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ABSTRACT

In the present paper, we advance considerably the current knowledge on the topic of bifurcations of heteroclinic
cycles for smooth, meaning C∞, parametrized families {gt | t ∈ R} of surface diffeomorphisms. We assume that a quadratic
tangency q is formed at t = 0 between the stable and unstable lines of two periodic points, not belonging to the same
orbit, of a (uniformly hyperbolic) horseshoe K (see an example at the Introduction) and that such lines cross each other
with positive relative speed as the parameter evolves, starting at t = 0 and the point q. We also assume that, in some
neighborhood W of K and of the orbit of tangency o(q), the maximal invariant set for g0 = gt=0 is K ∪ o(q), where o(q)
denotes the orbit of q for g0. We then prove that, when the Hausdorff dimension HD(K) is bigger than one, but not much
bigger (see (H.4) in Section 1.2 for a precise statement), then for most t, |t| small, gt is a non-uniformly hyperbolic horseshoe
in W, and so gt has no attractors in W. Most t, and thus most gt , here means that t is taken in a set of parameter values with
Lebesgue density one at t = 0.
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1. Introduction

1.1. The context. — One of the most challenging problems in the theory of dynam-
ical systems is to understand some of the main features, like creation of attractors, of the
orbit structure of the dynamics arising from bifurcations of homoclinic or heteroclinic
cycles. Typically, the cycles we consider display an orbit of non-transversal intersection
between some stable and unstable manifolds of fixed or periodic orbits, whose unfolding
leads to dynamics with a rich orbit structure. For surface diffeomorphisms, such orbit of
non-transversal intersection of stable and unstable lines correspond to a homoclinic or
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heteroclinic tangency. The existence of cycles was much emphasized by Poincaré in late
19th century, in his classic Nouvelles Méthodes de la Mécanique Céleste [Po], where he
stated that “rien n’est plus propre à nous donner une idée de la complication de tous les
problèmes de dynamique”. The question of bifurcations of cycles often arises when we
consider parametrized families of dynamics, like in the present work: they are created
and then bifurcate, as the parameter evolves.

In the case of surface diffeomorphisms, the richness of the dynamics obtained from
unfolding a homoclinic or heteroclinic tangency is implicit in the work of Cartright-
Littlewood [CL] more than sixty years ago and thereafter in several articles by the au-
thors, especially the latter; see Levi [L] for an account of some explicit consequences of
these works. In between, in the early sixties, and along the same line, a new and funda-
mental dynamical structure was exhibited by Smale [S]: the horseshoe map associated
to a transversal homoclinic orbit. Besides that, Levi also made use of the following re-
markable result of Newhouse [N]: under some mild conditions, the unfolding of a ho-
moclinic tangency for Cr , r ≥ 2, surface diffeomorphisms leads, in the Cr topology, to
open sets of diffeomorphisms such that none of its elements is (uniformly) hyperbolic.
That is, hyperbolic diffeomorphisms are not dense in the set of all such maps, which had
been an important conjecture by Smale. He also showed that such an unfolding leads to
the existence of open sets of diffeomorphisms with a dense (actually, Baire second cate-
gory) subset of elements displaying each of them infinitely many simultaneous periodic
attractors (sinks) or repellors (sources). We refer especially to [BDV], for a comprehensive
presentation of the concepts and results that we have just mentioned.

Abundance of other more intricate kind of attractors, the so called Hénon-like
ones, was proved to be also present in the unfolding of such cycles. This was another strik-
ing fact. It resulted from the pioneering work of Benedicks-Carleson [BC], and those of
Mora-Viana [MV] and Colli [C]. Attractors here mean invariant sets that attract future
orbits of points of a positive Lebesgue measure set in the phase space (space of events).

In view of all these intricacies inherent to homoclinic and heteroclinic bifurcations,
a new global conjecture has been proposed in [P1] (see also [P2] and [P3]) concerning
the orbit structure of a typical dynamical system: in particular, systems with finitely many
attractors should be dense in the universe of dynamics, i.e. Cr flows, diffeomorphisms
and maps, with r ≥ 1. Also, their basins of attraction should cover the whole phase space,
except for a Lebesgue zero measure set. Several other conjectures were formulated in the
above works that together compose a global scenario for dynamics.

As mentioned in the Abstract, the present paper represents a contribution to the
understanding of the dynamics arising from bifurcating a cycle of a C∞ surface diffeo-
morphism. We consider one-parameter families of diffeomorphisms gt containing the
initial bifurcating diffeomorphism, say g0 at parameter value t = 0. We assume that gt is
hyperbolic for t < 0 and |t| small. We suppose that the cycle is formed by a (hyperbolic)
horseshoe K and an orbit of tangency o(q) between stable and unstable manifolds of
different periodic orbits of K. We assume the maximal invariant set in a small neighbor-
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FIG. 1. — Horseshoe and homoclinic tangency

hood W of K ∪ o(q) to consist precisely of K ∪ o(q). A main novelty is that we allow the
Hausdorff dimension of K to be larger than one, but not too far from one. We show that
right after the bifurcation, i.e. for t > 0 small, most diffeomorphisms are non-uniformly
hyperbolic in W and so they display no attractors nor repellors in the neighborhood W of
K ∪ o(q). This means that the parameter values corresponding to diffeomorphisms dis-
playing no attractors nor repellors should have total density, that is density one, at t = 0.
The concept is again discussed in the next subsection.

An example of the creation of a heteroclinic cycle associated to a (hyperbolic)
horseshoe is indicated in Figure 1. Initially we have the classic Smale’s horseshoe map
(diffeomorphism) on the two-sphere S2 with two saddle fixed points ps, pu with positive
eigenvalues, a fixed point repellor outside the figure and two fixed point attractors s1 and
s2. The rectangle inside the figure is sent by the map to the snake-shaped piece, while
the bigger top half-disk is sent to the small one around s2 and the lower bigger half disk
is sent to the small one around s1. At the right hand side of the figure, we show how to
move a small neighborhood of a point in the stable line of pu so as to create a tangency
with the unstable manifold of ps. This is done through a one-parameter family of diffeo-
morphisms; until we create such a tangency the corresponding map remains hyperbolic,
i.e. having a hyperbolic limit set with no cycles among its basic sets.

Our results considerably extend those in [PT], [NP] obtained for the case when
the Hausdorff dimension HD(K) is smaller than one. They were announced in [PY3].

Of course, we expect the same results to be true for all cases 0 < HD(K) < 2.
To achieve that, it seems to us that our methods need to be considerably sharpened:
we have to study deeper the dynamical recurrence of points near tangencies of higher
order (cubic, quartic . . .) between stable and unstable curves. We also expect our results
to be true in higher dimensions (see [MPV]). Finally, we hope that the ideas introduced
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in the present paper might be useful in broader contexts. In the horizon lies a famous
question concerning the standard family of area preserving maps (see [BDV]): we ask
whether we can find sets of positive Lebesgue probability in parameter space such that the
corresponding maps display non-zero Lyapunov exponents in sets of positive Lebesgue
probability in phase space.

1.2. The setting and a first formulation of the main result. — Let f be a smooth, i.e. C∞

diffeomorphism of a smooth surface M.
Recall that a basic set is a compact hyperbolic transitive locally maximal invariant

set. A basic set is a horseshoe if it is infinite and is neither an attractor nor a repellor.
A horseshoe is topologically a Cantor set.

We assume that there exists a basic set K for f , points ps, pu ∈ K, q ∈ M − K such
that the following properties hold:

(H1) ps and pu are periodic points and belong to distinct periodic orbits;
(H2) Ws(ps) and Wu(pu) have a quadratic tangency at q;
(H3) there exists a neighbourhood U of K, a neighbourhood V of the orbit O(q) of q,
such that K ∪ O(q) is the maximal invariant set in U ∪ V.

We would like to understand, when U, V are appropriately small and g is C∞ close
to f , the maximal invariant set

(1.1) �g =
⋂

Z

g−n(U ∪ V).

Observe that the smaller set

(1.2) Kg =
⋂

Z

g−n(U)

is a horseshoe which is the hyperbolic continuation of K.
Let U be an appropriately small neighbourhood of f in Diff∞(M). We still denote

by ps, pu the continuation of these hyperbolic periodic points in U . The condition that
Ws(ps), Wu(pu) have a quadratic tangency near q defines a codimension 1 hypersurface U0

through f in U . It divides U into regions U+, U− such that, for g ∈ U−, Ws(ps) and Wu(pu)

do not intersect near q while, for g ∈ U+, Ws(ps) and Wu(pu) have two transverse intersec-
tion points near q (for obvious dynamical reasons, the intersection is actually infinite in
this case; we are really considering here the intersection derived from the continuation of
large compact curves contained in Ws(ps) and Wu(pu)).

When g ∈ U−, we clearly have

(1.3) �g = Kg.

When g ∈ U0, we have

(1.4) �g = Kg ∪ O(qg),
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where qg is the tangency point close to q given by the definition of U0. In the subsequent
sections, we will omit the dependence on g in the notation and just write q for qg when
g ∈ U0.

The interesting case is therefore g ∈ U+.
It is actually not realistic to try to understand �g for all g ∈ U+. One of the reasons

is the so-called Newhouse’s phenomenon [N]: there exists an open set N ⊂ U+, with
U0 ⊂ N , such that, residually in N , �g has infinitely many periodic sinks or sources and
so its full dynamical description appears to be beyond reach. See also [BC], [MV], [C]
for similar results involving Hénon-like attractors.

Still, we can and shall consider most g ∈ U+ in the following sense.
We will say that a subset P ⊂ U+ contains most g ∈ U+ if, for any smooth 1-

parameter family (gt)t∈(−t0,t0) which is transverse to U0 at t = 0 (with gt ∈ U+ for t > 0), we
have

(1.5) lim
t→0

1
t

Leb(s ∈ (0, t], gs ∈ P)= 1.

Denote by Ws(K) (resp. Wu(K)) the stable set (resp. unstable set) of K for f . This is
a partial foliation with a C1+α Cantor transverse structure; denote by d0

s (resp. d0
u ) the

transverse Hausdorff dimension of Ws(K) (resp. Wu(K)). The Hausdorff dimension of K
is equal to d0

s + d0
u . We then have, in some contrast to Newhouse’s phenomenon:

Theorem. — [PT], [NP] Assume that d0
s +d0

u < 1. Then, for most g ∈ U+,�g is a horseshoe.

