < [T

We rewrite (9.192) as

. R I\
(9.199) L I R (¢uz).
me \ Ve ) T 7 e penn

O<i<h

Using B > 1, and taking base-two logarithms, it is sufficient to bound the number of
non-negative integral solutions of

(9.200) o+ < Ag — Ay,
with

(9.201) Ao =log,([T]x™),
(9.202) A = %mg2 I

We have x < % <, = 80|Pu|(g)”0“+”1 < |T|, because 0y > pg — p; and |P,| < 1. There-
fore Ay 1s large; it is obvious that A, is also large. By taking A, slightly larger and A,
slightly smaller, we can assume that both Ay, A, are integers. The number of non-negative
integral solutions of (9.200) (including those with £ = 0) is then the coefficient of z* in
the power series for

(9.203) X@=Y Ml-n"=1-"'0-z=2"""

h=0

We estimate this coefficient by a Cauchy integral on the circle |z] = 1 — 2A7 'logA;. On
this circle, we have

(9.204) 1M < AT
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o —
(9.205) Ix ()] < §A1 (logAj)~".

The number of solutions of (9.200) is therefore not greater than
(9.206) Al(logA) 72 (1 — 2A7 ' log A)) ™™
In view of (9.202), this quantity is smaller than

log|10g|i]||>

(9.207) (log [T_1)? exp <CA0 =4
|log [T,—1|]

This is a bound for the number of subclasses with fixed depth s and fixed sequence’l\o C
.- CT,_;. We have now to sum over these remaining data. Observe that (9.207) depends
on ﬁ: 1|, not on the depth s and the 1ntervals/I\,, 0<r< s 1.

Fix an interval T w1th T - Tc I, T #* Iy. Let S(I) be the number of parameter
intervals I* with Tcrrc I I* £1 Every I in this range may or may not be one of the T,
for a sequence IO c---C IS | terminating with IS = I in other terms, there are exactly
950 such sequences (of various lengths). This means that the total number of subclasses
(with s > 0) is bounded by

o~

PN log | log [T
(9.208) > 250 (log T))? exp <CA0%> .
T
We have here
log|log|I]| _ logloge;
(9.209) oglloglll _ loglogey”
[log 1] logeg
(9.210) llog ]I = (1 + 1)*P[log T},
~ - log [T]~!
(9.211) s <2t llog2< s ):; -
loge,
The sum (9.208) is thus bounded by
loglog e
9Smax (logey 1?2 exp (CAO 08708% Ogio )
loge,
~ logloge;!
9.212) < (log [T " exp (CAOw)
loge,

~ _ pk—1
AS X = X 1= [I]907%) 7 we have

9.213 Ao < C(py — d*) ' og [T
A g
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If the constant in (9.195) is large enough, we obtain

logloge,' 1 ~
9.214) CA—2 2850 o2yog )
loge, 2
Introducing this in (9.212) concludes the proof of the proposition. 0J

9.11. The size of B.

9.11.1. According to the roadmap exposed in Section 9.7.6, we have now to
estimate the quantity set in Section 9.7.6

(9.140) B=Y b (0)b_(0)
L
with
(9.136) bo(€) = Z b (P, 0),
ci (@

(9.137) )= b(Q,. 0.

)
Consider first the bound elements. In view of (9.173), we have:
b:+(0) = #C, (D (py — &) log [T,
(9.215) N N
b-(0) =#C_(D)(py — &)~ log 1|7

Consider next the class of depth 0, and also the classes of higher depth with 2= 0: in
view of (9.178)—9.179) and (9.190)+9.191), we have in these cases

(9.216) by (€) < (CI" T P, (D),
9.217) bo(6) < Z(mglewl)pf.
~ 1
C_(I)

Also, the number of such classes, according to the discussion in the proof of Proposition 45
is not larger than

~ 9—1
log [T\ ™
9.218) 9Smx ( ogl ) .

logey!
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9.11.2. The remaining subclasses are more complicated! Formulas (9.193),
(9.194) suggest an induction. We thus assume that (SR3), is satisfied for all parameter
intervals containing I. We have, for a class of depth s > 0 with 2> 0:

9.219) bi(0) <2 ( [T#BL @ T T xl-») #Bi, (LT, 115 %),
O<i<h
(9.220) b_(0) <#Bi. (1, T_,,T; xy).

We recall from (9.199) that
I\t
X< (C|Is—1|_2) XoX1 ** * Xpe

Observe that, from (9.16), the critical value ,, in each of the Bi, sets above is the
same and equal to

Y=
9.221) %, = go|pu|<| 1|>Pt) "
€o

As in Section 9.8, we separate the subclasses into two parts: those for which every x; is
above the critical value X, and the others.

9.11.3. Subclasses with all x; large. — In this case, we have from (SR3);

~ ~ ~ i —-p ’i_ op+o )
<9'222> #Bi-l-(]:.r—la:[.r—la:[:—l;xi) < eaAt( X ) 1<| - ll) ! 1’ fOI'O << k)
80|Pu| &o
o~ —p1 7 [T\ oo+o
(9.223) #B, LTT ;%) < 80_‘“( al ) | (U) e
80|Pu| &o
~ ~ ~ —p fi_ o T o
(9.224) #Bi, (1, 1_1,T; x) < SO—AT( Xp ) 1<| : ll) l(u) 0‘
80|Pu| ) &o

Multiplying these inequalities, we obtain, taking (9.192) into account

(9.225) b (£)b_(£) < AjAs,
with

A, — —9Ar |i,_1| 00+01 p T 7% o1
(9.226) ) =26, — Ceo|P, ||| ,

0
X —p1 |T| op+o1

9.227 A :cp'( ) (—) .
9.227) ’ £o[P,| £



130 JACOB PALIS AND JEAN-CHRISTOPHE YOCCOZ

9.11.4. Subclasses with some x; small.

Lemma 13. — Let 1 C 1 be a candidate interval. Let P, Q,n) e RA). If P and Q_are thin
Lo-critical, then we have max; |P| < Cey|P,| and max; |Q] < Cey|Q;].

Progf. — We prove the first statement by induction on the level of the largest
mterval I, such that (P, Q,n) € R(I,). If I, = I, the statement follows from the fact
that (P, Q, n) is the simple composition of (P,, Q,, n,), some (P, Q’,x) € R(l;) and
’QPm Q.. n,) (see Section 9.4). If I, # I, and I, is the parent interval, consider the thinnest
I;-defined rectangle P, containing P. As P is thin Iy-critical, Py is also thin Ij-critical. By
Lemma 10 in Section 9.1, Qg is thin Ij-critical. By the induction hypothesis, we have
maxj, |[Py| < Ce|P,|. As P C Py, we are able to conclude.

The proof of the other statement is symmetric. 0J

For 0 < i < h, the cardinality of Bi;(I,_;,T_;,T,_1; x,) is controlled by (9.229) if
x; > x,, and by

T T T i —P Ts— 200+0
(9.228) #Bo (I, [, I ) < saA’( i ) 0(' 1|) 0 1’
80|Pu| &o

if x; <x,,. Similarly, we have (9.230) if xy >x,, and

~

~ o~ —p T op+o i_ o
(9.229) #BZ;(I,I,L_I;xO)gg(;Af( * ) (U) ' 1(' 1)
0| Pyl &o &o

if xg <x,,; we have (9.231) if x;, >, and

~ ~ ~ —P Ts— opt+o T o
(9.230) #Bi, (1T, Tow) <o (1) °(' ")0 ‘(U)“
80|Pu| &o &o

if xy <%,

By Lemma 13, all the terms ﬁ are bounded by C. As py > p;, we can when
necessary replace the exponent p; (for those x; which are larger than ;) by py. On the
other hand comparing the o exponents, we see that we always have an additional factor
(%)m} when <%, compared with X; >7%, (including the cases j = 0, ). As at least one
x; is <X, multiplying the estimates together gives

(9.231) by (0)b_ (L) <K;QZZ3’
with
B e e
. 9 = 28, - ol Pullli—1l2)
0
(9.233) ngcm( X )—po<g)2<ro+ol'
8U|Pu| oN)
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9.11.5. Partial sums of the b (£)b_(£). — We observe that in both (9.225) and
(9.231), our estimate for 6, (£)6_(£) depends on the class £ only through I | and £.

We first sum over subclasses with a fixed depth s and fixed sequence Io Cc---C L 1,
using the same method of generating series as in the proof of Proposition 45.

To deal with the two cases above at the same time, we observe that oy + o7 —
%,00(1 + ) 1s close to 1 — dl? 1a,’o when T > n > gy are small, with 1 — dl? 1a,’o >0
from (H4). A fortiori oy + 0] — ,01(1 + 1) > 0 18 positive and bounded away from 0.
Thus, Ay and Az are larger when Ig | 1s larger; the largest case is L 1 = Iy, which gives

(9.234) max(Ag, Ay) < A 1= 26,27 <C 201~ T)|P |>

We have max(A;, As) < CB, where &y AT is the bound from (SR3);, for the cardi-
nality 0fBz+(I, I, I, X).

We set
x1(2) = ZK/QZZAI/[(I _ z)#ﬁ?
h>0
(9.235) =AM (1 — )21 — 2 — A7

The partial sum of b, (£)b_(£) is thus not larger than CB times the coefficient of 22 in

the power series for x;(z). Recall that Ay, A, were defined in (9.201), (9.202).
We estimate this coefficient by Cauchy integration on the circle {|z] = 1 — Ay
AQ} on which we have

(9.236) =27 <A+ A7) <AL
(9.237) 11—z =A™ < Ay,
(9.238) 131D SAA,
(9.239) 1272 < C(1 4 Ay)™.
The partial sum of 6. (£)b_(£) is therefore dominated by
(9.240) C(1 4 Ay A,ACB.

9.11.6. Sum )of the b, (£) /b\_ (€) over all free subclasses with h > 0. — We now have to
sum over sequences Iy C --- C I,_; and depth s; but (9.240) is independent of these data
and the same remarks as in the proof of Proposition 45 apply. So, we finally obtain for
the sum of b, (€)b_(€) over subclasses with s > 0 and /£ > 0, a bound by

(9.241) C(l+ KQ)AOKQABQSHMXE
0

with Sy 1= 277" lo 2(10%'“ (cf. (9.211)).
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Recall that (cf. (9.213))
(9.242) < C(po — 4 log [T 7.

As |P,| is of the order of &7, we have

(9.243) K <86)1/2~
This gives
<9.24:4:> (1 + KQ)AO < |T|—C€gl/2(p0—a{j)—1 '

From (9.195), we have
(9.245) (0o —d*) ' < t’loge; .

The bound that we finally obtain (from (9.241)) for the sum of the b, (£)b_(£) over
subclasses with s > 0 and /4 > 0 is therefore

(9.246) p'/glll_s0 (loglIl 1)3r B.
9.11.7. We summarize the calculations in this subsection in

Proposition 46. — The quanm =) 1 b (€)b_(L) is bounded by B1 +B. 9+ Bg, with

-~

B, = (#C+<T>>(#c, @) log [T7)*(po — &) 72,
= | T_l 2t~
By = ( og | |71 ) (C|I|1+r —1)95(#C+(I)) Z(max|Pw|>

loge, o

By=ef " Gog M)"'B.
9.12. End of the induction step_for (SR3);.

9.12.1. In order to complete the induction step for (SR3),, it is sufficient, in view
of (9.136) (Section 9.7.6), to show that

(9.247) Bfjre-4 —4—60 ¢ g-Arp

where B is the bound in (SR3);.
We will bound each of the three expressions B, 5T [T|7@-d =4 =69 ;= 1,92 3, with
B; defined in Proposition 46.
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9.12.2. First consider ﬁg. For x <X,,, we have
(9.248) B =B, = [I| 7@0tIB, < [[|TCntovB,
and, therefore,

(9.249) ﬁglfflt(Q—d:r—d:r—Gr) Pl/%(loglll— )3‘[ |I|(DB
withw =1(2 —d" —dF — 61 — 200 — o) — &'°.

We choose the exponents oy, 0, in order to have
(9.250) w>T’
which is guaranteed by

9.251 200 +0, <2—d" —d" —8r.
< S u
Then, as & 1/3 (log |'f|*1)3’_1 |~IJ|r2 & 1 the required estimate holds for §3.

_ 9.12.3. Next consider B,. We use (SR1),, (SR1), to control the sizes of C+(T),
C_(I), and (9.245) to estimate (py — d;")_l. This gives

El 80Ar |T|r(27dy+fd,jrf6r)

< Clog’ 11" (oo — d)” (I I) T(A~d] d)|1|f<2—dfr—d,f—61)

gt
1 >Z"+’(2 &5 =, "”Sr(A—dg—d3+2—dj—dj—6r)
o .

(9.252) < Crtlog?er og? [T (
&o

On the other hand, in the range x <',,, By is smaller at x,, where it is equal to

£0%0

( 3(;,, >100<|I|>2(ro+m B (Iﬂ)ﬂom (|I|)2<70+<7]
80|Pu| &o ) &o

(9.253) _ (@)—pﬁugﬂl +(14+7)(200+01) (2<m+<7|)-
&o
We ask that
9.254) —pf(fi)l + (1 +1)Q00+ o) <20 + 72— dF —dF —67) — 1%,
and
(9.255) A—d'—d'+2—d" —d —61 > 20+ 0, + 1.

Then, we will have, for all x,;, < x <%,
B 8Ar|1|r(2 dF—dt—61) <C‘L’ log &g llog |I|— (| |) TBO
[N

(9.256) < By.
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9.12.4. In the case Ofﬁg, we use (SR1); to control the size of C (T) and (SR2), to
control ) . g (maxy|P,|)*. This gives

~ ~ o b 4
B28€I|I|T(2 d; d:' 67)

log [T| 71\ 27" T|\ o+ Ady ~ ‘
<c( s ) "(u) [Py [0 el =60
loge, €o

log |T|*1 207! X\ P |T| (4+0)ptT@=df —df 60 o+,
(9.257) < c( = ) ( ) (_) e,
loge, &o| Pl &0
with
(9.258) AN:=A+p—-d'+2—-d" —d" -6t

We want to show that the right-hand side of (9.257) is smaller than
9.259 B ( X )—po(|1|)2m1+01
-9 TPl e/

Xer

0| Pyl

As py > p,, it is sufficient to check this at x,,. After multiplying by )?, we have to

show that

(9.260)

logm_1 2¢7! |T| (A+0)pttQ=df —df —60)+o+o,

(o) (o)
loge, &0

is smaller than

PO—P 2,
85( 00+01).

(9.261)

<|T| L) 4 (147) 20 -+01)
€o

We will therefore ask that

oo(p, —
%P = P0) (1 4+ 1)y +01)
Po — P1
9.262) <U+0)p+1@—d" —d" —61)+0 +0,— 2
and
(9.263) Adp—d"+2—d —d" —61 > 20+ 0, + .

Then the required estimate is a consequence of

log [T='\ 2 AT\,
(9.264) c( 71) (—) el < 1.
loge, €o




NON-UNIFORMLY HYPERBOLIC HORSESHOES ARISING 135
9.12.5. Requirements on the exponents. — Let us recall the various conditions imposed

150
. . . . . . L4
in this section on the various exponents. In Section 8, we introduced d* = d° + ¢; ",

1,0
& =d"+e" d-=d"+Cnt~", dt =d"+ Cnr~.

> s > u

— The exponent o in (SR1) was defined in (9.49), Section 9.5, by
o=min(l—d —(1+7)d — 7 — et
(9.265) l—df—(+10)d —t—emr™").
— The exponents oy, 0, in (SR2) were defined in (9.63), Section 9.6.1, by
(9.266) o:=1-3t—d, o, =1-3t—d'.

— The exponents p,, p, in (SR2) were asked to be close to d°, d” respectively, to
satisfy in (9.38), Section 9.4

(9.267) p. > d’ + Cey, p, > d’ + Ce,
and later in (9.62) (Section 9.6.1) the stronger condition
(9.268) pu>d +¢f, py>d + g

— The exponent py in (SR3), was required to be close to @°. We asked also that
p, > d° + Ceg (cf. (9.38), Section 9.4), py > p, + & (cf. (9.62), Section 9.6.1),

po=d + 852/2 (cf. (9.98), Section 9.7.3), and finally (cf. (9.195), Section 9.10)
,loglog &'

(9.269) po>d +Ct~ —
loge,

— The exponent p; in (SR3); was required to be close to df_)(dl? + Qdf.) — 1)x
(d)+d)~".

— The exponents p;, p; were defined by p; = %po, Py = %pl.

— The exponents oy, o7 in (SR3) were requiféd to be close to 1 — 4, d* — d’
respectively. In (9.97), Section 9.7.3, we asked that

(9.270) op+o; <1 -3t —4d,
and in (9.106), Section 9.7.4, that

9.271) oo <1—31 —d".
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9.272)

(9.273)

(9.274)
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Finally, in (9.251), (9.254), (9.262) above, we required that

200+0,<2—-d" —d — 81,

PR 1+ 1200+ 00) <20 +TQ—dF —dF —67) — T2,
Po — P1
g s —
M+(1+f)(200+al)
Po — P1

<U+Dp+1Q2—d" —df —61)+0 +0,— 1%
The exponent A in (SR3) was required above to satisty
A—d'—d'+2—-d" —d" — 61> 20040, + 1,

Atp—d)+2—df —df —61>20+0 +1.

We have proved that, if all these conditions are satisfied, all candidates but a proportion
not larger than eliiia satisty (SR3);. Before checking that these requirements on the ex-
ponents are compatible, we need to review (briefly) the induction step for (SR3), because

new requirements will appear from it.

9.

13. YZle induction step for (SR3),. — The proof that most candidates I in a strongly

regular parent I satisfy (SR3), follows the same plan than for (SR3),. However, condition
(SR 3) is not symmetric, hence we must check that the various steps work in the same way.
We review briefly these steps below.

(9.275)

Very small values of x (Section 9.7.1): we use now
#Bi (1,1, L,; x) < Cx %,

forx <« . 1= T|Co—d™",

Old and new elements (Section 9.7.2) are defined as before.

Observe that o0y, o) play the same role in (SR3), than in (SR3),. Therefore, the
results in Sections 9.7.3, 9.7.4, 9.7.5 work exactly in the same way, replacing

~ o
X, in Proposition 42 by ¥’ := 80|Q.|(|8l0|) 0~ . We require as in (9.98) that p} >

dr+ 852/ ? but this is actually a consequence of the definition of pj, and of (9.269)
above.

Size of Bi"™ (Section 9.8). One proceeds as in Sections 9.8.1, 9.8.2, separating
then the sum corresponding to (9.139) into two parts S; and S'. In the first sum
(Section 9.8.3), the exponent p; must be replaced by p; = ,01%2 < p1. In particu-
lar the exponent o + 0 — p; in (9.146) is still positive. The same considerations
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apply for S.. In the case d" = d° = 1/2, the exponent o corresponding to oy
now depends on w;.
Except for the obvious modifications in the definitions of the 4% (P,,¢),
b= (Q,, £), Section 9.9 is unchanged. In particular, the set L is defined in the
same way; to estimate its cardinality, we now assume
1
Py >df + Cr_Ql—oglogiO
loge,

but, in view of the definition of pj, = ppd” /d, this is the same thing than (9.269),
up to the value of the constant C.
The quantities ﬁ;, :=1, 2, 3 that appear instead of the B; of Proposition 46 are

B, = #C, (D)#C_ (D)) (log 1|72 (p}, — d) 2,

TI—1\ 97! - ~ u
ﬁ; _ <10g|I| )2 I+ @#c_ (1) Z(mTaXIQaI)p ,

loge! ~
&0 e

~ /e~ P13 ~ i~

B, =274 (log(T7H) 'B.

Dealing with ﬁ,/& requires (9.251) as for Bs.

Dealing with B} requires (9.254), (9.255) as for B,. Indeed, observe that in

(9.254), we have

Lo P
Po =PI Po— P

in view of the proportionality of the exponents by the factor d"/d".

— 'To control Bj,, we now require, corresponding to (9.262), (9.263)

(9.278)
9.279)

0y (/Ou - 06)

!/ /!

b — P1
<O+, +1@Q2—-df —df —61)+0+0,— 17,

A+p,—d +2—d" —d" —61>20,+ 0+ 1.

+ (1 +1)(20¢ +01)

9.14. Conclusion.

Theorem 3. — Assume that the exponents in (SR1), (SR2), (SR3) satisfy the requirements
of Section 9.12.5 and also (9.278), (9.279). Then, all candidates 1 in a strongly regular interval T
are strongly regular, except for a proportion not larger than CIT|™". Moreover, it is possible to choose the
exponents in order to satisfy these assumptions.
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Proof. — The first statement has been proved in Sections 9.5 through 9.13!

We choose the undefined exponents (o, o;, 0, are already defined) in the following
order. First, take p, = d + 2¢§, p, = %pu. Then (9.268) 1s satisfied, and thus also (9.267).
Next, choose

pr=d(d} +2d) = 1)(d'+d)"",
oy =d(d)+2d’ — 1)(d +d)7",

logloge;"
p0:d§’<1 4928 98% )
logeg,

logl -
o :d3<1 +,—sw).

logey!

Then all the requirements on the p exponents are satisfied.

The exponents o0y, o1 must satisfy (9.270), (9.271), the three relations in (9.272),
and (9.278). Each of this six relations defines in the oy, o1-plane an affine half-plane
whose boundary passes very close to the point (1 — @”, 1 — d°) which has to be close
to (09, 01). Observe first that the coeflicient of o) in each of the six relations is positive.
This implies that the intersection of the 6 &near half-planes parallel to these 6 affine half-
planes contains an open cone at the origin. But then it is possible to find (09, 01) close to
(1 — d?, 1 — dl?) in the intersection of the affine half-planes.

Finally, the constraints on A are clearly satisfied if A is large enough. Actually,
A = 3 works! 0J

Defiation 13. — A strongly regular parameter (in ly) s one which s the intersection of a
decreasing sequence of strongly regular parameter intervals.

Corollary 15. — Except for a set of relative measure < Cegz, parameters in Ly are strongly
regular.

Progf: — By Proposition 31, the starting interval is strongly regular. From the the-
orem, in a strongly regular parameter interval of level £, all points are contained in a
strongly regular interval of the next level except for a set of relative Lebesgue measure
< 8/:2. As we have

(9.280) > el <Ce

k=0

the statement of the Corollary follows. O
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10. The well-behaved part of the dynamics for strongly regular
parameters

10.1. Prime elements and prime decomposition. — In the last two sections, we fix a
strongly regular parameter, i.e. the intersection of a decreasing sequence (I,,),>¢ of
strongly regular parameter intervals.

The sequence R(I,,) is increasing and we set

(10.1) R = UR(IM).

m=0

Definition 14. — An element (P, Q, n) € R s prime if n > 0 and it cannot be wrilten as a
simple composition of two shorter elements.

Obviously, for any (a, @) € B, the element (P, Q,s, 1) is prime. Such elements
are called #rivial primes. Non trivial primes are those of length bigger than 1.

There are only finitely many trivial primes. On the other hand, there are typically
countably many non trivial ones.

Lemma 14. — Let (P, Q, n) € R be an element which can be written as a simple composition
P,Q,n) = (El’,QJ’ ny) * (Py, Qg, n9). Lﬁt (Rg, Qy,79) be ftV/ze element such that Py 1s the parent
of Po, and let (P, Q,n) := (Py, Qy, ny) * (Py, Qq, ny). Then P is the parent of P.

Proof. — If Py is a simple child, we have ng =7, + 1, n=7+ 1 and P is a simple
child of P.

We now assume that Py is a non-simple child of E. Let (P, Q/,#') € R the element
such that P’ is the child of P containing P. We will show that P" = P. We have g?(P) C
g,'NlQ (Py) C L,, hence P’ also is a non-simple child.

Applying twice Proposition 7 (Section 6.2), we can write, in some R(I,,)

(PQa QZ? ﬂQ) € (§23 Q,?y;i?) D (P37 %7 7’13),
(P, Q.n) € (P.Q,7) O (P, Q. ).
We have Q C Q, and also P; C P because P C P'. As Q,hy, P5 and Qhy P} hold,

concavity (Proposition 9, Section 6.3) imply that Qg My, P also holds. As Py is a child of
P,, we must have P; =P, and P' =P. O

Proposition 47. — Any element (P, Q, n) € R with n > 0 can be uniquely written as a simple
composition of a finite sequence of prime elements.

Progf: — The existence of such a decomposition is clear. We have to show it is
unique. Assume on the opposite that we can write
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(P’ Q\; n) = (Pl’ Q\h nl) koo ok (Pr’ sz nr)
(10.2) = (P}, Q). ) x---x(P,Q,n).
It is sufficient to show that (P, Q,, n) = (P}, Q}, #}). This is true if n; = n|. Assume for
instance that #; < 7}. Then we have P C P} C P, with P} # P,. But a repeated application

of the lemma above shows that all rectangles in-between P and P, can be written as simple
compositions of (P, Q;, 7)) with some other element. In particular, this is the case for

(P}, Qj, #}), which cannot be prime. O
Remark 14. — In the prime decomposition
(10.3) (P,Q,n) =(P,Qy,m) *---x(P,,Q,, 1),

P, can be characterized as the thinnest prime rectangle containing P.

We will denote by P the set of prime elements of R. We denote by R* the set of
elements of R of length > 0.
Let (P, Q, n) be an element of R* and let

10.4) (P, Q,n) = (P, Q) %% (P, Q. 1),
be its prime decomposition. We define
TP, Q,m) = (Py, Qy,m) % -+ % (P, Q)
T7((P,Q,n) = (1, Qy,m) -+ % (Prmy, Qpery 1),
if7> 1. When (P, Q, n) is prime, with P C R, and Q C R, we set
T((P,Q,n) = R,,R,,0),
T7((P,Q,n) = (R, R, 0).

For S = (P, Q, n) € R, we write S xR, resp. R * S, for the set of elements which can be
written as (P, Q,n) x (P, Q/, #), resp. (P, Q’, ') % (P, Q, n), for some (P, Q,n) € R.

We have partitions

(10.7) R =| |s*xR=| |R=S.
P P

(10.5)

(10.6)

10.2. Number of factors mn a prime decomposition. — We write r(S) for the number
of factors in the prime decomposition of an element S of R (setting 7(S) = 0 if S has
length 0). Let (P, Q, n), (P', Q/, #') be elements of R such that P is a child of P. When
P’ is a simple child, it is obtained by simple composition of P with an element of length 1
and we have

(10.8) r(P,Q,n)=r(P,Q,n)+ 1.
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On the other hand, assume that P’ is a non-simple child of P. Let m be such that
P, Q,n") € R(1,,). By Proposition 7 (Section 6.2), we can write

(10.9) P, Q. 7)e® Q,n 0P Q,n,
for some (P, Q?@\) € R(I,,) such that lemll; holds. Let
(10.10) (P, Q,n) = (P, Qy,m) - % (P, Q,, 1)

be the prime decomposition of (P, Q, n).
Define, for | <:<r

(P, Q' n') = (P, Qi m) % --- % (P, Q,m)
(10.11) = (TH"'(P,Q, n).
We have an increasing sequence
(10.12) Q=Q'cQ’c---cQ =Q.

Let 7 be the largest integer in {1, ..., 7} such thz}j and P are I,-transverse for some
[ > m (and then for all large enough /). Define (P, Q,7%) € R by the condition Q' C Q
and

(10.13) P,Q,ne®,Q ,x)0O® Q7.

/
7

Proposition 48. — The simple composition
(10.14) P,Q,n)y=/P,Q),n)*--xPr_1,Qy_1,n,_1) % (P, Q?z)
is the decomposition of (P, Q', n') tn prime factors. In particular, we have
r(P, QL n) =1 <r(P,Q,n).

Progf. — Tt is sufficient to show that (P, Q,7) is prime. Assume by contradiction
that we can write

(10.15) @0, =@, 0,,7) x B, Qp, )

with 721, 75 > 0. Define

(10.16) (P, QL n) =P, Qum) % (Py_y, Quy,mo_y) % (P, Q). 7).
Claim. — There exists v < j < 7 such that

(10.17) (P, QL) = (P, Quum) % -+ % (P, Q, my).



142 JACOB PALIS AND JEAN-CHRISTOPHE YOCCOZ

Proof of claim. — We have P' C P}, P’ # P, hence P C P}, #; < n. Asm; > 0, the
smallest integer j such that

(10.18) ny <ny -+,
satisfies 7' <j < 7. From
(10.19) (P, Q,n) = (P}, Q. ) % (P, Qy, %)

and Lemma 14, we can write (Py, Q;, n)) * - - - % (P}, Q;, ;) as a simple composition

(10.20) (P, Qu,m) % - % (P, Q, ) = (P, Q), ) * (P,Q, 7)

for some (P, Q 7) € R. Still by Lemma 14, we can write
(10.21) (P, Qi n) =P, Q,7)* (P,Q,7)

for some (1_3/, Q/, 7') € R. We have 7' > 0 by definition of j. As (P;, Q;, n)) is prime, we
have 7 = 0, which proves the claim

We will now prove that, for / large enough, Q/*! rhIZP holds, a contradic-
tion with the definition of 7. Indeed, from (10.19) we have P, c PV, P, # PJJrl
Let (P*,Q*,n*) € R the element such that P* is the child of P! containing PQ
By Proposition 7 (Section 6.2), we can write (with [ large enough) (P*, QF,»n") €
(P, QL Pt O (P, Q* ), for some (P, Q* 7*) with P* > P. Then Qi P*
holds and Q! thy, P also holds.

Thus, we obtain a contradiction and the proof of the proposition is complete. [

10.3. A weighted estimate on the number of children. — We present in this subsection a
variation over the estimates in Section 8.3, which will be important in the definition of a
transfer operator.

As mentioned already in Section 9.4, there exist from classical results of Bowen,
Ruelle and Sinai an invariant probability measure m* on K such that the measure of an
Iy-defined rectangle P is of the order |P|d§, where d! is the transverse Hausdorff dimension
of the stable foliation W*(K). Recall that ' is a smooth, hence Lipschitz, function of ¢.

We fix a constant ¥ € (0, 1) close to 1, but independent of &;. Let also d~ < d/,
close to d!.

For S = (P, Q, n), we set

(10.22) 1P| = [P} &'

(we will also write 7(P) instead of 7(S)).
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Proposition 49. — Assume that logk ™' < C™' and d' — d- < C™'logk ™" with C large
enough. For any m > 1, any (P, Q, n) € R, we have

S IP < Cr Py
P/
where the sum in the lefi-hand side is over elements (P, Q', n) such that P is a descendant of the m"
generation of P.

We will first state a Lemma, then prove the proposition from the Lemma, and
finally prove the Lemma.

Lemma 13, — Let &) > 0. If €y ts small enough, we have

IR <e|P]
P/

Jorall (P, Q, n) € R, where the sum in the lefi-hand side ts over non-simple children of P.

Proof of the Proposition. — Let my > 1 be an integer to be determined later. Consider
all chains

(10.23) P=P'DP'>...OP" =P

where P is given and P! is a child of P'.

First consider the case where P! is, for each ¢, a simple child of P'. One has then
r(P') = mo + r(P), and one can write (P, Q', ) = (P, Q, n) x (P, Q,7) with (P, Q,7) €
R,). We have

IP'|| < Ck™||P|| [P
< Ck™ || Pl (P)[P|% %
< Ck"™||Pl|m* (P) exp(Cmy (d' — d°))
< Qi 3| P||m* (P),

if d —d- < C 'logk ™! with C large enough. Under this condition the part of the sum
in Proposition 49 corresponding to simple descendants satisfies (as > m™(P) < 1)

(10.24) Y IP < CeSmppy.

We choose my such that in (10.24) we have

1 m

(10.25) Chi™ < =k 2,

No
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On the other hand, from the lemma above, it follows that for every i we have
(10.26) Y IP<clp)

where the sum is over all children of P. Using the lemma again, when we sum over chains
such that P;, is a non-simple child of P; for at least one z, we obtain

(10.27) D I < mgCm ey ||
Taking €, small enough, we obtain

mp
(10.28) S OIP <k 2P|

where the sum is now over all chains. The proposition follows immediately from (10.28)

and (10.26). O

Lemma 16. — Let (Py, Qg, no), (P, Qp, my), (P, Qy,m) € R with Qy C Qy. If
Qg thy, Py holds for m large enough and

81Q)I'™" < 8(Qy, Py),
then Qj thy, Py holds for m large enough.

Proof: — If 3|P,|'™" < §(Qy, Py), Q5 ﬂm P, holds for m large enough by direct ver-
ification of (T1), (T2), (T3) of Section 5.4. If on the other hand, 3|P,|'™" > §(Qy, P)),
we can apply Proposition 21 in Section 8.1 to conclude that Qj rhy, P, holds for m large
enough. 0

Proof of Lemma 15. — Let (P, Q, n) € R. Any non-simple child P’ of P is obtained
as

(10.29) P,Q,n)e®,Q,n O ([P,Qy,n)
and we denote by P,, the parent of P;. One has

1
(10.30) [P’ < C|P||P[8(Q, P)) 2.
Therefore, we will have

- _L1-

(10.31) I D IR < C Yo P w7 ®8(Q, Py 2t
By Proposition 48, there is an increasing sequence

(10.32) Q=Q cQ c--cQV=Qq
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such that 7(P') is the largest integer # for which Q" and P, are I-transverse for large
enough m. We claim that

(10.33) r(P) — r(P') < Clog(8(Q, P)~".
Indeed, let 1 <7 < 7(P) such that
(10.34) Q1 <8(Q, P

By Lemma 16, Q' hy, P; holds for m large enough, hence r < 7(P). On the other hand,
there exists k™ € (0, 1) such that

(10.35) Q] <*IQ*

for r < r(P). The claim follows.
Therefore, if k is close enough to 1, we have

, 1
(10.36) K™ L (5(Q, Py)) 6"

and the right-hand side of (10.31) 1s bounded by

1037)  CYIPIY (S(Q, P 1

Using (R7) (Section 5.4), this is smaller than
1
(10.38) CY P[5

To estimate this sum, we first fix the parent E and sum over children P,; it follows from
Proposition 26 (Section 8.2) that the corresponding sum is bounded by C|P,|5% . Then
(10.38) 1s not greater than

~ 1.
(10.39) C Z P, 3% .
For each integer m, let us count now how many P, may satisfy
(10.40) 97" > P =27

As P’ is a child of P, Q is transverse to P; but not to l~31. From Lemma 16, we have
therefore

(10.41) §(Q,P)) <8P <82 -

which shows that there are no more than C2™ such P,’s. This implies that the sum (10.39)

s

. 1d . .
is at most of order Cg; ', which yields the statement of the lemma. 0J
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Remark 15. — In Lemma 15, the value 4 that has been used to define [|P| is
irrelevant. The assertion of the lemma is still true if we replace 4~ by any positive number
bounded away from 0.

Corollary 16. — Let &, > 0. If & s small enough, we have
> Pt <
P

where the sum in the lefl-hand side is over non-trivial primes (P, Q, n).

Progf: — Let (P, Q, n) be a non trivial prime. We have, by Proposition 12 in Sec-
tion 6.6.2

log 2

(10.42) "< (log(C|P|_1))1og3/g.

Choose ’cz_ < d” but so close to ¢~ that the hypothesis @' —a— < C'logk ™" of Propo-
sition 49 1s still satisfied. If &; 1s small enough, we have, for any non trivial prime P, as
[P| <&

(10.43) Pl < |P|%.

Observe also that the thinnest (ﬁ Q'ﬁ) € R(y) with P C P satisfies QC Q, hence |§| <
&, for some fixed positive o. R
We apply the proposition using 4~ instead of ; we obtain, as 7(P) = 1 for primes

Y Pt <> P
=Y |P|

(10.44) <G A=k Y B,

where, in the last sum, (?, Q?l) runs through the elements of R (Iy) with |§| of the order
of gj. We have

~ - -1 —1
Z ||P|| < C ZSS‘ s KC loge

a(d™—dH+C " ogk™!

(10.45) < Cel ,

and the exponent is positive from the hypothesis of Proposition 49. Putting this into
(10.44) yields Corollary 16. O
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Remark 16. — We do not know the range of d for which
2Pl
P

1s convergent. The corollary shows at least that there are relatively few primes: the sum is
convergent for d > d° — C™!, C large enough.

10.4. Stable curves. — Let (P, Qy, n;)1>0 be a sequence of elements of R such that
P41 1s strictly contained in P, for £ > 0. Let R, be the rectangle of the Markov partition
which contains Pj. The vertical part of the boundary of P; is the union of two graphs

{x. =9 0}

Proposition 50. — The intersection [\ Py is the graph {x, = ¢ (0,)} of @ CHIP function,
whose C*YP norm of @, is bounded independently of the sequence (Py);=o. Moreover, we have, for all
k=0,9,€ll

10 0) — @ (0) | < CIPy,
ID@; () = Do ()] < CIPy.

Proof: — Let (Ay, By) be the implicit representation associated to (P, Qy, ;). We
have

(10.46) 9L 00 = A0, %),

where x; are the endpoints of I} and Q; C R;. The partial derivatives A;,, A, are
bounded by u; ", 2Dy respectively and we have

(10.47) 0" 0) — ¢y 0 < CIP,.

This implies the statement of the proposition, except for the last inequality.

To compare the derivatives of ;" and go/il, we use (A.66) in Appendix A if Py 1s
a simple child of Py, (A.86) if it is a non-simple child. We obtain that, for every y,, x, there
exists x* such that

(10.48) A, 0 1) — Apy O 2] < CIPL Q).

in the first case and

(10.49) A1 00 %) = Ay 0 )| < CIP1QuI872,

in the second case. Here, we have § < |Q;| from (R7) in Section 5.4. Using that

(10.50) 1AL O ¥) = Ap, 00 )] < CllAL oo < CIPY,
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we conclude that in both cases we have

(10.51) ID@;*(0.) — Djiy 0] < CIP.

As there exists k* € (0, 1) such that |Pyy ] < «*|P;| for all £ > 0, we obtain, for all [ > £
(10.52) D@ 00) = D" ()] < CIPy,

and the required inequality follows, letting / go to 4-00. 0J

Defination 15.

1. A stable curve is the intersection @ = | ) r>0 Pr of a decreasing sequence of vertical-like rectan-
gles as above. An unstable curve is the intersection @' = () i>0 Q, of a decreasing sequence of
horizontal-like strips.

2. The set of stable curves, resp. unstable curves, 1s denoted by R, resp. R>. The union of

stable curves, resp. unstable curves, 1s denoted by RS, resp. R™>.

3. Any stable curve w C R, has a canonical defining sequence characterized by the following
conditions: Py = R, and, for each k, Py, s a child of P;.

4. Two stable curves are equal or disjoint. Hence there is a canonical projection

T ﬁf = RT.
We will now define dynamics on a part of the sets RS, ﬁf

Let NV, be the set of stable curves w which are contained in infinitely many prime
elements and let D, be the complementary subset in RS’. Yor (P, Q, n) € P, denote by
RS (P) the set of stable curves w € D, such that P is the thinnest prime containing w.

We, thus, have partitions

(10.53) RY =N, | |D..
(10.54) D, =| [RT®.
P
We denote by N. + 5+, ﬁf (P) the respective pre-images by 7.

Let (P, Q,n) € P, w € RY(P). For any (P, Qy, ;) with @ C P C P, we can write
(cf. Remark after Proposition 47)

(10.55) (P, Qpu ) = (P, Q, n) # (P, QG 1)
for some (P, Q;, n;) € R; we have

(10.56) T (P, Qg ) = (P, Q) 1)
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and we define @ = T*(w) to be the stable curve obtained by the intersection of the P,
when P, decrease to w. We have

(10.57) g'(P) CP, g'(w) Co
and we also define
(10.58) Tt/ RE®P) =¢'/ RT(P).

We, thus, have a commutative diagram
~ T~
D, — RZ

(10.59) ln ln

T+
D, — RY

We observe that for (P, Q, n) € P with Q C R,, the image T (w) of any w € R (P) is
contained in R,.

Conversely, let (P,Q,n) € P with Q C R, and let o’ € RY, o’ C R,. For any
(P,, Q;, n) with w C P}, we define (P, Qy, n;) by (10.55); the intersection w = mk20 P,
is the unique stable curve in R (P) such that T (w) = o'

Thus, T* induces a bijection from R (P) on the set R (a) of stable curves con-
tained in R,.. For @ € RS (P), we have

(10.60) THw) =o' NQ.