On the other hand, by [PY1], the same conclusion does not hold when d0
s +d0

u > 1.
The paper [MY] gives substantially more geometric information in this case, specially
concerning tangencies between stable and unstable manifolds (lines) in the hyperbolic
continuation Kg of K. These results have been extended to higher dimensions, as an-
nounced in [MPV] and complete proofs to appear in the near future.

In the present work, we investigate the maximal invariant set �g , for most g ∈ U+,
provided that the dimensions d0

s , d0
u satisfy (see Figure 2)

(H4) (d0
s + d0

u )
2 + (max(d0

s , d
0
u ))

2 < d0
s + d0

u + max(d0
s , d

0
u ).

Our results can essentially be summarized as:

Main Theorem. — Assume that (H1), (H2), (H3), (H4) hold. Then, for most g ∈ U+, �g is

a non-uniformly hyperbolic horseshoe.

The meaning of a non-uniformly hyperbolic horseshoe in the present context will
be explained somewhat in the next section and more completely in the rest of the paper.
We can, however, comment that, for most g ∈ U+, �g will be a saddle-like object in the
sense that both the stable set Ws(�g) and the unstable set Wu(�g) have Lebesgue measure
zero and, so, it carries no attractors nor repellors. It will be (non-uniformly) hyperbolic
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FIG. 2. — The dimension condition

in the sense that we will construct geometric invariant measures, à la Sinai-Ruelle-Bowen
[Si, Ru, BR], on �g ⊂ Ws(�g) and �g ⊂ Wu(�g) with non-zero Lyapunov exponents.
Such properties of the invariant set�g are made especially precise in Sections 10 and 11,
the last ones in the paper. They yield some rephrasing of the main result in these terms,
which is presented at the end of Section 11.

Remark 1. — 1. In the case when d0
s + d0

u < 1, mentioned above and studied in
[PT], [NP], it is not necessary to assume that ps, pu belong to distinct periodic orbits. It is
probably not necessary in our case either, at least as far as the qualitative statements are
concerned. But, this assumption seems to make the technicalities significantly easier in
what is already a very long construction.

2. The properties that we are proving for non-uniformly hyperbolic horseshoes are
also true for uniformly hyperbolic ones, and indeed it is possible for �g to be uniformly
hyperbolic for a positive proportion of parameters even when d0

s + d0
u � 1. Therefore we

will assume in the following that d0
s + d0

u � 1.
3. The tools that we develop probably allow to give, after some more work, fur-

ther geometric and dynamical information on �g (for most g ∈ U+) beyond that given in
Sections 10 and 11. This could be the subject of subsequent investigations.

1.3. A summary of the next sections of the paper. — Sections 2–4 consist mainly of
preparatory work.

In Section 2, we introduce a Markov partition by smooth disjoint rectangles
(Ra)a∈a for the horseshoe K. The dynamics in the neighbourhood U of K is given by
the transition maps from one rectangle to another, which enjoy a nice hyperbolic be-
haviour. To understand the dynamics in the larger set U ∪ V, we need to control the
dynamics along a finite part of the orbit of q, stretching from the moment this orbit goes
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out of R := ⊔

Ra until it comes back to R. The region of exit of R and the region of
entry into R are two parabolic tongues Lu and Ls, and the transition map

G = gN0 : Lu → Ls

is a folding map which share many features with the Henon quadratic polynomial diffeo-
morphisms of the plane.

Section 3 is essentially a summary of our previous work [PY2] (which was written
having the present paper in mind). The important concept of affine-like map is intro-
duced. The basic idea, which goes back to the early stages of the hyperbolic theory, is to
describe maps that present hyperbolic features in an implicit way exhibiting preference
for coordinates with a macroscopic range. Concretely, if a two-dimensional diffeomor-
phism contracts the vertical coordinate y and expands the horizontal coordinate x, we use
y0 and x1 as independent variables associated with a point (x0, y0) and its image (x1, y1),
writing x0 and y1 as functions of y0 and x1.

Cone conditions are easy to formulate in this setting. A nice feature of this implicit
representation of the dynamics is that it is time-symmetric: the map and its inverse satisfy
symmetric formulas. Another even more important feature is that this formalism is well-
adapted to the right concept of distortion (for 2-dimensional maps), yielding appropriate
control on the partial derivatives of order two.

Composition of two affine-like maps which satisfy the same cone condition is also
affine-like, and the distortion is only slightly bigger than the distortion of the two maps.
Besides this “simple” composition, we study “parabolic” compositions of the form F1 ◦
G ◦ F0, where F0, F1 are affine-like and G is the folding map of Section 2. When the
relative positions of the parabolic strip G(Q0) (where Q0 is the image of F0) and P1 (the
domain of F1) are appropriate, the domain of F1 ◦ G ◦ F0 has two connected components
and the restrictions F± of F1 ◦ G ◦ F0 to each component is affine-like. A control of the
distortion of F+ and F− is also obtained.

In Section 4, the general structure of the parameter space is introduced. The pa-
rameter coordinate is normalized by the relative speed at the quadratic tangency of the
tips of the stable and unstable manifolds. Then, with ε0 very small, the starting interval
I0 := [ε0,2ε0] for the parameter selection process is introduced. A small parameter τ
(with τ 	 1 but still ετ0 	 1) determines a sequence of scales (εk)k≥0 in parameter space
through the formula εk+1 = ε1+τ

k . At level k, we have disjoint parameter intervals of length
εk (starting from level 0 with I0). Each parameter interval of level k that has been selected
is divided into [ε−τ

k ] disjoint candidates of length εk+1. These candidates will pass a test
to decide whether they are selected at level k + 1.

The test takes two forms. First, in Section 5, a property of the parameter inter-
val called regularity (see below) will be introduced; candidates which do not possess this
property are discarded. Such a property is sufficient to develop in Sections 5–8 some ba-
sic combinatorial and quantitative properties, but it is not well-adapted to an inductive
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scheme. Hence, in Section 9, a stronger property called strong regularity is introduced,
and candidates have to satisfy this property in order to be selected.

Sections 5–7 constitute in some sense a single logical step: in Section 5, certain
classes of restrictions of iterates of gt are inductively defined, and the definition is only
possible because of properties that are inductively proved in Sections 6 and 7.

In Section 5, the goal is to define, for each parameter interval I which is a candi-
date (i.e. its parent interval at the immediately upper level has been tested as regular), a
class R(I) of I-persistent affine-like iterates. An I-persistent affine-like iterate is a triple
(P,Q, n) where P is a vertical-like strip in some rectangle Ra depending on t ∈ I, Q is a
horizontal-like strip in some rectangle Ra′ , depending on t ∈ I, and the restriction of gn

t to
P is a diffeomorphism onto Q which is affine-like.

However, we do not want to have in R(I) all I-persistent affine-like iterates: we
will argue about them by induction (on n, for instance) and in order to do this, we want
to obtain them in some explicit constructive way. Therefore, a number of Axioms, (R1)–
(R7), are introduced and together they completely determine the class R(I). The most
important feature of these Axioms is the following: every element of R(I) consisting of
more than one iteration of gt can be obtained from simpler elements of R(I) by simple
or parabolic composition; in this context, the notions of parent and simple or non-simple
child introduced here, play a relevant role; simple composition is allowed in R(I) when-
ever it makes sense; and parabolic compositions of elements of R(I) is allowed if and only
if a certain transversality relation is satisfied.

Thus, the definition of R(I) is reduced to the definition of this transversality rela-
tion, which is presented in Section 5.4. The intuitive notion behind the formal definition
is the following: an element (P,Q, n) (with Q crossing the domain Lu of G) should be
I-transverse to an element (P′,Q′, n′) (with P′ crossing the image Ls of G) if the distance
δ(Q,P′) between the tip of the parabolic-like strip G(Q ∩ Lu) and P′ satisfies

δ(Q,P′)≥ max
I
(|Q|1−η, |P′|1−η)

for all t ∈ I, where |Q|, |P′| are the widths of the strips Q and P′. Actually, as the distance
δ(Q,P′) is expected to vary with the parameter with derivative close to one, and we want
a uniform control in I, it is more natural to ask that

δ(Q,P′)≥ max
I
(|Q|1−η, |P′|1−η, |I|)

for all t ∈ I. Here η is a small positive constant, fixed once and for all. However, a number
of properties, presented in Section 6, are very helpful, and they require a formal defini-
tion of the transversality relation that is more complicated than this. In Appendix C, we
explain why this seemed complication is rather necessary. We use the notation Q�I P′ to
say that Q is I-transverse to P′.

For the starting interval I0, it follows from the formal definition that the transver-
sality relation is never satisfied; therefore, parabolic composition is not allowed and the
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class R(I0) is exactly the one associated with the symbolic dynamics given by the Markov
partition. Thus, the construction of R(I0) is easy. For smaller parameter intervals, what
is clear from the defining axioms (R1)–(R7) is that there can be at most one class R(I)
satisfying them. That such a class exists (for candidate intervals whose parent is regular)
is stated in Section 5.4 but will only be completely proven at the end of Section 7.

We conclude Section 5 with the introduction of some concepts that play an impor-
tant role in the rest of the paper. We say that a strip P (from an element (P,Q, n) ∈ R(I),
with P crossing Ls) is I-transverse if one can find finitely many elements (Pα,Qα, nα) ∈ R(I)
such that

– every point in Lu which stays in U ∪ V under negative iteration is contained in
one of the Qα ;

– every Qα is I-transverse to P.

Strips P crossing Ls which are not I-transverse are said to be I-critical. The I-critical strips
can be viewed as representing some “critical region” at the |I|-scale. One defines sym-
metrically I-transversality and I-criticality for horizontal strips Q crossing Lu. Elements
(P,Q, n) ∈ R(I) such that both P and Q are I-critical are said to be I-bicritical and corre-
spond to returns from the critical region to itself (in time n). Given a constant β > 1, one
says that the parameter interval is β-regular if any I-bicritical (P,Q, n) satisfies |P|< |I|β ,
|Q| < |I|β for all t ∈ I. Intuitively, this means that no short return to the critical set is
allowed. The value that we choose for β > 1 is announced in Section 5.6 and explained
in Section 9.3. It depends only on the transverse Hausdorff dimensions d0

s , d
0
u and the

eigenvalues of the periodic points ps, pu. It is easy to see that the starting interval I0 is
β-regular.

In Section 6, we prove a number of properties of the transversality relation and the
classes R(I).