10.5. Topology and geometry of RS and 7~€S’r° — Each stable curve is a compact subset
of R =JR,. Therefore, R may be viewed as a subset of the set of non empty compact
subsets of R endowed with the Hausdorff topology. The topology induced on R’ can
also be viewed directly: for any w = (P, in R, a basis of neighbourhoods of  is
obtained by considering for each £ the set V; of stable curves contained in P;.

Equipped with this topology, RS is a Cantor set. Each RY(P), P € P, is a closed
subset, and also a Cantor set. The restriction of T to each R (P) is a homeomorphism
onto R (a) (with Q C R,).

However, the subset 'y may be dense and the map T in general is not continuous
on the whole of D,. We will see in the sequel that A is, in some appropriate sense,
negligible.

For each w € R (a), we denote by ¢,, the C"P map such that o = {x, = ¢, (7.)};
for each a € a, each )" € I*, the map

¢ :RT7(a) —~ L,
(10.61) S
w (pw(yg)
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is a homeomorphism onto its image. Letting Y vary, we get an homeomorphism from
R (a) x It onto R (a).

Regarding the transverse regularity of the partial foliation ﬁf (a), we have the
following result.

Proposition 51. — For all a € a, all distinet , " € R (a), all y € 1, we have

C.

0
‘a—loglww — @ul| <
)
In particular, the homeomorphisms ¢y o ¢}‘1 are bi-Lipschitzian, uniformly in y, y'.

Proof. — For (P, Q,n) € R, let y = goff (x) be the vertical-like curves bounding P.
We will prove that, for (P, Q, n), (P', Q’, #') € R with P, P’ contained in the same R, and
PNP =0, e, & € {£}, we have, forall y e I

< C.

0 ,
(10.62) ‘a—logw; — gl
)

This clearly implies the estimate of the proposition. To prove (10.62), we first observe that
the inequality is obvious if we allowed the constant in the right-hand term to depend on
P,P'. Let N > 0 and C(N) be the smallest constant such that (10.62) is satisfied when
P,Q,n), (P,Q,n') € R are as required with n, "’ < N. We will show that C(N) stays
bounded.

Let (P, Q, n), (P’ Q n') € R with P, P’ contained in the same R,, PNP = and
max(n, n’) = N. Let (P QN) € 7?, be the element such that P is the smallest rectangle
containing both P and P’. Let P, P be the children of P which contain P, P respectively.
We distinguish two cases.

1. At least one of P, Pisa simple child.
In this case, we observe that, for all y € I, we have

(10.63) C™'PI < l9p0) — 0 ) < C[P.

On the other hand, we have seen in the proof of Proposition 50 (cf. (10.52)) that

D@ () — D ()| < CIPY,

(10.64) /
Dy () — Do ()] < C|P|.

We obtain (10.62) with some uniform constant C.
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9. BothP, P are non-simple children.
Let €, € such that

250D — Pp )] = 1950) — 95 0.

We apply the proposition in Appendix B, whose hypotheses are clearly satisfied.
By definition of G(IN), we obtain

<CICMQI+1).

0 s

(10.65) ‘5log|q0F — o5l
From (10.52), we have

Dy (0) — Des(n)| < CIP),

IDe; () — D ()| < CIP|
and from (MP7)

PE0) — P ()] = G (IP| + [P)).

In view of this and (10.65), (10.66), we obtain (10.62) with a constant G =
Ci(1 4+ |QJ?C(N)) for some uniform constant C;.

Observe that, when the second case occurs, N has to be large (at least of the order
of loge; ") and we must have |Q] < &;. Therefore, one has C(N) < Cy for N < loge;!
and

(10.66) C(N+ 1) <max(Cy, C1(1 + C(N)e)/*)).

This implies that C(N) is bounded (by max(Cy, 2C,), as soon as 85/2 max(Cy, 2C;) < 1)
and ends the proof of the proposition. UJ

"The result of Proposition 51 implies that the transverse Hausdorfl' dimension d; =
dy(g) of RY is well-defined, being equal to the Hausdorff dimension of ¢,(R (a)) for any
aca,ye I“ We have just proved that it does not depend on y. That it does not depend
on a is seen as follows: for (a, d) € B, g sends R°° NP, into R°° N Ry; the transverse
Hausdorff dimension of ROo N R, is therefore not smaller than that of R°° NR,; as this is
true for all (a, d') € B, the Conclusmn follows.

We will also identify below in this section the transverse Hausdorft’ dimension d;
through a transfer operator in the classical manner of Bowen, Ruelle and Sinai.

Let @, ® be two stable curves and j > 0. Assume that @ and @ belong to the domain
of (TTY. We say that w and @ belong to the same component of the domain of (TTY
if, for each 0 <7 <, there exists a prime P; such that (T)!(w) and (T") (@) belong to
RE(P)).
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Proposition 52. — There exists 0y € (0, 1) such that, if @, @ belong to the same component of
the domain of (T+Y, we have

19.0) — ()] < C8),
D@, (») — Dea(y)| < 96,

Jor all y.

Proof. — With (T*)!(w) € RY(P;) for 0 <i <, let (P, Q,n) = (Py, Qp, mo) * - - -
~1,Q;1,7-1). We have w, ® CPand |P| < CGJ for some fixed 6, € (0, 1). The esti-
mates are therefore a consequence of those in Proposition 50. 0J

10.6. Transverse dilatation. — This subsection is a preparation for the definition of
a transfer operator in the next subsection. The weight function in this transfer operator
is, up to a coboundary term, given by a transverse dilatation.

Let (P,Q,n) € P, w = {x = ¢,(»)} a stable curve in RY(P), ' = T (w) its image.
Let (A, B) be the implicit representation of (P, Q, n).

For z = (¢,(»),) € w, let

a 0
(10.67) V,(2) = — + Do, (») —
dy ox

be the normalized tangent vector to w at .
The matrix of DTJr at z, computed in the bases (i, v,(2)) at z, (& -+ Uy () at
7 = T+ (2), 1s lower triangular; the first diagonal coefficient is

(10.68) AT, X) (1 —B.(y, ¥) D%,(y’)).

We denote by 7;(,5) the logarithm of the absolute value of this coefficient. As ¢,, is C'*1P
uniformly in @ and g" : P — Q) has bounded distortion, we have, for all z, z* € @

(10.69) 15(2) = b(z")| < Clz — 2.

Let j > 0 and let w, @ be stable curves which belong to the same component of the
domain of (T*Y. Let z, 2 be point of w, @, respectively, with the same y coordinate. It
follows from Proposition 52 that one has

(10.70) |b(z) — b(z)l (39]
We also have, from the definition of b:

(10.71) 1b(z) +1og [P|] < C
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We want to get rid of the dependence of b on the » coordinate along w by adding a
coboundary term. We define

(10.72) DY =(Dom(Ty =" [(TH7(D,).
J=0 J=0
For each q, fix some »? € I". Then, for w € DY, w CR,, z € w, define
10.73) Ak =Y (AAH @) =T ).
i>0

where 7° is the point on @ with vertical coordinate equal to ).
From the cone condition, we have, for 7 > 0:

(10.74) (T () = (TH () < CA™

The series defining Ab is uniformly convergent from (10.69), (10.74), and Ab is bounded
on DY := n_l(DS’:’).

Write z' for the point on T, (w) € R, with vertical coordinate »",. We have

(10.75) Ab(z) — AB(TH(2)) =b(2) — b(w),

with

10.76) b =5+ Y [HAHH ) - HAH )
i=0

We call b the (logarithmic) mean transverse dilatation.

Proposition 33. — The mean transverse dilatation b, which differs from b on D by the
coboundary of the bounded function Ab, satisfies

(10.77) |b(w) — b@)| < CH]

if w, @ belong to the same component of the domain of (VY. Here 0, is a fixed constant in (0, 1) larger
than 9().

Progf. — We have only to prove (10.77). Let 2" € w, 7' € T*(w) as above and let
e ®, ' € TT(@) be similarly defined. We have, for i > 0, using (10.69) and (10.74):

(10.78) [BUTH (") = B(TH () < CA™,
(10.79) [BUTHTED) = D(TH' E) < CA™
From (10.70), we also have

(10.80) 5(°) — B < €8,
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For 0 <7 <j/2, we will compare B((TH (%)) and b((T+)Z+1(20)) as follows. Let Z™! be
the point on T (@) with the same y-coordinate as (TH)* (). From (10.70), we have

(10.81) BGE = B((THH))I<Co)
From Proposition 52, the cone condition, and (10.69), we also have
IZ — (TH* I < oy,
(10.82) IZH — (THHE <oy,
BEH = B(TH*H ) < cg)
We therefore have
(10.83) BUTH*E) = BATH* (< oy
Similarly, we get, for 0 <7 <;/2
(10.84) [BUTHEY) —B(TH (I < Co.

To estimate the difference b(w) — b(®), we use first (10.80), then (10.78), (10.79)
to truncate the sums at j/2, and finally (10.81), (10.82) to estimate the difference of the
remaining terms. We obtain (10.77) with

(10.85) 6, = max(6,/*, 1~'7?). O

10.7. Definition of a transfer operator. — As Ab is bounded, it follows from (10.71) that
(10.86) |b(w) +log |P|| < C
for all (P, Q,n) € P, w € RY(P).

It is then a consequence of Corollary 16 in Section 10.3 that the series

(10.87) > exp(—db(e))

Tto'=w

over pre-images @’ of a given stable curve w is converging, uniformly in , for d > d.
Here d~ < d should satisfy the hypotheses of Proposition 49 and Corollary 16. We will,
therefore deﬁne a transfer operator L, for d > d_ as follows: for a bounded function %
defined on D, for w € DY, we set

(10.88) L@ = Y exp(—db@))h(@).
THo' =

We can also view this sum over pre-images as a sum over inverse branches of T, which
are in one-to-one correspondence with the primes (P, Q, 7) such that QQ and @ belong
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to the same rectangle R,. Accordingly, we split the series in two parts: a finite sum cor-
responding to the trivial primes, (cf. Section 10.1), which we denote by L) and which is
defined for all values of @, and a perturbative term which we denote by AL,. The for-
mula (10.88) defines a bounded operator from the space of bounded functions on D
into itself, but to have nice spectral properties we need, as usual, to restrict to spaces of
slightly more regular functions.

Let 6 be a constant with

(10.89) 0, <6 <1

where 6; comes from Proposition 53 and satisfies &; > A~! (cf. (10.85)). Denote by E the
space of bounded functions 4 on DS which satisfy, for some constant C > 0,

(10.90) |h(w) — h(@)] < CO'

whenever w, @ belong to the same component of the domain of (T*). We denote by
|Z]lo the usual norm on bounded functions, by |4 the best possible C in (10.90), and
set

(10.91) 12l = max(|Ale, |2]lo)-

It is clear that E 1s a Banach space.

Proposition 34. — For d > d, L, restricts to a bounded operator on .. Moreover, the norm of
the perturbative part AL, 1s as small as we want if &y s small enough.

Proof. — Leth € E, w, w € DY, j > 0. Assume that w, ® belong to the same com-
ponent of the domain of (T*Y. Let (P, Q, ) be a prime such that Q, w, ® belong to the
same rectangle R,, and let w|, @, be the inverse images of w, ® by T* corresponding to
this inverse branch. By the definition of | |z, we have

(10.92) (@) — h@)| < [Alpd™*
From Proposition 53, we have
(10.93) lb(w)) — b(@))] < CO.
It follows from (10.86) that
(10.94) | exp(—db(w;)) — exp(—db(@)))| < C(d)|P|’8]"".
Putting together (10.92) and (10.94), we have
(1) exp(—db(,)) — h(@)) exp(—db(@)))]
(10.95) < C@)IPI O hl + 6, 1 All)-
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Summing over (non trivial) primes yields for d > d:

(10.96) |ALAl: < &1]lAllk

(10.97) |Lihle < CllA]g,

where &, can be made arbitrarily small if &) is small enough, according to Corollary 16.

The same estimates (for d > d) for | AL;A|l and [|L;%| are easier and can be seen
directly. The proposition follows. U

10.8. Spectral properties of the transfer operator. — Let us denote by R (K) the set of
stable curves w which are intersections of a sequence of rectangles belonging to R(I);
these stable curves are precisely those which meet the initial horseshoe K.

Observe that R (K) C DF. Denote by Ex the space of bounded functions /4 on
RS (K) which satisfy

(10.98) |h(w) — h(@)] < CH,

whenever w, ® belong to the same component of the domain of (T*). Define |A|g,,
|2|lg as above, which makes Ex a Banach space.
Let / € E; the restriction of 4 to RS (K) belongs to Ex and we have

(10.99) 1/ RE X e < Al

The formula for L) defines a bounded operator, still denoted by L), on Ex and we have
a commutative diagram

E —— E
L

(10.100) l l

Fx — Ex
Lr/

where 7 : E > Ex is the restriction operator. The bounded operator L) : Ex — Ex is the
subject of the classical theory by Bowen, Ruelle, Sinai for uniformly hyperbolic systems.
Let us recall some standard results of this theory.

(a) There is a direct sum invariant decomposition
(10.101) Ex =R/, & H,

depending analytically on the parameter @, such that /) is a positive eigenfunc-
tion, with associated eigenvalue A/, > 0, and such that

(10.102) sp(Lg/H;,) c Iz < ).
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(b) There exists a (unique) probability measure p/, on R (K) such that

(10.103) H, = {heEK,/hdM;zo}.

One normalizes /), to have f hydpy = 1. Then, the probability measure v; = Wl is
invariant under the restriction of T™ to R (K) (observe that T+ on R (K) is just the
restriction of g).

Let E” be the kernel of the restriction operator 7 : E + Eg. It is invariant under L.

Lemma 17. — One has, for all d € R.
sp(LY/E) {12 < 023

Proof. — Let h€e E°, j > 0. We have

0
(10.104) Lyh@)= Y he)exp(-db” (@),

(T (@)=w

where the symbol ZO indicates that we only consider inverse branches of T+ associated
with trivial primes. The notation 4 denotes the Birkhoff sum

(10.105) b () = Z b((TT) ().
0<i<y

We observe that in the sum in (10.104), each @’ belongs to the same component of the
domain of (T*Y as a stable curve in R (K). As h belongs to E°, this implies that for such
a @' we have

(10.106) (@) < |hled.

On the other hand, we have

0
(10.107) > exp(—db? () < CAJ,

and it follows that
(10.108)  [|(LYAlloo < CAJO 1Al

Let @ € RY belong to the same component of the domain of (T*)* as @. Denote
by @' the inverse image of @ associated to the same sequence of trivial primes as @’. We
have

(10.109) (@) — h@)| < |Alp? T,
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and, from Proposition 53

(10.110) 169(') — bV (@')] < COE.

Using also (10.106) and (10.107), we obtain

10.111)  |(L)A() — (LYA@)| < COF A |IAl.

which implies the statement of the Lemma. UJ

We deduce from Lemma 17 that there is a unique function in E, still denoted by
h;, which restricts to £, on RS (K) and satisfies

(10.112) LY(K) = M)A,
Moreover, defining a supplementary hyperplane by
(10.113) H)=r"(H) ® E’,

we have that H is invariant under Lg and
a0.14)  op(LyH)) C (1 <),

where A/ < A/, is independent of &.

Using Proposition 54, we now consider L, itself, assuming that &, is small enough
andd >d; .

As the norm of the perturbation part AL, is arbitrarily small, we conclude that L,
has a positive eigenfunction /,, with associated eigenvalue A, arbitrarily close to A/, and
an invariant supplementary hyperplane H; satisfying

(10.115) sp(Ld/Hd> C {12l < Al

Moreover, %, A, and H,; depend analytically on d for d > d~ because L, does. We check
that

(10.116) hy>C7'> 0.

Indeed, the sequence A" = A;"L(1) converges to a positive multiple of 4;. We
have

(10.117) K (@)=2" > exp(=db” ().

(TH"e")=w

Let w, @ be elements of DY in the same rectangle R,; let o', @' be pre-images of w, @ by
(T*)" associated with the same sequence of primes. We have (cf. (10.110))

(10.118) 6™ (') — b (@) < C,
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and it follows that
(10.119) C'< (B0 'h"(w) < C.
This implies (10.116). One normalizes /, in order to have
(10.120) hy = lirp AL (D).
Denote then by p, the linear form on E with kernel H, normalized by u,(%;) = 1. We
have, for all # € E
(10.121) lim A, "Lih = pq(h)h,.
As L, is a positive operator, f, is positive. Observe also that for all (P, Q,n) € R, the
characteristic function xp (equal to 1 if @ C P, 0 otherwise) belongs to E and satisfies
L"xp > 0 everywhere for some n > 0. Therefore, there exists a unique probability mea-

sure on R, still denoted by (., which coincides with 1, on the intersection of E with

C(R).

10.9. The Gibbs measure. — From the defining property (10.121) of u,, we have,
forall e E
10.122)  pa(Lih) = hopaa(h).

We will now check the classical Jacobian property for (.

Let (P, Q, n) € P, with Q C R,. The application T* is a bijection Tp from the set
RS (P) onto R (a).

Let 2 be a function in E which vanishes outside RS’ (P). Then, L vanishes outside
R (a), and satisfies on R (a)

Lsi(w) = h(Ty' ) exp(—db(Ty ' w)).
Plugging this into (10.122) gives

(10.123) )»d//z(a))d,ud(a)) =/ h(T;,la)) exp(—db(T;,la)))d,ud(a)).
RE (@)

This relation is the Jacobian property of the measure .
Consider in particular the case where £ is the characteristic function of RS (P). We
then obtain

10.124)  Ju (RE(P) = / exp(—db(T5 ' 0))dpty(®).
R (@)

We now will specify the value of ¢ by asking that
(10.125) Aa=1.

Indeed, we have the following



160 JACOB PALIS AND JEAN-CHRISTOPHE YOCCOZ

Proposition 35. — One has 2 aiha <0 ford 2 d7, and also Ay- > 1, limy, 4o Ag = 0.
T herefore, there exists a unique d > d wu‘h Ag=1.

Proof: — We first prove that 2 3544 < 0. The Birkhoff sums of b for T+ grow at least

linearly, and b — bis the coboundary of a bounded function. Therefore, there exists j > 0
such that the Birkhoff sum 4% of & for T is everywhere > 1. For 4 € E, we have

(10.126) %If;(m(m):— 3 b)) (@) exp(—db? (@)
(THY (o)=w

which is everywhere < 0 is 4 > 0. We will apply this with 4 = #,. We differentiate with
respect to d the relation L]d(hd) = )c]dhd to get

J el 0
(10.127) @Ud(/m—(ad%)d:(ﬂ A@)(ad)

The right-hand term belongs to H,. Applying , shows that )‘][1 and then also kd 18
<0.

Next, d~ was chosen in order to be smaller than the transverse Hausdorff' dimen-
sion of W’(K). This means that the eigenvalue A’_ for Lgf on Ex satisfies )\;f > 1. As
AL, is also a nonnegative operator, we have ,- > 2/ > 1.

Finally, with j as above and % € E, 4 > 0 we have

(10.128) L, (h) (o) = Z h@) exp(—db? (') < e _dLj;; (h)(w)
(TH(o)=w

which implies that A, < d)k - 0J

We will denote by d; the value of d such that A; = 1. We shall indeed see that 4, is
the transverse Hausdorff dimension of ROO which we were able to define in Section 10.5.
We just write u for the measure u,, and 4* for the eigenfunction #,,.

Proposition 56. — For any (P, Q, n) € R, we have
“PI* < p({o CPY < CIP|E,
Progf. — Let

(10.129) P, Qn=CF,Q),n)*x---x(P,Q,,n)

be the prime decomposition of (P, Q, n). If @ € DY satisfies (TH(w) € RE(Piyy) for
0 <1 < r, we claim that

(10.130) “P|* < exp(—d,b” (w)) < C|P|*



NON-UNIFORMLY HYPERBOLIC HORSESHOES ARISING 161

(see the definition of 6" in (10.105)). Indeed, let z € w; denoting, by b the Birkhoff sum
of b for T*, b (2) is the logarithm of the absolute value of the first diagonal coefficient
of the matrix of D(T™)" at z, hence we have, by bounded distortion

(10.131) C'[P| < exp(=57(2)) < C/P).

On the other hand, as b — b is the coboundary of a bounded function the difference
1617 (2) — b (w)]| is bounded by C and the claim follows.
From the Jacobian property, we have

n({fw C P} = CP* u({w € RT(a)})
(10.132) >C'PI,

where R, is the rectangle containing Q).

For the opposite inequality, we have also to take into account the other inverse
branches of 1", when we estimate L, (xp), where xp is the characteristic function of
{wCP}. For0 <<, let

(10.133) (P, Q1) = Pir, Qigr migr) % -+ % (P, Q)
(with (P", Q7, #) = (R,, R, 0)). We have

(10.134)  Lopp=xp +Axp

where

: 1 1

(10.135) xp(@") = exp(—d,b(@")) iZl ii;(a}“) for some " € R(P)

and
(10.136) Axy <CY_IPY*,

where the sum runs over prime elements (P}, Q7, n) with P} contained in P and distinct
from P (when r = 1). By Proposition 49 in Section 10.3, we obtain

r—1
(10.137) n(Axp) < CIP|"k 2,
If r > 1, we write similarly
(10.138) Lixy = xp + Axp,

where xg is associated with the inverse branch defined by the prime P, and vanishes
outside P?. The perturbative term satisfies

(10.139)  AxZ<CIP %Y [Py,
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where the sum now is over primes P} contained in P' and distinct from P' (when r = 2).
Proposition 49 now gives

—2
1(Axp) < CIPy P! Za

r—2
(10.140) < CIP|1%k 2 .

We iterate this process. At step ¢, we will have

(10.141) w(Axi) <GPk T

where the constant C does not gets worse by the same argument used above to justify

(10.130).
At the last step, we have from (10.130)

(10.142)  u(xp) < CIP|“.

The contribution of the perturbative terms is bounded by

r—1 _
10.143 Ayl C|P KT C|P|%.
( ) u(Z xp> |P|* Z |P| -

Corollary 17. — The transverse Hausdor{f dimension of ROO s < d;. More precisely, for any
C! curve y which is transverse to R the Hausdorff measure in dimension d; of the intersection of y
with Rf s finate.

We will see below that the transverse Hausdorff dimension is equal to d,.

Progf: — Let § > 0, choose a finite collection of disjoint rectangles P; with [P;] <
for each 7 and R"O C UP;. We have

I=) u®)>C') |
(10.144) >C7! Z[diam(y NP;)*

and the statement of the Corollary follows. 0J

The following statement shows that the dynamics T is only undefined on a small
set.

Proposition 57. — The transverse Hausdor{f dimension of the set R — DY 1is < d < d.
Moreover, we have

WRT —=DY) =0
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Progf: — We have

(10.145) Ry =Dy = @) "W).

n=>0

As each (T")" has countably many inverse branches which are Lipschitzian, it is sufficient
to prove that the transverse Hausdorff dimension of N, is < "~ and that u(N,) = 0. By
the definition of N, for any § > 0, the union of prime rectangles P with |P| < § contains
N, Tt then follows from Corollary 16 (in Section 10.3) that the Hausdorff dimension of
N, is < d~ and (using also Proposition 56) that u(N;) = 0. U

10.10. Transverse Hausdorff dimension of ﬁf

Theorem 4. — The transverse Hausdor(f dimension of RS is the number d, characlerized by
)‘d_&. - 1

Remark 17. — We have already seen that the Hausdorff measure in dimension d; of
the intersection of R with a transverse curve is always finite. We do not know whether
it is positive or always zero.

10.10.1. Proof — Let y be a horizontal segment in some R,. We denote by [y]
the set of stable curves which meet . We will show that, for all y, we have

_ _myD
(10.146) Aly) = (diamy )

< Clog®™ (diam y)~".
This clearly implies that the transverse Hausdorfl' dimension of ﬁf is > d;, which is
sufficient to prove the theorem in view of Corollary 17.

10.10.2. We start with some preliminary work. In the rectangle R, which con-
tains L, we choose a horizontal line J = {y, =*}. We will use ¥ to denote the x, coordi-
nate on J (we use a different notation because we will have in the same formulas points
on J and points in R,,). Let J be the set of x such that (¥,)}) € P,, and J* the set of
¥ € J such that (¥, »7) € P,NRY. For X € J*, let x, = ¢ (3, X) be the equation of the stable
curve through (¥, »¥) (thus, we have x = ¢ ()7, ¥)).

For each ¥ € J, ¢ is a C'™ function of y,. Moreover, from (R4) in Section 5.3
and Proposition 50 in Section 10.4, we have

<10.147> |(p)>()}5, %)| < 0807
(10.148) 0,00 %) — 9,00, )| < Ceoly, — /.
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On the other hand, it follows from Proposition 51 in Section 10.5 that, for x, ¥’ € J*
with X' > X, we have

(10.149)  C'@ - <00 T) — 90T SCEF 7).

We extend the definition of ¢ letting ¥ run in the whole interval J, to obtain an
homeomorphism from I, x J onto P, and still having (10.147)~(10.149), with now ¥, ¥’ € J.
This can be done for instance by linear interpolation in the ¥ variable, for each fixed y,.

The next step is to switch, via the diffeomorphism G, of Section 2.3, from the
coordinates x;, y; to the coordinates x;, w. We have (with the notations of Section 2.3)
9, =Y, (w, x,); plugging this into ¢ gives a family of curves parametrized by x

(10.150) % = oY, (w, x,), 7).

Lemma 18. — Each curve {x, = (Y (w, x,),X)} is a graph {x, = ¢ (w, %)} of a C'T1
Sunction of w. The function ¢ satisfies the same relations (10.147)—(10.149) than ¢, namely

lpw(w, x)| < Cey,
[P (W, X) — ¢y (W', %)| < Ceplw — w'|,
C'@ —% <p(w,¥) —p(w,% <CEHF —7),

Jorallw, w',x <%

Progf: — In view of (10.147), the first statement follows from the implicit function
theorem, which gives also

(10.151) Pu=0Y,,(1—9Y, )"

The first two estimates of the lemma now follow from (10.147), (10.148) and the fact that
the partial derivatives of Y, of first and second order are bounded.

For the last inequality, let x, = ¢ (w, %), x, = ¢ (w, ¥’). We have x, = ¢(Y, (w, x,), %),
x. =Y (w,«),%) and let x* = p(Y,(w, x,), ¥'). Then, from (10.149), we get
(10.152) C'@ —%) <« —x <CEF —%).
From (10.147), one obtains
(10.153) [x) — x| < Cep(x — x,),

from which we deduce as required

(10.154) C'(@ —%) <« —x <CE —%). O
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10.10.3. In the rectangle R, which contains L,, consider a C* curve y = {y, =
¥ (x,)} contained in Q),, where ¥ satisfies

(10.155) [V < Ceo, V| < Ceo.

Using the diffeomorphism G_ of Section 2.3 to switch to the coordinates w, y, via x, =
X.(w,»,), the curve is transformed into {y, = ¥ (X,(w, »,))}. By the implicit function
theorem, this is still a graph {y, = ¥ (w)}, with W satistying

(10.156) W, < Ce, [ Wy | < Cey.
In the spirit of Section 3.5, we now introduce
(10.157) C(w, %) :=w’ —0(¥(w), p(w,X)).

Observe that, for each ¥, the zeros of C(w, x) correspond to the points of intersection of
the curve G(y N L,) with the curve x;, = ¢ (y,, ).

Lemma 19.
1. Foreach x € ], C(w, %) is a C' function of w, satisfying

|Cp(w, %) — 2w| < Cey,
|Cy(w, %) — Cpy(w', X) — 2(w — w)| < Ceylw — w'l.

2. For each x € J, C(w, X) attains its minzmum value at a unique point w*, which is in the
wntertor of the domain of definition of the w variable. Writing

8(%) 1= —min C(w, ),

one has, forx <x mf
C'@ - <PPE) - @< CE - 7).

3. Let Xo, %, €] such that §(xy) > §(x;) > 0 and let wy, wy such that C(wy, %) =
C(w;,x;) =0. We have

8 (%) P lwo — wi| = C7 ' E — 7.

Proof. — The first part of the lemma follows immediately from the corresponding
properties of W and ¢, using that the partial derivatives of 6 of order one and two are
bounded. The first statement in the second part of the lemma is an immediate conse-
quence of the properties of C,, stated in the first part. One has also, from the first part

(10.158) |Gy (w, %) — 2(w — w")| < Cegplw — w*,
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(10.159) IC(w,7) + 8@F) — (w — w")?| < Ceplw — w* .

To prove the inequality in the second part of the lemma, the upper bound is just a conse-
quence from the fact that, for each w, C(w, ¥) is a Lipschitz function of ¥. For the lower
bound, we first recall that the partial derivatives 6,, 8, do not vanish and are bounded
away from 0. Assume for instance that 6, > C~'. Let w* be the point where C(w, X)
attains its minimal value —§(x). We have, from Lemma 18,

o (w*, %) = Pp(w*,¥)+C'@ —7),
hence
C(w*, %) = (w*)* — 0(¥(w*), p(w*, X))
< (W) =0V (w*), p(w*, %)) —C' & —x
=8 —C'(¥ — %),

and the lower bound follows.
In the setting of the third part of the lemma, we have

(10.160) Ci(wo, %) — C(wy, %) = C(wy, x) — C(wy, %),
where, by an argument just seen above,

(10.161) |C(wy, %) — C(wy, %)| = CHxy — 7y

On the other hand, we have

(10.162) |C(wo, %) — C(wy, %o)| < Clwy — wy| max |Cy (w, %)l

where the maximum is taken for w between w, and w,. But it follows from the first part
of the lemma (second inequality) that this maximum is taken at w, (because we have
assumed that §(xy) > §(¥;) > 0), and then from (10.158), (10.159) that |C,,(wy, Xp)| <
C8(%)"/%. Plugging this above completes the proof of the third part of the lemma. UJ

10.10.4. We now come back to the proof of the estimate (10.146). Let yy
be a horizontal closed segment in some rectangle R,. Clearly, we may assume that
n([¥]) > 0. By shortening y, if necessary, we can assume that there is a stable curve
through each endpoint of ;. Let (Py, Q, 79) € R the element such that Py is the thinnest
rectangle containing any stable curve in [y;]. There are at least two children of Py which
contain a stable curve in [y;].

We say that y, has complexity 0 if at least one of the following two conditions are
satisfied:

— At least one stable curve in [y,] is contained in a simple child of Py.
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— There is a child P}, of Py such that the set of stable curves in [y,] contained in P},
has p-measure > %,U«([)/o])-

If none of these conditions, we say that y, has complexity > 0.

When y, has complexity 0, it is easy to obtain (10.146) (and even better). Assume
first that the first condition is satisfied. Then, as yy intersects at least two children of Py,
we have

(10.163) diam y, > C7'|Py.
On the other hand, we have
(10.164) (v < n(fo C Po}) < CIPy|*

by Proposition 56, which proves (10.146).
Assume now that the second condition is satisfied. Then, as ¥, intersects at least
two children of Py, we have now

(10.165) diam y, > CG7'|P|.
On the other hand, we have
(10.166) n(ln)) < 3u(fo C PR} < CIPH4

by Proposition 56, which proves again (10.146).
We have shown that A(y;) is bounded for segments of complexity 0.

10.10.5. We now assume that the complexity of yy 1s > 0. If some stable curve
through an endpoint of y; is contained in a child P} of Py, but there is a stable curve
contained in Pj, not in [y;], we shorten y, to remove from [y;] all stable curves contained
in Pj;. We do this for both endpoints. The shortened curve, that we denote by y;, satisfies
w(lyeD = %,Uv([)/o]) (because the second condition above is not satisfied). The negation
of the second condition also implies that at least two children of P contain a curve in
[v;]. We can still assume there is a stable curve through each endpoint of y;. Any child
P, of Py which contains a curve in [y;] is non-simple, and all stable curves contained in
P, belong to [y;].

In particular, Py has non-simple children, hence Q) is contained in Q),. By (R4),
&' (y}) is a graph {y, = ¥ (x,)} satisfying (10.155). As there is a stable curve through each
endpoint of y;, the images of these endpoints by g/* are contained in L,; but then (10.155)
implies that g/ (y;) is contained in L,. Let J; C J be the compact interval image by the
projection on the second coordinate ¥ of the curve G o g/ ().

We define §) := maxj, §(x), §; := miny, §(x). From Lemma 19, part 3, we have

(10.167) 8y diam G 0 g (yy) = C™'(J1l,
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from which it follows that
(10.168) 8, diam y{ = C~Py|[]y].

We denote by (P ;); the (non-simple) children of Py which contain a stable curve
in [yo]. Each P ; is obtained from its parent Py by parabolic composition:

(10.169) Py Qg i» 119 ) € (Po, Qg o) O (Poi, Qi mo,).

Observe that it is possible that two P ; (but no more than two) correspond to the same
Py ;. The widths are related through

(10.170)  C™ <[Py [[P| ™ [P, 7'8(Qp, Pyt < C.

Here, §(Qy, Py ;) 1s the quantity of Section 3.5.
For each 7, we choose a stable curve {x, = ¢(y;, ¥;)} contained in P ; and such that

8(%;) is not of the form §,27!. We have X, € J; by construction of y;. We also have (cf.
Section 3.6.3)

(10.171) [8(Qy, Po,;) — ()| < CQJ + [Poil),
and therefore, in view of (R7) in Section 5.4

(10.172) §(x) > (1Q) + [Poi]),

(10.173) G <[Py I[P 1P 182 < C.

We now distinguish two cases

— 86 < %50
For any nonnegative integer /, let J7; be the set of x € J such that 8027 >
8(%) = 80,27""". By Lemma 19, part 2, it is a compact interval satisfying

(10.174) Uil <G82~

Let £ be the set of nonnegative integers / such that J}, contains some ¥;. It
follows from (10.172) that £ is finite. From (10.172), it also follows that it is
possible to find, for [/ € £, an interval J;; whose endpoints are at a distance
<« 8027 from those of J1.; and which has the following property: if &; € J7 ;, for
any stable curve ¢(y,, ¥) contained in Py ;, one has x € J; ;. One has still '

(10.175) Uil <C827"

— 8, = 38
In this case, we set L= {0}, J,0=].

In both cases, for [ € L, let y,; C J be the horizontal segment J; ; X {y*}.
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10.10.6. In the first case, we write

u(lyo]) < 3ulyg) <C Y|P, |*  (from Proposition 56)

1
< CIP* Y [Py, |“8(F) 72" (from (10.173))

1

s O

1
—=d, lds
< C[Py|*8, ? E 22 E P,
c

y s O
SCIPI*8, 7" Y 27 ) u({w CPo))
L

(from Proposition 56)

lds

1
—=ds s
(10.176) < CIP8, 7 > 22 plnl).
L

We have written Z(D for the partial sum over those Py ; satisfying ¥; € J7 .
When §) > %80, a similar but simpler argument gives

1
10.177)  ulinh) < CIP*S,” ullyia).

By definition of A(y), we have, for all /

(10.178) w(lyr) = Ay (diam oy, )"

When §; > 550, we now use (10.168), (10.177) to conclude that
(10.179) A(yy) < CA(y10)-

When §; < %80, we use (10.176), (10.175), (10.168) to obtain

4, —lds
i) < Cmax Ay, |Pol 8] ;2 2

<C mEaXA()/u) |Po|“ 85

(10.180) < cmng(yl,/)((SOU1 | =" diam y)*.

But in this case, we have [J;| > C'§; from Lemma 19, part 2, and we conclude that

10.181)  A() < CmaxA().
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To obtain (10.146), it is thus sufficient to define, for all horizontal segments y;, with
w([¥]) > 0, a complexity index ¢(yy) € N which vanishes as explained in Section 10.10.4
and satisfies otherwise

(10.182) ¢(yo) < Cloglog|Py| ™",
(10.183) (o) =1+ max c(y1.).

10.10.7. We want to use (10.183) to give an inductive definition of ¢(y). This will
work if the y; ; are in some sense “simpler” than y,. If all y; ; have complexity 0, we just set
¢(y0) = 1. Assume therefore that some y, ;, that we just denote by y;, has complexity > 0
(according to Section 10.10.4). Observe that J7 , must contain at least two X;: otherwise,
the unique Py; such that X; € JT, would be the thinnest rectangle containing any stable
curve in [y,], and y; would have complexity 0 by the first condition of Section 10.10.4.

Therefore, there exists an element (P, Q;, n;) € R with the following properties:

— each Py; with §(¥;) € ]}, is contained in some non-simple child of Py;
— at least two non-simple children of P, contain some such Py ;.

Lemma 20. — One has
P77 > C718,27"
Moreover Py s I-critical for any parameter interval 1 containing t.

Proof. — Let ¢ such that Py ; C P;. There exists a parameter interval I containing ¢
such that Qg and Py ; are I-transverse. On the other hand, as P ; is a child of Py, Qy and
P, are I-critically related for every parameter interval I containing ¢. By Proposition 21
in Section 8.1, we must have |P;| > é|QD|- If we had |P;|'™" < 8,27/, we would also have
1Qp|'™" « 8,27 and (T1), (T2), (T3) for QyM; P, would hold for a sufficiently small pa-
rameter interval I containing ¢. This contradiction proves the first statement. The second
follow from Proposition 24 in Section 8.2. 0J

10.10.8. We assume in this subsection that Py also is I-critical for any I contain-
ing Z.
Let I* be the largest parameter interval for which we have

(10.184) IPo| > [T*|%.

Observe that Py is I*-defined by Corollary 6 in Section 6.6.3. Then, (Py, Qy, 7y) cannot
be I*-bicritical as I* is B-regular, hence Q) is I*-transverse. This implies that there exists

Py,; with §(¥;) € J7, and P* containing the stable curve {x, = ¢ (y,, X;)} such that Qg and
P* are I*-transverse. IFrom Section 3.6 and Lemma 3 in Section 6.6.3, we have

(10.185) 5,27 > 8(%) = 8(Qy, P*) = I"].
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On the other hand, it follows from the definition of I* that
(10.186) 1117 > |Py| .

Inequalities (10.185), (10.186), and Lemma 20 give

1
(10.187) 1P| < |P |27

This estimate means that every Py that occur (for the various y; = y;; such that
the complexity of y;; is > 0) is indeed simpler than Py. Moreover, by Lemma 20, the
hypothesis of Section 10.10.8 is satisfied by any such P;. We can therefore under the
assumption of Section 10.10.8 use (10.183) to define inductively ¢(yp). The inequality
(10.182) follows then from (10.187).

10.10.9. Finally we deal with the general case. By Lemma 20, the index ¢(y, ;)
is already defined for every / € L. We define ¢(y) by (10.183) and check (10.182). For
every [ € L, we have either ¢(y; ;) =0 or ¢(y;,;) > 0 and

(10.188) c(y1) < Cloglog|P]|_1,

where P, is associated to y;; as in Section 10.10.7.
From Proposition 12 in Section 6.6.2, we have

(10.189) loglog |Py|™! = C'log .

On the other hand, we have, from Lemma 20 and (10.172)
(10.190) C 'og [Py <log(8,27") <log|Qy|™" < Cry.
From this, we obtain

(10.191) loglog |Py|™! <loglog |Py| ™" + C,

and (10.182) follows.
The proof of the theorem is now complete.

10.11. [Invariant measures. — From the Gibbs measure w, which is not invariant
but has the Jacobian property, we define a measure v on RS by dv = A*du. Recall that
u(RY — D) = 0 and that £ is normalized by p(#*) = 1. This means that v is a proba-
bility measure on R and that v(D3°) = 1.

Proposition 58. — The probability measure dv = I*du is T -invariant, ergodic. It satisfies,
Jorall (P, Q,n) € R:

C™'[P|* <v(fw CP) < CIP“.
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Proof: — As h* 1s bounded and bounded away from 0 (cf. (10.116)), the estimate for
V({w C P}) follows from the same estimate for pu({@w C P}) in Proposition 56.

Let us prove that v is T -invariant. We first observe that, if 4, &, € E, the product
hoh, also belongs to E; indeed we have

(10.192) lhoh e < Mo llos 1A [ =+ 1A |11 [l oo

In particular, for any z € E, h#* also belongs to E. Let 4 € E. We write

//z(T*a))dv(a)) :/iz(T+w)/z*(w)dM(w)
(10.193) =Y / KT o)k () X3 (@)dp(w),
P

where xj is the characteristic function of R (P). The Jacobian property (10.123) (Sec-
tion 10.9) gives

/ T o) () x5 (@) dp(w)

(10.194) = f @) (T3 (@) exp(—db(Ty (@)))dpe (@)
R (@)

where Q C R, and T} is the restriction of T to RS (P). Summing over P and using that
k* 1s L, -invariant gives

(10.195) /h(T+w)dv(w):fh(w)dv(w).