The first one is natural (but already requires some non trivial induction): children
are born from their parents. Let us explain what it means. Let (P,Q, n) ∈ R(I), and let
(˜P,˜Q, ñ) be the element of R(I) such that P ⊂˜P, P �=˜P and˜P is the thinnest rectangle
with this property; one says that P is a child of ˜P and that ˜P is the parent of P. There
are two cases; either n = ñ + 1 and one says that P is a simple child; (P,Q, n) is obtained
by simple composition of (˜P,˜Q, ñ) with an element of length 1; or n > ñ + 1 and one
says that P is a non-simple child; one then proves that (P,Q, n) is obtained by parabolic
composition of (˜P,˜Q, ñ) with some element (P1,Q1, n1).

An easy and very natural property of the transversality relation, proved in Sec-
tion 5.6, is that transversality is hereditary: let P′

1 ⊂ P1, Q′
0 ⊂ Q0, I′ ⊂ I; if Q0 �I P1 holds,

then Q′
0 �I′ P′

1 also holds. A non-intuitive property of the transversality relation, but one
which is useful at many places, is a partial converse called concavity (Section 6.3): with P1,
P′

1, Q0, Q′
0, I, I′ as above, if both Q0 �I P′

1 and Q′
0 �I′ P1 hold, then Q0 �I P1 also holds; if

both Q0 �I′ P1 and Q′
0 �I P′

1 hold, then Q0 �I P1 also holds; if both Q′
0 �I P1 and Q0 �I′ P′

1
hold, then Q0 �I P1 also holds.
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The most important result in Section 6 is a structure theorem for new rectangles in
Section 6.5. One considers an element (P,Q, n) which belongs to R(I) but not to R(˜I),
where˜I is the parameter interval containing I of the level immediately inferior (one says
that˜I is the parent of I). Then there is a unique way to write (P,Q, n) as the result of a
sequence of k � 1 parabolic compositions, possible in R(I) but not in R(˜I), of elements
(P0,Q0, n0), . . . , (Pk,Qk, nk) ∈ R(˜I). This fundamental result is used with decisive effect
at several places in Sections 7 and 9.

In Section 6.6 are proven several estimates on the width of strips, based on the
structure theorem. As elements of R(I) are constructed using parabolic composition,
one cannot hope for a uniform exponential estimate for the width of the strips in terms
of the number n of iterations. However, we are able to prove a stretched exponential
uniform estimate in Section 6.6.2. Another important result of Section 6.6 is that “thick”
I-critical rectangles actually belong to some class R(I∗) for a parameter interval much
bigger than I. Actually, because the definition of I-criticality supposes the knowledge of
the full class R(I), which has not been constructed at this point, we introduce a substitute
for this: a strip P (with (P,Q, n) ∈ R(I)) is I-special if the thinnest˜I-defined strip˜P (with
˜I the parent of I) is˜I-critical.

We complete in Section 7 the proof of the existence of the class R(I), for a can-
didate interval whose parent is β-regular. Actually, the long calculations are performed
in Appendix A and we use in Section 7 the estimates derived from these calculations.
We check that the uniform cone condition of the affine-like iterates in R(I) is satisfied,
and that their distortion is bounded. After obtaining in Section 7.4 estimates for the class
R(I0) of the starting interval (which are simpler and better because no parabolic com-
position is involved), we prove in Section 7.5 a technical estimate related to parabolic
composition. In Section 7.6, we deal with the relative speed of the strips when the para-
meter varies (the derivative of the quantity δ(Q,P′) which comes up in the transversality
relation); this is clearly of capital importance if we are to succeed. A point which is worth
mentioning is that we are not able to obtain speed estimates for all pairs of strips (actually,
it is easy to see that such estimates do not exist); we have to restrict ourselves to I-special
strips, a case which, fortunately, is sufficient for our purposes. In Section 7.7, we investi-
gate the oscillation of the widths of the strips with the parameter. While it is just not true
that the relative oscillation is bounded (in the sense that the maximum over a parameter
interval is bounded by a constant times the minimum), the result that we get (again only
for I-special intervals) will allow us to argue as if it was.

At the end of Section 7, the construction of the classes R(I) is completed, for every
parameter interval I whose parent˜I is regular. But we still don’t know whether a single
interval I is regular.

Section 8 is a transition between the construction of the classes R(I) in Sections 5–
7 and the heavy work of parameter selection in Section 9. We collect a number of prop-
erties of the transversality relation and the classes R(I) that were not needed before, but
will be useful later. We also develop several quantitative estimates that will turn out to
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be crucial both in the parameter selection process of Section 9 and in the analysis of the
dynamics for strongly regular parameters in Sections 10 and 11. We investigate in partic-
ular (Section 8.2), for a given element (˜P,˜Q, ñ), the number of elements (P,Q, n) such
that P is a non-simple child of ˜P; we show that, for every ε > 0, there are at most ε−c′η

such non-simple children with width |P| larger than ε|˜P|. The constant η here is small
and is the one occurring in the definition of the transversality relation. The meaning of
this estimate is that the presence of non-simple children is not too significant from the
point of view of Hausdorff (or box) dimension, as it is made clear in Section 8.3. Us-
ing Poincaré (or Dirichlet)-like series, we show that, for every (P∗,Q∗, n∗) ∈ R(I), every
ε > 0, the number of elements (P,Q, n) ∈ R(I) with P ⊂ P∗, |P| � ε|P∗| is at most ε−d∗

s ,
with d∗

s very close to d0
s . In Section 8.4, we transfer this information to parameter space,

combining it with the result on relative speed of strips in Section 7.6: we show that, for
any thin enough˜I-critical strip Q∗, the proportion of candidates I ⊂˜I such that Q∗ is
I-critical is at most |˜I|1−d+

s , where again d+
s is close to d0

s .
Section 9 is the longest one in the paper and deals with the parameter selection

process. The concept of regularity is very useful to develop a number of properties of the
classes R(I), as we did in Sections 5–8. Unfortunately, we are not able to prove (and it is
probably false) that, given a β-regular interval˜I, most candidates I ⊂˜I at the next level
are β-regular. [ It is a consequence of the structure theorem of Section 6 that all candi-
dates are β-regular, where β = β(1 + τ)−1 is very close to β ; this allows us to obtain all
qualitative consequences of regularity for all candidates; but obviously we cannot repeat
this at many successive levels of parameter intervals, because we need to keep β > 1.]
The problem with the concept of regularity is that it is dealing with only one scale |˜I|β ;
it could happen a priori that for a regular parameter interval˜I we have many˜I-bicritical
(P,Q, n) ∈ R(I) with |P| or |Q| only slightly below the threshold |˜I|β (and therefore
above the next threshold |I|β for candidates I ⊂˜I); for each such (P,Q, n), we have to
eliminate candidates I such that (P,Q, n) is I-bicritical, and no candidate will survive this
selection process if there are too many (P,Q, n).

The solution to this difficulty is to introduce the condition of strong regularity,
which implies regularity and gives a quantitative control at all scales. Actually, the strong
regularity condition involves two parts, and three sets of inequalities (SR1), (SR2), (SR3).

In the first part (Section 9.1), one controls the size of the critical locus, in two
slightly different ways expressed by (SR1), (SR2); both amount to say that the “dimen-
sion” of the critical locus is not much larger than d0

s + d0
u − 1, but (SR1) is a direct “box-

counting” estimate, while (SR2) is more subtle.
The second part of the strong regularity condition, by far the most subtle one, is

a quantitative estimate for the number of bicritical elements at all scales. Because of the
inductive nature of the argument, which relies in an essential way on the structure theo-
rem of Section 6, we need to control the number of elements (P,Q, n) ∈ R(I) such that
P is Iα-critical, Q is Iω-critical and |P| � x for some t ∈ I. Here, Iα and Iω are parameter
intervals containing I, and the control will depend on Iα , Iω and x. The formulas in Sec-
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tion 9.2 present a phase transition with respect to the width parameter x. Discussing this
phase transition in Section 9.3 leads naturally to the hypothesis (H4) on the transverse
dimensions d0

s , d0
u : a small calculation shows that (H4) is exactly what one needs to obtain

β-regularity with β > 1. We also show in Section 9.3 that a strongly regular parameter
interval is regular.

In Section 9.4, we show that the starting interval is strongly regular. Then, in Sec-
tion 9.5, we show that most candidates in a strongly regular parameter interval satisfy
(SR1); The argument for parameter selection is based on the result of Section 8.4 men-
tioned above. The same is done in Section 9.6 for condition (SR2), but the proof is more
complicated and involves (SR3).

In the rest of Section 9 we prove that, given a strongly regular parameter interval
˜I, most candidates I ⊂˜I at the next level satisfy (SR3) (the proportion of failed candidates
turns out to be not larger than C|I|τ 2

; the same is true for (SR1) and (SR2)). The easy
cases are dealt with in Section 9.7. In Section 9.8, we estimate the number of bicritical
elements in R(I) that are not˜I-defined (˜I is the strongly regular parent of I). This is a
rather long but straightforward calculation based on the structure theorem of Section 6.5.
Then, we are left with the most difficult case I = Iα = Iω, x small (below the threshold of
phase transition), but not too small (the estimate is trivial in this last case). In this case,
and in this case only, we are forced to take into account that for an˜I-bicritical element
(P,Q, n) to be I-bicritical, the two events (of the “random” variable I) “P is I-critical”
and “Q is I-critical” must occur simultaneously. The strategy (explained at the end of
Section 9.7) to deal with this case is to divide the class of I-bicritical rectangles in a (large,
but not too large) number of adequately defined subclasses. These subclasses are defined
in Section 9.9, their number is estimated in Section 9.10 and the calculation which val-
idates the strategy is performed in Sections 9.11 and 9.12. In Section 9.13, we explain
which (very few) modifications have to be made when dealing with the condition |Q| � x

instead of |P| � x (the setting is not symmetric at this level because the formulations of
(SR3) when d0

s � d0
u and d0

s � d0
u are different). Finally, in Section 9.14 we conclude by

defining precisely the exponents appearing in (SR1), (SR2), (SR3) which were so far only
approximately defined. At this point, we know that all parameters in the starting interval
I0 = [ε0,2ε0], except for a subset of relative measure � Cετ

2

0 , are strongly regular.
It is worth mentioning that up to the end of Section 9, we never consider the

dynamics for a single parameter, only for parameter intervals. In the last two sections,
we study the dynamics for a strongly regular parameter value, i.e. the intersection of a
decreasing sequence (Im) of strongly regular parameter intervals.