But ENC(RY) is dense in the space of continuous functions C(RY’); the invariance of
v follows.

Let us prove that the invariant measure v is ergodic. Let A C R be a T*-invariant
Borel subset with v(A) > 0 and A° its complement. Let € > 0. We will prove that there
exists a € a such that

(10.196) VANRT(a) = (1 —e)v(RT ().

As & > 0 is arbitrary, this easily implies v(A) = 1.
As V(A) > 0, we can find (P, Q, n) such that
(10.197) v({w CPINAY) <ev({w CP)),

where ¢’e7! is small. Let r be the number of factors in the prime decomposition of

(P, Q, n). Up to a set of measure 0, we have

(10.198) {wCP)= U U(T+)—f(7sz(1>j)) mod 0

0<r B
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where P; runs through prime elements satisfying P; C (TTY(P) and (T*)~ is the inverse
branch of (T*Y whose image contains P. From (10.197), there exists 0 <j < r and P;
such that

(10.199) VA N (THT(RTP) < v((TH(RT(P))).

We apply the Jacobian property, taking (10.118) into account to get (10.196) with ¢ = Ceg’.
We have proved that v is ergodic, and the proof of the proposition is complete. UJ

We will now lift v to obtain a T*-invariant probability measure on RS°.

Proposition 59. — There exists a unique probability measure v on RS which is T -invariant
and projects onto v under 7. It is ergodic.

Proof. — The arguments are standard.

Existence. — Denote by M(v) the set of probability measures on RZ which project
onto v. This is a compact set for the weak topology, invariant under T* because v is
T+-invariant. One obtains a 'T*-invariant measure in M () by taking any vy € M(v)
and choosing a weak limit of a subsequence of

n—

L,
10.200) =3 (TG
0

Unigueness. — The set of fixed points for the action of T+ on M(v) is thus non-empty.
It is also compact and convex. If it has more than one point, it has at least two distinct
extremal points Vg, ;. As v is ergodic, vy and V| are also ergodic. Still by the ergodicity
of v, some stable curve @ must meet the basins of both 7, and V;. But stable curves are
contracted exponentially fast under positive iteration by T™; we should thus have vy = 7},
a contradiction.

We have already said that V is ergodic. UJ

Finally, we want to “spread” the T*-invariant measure ¥ in order to obtain a g-
invariant measure 0. Let A = A, as in the Introduction (cf. Section 1.2).

We first observe that the support of V is contained into A N ﬁi if N C ﬁff 18
compact and disjoint from A, then N is disjoint from the image of (T if j is large
enough, hence V(N) = 0.

Let now 4 be a continuous, and thus bounded, function on A. For x € AND, we
write

(10.201) TH(x) = N9 (x),
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where N(x) =nifx € 7%3’:’ (P) with (P, Q, n) € P. We define:

(10.202) Sh(x) = Z (g (x)).

0</<N()
The function St is defined V-almost everywhere. It satisfies:
(10.203)  [Sh(9)| < AN,

By Proposition 58 and Corollary 16 in Section 10.3, the function N is V-integrable. We
have therefore defined an operator

(10.204) S:C(A) — L'(¥),

where C(A) stands for the space of continuous functions on A = A,.
We define a finite measure o on A by

(10.205) / hdo = / Shdv,

for 1 € C(A). From the definition of S/, we have
(10.206) S(hog) =Sh+hoT* —h.

Thus, the T+jnvariance of vV implies that o is g-invariant. It is ergodic. The Lyapunov
exponents of T for V' are non-zero because T is uniformly hyperbolic. To get the Lya-
punov exponents of g for o we have only to change time, which is possible since N is
V-integrable.

In the next and last section, we will see that in some appropriate geometric sense,
the measure o captures “most” of the dynamics on A, and therefore can be considered
as a naturally defined geometric invariant measure on A.

We end this section by observing that everything that has been done for T* and
positive iteration in Section 10, can also be done for T~ and negative iteration, leading
to another naturally defined geometric invariant measure o~ on A.

11. Some further geometric properties of the invariant set

In this final section we pursue the geometric study of the invariant set A = A, in
two directions. First, we will describe in a rather precise way, both from a dynamical and
a geometrical point of view, the intersection of an unstable curve in R, as defined in
Section 10.4, with the invariant set A. In the second part of the section, we prove that A
is a saddle-like invariant set in the measure-theoretical sense: both its stable and unstable
sets have Lebesgue measure 0; thus, no attractors are present in A.
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11.1. One-dimensional analysis of the invariant set. — Let @* € 'R* be an unstable
curve as defined in Section 10.4. Let (P}, Qj, n});>0 be the canonical sequence associated
to ®* (cf. definition also in Section 10.4). We have

(11.1) o =()Q.

k=0

where Q is a rectangle R, and Qj, is a child of Qj for each £ > 0. We want to analyze
the intersection w* N A. In Section 10, we have analyzed the set 7%3_0 and we know,
in particular, that * N A contains the subset w* N ﬁff ; this last subset has Hausdorff
dimension d; characterized in terms of the transfer operator studied in Section 10; in
particular, this dimension is independent of @*.

Let us summarize the results of our analysis in this section.

Theorem 5. — The intersection ™ N A s the disjoint union of

— a, at most countable, famuly of Cantor sets A;(@*),
— a, at most countable, set Cr(w*),
— an exceptional set E(w™),

with the following properties

(1) For each 1, there exists a piece @* (1) of @* contarning A;(w™), an unstable curve w*; and
an integer n; such that

(11.2) (@) =y,

(11.3) (A (0)) = NRY,

In partwcular, there is a special index 1+ = 0 for which ny = 0, 0*(0) = oy = @7,
Ap(@*) =" NRT.

(ii) For every point ¢ € Cr(w®), there exists a stable curve w, (¢c) € R, an unstable curve
w_(c) € R, a postive integer n(c) such that g"°(c) is a quadratic tangency point be-
tween ™ (¢) and g (0™ (c) N Ly,).

(iti) The Hausdorff dimension of E (w™) s not greater than

1 1 -
(11.4) (d_9+—2(d0+d0— 1)) +o(1)

where the o(1) term s small provided T s small enough. Consequently, the Hausdorff
dvmension of @* N A 15 equal to dj.
(iv) Every point x € E(w*) s the intersection of a decreasing sequence of pieces (* (1,(x)))>0-
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Remark 18.

1. The structure of w* N A will be made more precise in the next subsections. We
have tried here to extract the most significant features of our analysis.

2. Even with d° 4+ d” > 1, it may happen that A is a uniformly hyperbolic horse-
shoe; then, the family (A;(w*)); is finite, Cr(w*) and £(w*) are empty. When
A is not uniformly hyperbolic, the family (A;(@*)); is countable and &€ (w*) is a
Cantor set; it 1s not clear in this case if Cr(w™*) can be empty.

11.2. Parabolic cores. — Let (P, Q,n) € R, 'R as in Section 10.1.

Definition 16. — The parabolic core of P, denoted by ¢(P), s the set of points of W’ (A, ﬁ)
which belong to P but not to any child of P. The parabolic core of Q, denoted by ¢(Q), is the set of
points of W*(A, R) which belong to Q) but not to any child of Q.

We have partitions

(11.5) ROW(A,R) =| [e@)uR,
R

(11.6) ROAW'(A,R) = |e(QuR™.
R

If R, is the rectangle which contains w*, we also have

(11.7) o NA= | |@ NeP)u @ NRY).

PCR,

The parabolic core is empty if and only if P is I-decomposable for a small enough para-
meter interval containing the given strongly regular parameter value. In particular, ¢(P)
1s empty if Q) is I-transverse. Thus, the union in (11.5), (11.7) can be restricted to those
(P, Q, n) € R such that Q is I-critical for all I.

We will denote by C(w*) the set of elements (P, Q, n) € R such that ¢(P) N w* is
not empty. For any (P, Q, n) € C(®*), Q is I-critical for all I.

11.3. Decomposition of ¢(P) N w*. — Let (P, Q, n) € C(w*). For £ > 0, set

(11.8) Py, Qp. ) = (PE, QF, uf) (P, Q, ),
(11.9) wp={Q-
k=0

The unstable curve wjp is contained in () and we have

(11.10) (@ Ne(P)) CwiNL,
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We define a tree A(w*, P) as follows. The vertices are the rectangles P* C P, with the
following property: for any parameter interval I (containing the given parameter value,
say ¢), for any Q; D wj, Q; and P’ are not I-separated, and Q; and the parent of P" are
I-critically related.

We connect two vertices by an (oriented) edge if one is the parent of the other. We
say that a vertex P’ is ¢nitical if, for all I and Q; D w}, Q; and P’ are I-critically related.
Otherwise, we say that P’ is transverse. The parent of a vertex is always a critical vertex,
except if this vertex is P, the 100t of the tree. When P’ 1s a transverse vertex, the smallest
integer 4 such that Q;, P are I-transverse for I small enough is called the level of P’

Let P’ be a critical vertex; then, for every parameter interval I 5 ¢, P’ is I-critical
and, therefore, decomposable.

Let P be a transverse vertex of level 0. We have Qg = Q. Therefore, the parabolic
composition (P, Q, n) O (P', Q’, ') is well defined and produces two children of P.

Let P’ be a transverse vertex of level £ > 0. For all m > £, the parabolic composition

(Pma Qm: nm) O (P/a Q,/a 7’1/)

is well-defined and produces two elements (P¥, QF, n*). The formulas
a);ip/"’» = m Qt’
w;,P’,— = ﬂ Q;’

define unstable curves wp ;. contained in Q). We also define pieces o*(P, P', &) of o*
through

(11.12) & (0 (PP, ) = .
(11.13) npp :=n—+n + Ny.

(11.11)

Lemma 21. — Let x be a point in 0* N ¢(P), y = g"™0(x). Either y belongs to a transverse
vertex of level > O or it belongs to an infinite decreasing sequence of critical vertices.

Proof. — We have g"(x) € L, (cf. (11.10)), y € Ly C P,, and P; is the root and a
critical vertex of the tree A(w*, P). We assume that the first possibility in the statement
of the lemma does not hold and construct, starting with P, a sequence of critical vertices
containing y.

Assume that p belongs to a critical vertex P'. As P’ is indecomposable and
» € W(A), » belongs to some child P} of P". This rectangle is a vertex of the tree:
otherwise, Q; and P} would be I-separated if I and Q; are thin enough, and then
2V (¢"(w*) NL,) NP, (which contains ) would be empty. The vertex P; cannot be trans-
verse of level 0 because, as remarked above, the parabolic composition of (P, Q), n) and
(P}, Qj, 7)) would produce a child of P containing x, contradicting the hypothesis that
x € ¢(P). Finally P} cannot be transverse of level > 0 by hypothesis. It must be a critical
vertex, and the induction step is complete. UJ
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Proposition 60. — There is at most one point x € w* N ¢(P) such that y = g"*™™(x) belongs
lo a decreasing sequence of critical vertices. When such a point exists, the intersection of this decreasing
sequence of vertices is a stable curve which intersects ¢~ (L, N w}) at y as a quadratic tangency point.

Proof: — Let x be a point in @* N ¢(P) such that y = g"™°(x) belongs to a decreasing
sequence (P})>¢ of critical vertices. Denote by w,. the stable curve which is the intersec-
tion of these critical vertices. For all parameter intervals I, all £ > 0, £ > 0, Q; and P}, are
I-critically related. This implies that

(11.14) Jim 5(Q;. P) =0.
k—+00

£—+o00

For large £ and ¢, let y; (resp. (y/) be the image in Q) (resp. the inverse image in P))
of the intersection of P; with an horizontal curve (resp. the intersection of Q) with a
vertical curve). By (11.14), the distance between the vertical-like curve y; and the tip of
the parabolic-like curve gN(y;) goes to zero as k, £ go to +00. Passing to the limit, we
see that @, has a tangency with g™ (w} N L,). This tangency is quadratic in the following
sense (cf. also the remark after the end of the proof): First, g™ (w} N L,) is contained, with
the exception of the tangency point, in one of the components of P; — w, ; moreover, the
angle between the tangent lines to w, (x), g~ (L, N wp) at points on these curves at the
same distance and on the same side of the tangency point is of the same order as this
distance to the tangency point. This is a consequence of the uniform estimates (3.21),
(3.22) in Section 3.5.

As w; and g™ (L, N w}) meet at only one point, this point must be y. If ¥’ is a point
with the same property as x, and we construct @/, in the same way as w,, we must have
w,; = w/, because otherwise (L, Nwp) Ny or g (L, Nws) N o/, is empty. But, then,
we have y ;= g™ (x') = y and ¥ = x. O

Remark 19. — Calculations involving partial derivatives of higher order for the
maps (A, B), which implicitly represent elements of R, show that stable curves and un-
stable curves are actually of class C*, with uniform estimates in the C* topology for
all £. Then, quadratic tangency can be taken in the usual sense. However, the calcula-
tions involved, especially when considering parabolic composition, are quite long and
not very interesting; we decided to stick to the G'™1P regularity class, where the notion of
“quadratic” tangency, as explained in the proof of Proposition 60, still makes sense.

It 1s easy to see exactly when a point x € w* N ¢(P) with the property specified in
Proposition 60 does exist: a necessary and sufficient condition is that the tree A(w*, P)
is infinite. In this case, the point x will be a point of the set Cr(w*) in the statement of
Theorem 5 and the point y = g"™™N(x) is said to be eritical.

Summarizing what we have established so far, two cases may happen:
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(1) The tree A(w*, P) is finite. Then, the intersection w* N ¢(P) is the finite disjoint
union of the sets

(11.15) w*(P,P,£)NA

where P’ runs through the vertices of the tree which are transverse of level > 0.
‘The image under g"" of the set (11.15) is the intersection wp p . N A.

(2) The tree A(w*, P) is infinite. Then, the intersection w* N ¢(P) is the count-
able disjoint union of the sets w*(P, P, £) N A as above and a single point
x € Cr(w*). The point x = xp is the limit of the pieces w*(P, P', ) (whose di-
ameters goes to 0 as |P’| goes to 0).

11.4. The structure of * N A. — We are now ready to prove all the statements in
Theorem 5, mentioned above in Section 11.1, with the exception of (iii) (the estimate on
the Hausdorff dimension of £ (w*)).

The structure of @* N A that we are looking for, which is roughly described in
Theorem 5, is obtained by iterating the partition (11.7) and the decomposition of w* N
¢(P) described in Section 11.3.

At the first step, we have partitioned w* N A into the following subsets:

— the intersection w* N 7%3? ; points in this set are said of type I;

— for each (P, Q, n) € C(w*) such that A(P, w*) is infinite, a point xp such that
yp = g"™N0(xp) is critical; such points xp are said of type II;

— for each (P, Q, n) € C(w*), each vertex (P, Q’, ') of A(w*, P) which is trans-
verse of level bigger than 0, each ¢ € {+, —}, the intersection w*(P, P, &) N A;
the image of this set under g"""" is the intersection wp p N A of another unstable
curve with A.

The intersection wp p , N A will be analyzed in the same way that @* N A.

Consider a point zp € @* N A. If it is of type I, it belongs to the set Ag(w*) :=
w* N'RY of the statement of Theorem 5. If it is of type IL, it belongs to Cr(w*). Assume
now that it is of type III. Then, it belongs to some @*(P, P’, £) N A as above. Define

(11.16) 21 =g""(2),

which belongs to wp p , N A =: @]. This point may in turn be of type I, II, IIT with respect
to w}. The process stops if z; is of type I or 1I; if z; is of type III, it belongs to some piece
i (P, P}, £1); we define

(11.17) 2 =g""(2),
which belongs to wj N A, with
(11.18) wy =g "M (o (P, P, 8)).

Iterating this process lead to one of three possible outcomes:
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(1) the z;’s are defined and of type III for all £ > 0; the corresponding initial points
2o form the set £(w™*). -

(2) the z;’s are defined for 0 < £ < £ and z; is of type I, i.e. it belongs to R%’; let
(Px, P, &) for 0 < k£ < £ be the data involved in the definitions of the z;’s. We
collect together the initial points z,’s with the same set of data; such a set form
one of the Cantor sets A;(w*) in Theorem 5.

(3) the z;’s are defined for 0 < £ < £ and 2z, 1s of type II. Then z, belongs to the set
Cr(w*).

We have now completely defined the partition of @* N A described in Theorem 5.
The properties (i), (ii), (iv) follow immediately from the definitions.

11.5. Hausdorff dimension of the exceptional set E(w*).

11.5.1. The self-similar structure apparent in the definition of £(w*) is the key
to obtain an estimate of the dimension of this set. More specifically, we have

(11.19) )= | | & E@rr.),
(P,P,e)

where ¢ € {+, —}, P runs through C(®*) and P’ through vertices of A(w*, P) which are
transverse of level > 0.

11.5.2. The estimate on the Hausdorfl dimension will follow from a standard
result that we formulate in a general setting.
Leta, d € (0, 1). Let €2 be a set. For each w € €2, we are given

— a subset E(w) C [0, 1] which is the union of at most countably many disjoint
compact subintervals of [0, 1];
— amap F, = (g,, /o) from E(w) into [0, 1] x .

These data satisfy

— Each map f, is constant on each component of E(w).
— The restriction of each map g, to each component of E(w) is an uniformly
expansive C'** diffeomorphism onto [0, 1] with uniformly bounded distortion.

The second condition means that there exists 0 < A < 1, Cj > 0, independent of w, such
that, writing /% for the inverse of the restriction of g, to a component J of E(w), we have,
for x, y € [0, 1]

DAy ()]
|log |D/;(x)| — log [DAy(p)|

Define E := {(x, w) € [0, 1] x 2, x € E(w)} and the map I : E — [0, 1] x Q2 by F(x, ®) =
F,(x). Let € = ﬂn>0 F7(E). For w € 2, let £E(w) :={x € [0, 1], (x, w) € £}.

A,

NN

Colx —p|”.
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Proposition 61. — Assume that one has, for every @ € 2

D U1 < exp(=Cod(1 = 2™,
J

where the sum runs over the components | of EAw). Then the Hausdorff dimension of each set £ (w) is
at most d.

Proof: — Yor n> 0, w € 2, let E, := ﬂogm«z F~(E) be the domain of ", and
E,(w) :={x € [0, 1], (x, w) € E,} be the fiber of E,. Each E,(w) is the union of at most
countably many disjoint compact intervals.

Let n> 0, w € , ] be a component of E,(w). There exists @ and a C'* diffeo-
morphism /% from [0, 1] onto J such that F'(x, w) = (/zJ_1 (x), ') for x € J. Moreover, we
have, for x, y € [0, 1]

|Dly ()| < A",
| log [D/y ()] — log DA ()] < Co(1 — 1)~ |x =51
Forn> 0, w € Q, define
Su(@) =Y _I",
J

where the sum runs over the components J of E,(w). Here, each interval has length
< A", Therefore the components of E,(w) form a covering of £(w) by intervals of small
diameter. We have by hypothesis S;(w) < exp(—Cod(1 — A*)™"). We will show that
S,+1(w) < S,(w), which implies the conclusion of the proposition.

In the sum for S,; (), we first sum over components J* of E,;,(@w) which are
contained in a fixed component J of E,(w). With o’ as above, such J* are exactly the
images by #; of the components J' of E('). The lengths are related through the mean-
value theorem by

Ul = DA ()], U*I = DO

for some x € [0, 1], » € J'. We therefore have
U] < exp(Co(1 =2 HUIY'I-
We finally obtain

Sur(@) =Y > [
J 7
< exp(Cod(1 —2*) ™) Z(WZ U’I")
J J
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= exp(Cod(1 — 2™ Y (18, ()
J
<D U1 =S,().
J

11.5.3. We now come back to the setting of the theorem.

Lemma 22. — The maps
g o' (PP e) > oy,
have uniformly bounded distortion.

Proof. — Let k be an integer larger than the level of the transverse vertex P’. Then,
the parabolic composition of (P, Qy, ;) (cf. (11.8)) and (P', O, ') is defined and pro-
duces an element (P}, Q}, ;) such that Q; contains wp p .- Let y be an horizontal seg-

*
.

ment in P, y; its image under g, y/ the image of y;* N P, under g%.