In Section 10, we study the dynamics on the set of stable curves. A stable curve ω

is the decreasing intersection of a sequence of vertical-like strips Pk , where (Pk,Qk, nk) ∈
R =⋃

m R(Im). The set of stable curves is denoted by R∞
+ , their union by ˜R∞

+ . We show
in Section 10.5 that ˜R∞

+ is a lamination by C1+Lip curves with Lipschitz holonomy. In or-
der to define a map on ˜R∞

+ (which is not invariant under g), we introduce in Section 10.1
the concept of prime element in R, i.e. one which cannot be written as the simple compo-
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sition of shorter elements. The number of prime factors in a decomposition is controlled
in Section 10.2. Let then ω be a stable curve which is not contained in infinitely many
prime elements Pk , and let (P,Q, n) be such that P is the thinnest prime element con-
taining ω. The image gn(ω) is contained in a stable curve ω′ and we set T+(ω) = ω′,
˜T+/ω= gn/ω. This defines a map T+ from a subset D+ of R∞

+ onto R∞
+ which lifts to a

map ˜T+ from the union ˜D+ of curves in D+ to ˜R∞
+ .

The map T+ is Bernoulli in the following sense: its domain D+ splits into countably
many pieces R∞

+ (P) indexed by prime elements, and each piece is sent homeomorphi-
cally by T+ onto the intersection of R∞

+ with some rectangle Ra of the Markov partition.
The map T+ is uniformly expanding (with countably many branches) and we in-

troduce a one parameter family of weighted transfer operators in the spirit of classical
uniformly hyperbolic maps. One has only to be careful because the presence of count-
ably many branches is the source of some problems, which are dealt with in Section 10.3
using the estimates of Section 8 on the number of children.

As expected, the transfer operators Ld , considered in the appropriate function
space, turn out to have a positive eigenfunction hd associated with a dominant eigen-
value λd > 0. There is a unique value ds such that λds

= 1. This value turns out to be,
unsurprisingly, the transverse Hausdorff dimension of the lamination ˜R∞

+ . This is proved
in Section 10.10 (Theorem 4), but the proof is more difficult than in the classical case, be-
cause the transverse geometry of ˜R∞

+ is complicated and requires some delicate handling.
The transfer operator also allows us to identify, as usual, a measure μd with pre-

scribed Jacobian and an invariant measure νd = hdμd . For d = ds, the μd -measure (or
νd -measure) of the set of stable curves contained in any vertical-like strip P is propor-
tional to |P|ds .

The set ˜R∞
+ − ˜D+ where ˜T+ is not defined, has transverse dimension smaller than

ds, hence is negligible in a geometrical sense. One can lift the T+-invariant measure
ν = νds

to a ˜T+-invariant measure ν̃ which is ergodic and then spread it to a g-invariant
measure on �.

In Section 11, the last in the paper, we pursue the study of the dynamics of gt on
� = �gt

for a strongly regular parameter t, looking now beyond the well-behaved set
˜R∞

+ which was studied in Section 10. In the first part (Sections 11.1–11.5), we study
the intersection of the invariant set � with an unstable curve ω∗ (defined as a stable
curve, exchanging P’s and Q’s). The main part of this intersection is a countable disjoint
union of dynamical copies of the set R∞

+ studied in Section 10. There are also at most
countably many critical points, corresponding to quadratic tangencies between stable
curves and images under G of unstable curves. And, finally, there is an exceptional set
(formed by points which come very close to the critical locus infinitely many times); but
this exceptional set is small; its Hausdorff dimension is explicitly controlled by a value
smaller by a definite amount than the dimension ds of ω∗ ∩�.

In the second part of Section 11, we prove that the invariant set � is a saddle-like
object in the metric sense: both its stable set Ws(�) and its unstable set Wu(�) have
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Lebesgue measure 0. So, no attractors nor repellors are present on �. One actually ex-
pects more: certainly the Hausdorff dimension of Ws(�) should be strictly less than 2,
probably it is close to 1 + ds, and perhaps even equal to 1 + ds. However, we stick to
the simpler, but still very meaningful result: it implies that �g carries no attractor nor a
repellor for most g.

One has a nice combinatorial decomposition of the restricted stable set Ws(�,R),
but to compute Lebesgue measure (or Hausdorff dimension), one has to transport the
pieces of this decomposition by affine-like iterates of g of high order. This is easy to do
as far as Lebesgue measure is concerned, because bounded distortion of affine-like maps
mean also bounded distortion of measure (bounded relative oscillation of Jacobians). This
is much more delicate with respect to Hausdorff dimension: the geometry of the pieces
after iteration can get very distorted.

In Appendix A, we recall all formulas related to the implicit representation of
affine-like maps; many of them can already be found in [PY2], but we have also to con-
sider the derivatives with respect to parameter, a setting which was not considered in
[PY2]. We also perform a number of estimates, both for simple and parabolic composi-
tion, which are used in Section 7.

In Appendix B, we prove a result related to Proposition 51 in Section 10.5, which
states the transversally Lipschitz regularity of the lamination ˜R∞

+ .
In Appendix C, we give some justification for what seems to be a convoluted defi-

nition of the transversality relation in Section 5.4.
We wish to thank Sylvain Crovisier for carefully reading a first version of this text

and making many valuable suggestions to improve several conceptual parts of the paper,
hopefully making it more amenable to read. We also wish to thank W. de Melo and
M. Viana for fruitful conversations.

2. Markov partition and folding map

2.1. Markov partition and related charts. — We will choose once and for all a finite
system of smooth charts

Is
a × Iu

a

≈−→ Ra ⊂ M, a ∈ a

indexed by a finite alphabet a. Each chart depends smoothly on g ∈ U ; the intervals Is
a, Iu

a

are compact; the rectangles Ra are disjoint.
Let R =⋃

a Ra. We choose the charts in order to have:
(MP1) for each g ∈ U , Kg is the maximal invariant set in int R; for each g ∈ U , a ∈ a,
one has

g(∂Is
a × Iu

a)∩ R = ∅,(2.1)

g−1(Is
a × ∂Iu

a)∩ R = ∅;(2.2)
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(MP2) for each g ∈ U , the family (Ra ∩ Kg)a∈a induces a Markov partition for the
horseshoe Kg . Moreover, no rectangle Ra meets both the orbit of ps and the orbit of pu.

Let

(2.3) B = {(a, a′) ∈ a2, f (Ra)∩ Ra′ ∩ Kf �= ∅}.
The Markov partition provides a coding which is a topological conjugacy between the
horseshoe Kg and the subshift of finite type of aZ defined by B.

2.2. The parabolic tongues Lu, Ls. — Denote by as, au ∈ a the letters such that ps ∈
Ras

, pu ∈ Rau
. We choose the corresponding charts in order to have:

(MP3) for each g ∈ U , the equation of the local stable manifold Ws
loc(ps) is {xas

= 0}, the
equation of the local unstable manifold Wu

loc(pu) is {yau
= 0}.

We have written xa (resp. ya) for the coordinate in Is
a (resp. Iu

a). We also choose the
rectangles Ra in order to have, for some integer N0 � 2:

(MP4) for each g ∈ U0, there are points qs, qu in the orbit of q such that

– for n ≥ 0, gn(qs) and gn(ps) belong to the interior of the same rectangle;
– for n ≤ 0, gn(qu) and gn(pu) belong to the interior of the same rectangle;
– qs = gN0(qu) and gi(qu) does not belong to R for 0< i <N0.

Consider small pieces of Ws(ps), Wu(pu) which are tangent at qu for g ∈ U0. When
g ∈ U+, these pieces will meet in two points and bound a compact lenticular region Lu ⊂
int Rau

. Taking the image under gN0 , we get another lenticular region Ls ⊂ int Ras
. These

regions are called parabolic tongues. See Figure 3.
Define then, for g ∈ U+

(2.4) ̂R = R ∪
⋃

0<i<N0

gi(Lu).

FIG. 3. — The parabolic tongues Ls , Lu
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The maximal invariant set we are interested in is

(2.5) �g =
⋂

Z

g−n(̂R).

Observe that Ws
loc(ps) bounds the set Kg in Ras

and Wu
loc(pu) bounds the set Kg in Rau

.
The maximal invariant set �g meets the boundary of ̂R (in fact, the boundary of Ls, Lu,
and their images), but it is still locally maximal because it would also be the maximal
invariant set in a slight enlargement of ̂R.

We also define

Ws(�g,̂R)=
⋂

n�0

g−n(̂R),(2.6)

Wu(�g,̂R)=
⋂

n�0

g−n(̂R).(2.7)

The dynamics in ̂R are generated by

– the transition maps related to the Markov partition:

g : Ra ∩ g−1(Ra′)→ g(Ra)∩ Ra′, for (a, a′) ∈ B;
– the folding map G := gN0 from Lu onto Ls.

2.3. The folding map G. — For simplicity, we write (xs, ys), (xu, yu) for the coordi-
nates in Ras

⊃ Ls, Rau
⊃ Lu.

The folding map G is parabolic in the sense of [PY2]; let us recall this definition.
Consider the graph �G of the restriction G of gN0 to the component of Rau

∩
g−N0(Ras

) which contains Lu (for g ∈ U+; we then follow this component in the rest of U ).
Using the corresponding charts, we can view �G as a surface in Is

au
× Iu

au
× Is

as
× Iu

as
. Denote

by π the projection from Is
au

× Iu
au

× Is
as

× Iu
as

onto Iu
au

× Is
as

. For U small enough, from the
quadratic tangency at q and (MP3) we deduce that:

(P1) the restriction of π to �G is a fold map (in the sense of singulary theory).
Denote by �0 ⊂ Iu

au
× Is

as
the smooth curve which is the image of the critical locus

of this fold map. It divides Iu
au

× Is
as

into two regions �+, �− such that �+ ∪�0 is the image
of the fold map. We can reformulate (P1) as:

(P′1)

(i) for (y0, x0) ∈ �0, the image G({yu = y0}) meets {xs = x0} in a single point, inte-
rior to both curves, at which the curves have a quadratic tangency;

(ii) for (y0, x0) ∈ �−, the curves G({yu = y0}) and {xs = x0} do not intersect;
(iii) for (y0, x0) ∈ �+, the curves G({yu = y0}) and {xs = x0} intersect transversally

in two points.
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As G is a diffeomorphism, the tangents to �0 are never vertical or horizontal.
Therefore, we can and will choose a smooth function θ on Iu

au
× Is

as
such that

(P2) θ ≡ 0 on �0, θ > 0 on �+, θ < 0 on �−;

(P3) the partial derivatives θy, θx of θ do not vanish on Iu
au

× Is
as

.