The affine-like maps

(11.20) g QL P — Q)

have bounded distortion, hence the one-dimensional map

(11.21) glo@)™y>n

have also uniformly bounded distortion. Letting £ go to +00, y; converge to wg » , and
i to w* in the C*~*-topology for all & > 0. The statement of the lemma follows. 0J

Lemma 23. — Let
S(wp, P = klim 5(Q;, P).
—+00

We have

' < diam w (P,P,g)1 <C.

IPI[P'(8 (wp, P')) 2

Progf: — As in the proof of Lemma 22, we write
(11.22) g =glo (g7
From the estimate (3.27) for parabolic composition in Section 3.5, we have

diam(y;* N P))

(11.23) C'< <G
Pl [P1(8(Qy, P)) 2
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We also have, from the estimates on simple composition

» diamw*(P, P', ¢)|P}

|
<G,

(11.24) G < dam 7
(11.25) ot P
| PlIP%]
Multiplying these three inequalities yields the Lemma. 0J

11.5.4. From (11.19), we see that £(w*) is a set of the type considered in Propo-
sition 61. The property of uniformly bounded distortion has been checked in Lemma 22,
and the property of uniform expansion is clear from Lemma 23.

Let us introduce

(11.26) x(d)= Y [diame* (P, P, &)]".

(P,F.e)

If we are able, for some value of d, to show that the series defining x is convergent
and x(d) 1s small enough, then by Proposition 61, we will deduce that the Hausdorff
dimension of £(w*) is < d.

In order to study x, we will first fix P in C(®*) and sum over (P', €). As ¢ takes
only two values, and in view of Lemma 23, we define, for P € C(w™):

1
(11.27) xo(d) = Z IP|48 (e}, P)) 2"
P/
We will then have
(11.28) X(d) <C Y P"xp(d).
P

In the sum (11.27), P is a transverse vertex of level > 0. We claim that
(11.29) S(w}, P') < 81nay := min(gy, C|QJ' ).

The bound by & is clear. To show that §(w}, P') < C|QJ'™", we recall that, for large
k and small I containing ¢, Q; and P’ are I-transverse, while Q and P’ are I-critically
related for any I containing ¢. By Proposition 21 in Section 8.1, we must have |Q] >
%lP’l. If we had 8(wj, P') > |Q)'", we would also have §(Q, P’) > |Q]'™", §(Q, P) >
|P’|'="; conditions (T1), (T2), (T3) for QM P’ would be satisfied for I small enough, a
contradiction. The claim is proved.

In the series (11.27), we first sum over those P’ such that

11.30 278 = 8 (w0, Py = 2718
P
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for some fixed £ > 0. This allows us to write

()

(11.31) xo(d) < 05;1{222%(Z|P/|d)’

€0
where Z(‘Z) means that P’ is constrained by (11.30). We divide Z(z) into two parts.

11.5.5. In the first part, denoted by (112)’ we consider only those P’ such that its
parent P’ satisfies

(11.32) 1P| <2 8.

To estimate Z?) |P'|4, first observe that, with d bounded away from 0, it follows from
Proposition 26 in Section 8.1 that the sum of |P'|? over children of a fixed parent P is
bounded by C|§’|d . We must therefore bound 2(12) |ﬁ/ 4.

Also, as P’ is a critical vertex, P’ cannot be very thin: we have §(w}, P') < 3[P'|'".
Indeed, otherwise, for large £ and small I containing ¢, conditions (T'1), (T2), (T'3) for
Q; M P would be satisfied. We have therefore

(11.33) P12 C8(0h PP 2 07 (82 O

Finally, the number of P with |§/ | of order 2784 1s at most C2™ and the integer m
here is restricted by (11.33) to the range

(11.34) 1 2" < Q82”6100

We, therefore, obtain for 4 bounded away from 0 and 1,

(9] ()

dpr<ey P
1 1

< Cad Q—Zd Z Qm(l—d)

max

m

(11.35) < C(max2 H,

11.5.6. In the second part of Z(D, denoted by Zé€)> we have on the opposite
(11.36) IP'| > 2 S

We claim that, in this case, the number of possible P’ is bounded by C.
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— 1If there is some P’ with |P’| > 2748, x, it will contain all P’ satlsfymg (11.30),
because (according to (MP7)) there 1s a strip of width > G~ 1P| along each ver-
tical boundary of P” which does not intersect A and therefore does not contain
any P’ satisfying (11.30). Two such P’ cannot both be the parents of the same P’,
hence there is at most one such P'.

~ The remaining P’ satisfy C260 > [P'| > 2748,,,,,. We divide this range into
a bounded number of shorter range, such that two P’ with widths in the same
range are disjoint. But there can be at most C disjoint P with |P’ | > 278, and
containing some P’ satisfying (11.30).

This proves the claim.
As each P’ 1s a transverse vertex, we must have (by (R7))

(11.37) IP'| < G2 8,00 .

In particular, from (11.36), (11.37), P" is a non-simple child of P'. From Proposition 26 in
Section 8.2, the number of P’ with |P'| of order 2~"¢, is at most 27",
We have

©
(11.38) ZlP’ 8022 M g (27 8.

11.5.7. Putting (11.35) and (11.38) together yields (replacing if necessary ¢’ by
max(c, 1))

(£)
(11.39) D 1P < ClBman2 )

and introducing this in (11.31) allows us to estimate xp:

—dn

(11.40) xr(d) < can%dx

Finally, we obtain

(11.41) x(d) <C Y |P“[min(e, |QJ)]%”Z‘C”.

C(w*)

11.5.8. We do not know exactly the set C(@*), but we know that if (P, Q, n) €
C(w"), the parabolic core ¢(P) is non-empty and Q) must be I-critical for all parameter
intervals I containing the given parameter value.

We use Holder’s inequality to separate the P and Q) in (11.41): for any p, ¢ > 1
such that

(11.42) el
J4



186

we have

(11.43)
where

(11.44)

(11.45)

JACOB PALIS AND JEAN-CHRISTOPHE YOCCOZ

1 1
x(@) < Cxp( @) x_(d)7

X d= > [P,
Q critical
Lo
X-(d)= ) min(s, |Q)2T".
Q critical

We will choose d, p, ¢ satisfying (11.42) in order to have y (d) bounded and x_(d) small
(when g 1s small). For such a choice, we can conclude that the Hausdorff dimension of
E(w*) is < d.

11.5.9. We first consider y_(d). We write d~ = q(%d — Cn). We divide the sum
for x_(d) into three parts according to the width of Q). We recall that |Q),| is of the same
order than g.

(11.46)

1Q) = [Qul.

In this case, as Q is critical, it contains Q,. The number of such Q is <
Cloge; ', hence this part of the sum is bounded by Ce! loge; ' hence this part
of the sum is bounded by Ce{ loge; .

QI > 1Q) > Cy g™ =Cylen.
In this case, Q must be contained in Q),. By Corollary 13 (Section 8.3), the

number of such Q is at most Cg, “ and the corresponding part of the sum is
bounded by Cefl ™.
C;'e; > |Q) > C'eyy for some [ > 0.

We first fix [ and will afterwards sum over /.

Let I be the parameter interval of length ¢, containing ¢. By Corollary 6
(Section 6.6.3), Q) is I-defined. As Q) is I-critical, it is I-special; by Proposition 18
(Section 7.7), we have max; |Q] < &, (we choose C in order to obtain this). By
definition of C_(I) (in Section 9.1), there exists (P, Q’, ') € C_(I) such that Q C
Q'. We have max; |Q'| < & and |Q] > Cj 'e,,1; by Corollary 13, the number of

Q for given Q' 1s < Csl_rd:. On the other hand, as I is strongly regular, we have
from (SR1), (Section 9.1) that

#C_ (D) < c(?)“so‘ 4

0

where o, defined in (9.49) (Section 9.4), is close to 1 — d° — d°.
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The part of the sum for x_(d) corresponding to this fixed value of / is there-
fore bounded by

—td) (E1=1\° —di 4~ —o—d) 1+1)(d™—Td}

g ru( > e t,,gld :CEOO T"E;it( +1)(d™ —7dy)

0 . !
&p

For the sum over / to converge, we ask that

d > — +1d +,

147

where the right-hand side is close to @° + @ — 1. When this is the case, the sum

over [ is, for &y small enough, bounded by Ceg, 7= From the definition of o
in (9.49), we have, as 1 — d” — d” <0, that o < —7.

We conclude that, if (11.48) holds, we have x_(d) < &f.

11.5.10. We now consider x(d). We write d* = pd. We divide again the sum
for x4 (d) into three parts according to the width of Q.

— Q) =1Q,l.

As Q must contain Q,, this part of the sum is bounded by C (if " is bounded
away from 0, which will be the case).
Q1 > Q) = (2e0) .

In this case, Q must be contained in Q),. By Corollary 13 (Section 8.3), the
number of such Q is at most Ce, . By Corollary 6 (Section 6.6.3), Q is I-
defined, hence (P, Q, n) is the simple composition of some element in R(I,)
by (P,, Q,, n,). In particular, we have |P| < C|P,| and this part of the sum is
bounded by &, “"|P,|?" < C (with d* bounded away from 0).
26N > 1Q) = (26141) ™ for some > 0.

We first fix / and will afterwards sum over /.

Let I be the parameter interval of length &, containing ¢. By Corollary 6 (Sec-
tion 6.6.3), Q is I-defined; as (2e)-17" > |Q], Q is thin I-critical. By definition

of C_(I) (Section 9.1), there exists (P, Q', ') € C_(I) such that Q C Q'. As I is
strongly regular, condition (SR2)’ (Section 9.1) is satisfied.

We take d* = p;, where p, is the exponent in (SR2)/, defined in Section 9.14
and close to d’. However, to apply (SR2),, we need the Q to be disjoint. To

achieve this, we divide the range

26D > Q) > (28,

into several smaller ranges

(1-C @)™ > Q) > (1 - C) T @ent=", i=0,1,...
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where C is large enough to insure that two Q) with widths in the same range are
disjoint. The number of smaller ranges is < Ctloge; . The bound for Y [P|*"
in each range given by (SR2)’ is C|Pu|pi(§—é)”‘, where o, =1 —d" — 37 (cf. (9.63)
in Section 9.6.1) is close to 1 — d°. Therefore the contribution to the sum for
X+(d) coming for this value of / is bounded by

CrlPu|"‘(ﬁ> loge; .
&o

The sum over [ > 0 is clearly converging and bounded by C (much better actu-
ally).

With d* = p,, we obtain therefore x,(d) < C.

11.5.11. We can now choose @, p, ¢ to finish the proof. We take ;{ = pi, as already
mentioned. In order to satisfy (11.48), we take

1 d—2Cn
g 2—7m+tdi+1)
The relation % + lq = 1 determines 4. When t > n >> g, are small, we obtain a value for

d close to

(5 +saza=n) <~
—F— ) <d.
A +d0—1) '

As explained above, the Hausdorff dimension of £(@*) is < d and the proof of the theo-
rem is complete.

11.6. 7The stable and unstable sets of A. — Our goal at the end of this final section is to
prove that the invariant set A is a saddle-like object in the following measure-theoretical
sense:

Theorem 6. — For a strongly regular parameter, both the stable set W* () and the unstable set
W (A) have Lebesgue measure 0.

The situation is symmetrical and we will deal with the stable set.
We have:

(11.49) W) = Je W, R)NR).

n=0

Therefore, it is sufficient to show that W’ (A, ﬁ) N R has Lebesgue measure 0. We write

(11.50) RAW'(A,R) = U(W“‘(A,ﬁ) mng*"(ﬁ?f)) LET,

n=0
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with
(11.51) ET={zeW'(A, ﬁ) NR,g"(2) ¢ ﬁj_o for all n > 0}.

We have seen in Section 10 that ﬁf 1s Lipschitzian with transverse Hausdorff dimen-
sion d,. Therefore, the Hausdorff dimension of ﬁj’f is 1 4+ d; and its Lebesgue measure
1s 0. The same is true of g*”(ﬁf). We have to prove that the Lebesgue measure of £ is
equal to 0.

11.7. Decomposition of E*. — By the definition of £ and of the parabolic cores,

we can write

(11.52) er=| |er @,
Py
where
(11.53) ETPy) =ET Ne(Py)

and (Py, Qy, n9) runs through the set C_ of elements of R with ¢(Py) # #. In particular,
Q) is I-critical for all I containing the given parameter value.
For any such Py, we have

(11.54) FUET(P)) CQNL,NET,
(11.55) FNETP)) C L NET.

For P, € C_, define
(11.56) EX(Py, P1) = {z € EX(Py), "™ (2) € «(P))}.
We have a partition

(11.57) EXPy) =| |7 (®o. P).
Py

At step £, we have a partition

(11.58) Er=| ] & ®@.....Py

where the (P;, Q;, 7;) run through C_. We write

my = Ny,

m1:n0+No+7’l1,
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(11.59)

m;=ng+No+nm +No+---+n_1+No+n

=mj_1 + Ny +n.

For 0 < j < k, we have
(11.60) FUEY Py, ..., PY))CQNL,NET,
(11.61) FTNET (P, ..., PY)) CL,NET.
We define, for Py, € C_
(11.62) ET(Py,....,PLPL ) ={2€ET (P, ..., Pk),g’”’fwo(z) € c(Pry1)}

and we have

(11.63) 8+(P0,...,Pk):Ll5+(P0,...,Pk, P.).
Pr
However, in order to have £1(Py, ..., P;) # @ strong restrictions on the P; must take

place. We have already mentioned that (P;, Q;, ;) € C_. This is the only restriction on
(Po, Qy, n9). But, from (11.55), P, must meet P; and we also know that Q), is critical. As
the parameter is regular, we must have

(11.64) max(|Py[, |Q]) <&’
Lemma 24. — Let k > 1. Assume that E* (Py, ..., Piy1) is not-empty. We have

max(|Py]. [Qun ) < CIQI7,
with =B —n)(1+1)°".
Progf: — Let I be the largest parameter interval containing ¢ such that
11,65 max(Pe 1Qul) > 117,

We first observe that, as Py, C Py and Q1 C Q,, we have max(|Pyy1|, |Qpi1]) < 863 and
I is not the starting interval I. Therefore, we have, by definition of 1

B
(11.66) max ([P |, [Qu1 1) < 1]

Let (EH, @H , 1) € R() be the elgment such that EH 1s the thinnest I-defined rec-
tangle containing P, ;. We claim that P, is I-transverse. Indeed

— If Prr, Qpir Tikst) = Prgty Qg 1), this follows from (11.65), as Qy; s
I-critical and I is B-regular.
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- If (Pk+1, QHIa Mit1) # (Pk+1, Qjt15 m11), from Corollary 5 (Section 6.6.3), we
have that |Q;| < |I|’3+"i and therefore |PA+1| > [Py | > [T]P. As Qkﬂ s I-
critical (by the structure theorem of Section 6.5), P.,1 must again be I-transverse.

The claim is proved. Next, we observe that (); and P;4 cannot be I-separated, because
G(Q;NL,) Ne(Pryy) contains g N (ET(Py, ..., Piyp)). On the other hand, there can-
not exist an element (P*, Q*, n*) € R(I) with Q* D Q; and Q* h; P;,;: we would have
Q; My Py, for small I' and the corresponding non-simple descendants of P; would con-
tain g"-1TN(EF(Py, ..., Pry)), in contradiction with the definition of ¢(Py).

Therefore, the I -transversality of PA-H implies the existence of (P', Q), n') € R(I)
with Q' C Q; and Q' Piyy. By coherence, Q is I-defined. By Proposition 10 (Sec-
tion 6.4), as Q; and P, are not I-transverse, we must have 2|Q;|'~7 > |I|.

The estimate of the lemma follows from this and (11.66). U

Taking E< E but close to B and & sufficiently small, the estimate of the lemma
and (11.64) give

(11.67) max(|P], |Q,)) < &f
11.8. Size and area of parabolic cores.

Proposition 62. — Let (P, Q, n) € C_. With Leb standing for Lebesgue measure, we have

(11.68) diam(g" (¢(P))) < C|QJ2“ )
(11.69) Leb(¢"(¢(P))) < C|QJ2 2"
(11.70) Leb(¢(P)) < C|P||Q|2“ "

Remark 20. — A posteriori, ¢(P), which is contained in W'(A, ﬁ), will have zero
Lebesgue measure. However, we estimate here the diameter and Lebesgue measure of a
larger set, as will be apparent in the proof.

Progf. — We start with a general observation on an affine-map with implicit rep-
resentation (A, B). The Jacobian of the map is the product A;'B,. The distortion of
Lebesgue measure under the map, which is produced by the oscillation of the logarithm
of the Jacobian, is, therefore, controlled by the distortion of the affine-like map in the
sense of Section 3.2. In particular, the distortion of Lebesgue measure by the restriction
of iterates corresponding to the elements of R is uniformly bounded.

Thus, the third inequality (11.70) in the proposition is a consequence of the sec-
ond. On the other hand, as g"(¢(P)) C Q, the second inequality (11.69) is an obvious
consequence of the first. We have, therefore, only to prove (11.68). Set

(11.71) 7 =g""™N(¢(P)).
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This set is contained in g (Q N L,) N W*(A, ﬁ), and, a fortiori, in P,. we have to show
that diam Z < C|QJz0—.

In order to do this, we will use the machinery introduced in the proof of Theo-
rem 4, Sections 10.10.2 and 10.10.3. We extended the lamination of P; by stable curves
into a foliation by C!'*1# vertical-like curves {x, = ¢(y;, ¥)} with Lipschitzian holonomy.
Then, given a horizontal-like curve y = {y, = ¥ (x,} in Q, satisfying (10.155), we intro-
duced a function G(w, ¥) (vanishing at the points of intersection of Gy o G_(y) with
G ({x, = ¢(,,%)})) and a function § () = — min,, C(w, ¥), whose properties are given in
Lemma 19 in Section 10.10.3.

We choose for y one of the two horizontal-like boundary curves of (), more pre-
cisely the one which gives the greater values of § (corresponding to 8y, 6y r in the context
of Section 3.6.

Lemma 25. — If a curve {x; = @ (y;, x)} contains a pont of Z., then we have
0<8(x <ClQ)i.

Progf: — That §(x) > 0 follows from the choice of y and the fact that Z C G(Q N
L,). We prove the other inequality by contradiction, assuming that there is a point 7' =
N2 = (90, 9),,) € Z with §(F) > ColQJ! ™, C large.

Let (P',Q/,#) € R be an element such that 7 € P'. We claim that [P'| > 3|Q/|.
Indeed, if we had |P'| < 3|Q’|, the inequality §(%) > Co|Q]'™" with Cj large enough
would directly imply (T1), (T2), (T3) for Q hy P, T small enough. But then z would belong
to a descendant of P, in contradiction with the definition of ¢(P). The claim is proved.

It follows from the claim that there exists a thinnest rectangle P’ containing 2. As 2/
belongs to W (A) but not to any child of P, P is not I-decomposable for any parameter
interval I containing #; therefore P’ is I-transverse for I small enough.

As 7 € G(QNL,) NP, Q and P’ are not I-separated. We have also already seen that
they cannot be I-transverse. Therefore, as P’ is I-transverse, there exists (P*, Q*, n*) € R
with Q D Q* such that Q* and P are I-transverse. But then, by Proposition 21 (Sec-
tion 8.1), it follows from |[P’| > 3|Q’| that Q My P’ holds for I’ small enough, a contradic-
tion. UJ

We have shown that Z is contained in the lenticular region bounded on one side
by G(y NL,) and on the other by the curve {x, = ¢(y,, ¥*)}, with §(*) = C|Q]'~". The
quadratic geometry of C, § given by Lemma 19 guarantees that this lenticular region has
diameter < C|Q) 2 (1= 0J

11.9. Proof of Theorem 6. — We will estimate first the Lebesgue measure of each
domain £7 (P, ..., P;). We have

(11.72) NERP, L PY) C o(P)).
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We now use that both the fixed map g™ and the affine-like iterates g% : P, — Q; (for
0 <y < k) have uniformly bounded distortion with respect to Lebesgue measure. We are,
therefore, able to deduce from (11.69) in Proposition 62 that

5 1 K P:
(11.73) Leb(E* (P, ... P)) < CHQ2 2" T ] ||Q];||'
0

By Lemma 24, we have |P;,,| < [Q;] for j > 0 and it is easy to check that this still holds
for j =0 (using (11.64) if |Qy| = &¢; if Qy C Q,,, the argument of Lemma 24 applies). It
then follows from (11.73) that we have (for £ > 0)

Lo
(11.74) Leb(EF(Py, ..., Pp) < [PyQy] 2" 7",

To obtain the estimate for £, we have to sum over sequences (P, ..., P;). We first
estimate, when (Py, Qg, n9) and (P, Qy, ;) are fixed, how many admissible sequences
have these two extremities.

The element (P;_, Q;_1, 7;—1) must satisfy

(11.75) 10,011 = € max(|P Q) 2.

On the other hand, as Q;_,, P, are neither separated nor transverse (for every parameter
interval containing ¢), we must have, as |Q;_| > |P;|

(11.76) 0 < 8ir(Qu1, P) < CIQuy |

For every scale 27/ > C~! max(|P;||Q,])!/#, this will give at most C2 possibilities for
Q. with 27 > 1Q;_ 1| > 277! Summing over / gives at most C|Q;|~"/# total possibili-
ties for Q.

We repeat this, with Q;_; now fixed, for Q;_o, .... We obtain a number of possible
admissible sequence not greater than

<11.77> Clle|—n(E—'+u.+/§’—l)

with / < Cloglog |Q;|~". We conclude that the total number of admissible sequences with
fixed extremity Q; is bounded by C|Q,|~“".
Therefore, we obtain

1
(11.78) Leb(E) < ) [Pof|Qu27".
Py, Qy

We first claim that the sum ) |Py| is bounded. Actually, this is true even if we do not
restrict (Py, Qy, 79) € R by the condition that Q) is critical. Indeed, when we sum over a
given generation (with a fixed number of ascendants), the Py are disjoint hence the sum is



194 JACOB PALIS AND JEAN-CHRISTOPHE YOCCOZ

bounded. But the sum of the widths of the children is always smaller by a definite factor
than the width of the parent; therefore, the sum over the various generations is bounded.
Finally, we claim that the sum ZQZ; [ Oyl 17 g arbitrarily small (when £ is large).

Indeed, it has been shown in Section 11.5.9 that the sum ¢ e |Q]”" is convergent
provided (cf. (11.48))

(11.79) &> vl
l+7

Here, the right-hand side is close to @° + d — 1 (when T >> n>> & are small). On the
other hand, under condition (H4), the maximum value of @° + d” — 1 is 1/5. Therefore,

¢y
the sum Y, e Q)2 is convergent. But we have

(11.80) 1, <&
We deduce that
1
: 5—Cn __
(11.81) kEToo%:|Q"|2 =0,

and this concludes the proof of Theorem 6.
We can sum up the results in Sections 10 and 11 by rephrasing our main result as
follows:

Theorem 1. — Assume (H1)~(H4). Then, for most g € Uy, A, C W'(A,) and A, C
WU(A,) carry geometric invariant measures, a la Sinai-Ruelle-Bowen [Si], [Ru], [BR], with non-
zero Lyapunov exponents. Both W*(A,) and W"(A,) have Lebesgue measure zero and thus A, carries
no attractors nor repellors.

Appendix A: Composition formulas for affine-like maps

We mostly recall in this appendix the formulas for the simple and parabolic compositions
of implicitly defined affine-like maps.

We follow closely [PY2]. The main difference with [PY2] is that we consider maps
depending on a parameter ¢, and we are interested also in some partial derivatives with
respect to the parameter.

A.1 Formulas for simple composition. — Here we consider amap F, : (xp, 20) — (x1,91)
implicitly defined by

Xo = A())()a X1, Z/L)a

A1)
= B())()v X1, t)’
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and a map I, : (x1, ) = (x9,90) implicitly defined by

A.2)

x =A'(y, X9, 1),
Yo = B/(_yh X2, t)

The composition I/ =F; o F, is implicitly defined by

A.3) {X():ANQ)O»XQJ),

99 =B"(po, x0, 1)

and we want to relate the partial derivatives of A”, B” to those of A, B, A’, B". Set

<A'4) A=1- A)/,(yls X9, t)Bx(yO’ X1, t)'

When we solve the system (A.1), (A.2) for x;, y;, we obtain

(A.5) {xl = X0, %2, 1),

1 =Y, x9, 1),

where the partial derivatives of X, Y are given by

X, =A A

X, =AB,A™,

X, =(A'+A'B)A™!
(A.G) ) t ( 1 + Yy t) ’

Y, =AB,A",

Y,=B,A",

Y, = (B, +AB,)A".
We have

AN ’ 9 t) = A ’ X’ 4 9
A7) (o, X2, 1) (o )

B//(y()v X9, t) = B/(Y’ X9, t)a

which gives

Al =AA A
A.8) {Bii _RBA-
S e ’
A=A +AX,
(A.9) b =+ Aty
B/=B,+BY,,

195
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A;/ = Az + AxXz,

(A.10) ,
B/ =B,+BY..

Next, from (A.4), we have

—AX = BXXXXAA—; + BXA;Q) + BxA—;]Y)(’
(A.11) —A,=A)Y,B, +AB, +AB.X,
_Al = thAy/ + BxxXzA}/, + BxA)/,v; + BxA;le'

Taking logarithmic derivatives in (A.8) gives

(A.12) d.log |A”| = 9, 1log |Al] +Y,9,log|A| + X,d,1log|A,| — AAT

A.13) 8,log |A”[ = 8,log |A,] +X,3,log |A.] +Y,8, log |A/] — A, A,
9,log |A”| = 9,log|A,| + 8, log |A!| + X,d,log |A,]

A.14) Y8, log A — AA7

(A.15) 9,log |B/| = 8, log |B,| + X,d, log B, | + Y, 3, log|B)| — A,A~",

(A.16) ,log |B!| = ,log [B.| + Y.d,log B]| + X., log |B,| — A,A ™",

8310g|]5’_;’| = atlog|B)’,| + 0,1og|B,| +th)_},log|B)’,|
(A.17) + X,0,log|B,| — AN

Taking derivatives in (A.9) gives

/2 2
alg) {A)y =A,+2A,X, + Am}iy FAX,,
B.xx = Bxx + QngyYX + B”/Yx + Bnyxy
(A 19) A}/; = A))[ + X[A@) + XyAXt + X[X)/AXX + AXX)/t’
. B/, =B, +YB, +Y.B, +Y,Y,B, +BY,,

where the partial derivatives of X, Y are obtained from (A.6):

(A.20) X, =B,A7 (ALY, + A3, log |B,| + A’X,d, log |B,| — A/A, A7),
(A.21) Y. = A A (B,X, + B,d,log|A’| + B,Y,d,log |A/| — B,A, A7),
(A.22) X, =B,AT(AY,+ A, + A3 log|B,| + AX,d,log B, — A/AAT,
(A.23) Y, =A A" (B.X, + B, + B3, log|A/| + B,Y,d,log|A | — B,A,A7)).



NON-UNIFORMLY HYPERBOLIC HORSESHOES ARISING 197

A.2 Formulas for parabolic composition. — We have now a fold map G, = G4 o
GO oG_:

(o) —> (W, 9) —2 (6, W) —5 (x,,00),

with

A.24 s =Y (w,x,, 1),
’ %, =X, (W, £),

(A.25) w? =00, x,, £).

We also have an affine like map Fy : (xo, 90) = (x,, 9,) implicitly defined by

(A.26) {x():Ao(J’o,xu,l‘),

,yu = Bo()’o, Xus t),

and another affine-like map F; : (x1, ) = (x1, ;) implicitly defined by

a.27) { = M0, 0.

o =DB1(y, x1, 0).

We assume that (PC1), (PC2) in Section 3.5 are satisfied. As we have seen in [PY2] and
Section 3.5, the first step 1is to write

A.28) {x = X000,

))x = Y(wv X1, t)’
where the partial derivatives of X, Y are given by

Xw = Xu,wA(;l,
X, = X“JBOJA(;I’

(A.29) ) X=X+ XMBOJ)AT,

Yw = Ys,wAl_l s
Yx = Ys,xAl,xAlil )
Yt == (Ys,t + Y&,xAl,t)A_l )
Ay=1—-X, By..
(A.30) ’ o

Al = 1 _— YA‘,XAI,]‘
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We set
Y (w, o, ) := By, X, 1),
(A.31) _(w Jo ) o(y() )
X(w’ X1y t) ::AI(Yv X1, t),
(A.32) C(w, 90, 11, 1) == w? —0(X, Y, £).

The partial derivatives are given by

=<

w = By Xy,

(A.33) 1Y, =Bo, +Bo.X, =By, A7,

Y, =By, + By, X, = By, + Bo.X,)A;
Xy =A1, Yo,

(A.34) IXc=AL +ALY, =A AT

X, =AL+ALY = AL +ALY, )AT,

—Cy=—2w+6X, +60Y,,

(A.35) ; _
-G, =6,Y,,
_Ct - exit + 6)]?2‘ + 9;.
We solve
(A.36) C(w, o, x1, ) =0
to define
(A.37) w = W(y, x1, )

(there are two solutions W+ and W™).
The corresponding branch of the parabolic composition is implicitly defined by

xo = Ao (o, XIW, p0, 1), 1) =: A(yo, x1, 1),

(A.38)
D= BI(Y(Wa X1, t)a X1, t) = B(y(), X1, t)'

The partial derivatives of A, B, W are given by

Ax == AO,XXwa’
(A.39) A=Ay, + Ao (X, + X, W),
Az = Ao,z + AO,x(Xl + XwW/),
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By = Bl,)!Yu)Wya

<A‘40> 1 Bx == Bl,x + Bl,)'(Yx + Ywa)a
B, = Bl,t + Bl,_y(Yzf + Ywa)v

W, =-C.C.1,
(A.41) 1w, =-C,C. 1,
Wz - _CtC;l.

Substituting (A.29), (A.41), (A.35), (A.34) in the formulas (A.39)~(A.40) leads to

A=A ALCOX, W ATTAT
(A.42) e e 0 T
B, =B,,B,,C;'0,Y,, A AT,
(A.43) A= A0y + A0.Boy Ag Ky + XA CLD,
Bx = Bl,x + Bl,_yAl,xAl_l(Yx,x + Yx,wexAl_lc;l)9
At A= Ao+ A0 A7 X+ XiyBo, + X, Gy 04+ 6K, + 0T,
BZ = Bl,t + BI,J)AII [Ys,t + Ys,xAl,Z + Yx,wc;l (0t + QxXt + G)Yt)]

Taking the logarithmic derivatives in the first formula of (A.39), we obtain

(A.45) 9, log|A,| =W,X,0d,1log|Ay,| + W,d, log|X,| + d,log |W,],
0,log |A,| = 9,log|Ao .| + 9, log |Ag . |(X, + X, W,)

(A.46) + 9,1og X, | + W, 0, log |X,,| + 9,log |W,],
0/log|A,| = 0;log |Ag | + 9, log |Ag,.[ (X, + X, W))

(A.47) + 9,log | X, | + W,0,, log |X,,| + 9,1og |[W,].

From the second formula in (A.39), one gets
A, = Ao, + 280 5 (X, + X, W) + Ag (X, + X, W)’
(A.48) + Ao (X, + 2K, W, + Xy WS 4+ X, W),
Ay = Aoy + Ao y(X, + X, W) + Ay (X, + X W)
+ Ag (X, + Xy W) (X, + X, W)
(A.49) + Ap (X, + Xy W, + X, W, 4+ X, WW, + X, W)
The symmetric formulas for B are

(A.50) 9,log|B,| = W,Y,,8,log [By,| + 8,1og [W,| + W,d, log|Y,,|,
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d.log|B,| = 0,log|B; | + d,1og Y|

(A.51) + 0, log |W,| + 9,log |B; ,|(Y, + Y, W,) + W.d, log|Y,],
log|B,| = d,log B, | + 3,log By, (Y, + Y, W)
(A.52) + 0,log|Y,,| + W,0d, log|Y, | + 9,log [W,],
B, =B+ 2B, (Y, + Y, W) + B, (Y, + Y, W,)’
(A.53) + B, (Yo 4+ 2Yu, W, 4+ Yy Wi 4+ Y, W,),

th = Bl,xt + Bl,)g)(Yt + Yth) + Bl,yt(Yx + Ywa)
+ B, (Y, + Y, W) (Y, + Y, W)
<A'54> + Bl,}/(YXl‘ + wawt + thWX + waWxWi + Ywat)-

In formulas (A.45)-(A.54), the partial derivatives of order 2 of W are obtained from
(A.41):

W,, = —C;1(Cpuy W? + 2C, W, + C,,),
W, =—C;'(Cpu W W, + C,, W, + C,, W, + C,),
(A.55) W, = —C, ' (C,, W} +2C,,W, + C,)),
W, =—C, ' (Cpu WW, + Cp,W, + C, W, + C,),
W, = —C ' (Cuu W,W, + Cpy W, + CuW, + C,).

o=

The partial derivatives of order 2 of C are obtained from (A.35):

(A.56) —Cyp = =24 0,X + 0V + 0.X,, + 20,

><|
'-<1I
+
D
=i

W w?
A57) —Copy =0, X, X, +6,Y, X, + 0,X,.,
’ —Cuy =6,Y,Y, +0,X,Y, +6,Y,,,
—Cy =0, X,, +0,X,X, +60,X, Y, + Y, X)) +6,Y.,Y,
(A.58) +6,Y, + 60X +6,Y i,

_Cxx = Gxxii + Qxixxs
(A.59) -C,=6,X.Y,,
-G, =0, Y + 0, Y

?

Cxt - GWX + QxxX Xt + 9 X Yt + 0 Xu‘a

_Cyt = QytY_}' + Qy_yYsz + QJQY))Xt + GJ,Y}[.

(A.60)
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The partial derivatives of order 2 of X, Y are obtained from (A.34):

(A.61) <

(A.62) <

<

— 2
ww Al,y)va + Al,qu)w7

X =AYy + A1, Y Y+ ALY,

X = A1 Yw + ALY Y + ALY,

Xo=A .+ 2A1 Y. + A, Y+ ALY,
Xu=Au+A LY + ALY, +ALY.Y, +A,Y,,
Yuw = Bo.oX? + Bo. X,

Y, = Bo o X + By o XuX, + By Xy

Yo = BouXu + Bo . Xuw X, + Bo i X,

Y,y = Bo,y + 2Bo» X, + BO’XXX_)% + Bo.X,),
= BO,}[ + BO,@)X[ + BU,xle + BU,.WCX}XI + BO,nyl-

=<

J

Finally, from (A.29), we obtain

(A.63) 4

(A.64) 1

Xow = Aal (Xu,ww + QXu,w}?w + Xu,)y?i + Xu,yB(),xxXi)),
wa = Aal (Xu,wy?y + Xu,yy?w?y + Xu,wa (BO,)Q’ + BO,xny))a

_ =2
X, = Ay (X, Y, + X, (Bo, + 2Bo,, X, + By, X2)),

w1,
X = Aal [Xu,wt + Xu,waz‘ + Xu,)waYt + Xu,ytYw
+ Xu,ij (BO‘xt + BO,xxXt)]a
X, = Ay XY, + X, Y, Y,

+ Xu,y(BO,yt + BO,x))Xt + BO,x[Xy + BO,xnyX[)]’

You = AT Vs + 2V X + Y, X, 4 YA, Y2),
Yoo = AT (Yo X 4+ Yo o X X, + Y, Y0 (A, + A1, Y0)),
Yo = AT (Yoo X, 4 Yoo(Apa 4 241, Y, + AL, YY),
Yw; = A1_1 [Ys,wt + Ys,wxit + Ys,xxiwit + Ys,xtiw
+ Y, YA, + ALY,
Yxt - Al_l [Y.Y,xtix + Y.y,xxixit
+ Y, ALy ALY, ALY+ ALY YL

A.3 Estimates for simple composition. — We keep the notations of Section A.1 above
and use also the notations |P|, |Q], |P'[, |Q’| introduced in Section 3.2. Constants de-
pending only on the cone condition satisfied by I, I, are denoted by Cj, those depending
also on the distortions of I, ', by C.
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From (A.6), we get
X < GolP],
1%, < GolQJ,
Y. | < GolP,
As5 JIvi<cop
1Y, < GolQJ,
Xl < Co(IA]l + B,
1Yl < Co(IA] +1B,])
Then (A.9) gives
A// < P
A6 A oIPIQ)
|BY — B < Go[P11Q],
and (A.10) gives
Al — A < C|P|(JA]| + |B
A7) 47~ Al < ColFYUA + B,
1B/ = Bi| < Co| QI(IA]] + [B.]).

Next, (A.11) gives

IA | < ColP'[(IBu] + 1AL [ +19,log [A[]]) < CIP,
(A.68) 1140 < ColQJ(IByl +1A] | + 18:1og [B,[]) < ClQJ,
|A | <GByl + AL+ 1A+ [B]).

From (A.20)-(A.23) we obtain

< GolQJUAL [+ 1Byl + 19, 1og |B,[| 4 19, log |B, )
)

(A.69) ) |Yxx| < GolP'|(IB. | + |Ay/),| + 19, log |A’|| + 19, log |AL]|
il < CIQIBul + 1AL + IA]] + [B,| + 13, log B, ),

|Yxt| < CIP|(IBul + |A)/;z| + 1A + [Bi| + 10, log |AL]]).
Then, from (A.12), (A.13), (A.13), (A.16), we get

Clal,

<
< CIP,

|9, log |AT] — 0, log |AL]| < Go[P(D(F) + D(I)),
J 13, 1og |AT] = 9, log [A]] < GolQJ(D(F) + D(F)),
|9, log [B]| — 8, log |B;|| < Co|P'|(D(F) + D(F")),

A.
(A.70) <
9,1og [B]| — 8,log [B, || < Col|QJ(D(F) + D(I")),

while (A.18) gives

A1) A7 — A, | < Co[P||QI(D(F) + D(F)),
<

|
1B, — Bl < CoP'l[Q(D(F) + D).
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Formulas (A.70) and (A.71) give the formula (3.13) for the distortion of a simple compo-
sition.

From (A.14), (A.17), we get

A.72) |3[10g|A;/| - 8;10g|A;| — 0;log|A, |l < C(IBy| + |A)/vt| + |A;| + B,
|0;log |B]| — 9,1og |B/| — 8, log|B,|| < C(IBy| + |A},| + |A]l + [B/]),
while (A.19) gives
A.73) |AT, — | < CIPIIAY + B/ + [QJ(IBy| + A}, | 4 8, 1og |A.] + 9, log |B, )],
IBY, — Bl < CIQUA] + B/ + [P[(IB.] + |A}[ + 9, log |A[| 4 9,1og [B )]

Formulas (A.72), (A.73) are used in Section 7.4.

A.4 Estimates for parabolic composition. — The context and notations are those of
Section A.2. We derive estimates from the formulas in this subsection, assuming that the
maps Fo, ) satisty (see (R4) in Section 5.3)

<A.74:> |A1,y| < CSO» |Al,y)'| < 080’
IBo,| < Cey, IBo,«| < Céo.
We write § for §(Qy, P;). We assume that (see (R7) in Section 5.4)
(A.75) 5(Qy. P = C7 (P +1Q1 ).
We first deal with the partial derivatives not involving time. From (A.29), we get
< Xl <
1< Y,
(A.76) ] Yl s
|X | < ClQol,
Y.l <GPyl

Then, from (A.33), (A.34), we obtain

CTPy | <X, < QP
CQl < 1Y, < ClQyl,
1Xw| < Céy,

Y| < Céy.

(A.77)

Putting this into (A.35) gives

G <G < CIPI,
A8 P < [ < CIF|

CQl < IG,[ < ClQl.
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From (A.63), (A.64), one gets

wa g C7
(A.79) | |
|wa| < C’
and then, from (A.61), (A.62)
Xl <C
(A.80) Xoul < Ceo
|wa| < G‘90

Taking (A.77), (A.80) into (A.56) gives
(A.81) |Cuww — 2] < Céy.