Remark 2. — The choice of θ is far from unique. One could for instance choose θ
of the form

(2.8) θ(yu, xs)= εuyu + εsχ(xs),

with εs, εu ∈ {−1,+1} and χ monotone increasing. We prefer not to specify a particular
choice in order to keep a time-symmetric setting between positive and negative iterations.

From θ , we define a smooth function w on �G by

(P4) w2 = θ ◦ π
(there are two choices for w; the other is −w).

Then, from (P3) we obtain smooth maps Yu, Xs implicitly defined by

w2 = θ(Yu(w, xs), xs)(P5)

= θ(yu,Xs(w, yu).

On the graph �G, we can use either (xu, yu) or (xs, ys) or (w, yu) or (xs,w) as coordinates;
therefore we can factorize G as G+ ◦ G0 ◦ G−:

(2.9) (xu, yu)
G−−→ (w, yu)

G0−→ (xs,w)
G+−→ (xs, ys)

with

G0(w, yu)= (Xs(w, yu),w),(P6)

G−1
0 (xs,w)= (w,Yu(w, xs)),

G+(xs,w)= (xs,Ys(w, xs)),

G−1
− (w, yu)= (Xu(w, yu), yu).

The last two formulas define smooth maps Ys, Xu and the partial derivatives Ys,w, Xu,w

do not vanish as G+, G− are diffeomorphisms. Observe that the map G0 is very similar
to a quadratic Hénon-like map.

A simple explicit example for G,G+,G−,G0,θ is given in [PY2].
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3. Affine-like maps

This section is essentially a summary of [PY2].

3.1. Definition and implicit representation. — Let Is
0, Iu

0, Is
1, Iu

1 be non trivial compact
intervals, x0, y0, x1, y1 the corresponding coordinates. Consider a smooth diffeomorphisms
F whose domain is a vertical strip

P = {ϕ−(y0)� x0 � ϕ+(y0)} ⊂ Is
0 × Iu

0

and whose image is a horizontal strip

Q = {ψ−(x1)� y1 �ψ+(x1)} ⊂ Is
1 × Iu

1.

We say that F is affine-like if

(AL1) the restriction to the graph of F of the projection onto Iu
0 × Is

1 is a diffeomorphism
onto Iu

0 × Is
1.

This allows us to define smooth maps A, B on Iu
0 × Is

1 such that

(3.1) F(x0, y0)= (x1, y1) ⇐⇒
{

x0 = A(y0, x1),

y1 = B(y0, x1).

The pair (A,B) is the implicit representation (or definition) of the affine-like map F. See
Figure 4. In the formulas below, we shall most of the time omit the arguments of
the functions considered, which should be obvious from the context. We will write
Ax,Ay,Axx,Bx,By, . . . for partial derivatives.

On the graph of F, we have

dx0 = Aydy0 + Axdx1,
(3.2)

dy1 = Bydy0 + Bxdx1,

FIG. 4. — An affine-like map
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which leads to

DF = A−1
x

(

1 −Ay

Bx AxBy − AyBx

)

,(3.3)

DF−1 = B−1
y

(

AxBy − AyBx Ay

−Bx 1

)

,(3.4)

det DF = A−1
x By.(3.5)

The main advantage of the implicit representation is the symmetry between positive and
negative iteration.

3.2. Cone condition and distortion. — Let λ, u, v > 0 satisfy

(3.6) 1< uv � λ2.

Let (X0,Y0) be a tangent vector at some point in the domain of F, and let (X1,Y1) be its
image under TF. The usual cone condition with parameters (λ, u, v) is:

(AL2)

(i) if |Y0| � u|X0|, then |Y1| � v−1|X1| and |X1| � λ|X0|;
(ii) if |X1| � v|Y1|, then |X0| � u−1|Y0| and |Y0| � λ|Y1|.
This is readily seen to be equivalent to

λ|Ax| + u|Ay| � 1,(AL′2)

λ|By| + v|Bx| � 1,

everywhere on Iu
0 × Is

1.
We will also need to control partial derivatives of second order of A, B. By (3.5),

the partial derivatives Ax, By do not vanish on Iu
0 × Is

1. It turns out that the right way to
look at partial derivatives of second order is to consider the six functions

∂x log |Ax|, ∂y log |Ax|,Ayy,

∂y log |By|, ∂x log |By|,Bxx.

We define the distortion of an affine-like map F, and denote by D(F), the maximal absolute
value attained by any one of these six functions on Iu

0 × Is
1.

We also define the width of the domain P of F by

(3.7) |P| := max|Ax|,
and the width of the image Q by

(3.8) |Q| := max|By|.
Observe that we have max |Ax| � C min|Ax|, where the constant C only depends on D(F)
and the lengths of the intervals Iu

0,Is
1.The same estimate holds for By.
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FIG. 5. — Simple composition

3.3. Simple composition. — The composition of two affine-like maps is not always
affine-like. However, the composition of two affine-like maps which also satisfy the same
cone condition (AL2) will again be affine-like and satisfy the same cone condition (actually
a better one).

More precisely, let Is
0, Iu

0, Is
1, Iu

1, Is
2, Iu

2 be compact intervals. Let F : P → Q and F′ :
P′ → Q′ be affine-like maps with domains P ⊂ Is

0 ×Iu
0, P′ ⊂ Is

1 ×Iu
1 and images Q ⊂ Is

1 ×Iu
1,

Q′ ⊂ Is
2 × Iu

2. We assume that both F and F′ satisfy (AL2) (or (AL′2)) with parameters
λ, u, v. The composition F′′ = F′ ◦ F has domain P′′ = P ∩ F−1(P′) and image Q′′ =
Q′ ∩ F′(Q). It satisfies (AL1) and (AL2) with parameters λ2, u, v (cf. [PY2]). See Figure 5.

Let (A,B), (A′,B′), (A′′,B′′) be the implicit representations of F, F′, F′′ respectively.
Define

(3.9) � := 1 − A′
yBx > 1 − u−1v−1 > 0.

The partial derivatives of first order of A′′, B′′ are given by

A′′
x = AxA′

x�
−1,

(3.10)
B′′

y = ByB′
y�

−1,

A′′
y = Ay + A′

yAxBy�
−1,

(3.11)
B′′

x = B′
x + BxA′

xB
′
y�

−1.

From (3.10), we get

C−1 � |P′′|
|P||P′| � C,

(3.12)

C−1 � |Q′′|
|Q||Q′| � C,
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where the constants are uniform once u, v are fixed and the distortions are uniformly
bounded.

The formulas for the partial derivatives of second order are derived in [PY2] and
recalled in Appendix A. From formulas (A.12) to (A.21), one obtains the following esti-
mate for the distortion:

(3.13) D(F′′)� max
{

D(F)+ C|Q|(D(F)+ D(F′)),D(F′)+ C|P′|(D(F)+ D(F′))
}

,

where C depends only on u, v.

3.4. Properties of the Markov partition. — We choose charts for the Markov partition
discussed in Section 2.1 in order to have the following property, for some λ, u, v satisfying
(3.6):

(MP5) for any (a, a′) ∈ B, any g ∈ U , the transition map ga,a′ from Paa′ = Ra ∩ g−1(Ra′)

onto Qaa′ = Ra′ ∩ g(Ra) is affine-like and also satisfies the cone condition (AL2).
These values of (λ, u, v) will be fixed in what follows.
To any finite word a = (a0, . . . , an) with transitions in B, we have a composition

ga = gan−1an
◦ . . . ◦ ga0a1

which satisfies also (AL1) and (AL2).
Moreover, as the widths decrease exponentially with the number of iterations, it

follows from (3.13) that there exists D0 > 0 such that all ga satisfy

(MP6) D(ga)≤ D0.

Finally, the following simple property will be useful in Section 8.

(MP7) for any (a, a′) ∈ B, any (x, y) ∈ Paa′ , any (x′, y′) ∈ Qaa′ , we have

x−
a + C−1 < x< x+

a − C−1,

y−
a′ + C−1 < y′ < y+

a′ − C−1,

where Is
a = [x−

a , x
+
a ], Iu

a′ = [y−
a′ , y

+
a′ ] and C is an appropriate large constant.

3.5. Parabolic composition. — Let G be the folding map of Section 2.3, satisfying
properties (P1)–(P6).

Let also Is
0, Iu

0, Is
1, Iu

1 be compact intervals; let F0 be an affine-like map from a
vertical strip P0 ⊂ Is

0 × Iu
0 to a horizontal strip Q0 ⊂ Is

au
× Iu

au
; let F1 be an affine-like map

from a vertical strip P1 ⊂ Is
as

× Iu
as

to a horizontal strip Q1 ⊂ Is
1 × Iu

1.
We recall from [PY2] how, under appropriate hypotheses, the composition F1 ◦

G ◦ F0 defines two affine-like maps F± with domains P± ⊂ P0 and image Q± ⊂ Q1. See
Figure 6.
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FIG. 6. — Parabolic composition

Let (A0,B0), (A1,B1) be implicit representations of F0, F1, respectively. We assume
that

|A1,y|< b, |A1,yy|< b,(PC1)

|B0,x|< b, |B0,xx|< b,

with b 	 1. In the system

xu = Xu(w, yu),
(3.14)

yu = B0(y0, xu),

we can, as |B0,x| 	 1, eliminate yu and solve for xu to define

(3.15) xu = X(w, y0).

Similarly, in the system

ys = Ys(w, xs),
(3.16)

xs = A1(ys, x1),
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we eliminate xs, solve for ys to get

(3.17) ys = Y(w, x1).

The next step is to define

(3.18) C(w, y0, x1) :=w2 − θ
(

B0(y0,X(w, y0)),A1(Y(w, x1), x1)
)

.

This quantity has the following geometrical interpretation. Fix values y∗
0, x∗

1 for y0, x1.
The image G− ◦ F0({y0 = y∗

0}) is the graph

(3.19) γ0 =
{

yu = B0(y
∗
0,X(w, y

∗
0))
}

;

symmetrically, G−1
+ ◦ F−1

1 ({x1 = x∗
1}) is the graph

(3.20) γ1 =
{

xs = A1(Y(w, x∗
1), x

∗
1)
}

.

Then, C(w, y∗
0, x

∗
1) gives the relative position of the two curves γ0 and G−1

0 (γ1) (or equiv-
alently G0(γ0) and γ1). More precisely, it is positive for all w if the two curves do not
intersect; it vanishes at the intersection points and is negative between the intersection
points.

It follows from (PC1) just above that

|Cw − 2w| 	 1,(3.21)

|Cww − 2| 	 1.(3.22)

Therefore, for fixed values of y0 and x1, C has a unique minimum as a function of w; we
denote by C(y0, x1) the corresponding minimum value. We have C(y∗

0, x
∗
1) > 0 (resp. = 0,

resp.< 0) if and only if the curves γ0 and G−1
0 (γ1) do not intersect (resp. are tangent, resp.

have two transverse intersection points).
In order to consider parabolic compositions, we shall require that C(y0, x1) < 0

everywhere on Iu
0 × Is

1. Setting

(3.23) δ = δ(Q0,P1)= min
y0,x1

−C(y0, x1)

we actually want to have

δ > b−1(|P1| + |Q0|).(PC2)

The geometric interpretation of this requirement is clear: the displacement of one of
the rectangles and the image of the other should be much bigger than the sum of their
widths. In other words, the distance between the tip of the parabolic strip G−1

0 (P1) and
the horizontal strip Q0 should be much bigger than the widths of these strips.
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Assume now that (PC1) and (PC2) are satisfied; the equation C(w, y0, x1)= 0 de-
fines two smooth functions

(3.24) w = W±(y0, x1)

with W+ >W−. One then defines

A±(y0, x1) := A0

(

y0,X(W±(y0, x1), y0)
)

,(3.25)

B±(y0, x1) := B1

(

Y(W±(y0, x1), x1), x1

)

.(3.26)

As shown in [PY2], the pair (A+,B+) (resp. (A−,B−)) implicitly defines an affine-like
map F+ (resp. F−).

Denote by P+ (resp. P−) the domain of F+ (resp. F−) and by Q+ (resp. Q−) the
image of F+ (resp. F−). Then P+ and P− are the two components of P0 ∩ (G ◦ F0)

−1(P1),
Q+ and Q− are the two components of Q1 ∩ (F1 ◦ G)(Q0); F+ (resp. F−) is the restriction
of F1 ◦ G ◦ F0 to P+ (resp. P−).

The formulas for the partial derivatives of A±, B± are derived in [PY2] and recalled
in Appendix A (see in particular (A.42)). The partial derivative Cw in these formulas is

of order δ
1
2 at the points under consideration (see (A.84) in Appendix A). From this one

obtains the following estimate for the widths:

C−1 � |P±|
|P0||P1|δ− 1

2

� C,(3.27)

C−1 � |Q±|
|Q0||Q1|δ− 1

2

� C,(3.28)

where the constants are uniform once b is fixed and the distortions are uniformly
bounded.

From [PY2, Theorem 3.7], we also have the following estimate for the distortion
of F± (see also Appendix A.4): assuming that b is small enough (in terms of the partial
derivatives of first order of Xu, Ys, θ ), we have

(3.29) D(F±)≤ max
{

D(F0)+ C|Q0|δ−1,D(F1)+ C|P1|δ−1
}

,

provided that D(F0)+D(F1)≤ δ− 1
2 . The constant C in (3.29) depends only on the partial

derivatives of first order of Xs, Yu, θ .
Let us observe that, while conditions (PC1), (PC2) are necessary in order to consider

parabolic composition, they will not be sufficient for our construction: in Section 5, the
requirement for parabolic composition will be much more restrictive than (PC2).
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3.6. Simple properties of δ(Q0,P1) and related quantities.

3.6.1. The setting in the same than in the last Subsection, with maps F0,F1 sat-
isfying the hypotheses as in that Subsection. We have defined

(3.30) δ(Q0,P1)= min
y0

min
x1

−C(y0, x1).

In the following sections, we also need to consider

δL(Q0,P1) := max
y0

min
x1

−C(y0, x1),(3.31)

δR(Q0,P1) := min
y0

max
x1

−C(y0, x1),(3.32)

δLR(Q0,P1) := max
y0

max
x1

−C(y0, x1).(3.33)

All together, δ, δL, δR, δLR are the values of −C at the four corners of the rectangle Iu
0 × Is

1
of definition of C. From the formula (A.78) of Appendix A, we have, for any t in I

C−1|P1| � |Cx| � C|P1|,(3.34)

C−1|Q0| � |Cy| � C|Q0|.(3.35)

This gives

C−1|Q0| � δL(Q0,P1)− δ(Q0,P1)� C|Q0|,(3.36)

C−1|P1| � δR(Q0,P1)− δ(Q0,P1)� C|P1|,(3.37)

C−1|Q0| � δLR(Q0,P1)− δR(Q0,P1)� C|Q0|,(3.38)

C−1|P1| � δLR(Q0,P1)− δL(Q0,P1)� C|P1|.(3.39)

Let F′
0 be another affine-like map, implicitly represented by (A0,B0), satisfying the

same hypotheses than F0. Let C′ be the function constructed from F′
0 and F1 as C was

from F0 and F1.

3.6.2. We first assume that the image Q′
0 of F′

0 is disjoint from the image Q0 of F0.
Assume for instance that Q′

0 is above Q0. For any y∗
0 ∈ Iu

0, y
′∗
0 ∈ I′u

0 , the curve G− ◦
F′

0({y′
0 = y′∗

0 }) is above the curve G− ◦ F0({y0 = y∗
0}). This means that we have, for any w

(3.40) B0(y
∗
0,X(w, y

∗
0))� B′

0(y
′∗
0 ,X

′(w, y′∗
0 )).

As θ is monotone in the first variable, we will have, for all w, x1, y
∗
0, y

′∗
0

(3.41) C(w, y∗
0, x1) <C′(w, y′∗

0 , x1),
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if θy > 0, and the opposite inequality if θy < 0. In the first case, we will have

δ(Q0,P1) > δL(Q′
0,P1),(3.42)

δR(Q0,P1) > δLR(Q′
0,P1).(3.43)

In the second case, the same is true with Q0,Q′
0 exchanged.

3.6.3. Assume now that the image Q′
0 of F′

0 is contained in Q0.
Let y±

0 be the endpoints of Iu
0. For any y′∗

0 , the curve G− ◦ F′
0({y′

0 = y′∗
0 }) is between

the curves G− ◦ F0({y0 = y±
0 }). This means that we have, for any w

(3.44) B0(y
−
0 ,X(w, y

−
0 ))� B′

0(y
′∗
0 ,X

′(w, y′∗
0 ))� B0(y

+
0 ,X(w, y

+
0 ))

(assuming B0,y > 0; otherwise, exchange y+
0 and y−

0 ).
As θ is monotone in the first variable, we have, for all w, x1, y′∗

0

(3.45) min
y0

C(w, y0, x1)� C′(w, y′∗
0 , x1)� max

y0
C(w, y0, x1).

This now gives

δ(Q0,P1)� δ(Q′
0,P1),(3.46)

δR(Q0,P1)� δR(Q′
0,P1),(3.47)

δL(Q0,P1)� δL(Q′
0,P1),(3.48)

δLR(Q0,P1)� δLR(Q′
0,P1).(3.49)

3.6.4. The setting is the same than in Section 3.6.2 and we will obtain slightly
stronger estimates (which will be useful in Section 8) under a slightly stronger hypothesis.
We not only assume that the image Q′

0 of F′
0 is contained in Q0, but that one has, for any

(x0, y0) ∈ F−1
0 (Q

′
0)

(3.50) y−
0 + C−1 < y0 < y+

0 − C−1,

for some fixed large constant C. We will now obtain, instead of (3.44)

B0(y
−
0 + C−1,X(w, y−

0 + C−1))� B′
0(y

′∗
0 ,X

′(w, y′∗
0 ))

� B0(y
+
0 − C−1,X(w, y+

0 − C−1))(3.51)

or the reverse inequalities. This gives

B0(y
−
0 ,X(w, y

−
0 ))+ C−1|Q0| � B′

0(y
′∗
0 ,X

′(w, y′∗
0 ))

� B0(y
+
0 ,X(w, y

+
0 ))− C−1|Q0|(3.52)
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(if B0,y > 0; otherwise, exchange y+
0 and y−

0 ). As the partial derivative θy is bounded away
from 0, we get also, for all w, x1, y′∗

0

(3.53) min
y0

C(w, y0, x1)+ C−1|Q0| � C′(w, y′
0, x1)� max

y0
C(w, y0, x1)− C−1|Q0|

which finally gives

δ(Q0,P1)+ C−1|Q0| � δ(Q′
0,P1),(3.54)

δR(Q0,P1)+ C−1|Q0| � δR(Q′
0,P1),(3.55)

δL(Q0,P1)− C−1|Q0| � δL(Q′
0,P1),(3.56)

δLR(Q0,P1)− C−1|Q0| � δLR(Q′
0,P1).(3.57)

3.6.5. All the discussion in Sections 3.6.2, 3.6.3, 3.6.4 have an obvious symmetric
counterpart exchanging Q’s and P’s.

4. Structure of parameter space

4.1. One-parameter families. — From now on, we fix a one-parameter family
(gt)t∈(−t0,t0) in U . We assume that the family is transverse to U0 at t = 0, with gt ∈ U+
for t > 0 and gt ∈ U− for t < 0.

Observe that g0 satisfies exactly the same assumptions as f , provided U is small
enough. Therefore, we may and shall, assume that g0 = f .

We will first reparametrize the family in order to make some computations simpler.
Consider the folding map Gt = g

N0
t of Section 2.3. If t0 is small enough, Gt is a fold map

for all values of t ∈ (−t0, t0). Moreover, we can in properties (P2), (P3) of Section 2.3
choose a function θ which depends smoothly on t.

From (MP3), Section 2.2, the values yu = 0, xs = 0 of the arguments of θ correspond
to Wu

loc(pu) and Ws
loc(ps) respectively. Therefore, the transversality of the family to U0 is

equivalent to

(4.1)
∂

∂ t
θ(0,0, t) |t=0> 0.

Taking t0 small enough, we can therefore reparametrize our family in order to have

(4.2) θ(0,0, t)≡ t, t ∈ (−t0, t0).

4.2. Some important constants. — The constants λ, u, v, D0, b of Sections 3.4 and 3.5
depend only on the initial diffeomorphism f provided U is small enough and are now
fixed.
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Throughout the rest of the paper, we will use three main constants ε0, η, τ which
satisfy

(4.3) 0< ε0 	 η	 τ 	 1.