Fix 9y, ¥, and denote by w* the point where C takes its minimal value a(yo, x1). We have

A8 {|c (W0, 1) — 2(w — w*)| < Ceglw — w,

|C(w, 99, x1) — (W — w*)2 C())o, x)| < Cgolw — w*

This gives, as G(W (9o, 1), v0, x1) =0,

(A.83) Cw (W0, x1), 0, x1)| —2|C())0,X1)|1/2| CEO|C(JO,X1)|1/2-
From (A.75), (A.78) and the definition of § = min —C, we have thus

(A.84) G182 |0, < C8YA

Formulas (3.27), (3.28) of Section 3.5 are then a consequence of (A.42).
From (A.41), we now get

{O-1|Pl|8-”2

IW,| < CIPy[57172,
(A.85) B

<
QI8 < IW, | < ClQulo~72

Plugging into (A.39), (A.40) gives

A.86 =|A),—Ao,},| < CIPl[Quls~"
' <

B, — By < CIP,[|Qu87 "2

Next, from (A.63), (A.64), we have

ClQyl,
ClQyl,
ClPyl,
ClPyl,

IwaI

(A.87)

NN N A
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and then, from (A.61), (A.62)

|wa| < C|P1|,

X.| < C|P],

A.88) X <CIP|
ClQyl,

ClQyl.

|wa|
Plugging into (A.57), (A.59) gives

j<|
/A NN

vl

|Cw), < GQyl,
bl < GlQyl,
(A.89) ] IwaI < CIPy,
|Gl <GPy,
|Gyl < CIPQy.

We can now estimate the second partial derivatives of W from (A.55)

ol < CIQyls~Y2,
(A.90) IWMI < CIPy |87,
(W, | < CIP[1Qyl8™ 172,

which finally gives from (A.48), (A.53)

(A 91> |A)y_A0)y < |PO||Q,0|(S 1/2
|Bm_B1 XX < |P1||Ql|8 1/2
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These estimates are used in Section 7.5. We now turn to derivatives involving the para-

meter. First, from (A.29), we get

<
4.92 {|Xt|;ca + [Bo, ).

Y| < G+ A LD,

and then, from (A.33), (A.34)

A.93 {|XZ|§ (60 + B,

Y| < Cleo + [ArD.
Plugging this into (A.35) gives

(A.94) Gl < G+ [Bo, | + AL,
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and then, from (A.41)
(A.95) [W,| < G821+ Byl + 1A D).

From (A.44), one then concludes that

A.96 {|At—Am| < CIPy|872(1 + |Bo, | + AL,

B, — Bl < ClQI8712(1 + [Bo | + A .D).

From now on, we assume that the estimates of Proposition 17 in Section 7.6 are satisfied,
Le.

ALl < Qe
A7 p—
|B0,t| < C80

1X| <G,

Y| <G,
(A.98) |¥t| < CS%//QQ,

1Y, < Cey'",

Gl <G,

[W,| <G82

From (A.63), (A.64), we obtain

Xl < G+ [Bo,ul),
1X5:] < ClQul(1 + [Bo«| 419 log [Bo,[),
IthI C + Ay,

A.99
( ) <
Y. <CIP (1 + |A1)z| + [9,1og |A;,]),

and then, from (A.61), (A.62)

Yol < Cleo + 1Boul),

Y, < CIQul(1 + Byl + [8,1og By, ),
th < Cleo + A,

Xl < CIPI(L+ Ayl + [8,1og Ay ).

Taking this into (A.58), (A.60) gives

(A.100)

|Gl < Gleo + [Bowel + A1),
(A.101) |Gyl < ClQpl(1 + [Bow| 4 19,10g By, ),
|Cxl| S CIP T+ Ayl + 19, 1og [A L]
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We can now estimate the partial derivatives of W from (A.55)

(Wl < CIP 87287 + 872 (IBo,ul + 1AL + 19, log Ay 1],

<
(A.102) 1/orsel | s—1/2
Wil < CIQuld™7[67" 487/ (IBo,ul + [A1 ) + 19:log | By, 1.

Finally, we obtain from (A.49), (A.54)

1A = Aol < CIPy|8™12 + CIPo[|Ql8~2[87" + 872 (1Bo,ul + A1)
+ 19, 1og [Bo,,| + 19,1og |Ag .1,

By — By ul < CIQy[872 + CIP|Qy 187287 4+ 872(IBo,wl + A1)
+ [9,1og [By,| + 19, 1og [A ],

(A.103)

and from (A.47), (A.52)

A104) | 110818 = Bilog| o] < OIS+ 572 (1By.ol + |AsD) + 13, log 1A,
' <

|9:1og [B,| — 9/ log [By,|| < C[8™" + 87 2(IBo,ul + |A1]) + 13, 1og B, I]1.

These formulas are used in Section 7.7.

Appendix B: On the Lipschitz regularity of f{f
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The goal of this Appendix is to perform some calculations that are used in Section 10.5,

Proposition 51.

We recall the setting We have rectangles Ry =1} x I, R, = xI!, R, =L x I

with respective coordinates (xg, 90), (X5 %), (%5, 95).

We have an affine-like map F with domain P C Ry, image Q C Q, C R,,, and
implicit representation (A, B). We assume as usual that the cone condition is satisfied
and that the distortion is bounded by C. We also have a folding map G with domain

L, CI xI! image L, C I’ x I. The map G is implicitly defined by the system

s =Y (w, x),
(B'1> xu:Xu(wJ/u),
w? =60y, x)

with Y;, X, 8 as in Sections 2.3 and 3.5. One has (cf. (R4) in Section 5.3):
(B.2) |B,| < Cey, |B..| < Cé.

Consider a vertical-like C* curve w = {x, = ¢(y,)} C P, C R, intersecting I, and satisfy-

ing

5 5’
(B.3) ‘—‘p‘ < Cey, ‘—‘”‘ < Ce.
dy dy?
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As in Section 3.5 (formulas (3.14), (3.15)) we eliminate y, in the system x, = X, (w, y,),
o =By, x,) to write

(B.4) %, = X(w, ).
Similarly, in the equation
(B’5) Ds = Ys‘(w’ (0(%))7

we solve for y, to write

(B.6) s =Y(w).

We set

(B.7) C(w, ) = w” — (B9, X(w, ), p(Y(w))).
We assume that, for all y, € If

(B.8) Cop) :=minC(w, yo) < —C7QJ.

Suppose now that we have two vertical-like C? curves w; = {x, = ©;(»,)},1=0, 1 as above
satisfying (B.3), (B.8). We also assume that ¢, (p;) # ¢ (y,) for all y; and that we have for
some T > 0, everywhere on I”

<T.

0

(B.9) ‘8_10g|§01 — @
)

For:=0, 1, let th be the connected components of F~'(Q N G™!(w; N Ly)).

Proposition. — The curves Q5 are graphs

(B.10) Q7 (5) = fxg = DF0n))
which satisfy, everywhere on 1)
0
(B.11) @logKDT—CD(ﬂ <T,
J o :
(B.12) 510g|<1>1 —® | < T,
d + — /"
(B.13) 510g|<1>1 - | <T,
d — + /"
(B.14) @logKI)1 - o7 <T,

with T'= C(1 + |QJzT), T = C.
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Remark. — In (B.13), we allow wy = ;.
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Proof: — Let C;, 1 =0, 1, be the function defined by (B.7) for @,. One solves C; = 0

to get
(B.15) w =W (),
(B.16) DE(30) = AQo, X(WE(10),0)).

Lete, &' € {+, =}, Wo =W, W, = W¢', &) = ®F, &, = &% Define, for s € [0, 1]

(B.17) W, = sW, + (1 — )W,
One has
() — D))
B.18) = (W, = Wo) () /0 A0 XOW.00) 0 Ko (W,00) ).
Set
B.19) 0.00) = A0, XOW,00),50) X (W, 00),30).

From (A.76), we have, for all s, y,
(B.20) C™'P < la,(0)| < CIPY.

One has

0 oW,
—log|a,| = 9,log |A,| + d,1og |A,|| X, + X,
dy ) 9y

_ IW,
(B.21) +Xw1(wa +wa@>.

From (A.76), (A.79), (A.87) we get

0 oW,
(B.22) —logla|| <Cl 1+ .
dy y
But we see as for (A.85) that we have, for i =0, 1
(B.23) < ClQJs; 7,
where §; := —max,; min,, C(w, yy). We have assumed that

(B.24) s=chg)tm
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It then follows from (B.22) that the logarithmic derivative of |a,| is bounded by C. From
(B.20), the same is true for the logarithmic derivative of | fol a,ds|. To prove the estimates
of the proposition, in view of (B.18), it remains to see that the logarithmic derivative of
IW, — Wy is bounded by C(1 + |Q)] %T) or C (depending whether ¢ and ¢’ are equal or
not).

1. We assume first that & #£ ¢’.

In this case, from (B.24) and the quadratic behavior of C; (cf. (A.82)), we have
(B.25) W, — W, > CQ)t-m.

Combining this with (B.23), (B.24) shows that the logarithmic derivative of |W; — W is
bounded by C.

2. We assume now that ¢ = ¢’.
We may assume that
(B.26) W1 — Wo| < Q)70

otherwise we conclude as the first case. We interpolate between the two curves w, @,
defining

(B.27) 0y, ) =591 (1) + (1 — )@ ().
We have

0 ap
(B.28) ‘—log —|I<T.

dy as

In the equation

(B’29> ys = Y.r(w7 90(%, S))’

we solve for y, to write

(B.30) 5 =Y(w,s).
We then set

(B.31) Xw, ) =Y (w,s),s),

(B.32) C(w, 0, 5) :=w’* = (Y (w, ), X(w, 5)).

Then, one solves C =0 to get

(B.33) w =W (p, 5).



NON-UNIFORMLY HYPERBOLIC HORSESHOES ARISING 211

One has

(B.34)

0 dp oY
3s 8)) 3s

From (B.29), (B.30), one obtains

Y 9 Jo ]
(B.35) —:Y”—w(l—Y”—(p) ,
as T 0s Ty

where, here and below Y, , stands for the partial derivative of Y; with respect to x (and
not the second partial derivative of Y!). Plugging this into (B.34), one obtains

(B.36)

A 5 dpy-!
E(1-v.2%)
9 a)}

We now take the logarithmic derivative of this product of four terms with relation to y;.
We obtain a sum of four terms:

(B.37) Z,=—C'[CuuW, + Cy,l,
(B.38) Z,=10,10g0,|(Y, + Y, W,) + 3,log|0,/X,,W

9 |a
(B.39) 7= (—log ‘p')ywwy,

ady 0

ap\ ! 0% 1%, —
(B.40) Z,= (1 —YM—> {Y” e VWt oYW, Y, mxwwj)}.
Ty 9y? ’ ’

The partial derivatives of X have been estimated in Appendix A (formulas (A.76), (A.79),
(A.87))

(B.41) 1 Xul <G, X, < ClQ), 1Xuw| < G, Xyl < CGIQ)J.

The partial derivatives of Y are estimated by

(B.42) Y., <G, 1Yoyl < C

Then we get

(B.43) 1X,,| < Céy, 1Y, | < Ce, Y,| < ClQ),
(B.44) X < Cey, 1Y | < Ceo, Y.l < ClQJ,
(B.45) |Cy| < CIQJ, |Cuw — 2] < Cey,

(B.46) IW,| < CIQJIC,|
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From (B.26), we have |6y — §,| < &y, and therefore we have
(B.47) |G (W2 G, 9)., 00, 9)| < €857,

for all yy, s. This gives, as §, > C~'|Q]' ™"

(B.48) |Z;| < C fori=1,2,4

(B.49) 175 < CIQJ'AT.

This proves that

£

<C(1+1Q)7*D).

0 A
(B.50) ‘— log
dy s

But then, we have

0
OV =Wy
2

d ' owe
= ‘—/ ds
ayJo Os
dW?®

1
<C(1+IQJ”2T)/ Py
0

=C( +[QJ'*T)[W¢ — W¢|,

ds

7€ .
as % has constant sign.

The required estimate on the logarithmic derivative of |[W; — Wy| has been ob-
tained in both cases. The proof of the proposition is complete. O

Appendix C: A toy model for the transversality relation

C.1 Our goal in this appendix is to explain why the complicated definition of the
transversality relation in Section 5.4, is in some way “natural”, if we require some useful
properties for the proof of our Main Theorem. The toy model that we are considering is
an abstract one. It is much simpler than the real situation of Section 5 because the sets
in which the relation takes place are well defined to begin with: in Section 5, we need to
know the transversality relation in order to construct the classes R(I).

C.2 A partially ordered set X is a forest if, for any xy € X, the set {x > xo} 1s finite

and totally ordered. A #ree is a forest with a single maximal element. Let X, ..., X, be
forests and let A be a subset of X =X, x - x X, (one should think of A as the graph of
an n-ary relation). We say that A is kereditary if whenever x = (x, ..., %), y = (1, ... ,.0)

are such that and y; < x; for all 1 < ¢ < n (abbreviated as y < x), then y € A if x € A.
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Two points x = (x1,...,%,), y = (1, ..., »,) of X are coordinate-wise comparable (c-
comparable for short) if for each ¢ € {1, ..., n}, we have x; > »; or x; < ;. In this case, we
set
(C.1) xVy = (max(x;, ;) 1<i<a-

The set A is concave if, whenever x, y € A are ¢-comparable, then the point x V y also
belongs to A.

The intersection of hereditary, resp. concave, subsets of X is hereditary, resp. con-
cave. It follows that any subset A C X is contained in a smallest concave hereditary subset,
called the ¢.r-envelope and denoted by A

Example. — When the number of factors n = 1, any subset is concave: the c.A-
envelope of A C X is the set of x € X such that x < y for some y € A.

C.3 We construct the c.r-envelope when n = 2.

Proposition. — Let X, Xo be forests and A be a subset of X = X x Xo. Let Ay be the set of
x € X such that x =y V z_for some c-comparable y, z € A. The c.h-envelope of A is equal to the set
Ay of t = (4, o) such that t, < x1, by < xo_for some x = (x1, x9) € A.

Proof: — It is clear that the set Ay defined in the proposition is hereditary and it is
contained in the ¢.A-envelope A of A. We have to prove that Ay is concave. We first prove
the U

Lemma. — 1If y, z € Ay are c-comparable, y V' z also belongs to A,.

Progf. — By the definition of A|, we can write y =)' V)", z =2 Vv 2" with y/, y", 2/,
Z"in A,y andy” c-comparable, 7’ and z” ¢-comparable. We may assume that y; < z; and
99 = 29, and also 21 = 2}, 2 =5; then, we have 2} = z1 21 2| and ), =90 > 20 > 2,
hence y/, 7' are c-comparable with y' V 2/ =y V z. O

End of the Proof of the Proposition. — Let ', 1" € Ay be ¢-comparable and let ¥, ¥ €
A be such that ! > &, x/ > ¢/ for ¢ = 1,2. As X, and X, are forests, ¥ and x” are
¢-comparable. From the lemma, x" V x” belongs to A;; then ¢ V ¢’ belongs to A,. 0

C.4 Tor n > 3, the situation is more complicated, as the two examples below
indicate.

Example. — Let X, Xy, X3 be forests and let x, », z be three points of X = X, x
Xy x X3 such that

<C'2) X1 2)’1 =21,
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(C.3) Do = Xo, Do = 29,
(C-‘l) 23 = X3, 23 2)’3-

Let A = {x, 9, 2z} C X. If we define, as in the proposition above,

(C.5) Ay ={uvv,uveA, u vccomparable}

and if we assume that xy, 2o are not comparable and x3, y3 are not comparable, then we
have

(C.6) Al ={x,9, 2,9V 2= (1,02 23)}.

On the other hand, the point w = (x1, 99, 23) = x V (y V 2) certainly belongs to the ¢.A-
envelope of A, but does not satisfy w; < w; (: =1, 2,3) for any u € A;. This example
shows that the analogue of the proposition above is false for n = 3.

Example. — Let X, Xy, X3 forests and let x, y, z € X =X, x Xy x X3 such that

(C-7) X1 2]1, X1 2 21,
(C.8) Yo = X, Yo = 29,
(C.Q) 23 2 X3, <3 2]3,

but none of the pairs (1, 21), (x9, 22), (x3, »3) 1s made of comparable elements. Let A =
{x,, z}. The sets {u < x}, {v <y}, {w < z} are disjoint and their union is the ¢./-envelope
of A: any u < x, v < y cannot be ¢-comparable; otherwise, as X3 is a forest and «x, » are
larger than u A v = (min(y;, v;)), x3 and y3 would be comparable. On the other hand, if
u < x, " <xand W, u” c-comparable, then «' Vv o < x.

C.5 We have the following partial result:

Proposition. — Let X, ..., X, be forests and let A be a subset of X = X| x -+ x X,,.
Let Ay be the set of elements x € X for which there exists x', x*, ..., x" in A with X = xjj > x; Jor
all 1 < 4,7 < n. Let Ay be the set of elements y € X such that y < x_for some x in Ay. Then Ag s
hereditary and concave.

Remark. — Example 2 above shows that Ay can be strictly larger than the ¢.A-
envelope. Example 1 shows that the straightforward generalization of the case n = 2 does
not work.

Proof of the Proposition. — It is very similar to the proof of the proposition in Sec-
tion C.3 above and left to the reader. UJ
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C.6 We will now see how the definition of the transversality relation in Section 5.4
is a natural consequence of the proposition above. As observed earlier, an essential differ-
ence with the toy model is that the transversality relation is used to construct the classes
R(I). So, let us just try to define the relation for the starting class R (Ip) associated to the
initial horseshoe K. We would have:

(C.10) X ={P,Q,n e Ry, QCQ,},
(G.11) Xo ={(P, Q") e R(Iy), PC P},

and Xj 1s the set of parameter intervals. All sets are partially ordered by inclusion (of the
Q’s for X, of the P’s for Xy), and are obviously #rees, with respective roots (P,, Q,, n,),

(Ps’ Q" ns‘)7 IO'
We start from an intuitive definition of transversality: for (P, Q, n) € X, (P, Q/, #')
€ Xy, I € X3, we write

QM P
if for all ¢ € I we have
(C.12) 8(Q,P) = 2max(L, Q' [P'|').

(The number 1 in the exponent is necessary in order to keep the distortions under con-
trol.)
The corresponding subset of X; x Xy x X3 is

(C.13) A={(Q,P. ), QM P}.

This set 1s hereditary but it is not, a priori, concave. The concavity property (Proposition 9
in Section 6.3) is very useful in many places. So, we wish to replace A by a larger set which
1s hereditary and concave. If we apply the recipe of the proposition in Section C.5, we
are led first to define a set A; and then a set Ay. According to the proposition, A; should
be the set of (Q, P', I) for which there exist Qq, Qs C Q, P}, P; C P, I}, I, C I satistying

(C.14) Qh, P,  Qh,P,  Qsh P,

As 1y, Iy can be chosen arbitrarily small, we can replace them with single values ¢, t, € 1
of the parameter; the three conditions in (C.14) become:

— there exists P} C P, ¢ € I such that
(C.15) 8(Q, P = 2max(|Q)' ", |P;|'™)
— there exists Qo C Q, & € I such that

(C.16) 8(Qq. P) = 2max(|Qu|' ™", [P'|'")
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— there exists Q3 C Q, P; C P such that
(C.17) 8(Qs, Py) = 2max([1], Q'™ [P4|'™")

forall z el.

As P}, Qy, Qs, P; may be chosen arbitrarily thin, it is natural to replace (C.15),
(C.16), (C.17) by

(C.15) §(Q,P)>21Q)'" fort=ut;
(C.16) 8(Qq, P) = 2IP|'"™  for t = ty;
(C.17Y 8(Qs, Py) = 2|1] forallzel.

Finally, the largest ¢ value of §(Q, P}) that one can hope for (by choosing P} C P’ ap-
propriately) i1s dg (Q, P); similarly, the largest value of 6(Qy, P') that one can hope for
is 61,(Q, P') and the largest value of §(Qs3, P;) that one can hope for is §1r (Q, P'). No-
tice that we need anyway to eliminate P}, Qy, P;, Q3 from the definition because in
R() (instead of R(Ip)), elements are constructed inductively and thinner rectangles are
constructed at the end. Replacing §(Q, P}) by §r(Q, P"), §(Qy, P") by 61.(Q, P') and
3(Qs, P%) by 61r(Q, P’), we obtain the three conditions, (T'1), (T2), (I'3) in Section 5.4.
This defines .

The last step 1is to go from A, to Ay, taking the hereditary envelope of A;, which
corresponds exactly to the transition from M to i in Section 5.4.
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