We roughly explain the meaning of each constant:

– ε0 is the maximal width of the parabolic tongues Lu, Ls. It is also the size of the
parameter interval we start with.

– η is involved in the transversality relation (defined in Section 5) which allows
parabolic composition: instead of the condition (PC2) of Section 3.5, roughly
speaking we will ask that

(4.4) δ � (|P1| + |Q0|)1−η.

As the widths |P1| and |Q0| are not larger than ε0 which is much smaller than
η, this requirement is much more restrictive than (PC2) and will allow to control
distortion.

– τ relates the successive scales of the parameter intervals we will consider through
the formula εk+1 = ε1+τ

k .

Another important number β appears in the definition of regularity in Section 5,
which controls the recurrence of the “critical locus”. This number will be chosen explic-
itly in Section 9.3 (see also Section 5.6) in terms of d0

s , d0
u and the eigenvalues of f at the

periodic points ps, pu; the condition (H4) involving d0
s , d0

u in Section 1 is required because
we must have β > 1.

Finally, we will use the generic letter C (with indices or other decorations) for vari-
ous constants which depend on the initial diffeomorphism f , but not on ε0, η, τ .

4.3. Parameter intervals. — The starting parameter interval will be

(4.5) I0 := [ε0,2ε0],
where, as explained above, ε0 will be taken very small. This is the only parameter interval
at level 0.

At level k, we will deal with parameter intervals of length εk , where the sequence
of scales εk is defined inductively by

(4.6) εk+1 = ε1+τ
k .

The constant τ is small, but ε0 is much smaller and in particular we will have ετ
2

0 	 1.
Every parameter interval of level k is divided into [ε−τ

k ] parameter intervals with disjoint
interiors of level k + 1.

The remaining part, if any, is discarded; it is of length < εk+1; the total length
discarded in this way is smaller than ε1 	 ε0.

Let˜I be a parameter interval of level k and I be a parameter interval of level k + 1
contained in˜I. We say that˜I is the parent of I and that I is a child of˜I.
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4.4. The selection process. — In Section 5, we will define what it means for a para-
meter interval to be regular. The starting interval I0 will be regular.

Given a regular parameter interval˜I of level k, we divide it into its children: these
parameter intervals of level k + 1 are the candidates. We then test each candidate for reg-
ularity and discard those which are not regular. We then proceed to level k + 1 with each
surviving candidate.

The regular parameters are those which are the intersection of a decreasing se-
quence of regular parameter intervals. For such parameters, we are able to carry out
some analysis of the maximal invariant set �gt

.

4.5. Strongly regular parameters. — The regularity property is, in some sense, the
minimal requirement that is needed to keep control on the geometry and dynamics of
the maximal invariant set. However, this requirement is of an essentially qualitative char-
acter and this leads in particular to the following difficulty: we are not able to estimate
which proportion of the children of a regular parameter interval are also regular.

To circumvent this problem, we define in Section 9 a stronger property for pa-
rameter intervals, called strong regularity. It implies regularity, and is better adapted to the
inductive selection process. It also gives additional geometric information on the maximal
invariant set.

When˜I is a strongly regular parameter interval of level k, we will show in Section 9
that most candidates of level k +1 contained in˜I are also strongly regular. The proportion
of discarded candidates is less than αk , with

(4.7)
∑

k�0

αk 	 1,

the 	 sign means that the sum gets arbitrarily small as ε0 goes to zero. Then we can
conclude that most parameters are strongly regular in the sense that they are equal to the
intersection of decreasing sequences of strongly regular parameter intervals.

The non-uniformly hyperbolic horseshoes that are the subject of our study are
exactly the maximal invariant set �g for strongly regular g ∈ U+.

5. Classes of affine-like iterates and the transversality relation

5.1. Affine-like iterates. — Let I be a parameter interval of some level.

Definition 1. — An I-persistent affine-like iterate is a triple (P,Q, n) such that

– P is a vertical strip in some Ra, depending smoothly on t ∈ I;
– Q is a horizontal strip in some Ra′ , depending smoothly on t ∈ I;
– n is a nonnegative integer;
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– for each t ∈ I, the restriction of gn
t to Pt is an affine-like map onto Qt , i.e. property (AL1) of

Section 3.1 holds;

– for each t ∈ I, each m ∈ [0, n], we have gm
t (Pt)⊂̂R.

Example 1.

1. For n = 0, the I-persistent affine-like iterates are the (Ra,Ra,0), a ∈ a.
2. For n = 1, the I-persistent affine-like iterates are the (Paa′,Qaa′,1), (a, a′) ∈ B.
3. More generally, for any finite word a = (a0, . . . , an) with transitions in B, the

map ga of Section 3.4 defined an I-persistent affine-like iterate (Pa,Qa, n).

Notation. — If P is a vertical strip {ϕ−(y)� x � ϕ+(y)} we denote by ∂P the vertical part
of the boundary, i.e. the two graphs {x = ϕ±(y)}. Similarly for horizontal strips.

If (P,Q, n) is an I-persistent affine-like iterate and I′ is a parameter interval con-
tained in I, (P,Q, n) also defines by restriction an I′-persistent affine-like iterate. A slightly
less trivial property is given by

Proposition 1. — Let (P,Q, n), (P′,Q′, n′) be I-persistent affine-like iterates. We have

(a) if n = n′, then either P = P′ and Q = Q′ for all t ∈ I or P ∩ P′ = ∅, Q ∩ Q′ = ∅ for

all t ∈ I.
(b) if n< n′, then either P ⊃ P′, ∂P ∩ P′ = ∅ for all t ∈ I or P ∩ P′ = ∅, for all t ∈ I.

Remark 3. — Throughout the paper, except in Section 9 (where we break the sym-
metry assuming d0

s � d0
u ), we will keep a time-symmetric setting. Thus every property

stated for the domains P’s is also valid for the images Q’s. This apply for instance to part
b) of the proposition.

Proof. — By the definition of an I-persistent affine-like iterate, for all t ∈ I, P is a
connected component of R ∩ g−n

t (R) and also of
⋂

0�m�n g−m
t (

̂R).
(a) If n = n′ and P ∩ P′ �= ∅ for some t0 ∈ I, we must have P = P′ at t0 and hence,

P ∩ P′ �= ∅ for t close to t0. It follows that P = P′ for all t ∈ I, and also Q = Q′ for all t ∈ I.
(b) Assume that n < n′ and P ∩ P′ �= ∅ for some t0 ∈ I, then P′ ⊂ P at t0 (since

⋂

0�m�n′ g−m
t0
(̂R) is contained in

⋂

0�m�n g−m
t0
(̂R)), hence P′ ∩ P �= ∅ for t close to t0 and

P′ ⊂ P for all t ∈ I.
Let t ∈ I, z ∈ ∂P; then, gn

t (z) belongs to the vertical boundary of R and gn+1
t (z) /∈̂R;

therefore, z /∈ P′. This proves that ∂P ∩ P′ is empty for all t ∈ I. �

5.2. The classes R(I): general overview. — It would be nice to work with the class of
all I-persistent affine-like iterates, but with this approach one faces two problems:

– I-persistent affine-like iterates do not satisfy a uniform cone condition, and they
do not have uniformly bounded distortion;
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– even if we force such uniformity in the definition, a major problem is that we
lack some control on the way in which long I-persistent affine-like iterates are
constructed from shorter ones by simple or parabolic composition.

To overcome these problems, we will construct, for every candidate parameter
interval I (see Section 4.4: it means that I = I0 or that the parent interval of I is regular, a
notion that will be defined in Section 5.6) a subset R(I) of the set of all I-persistent affine-
like iterates. All elements of R(I) with n> 1 will be obtained, from the very definition of
R(I), from shorter ones by simple or parabolic composition. The elements of R(I) will
turn out to satisfy a uniform cone condition and have uniformly bounded distortion.

The main ingredient in the definition of R(I) is a transversality relation which is an
appropriate strengthening of condition (PC2) in Section 3.5. Simple composition is al-
lowed whenever it makes sense, but parabolic composition is only allowed when this
transversality relation holds.

The definition of the transversality relation, given later in this section, is quite
involved; this is because we want some combinatorial properties proved in Section 6 to
be satisfied. Such properties make our later work much easier.

The precise requirements on R(I) are the properties (R1)–(R6) formulated in the
next subsection and property (R7) formulated in Section 5.4.

While it is clear that at most one class R(I) can satisfy (R1)–(R7), it is by no means
obvious that such a class exists. Actually, the proof of this fact, stated at the end of Sec-
tion 5.4, will only be completed at the end of Section 7.

The proof of the existence of R(I) is based on a double induction:

– an induction on the level of the parameter interval I, starting with I0 = [ε0,2ε0]
at level 0 (see Section 5.5 for this first step).

– for a given candidate parameter interval I, an induction on the length n of the
I-persistent affine-like iterates under consideration.

In this induction scheme, all properties required for R(I) are proved simultane-
ously. Actually, several other properties (coherence, concavity, . . . see Section 6) of the
class R(I) are needed in the induction process; these properties are defined and proved
(inductively!) in Section 6. Of particular importance is a structure theorem in Section 6.5.

5.3. Defining properties for the special class of affine-like iterates R(I). — Let I be a candi-
date parameter interval of some level.

The class R(I) of I-persistent affine-like iterates that we want to construct should
satisfy the following properties (R1)–(R7).

(R1) For any word a = (a0, . . . , an) with transitions in B, the element (Pa,Qa, n) (see
Example 1 above) belongs to R(I).

For the starting interval I0 = [ε0,2ε0], it will turn out that one obtains in this way
all elements of R(I0).
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Recall from (MP5), (MP6) in Section 3.4 that all (Pa,Qa, n) with n > 0 satisfy for
all t ∈ I0 a uniform cone condition (AL2) with parameters λ, u, v (satisfying 1< uv � λ2),
and have distortion bounded by D0. Let u0 = u

(uv)1/4
, v0 = v

(uv)1/4
.

(R2) All (P,Q, n) ∈ R(I) satisfy for all t ∈ I the cone condition (AL2) with parameters
λ, u0, v0 and have distortion bounded by 2D0 for all t ∈ I.

Let (P,Q, n), (P′,Q′, n′) be elements of R(I) such that Q ⊂ Ra, P′ ⊂ Ra for some
a ∈ a. As both iterates satisfy the cone condition (AL2) with parameters λ, u0, v0, we know
from Section 3.3 that the simple composition defined by

(5.1) P′′ = P ∩ g−n(P′), Q′′ = Q′ ∩ gn′
(Q), n′′ = n + n′,

is an (I-persistent) affine-like iterate.
The next condition states that it should also belong to R(I).

(R3) The class R(I) is stable under simple composition.
We now turn to parabolic composition.
We first define two special elements which belong to R(I) according to (R1): define

(Ps,Qs, ns) (resp. (Pu,Qu, nu)) to be the element (Pa,Qa, n) with maximal length n such
that Ls ⊂ Ps for all t ∈ I0 (resp. Lu ⊂ Qu for all t ∈ I0). We have that ps ∈ Ps and pu ∈ Qu.
See Figure 7.

We obviously have, for all t ∈ I0

C−1ε0 � |Ps| � Cε0,
(5.2)

C−1ε0 � |Qu| � Cε0.

The next condition guarantees that property (PC1) in Section 3.5 is satisfied.

(R4) Let (A,B) be the implicit representation of an affine-like iterate (P,Q, n) ∈ R(I).

FIG. 7. — The special rectangle Qu
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(a) If P ⊂ Ps, then for all t ∈ I we have

|Ay| � Cε0, |Ayy| � Cε0.

(b) If Q ⊂ Qu, then for all t ∈ I we have

|Bx| � Cε0, |Bxx| � Cε0.

Let (P0,Q0, n0), (P1,Q1, n1) be elements in R(I) with Q0 ⊂ Qu, P1 ⊂ Ps. In these
circumstances, we will define in Section 5.4 a transversality relation denoted by Q0 �I P1

which may or may not hold. When it holds, it implies condition (PC2) of Section 3.5 for
all t ∈ I (see (R7) below).

(R5) If (P0,Q0, n0), (P1,Q1, n1) as above satisfy Q0 �I P1, then both I-persistent affine-
like iterates obtained from the parabolic composition g

n1
t ◦ Gt ◦ g

n0
t belong to R(I).

Writing (P+,Q+, n) and (P−,Q−, n) for these two iterates, we have n = n0 + n1 +
N0. The domains P+ and P− are the two components of g−n0(Q0 ∩ G−1

t (P1)); the images
Q+ and Q− are the two components of gn1(P1 ∩ Gt(Q0)). See Figure 6, Section 3.5.

When (P0,Q0, n0), (P1,Q1, n1) satisfy Q0 ⊂ Qu, P1 ⊂ Ps, Q0 �I P1, we say that
their parabolic composition is allowed in R(I).

(R6) Any (P,Q, n) ∈ R(I) with n> 1 can be obtained from shorter elements by simple
composition or (allowed) parabolic composition.

Typically, an element of R(I) can be obtained in many ways by composition of
shorter ones. We say that an element of R(I) is prime if it cannot be obtained by simple

composition of shorter ones. Prime elements play a key role in the description of the
dynamics for regular parameters in Section 10.

It is pretty clear from conditions (R1), (R3), (R5), (R6) alone that there is at most
one class R(I) satisfying these conditions. The existence of R(I), i.e. the proof of the
consistency of conditions (R1)–(R6), is much more delicate. There is actually a seventh
property (R7) formulated in the next subsection and related to the condition (PC2) for
parabolic composition.

Parent-child terminology and notations for compositions. — Let (P,Q, n), (˜P,˜Q, ñ) ∈ R(I) with
P ⊂˜P, n > ñ. When there is no (̂P,̂Q, n̂) ∈ R(I) with P ⊂̂P ⊂˜P and n > n̂ > ñ, we say
that P is a child of˜P and that˜P is the parent of P.

When n = ñ + 1, we say that P is a simple child of ˜P. The image gñ(P) is equal to
the intersection of ˜Q with some Pa,a′ and (P,Q, n) is the simple composition of (˜P,˜Q, ñ)
with (Pa,a′,Qa,a′,1).

When n > ñ + 1, we say that P is a non-simple child of˜P. The image gñ(P) is con-
tained in Lu ∩ ˜Q. We will prove in Section 6.2 that (P,Q, n) is obtained by parabolic
composition of (˜P,˜Q, ñ) with some (P1,Q1, n1)
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Let (P0,Q0, n0), (P1,Q1, n1) ∈ R(I). If Q0, P1 are contained in a same rectangle
Ra, the simple composition (P,Q, n) ∈ R(I) of these elements will be written as

(5.3) (P,Q, n)= (P0,Q0, n0) ∗ (P1,Q1, n1).

If Q0 ⊂ Qu, P1 ⊂ Ps and Q0 �I P1, any (̂P,̂Q, n̂) of the two elements obtained by the
corresponding allowed parabolic composition will be written as

(5.4) (̂P,̂Q, n̂) ∈ (P0,Q0, n0) � (P1,Q1, n1).

5.4. Definition of the transversality relation. — Let I be a parameter interval of some
level, and let (P0,Q0, n0), (P1,Q1, n1) be elements of R(I) which satisfy Q0 ⊂ Qu,
P1 ⊂ Ps.

From (R4) the condition (PC1) of Section 3.5 is satisfied provided ε0 small enough.
Denote by (x0, y0) (resp. (x1, y1)) the coordinates in the rectangle containing P0 (resp. Q1).
A function C(y0, x1) was defined in Section 3.5, together with

(5.5) δ(Q0,P1)= min
y0

min
x1

−C(y0, x1).

In Section 3.5, we were asking for δ to be much larger than |P0| and |Q1|. Recall from
Section 3.6 the definitions

δL(Q0,P1) := max
y0

min
x1

−C(y0, x1),(5.6)

δR(Q0,P1) := min
y0

max
x1

−C(y0, x1),(5.7)

δLR(Q0,P1) := max
y0

max
x1

−C(y0, x1).(5.8)

Preliminary Definition. — We write Q0 �I P1 if the following holds

(T1) for all t ∈ I,

δLR(Q0,P1)� 2|I|,
(T2) for some t0 ∈ I,

δR(Q0,P1)� 2|Q0|1−η,

(T3) for some t1 ∈ I,

δL(Q0,P1)� 2|P1|1−η.

Definition. — We say that Q0, P1 are I-transverse and write Q0 �I P1 if there exist a parameter

interval˜I ⊃ I, elements (˜P0,˜Q0, ñ0), (˜P1,˜Q1, ñ1) ∈ R(˜I) with ˜P1 ⊃ P1, ˜Q0 ⊃ Q0 such that
˜Q0 �

˜I
˜P1.
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Remark 4.

1. Taking˜I = I,˜P0 = P0, ˜Q1 = Q1, it is obvious that if Q0 �I P1, then Q0 �I P1.
2. In view of our inductive procedure, all (˜P0,˜Q0, ñ0), (˜P1,˜Q1, ñ1) which have to

be considered have been constructed before (P0,Q0, n0), (P1,Q1, n1).
3. As mentioned before, the definition of the transversality relation is quite in-

volved. One reason for this is that we wish to obtain several properties (heredity,
concavity, . . .) that will be proven in the next subsections. Some justification for
the choice of quantifiers in (T1), (T2), (T3) can be found in Appendix C.

At first sight, it appears that properties (T2), (T3) above are not quite sufficient to
guarantee condition (PC2) of parabolic composition (Section 3.5), because they involve
only one value of the parameter. The next property takes care of this problem.

(R7) If (P0,Q0, n0), (P1,Q1, n1) ∈ R(I) satisfy Q0 ⊂ Qu, P1 ⊂ Ps and Q0 �I P1

holds, then, for all t ∈ I, we have

δ(Q0,P1)� C−1
(

|P1|1−η + |Q0|1−η
)

.

Now that properties (R1)–(R7) have been introduced, we can state the

Theorem 1. — For each candidate parameter interval I, there exists exactly one class R(I) of

I-persistent affine-like iterates which satisfies (R1)–(R7).

As mentioned before, uniqueness is clear. The proof of existence will only be com-
pleted at the end of Section 7.

5.5. The class R(I0). — We claim that the class R(I0) is exactly formed by the iter-
ates associated to the horseshoe K considered in Section 3.4, i.e. the elements (Pa,Qa, n)

with a = (a0, . . . , an) a word with transitions in B.
Indeed, such elements must belong to R(I0) by (R1). They satisfy (R2), (R3) and

(R6). We show below that, for (P0,Q0, n0),(P1,Q1, n1) of this form with Q0 ⊂ Qu,P1 ⊂ Ps,
the transversality relation Q0 �I P1 is never satisfied. Then it follows that (R5), (R7) are
vacuously satisfied. Finally, property (R4) will be proved in Proposition 16 of Section 7.4.

Let (P0,Q0, n0),(P1,Q1, n1) as above (with Q0 ⊂ Qu,P1 ⊂ Ps). The notations are
those of Sections 3.5 and 5.4. Assume for instance that in Rau

the foliation Wu
loc(K) is

contained in {yau
� 0}, and that in Ras

the foliation Ws
loc(K) is contained in {xas

� 0}.
This is equivalent to say that θ is monotone increasing in both variables.

There exists y∗
0 such that the image under G− ◦ gn0 of the horizontal segment {y =

y∗
0} ∩ P0 lies in {yu > 0}. Similarly, there exists x∗

1 such that the image under G−1
+ ◦ g−n1 of

the vertical segment {x = x∗
1} ∩ Q1 lies in {xs > 0}. Then, from formulas (3.18)–(3.20) of

Section 3.5 and the monotonicity of θ , we have, for all t ∈ I0 and w

(5.9) C(w, y∗
0, x

∗
1)� −θ(0,0, t).
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As we have θ(0,0, t)= t by the normalization of Section 4.1, we obtain, for t = ε0:

(5.10) −C(y∗
0, x

∗
1)� |I0|,

and therefore, for the same value of t:

(5.11) δ(Q0,P1)� |I0|.
We have also, for all t ∈ I0

(5.12) δ(Q0,P1)� 2|I0|.
If condition (T1) in Section 5.4 is satisfied, we have from (3.36)–(3.39) that at t = ε0 either
|Q0| or |P1| (or both) is at least of the order of ε0. But then Proposition 16 in Section 7.4
guarantees that the same width stays at least of the order of ε0 for all t ∈ I0. Then either
(T2) or (T3) will not be satisfied.

We have thus shown that the transversality relation is never satisfied in R(I0). This
completes the initial step in the proof of the theorem in Section 5.4 (except for the proof
of Proposition 16 in Section 7.4).

5.6. Criticality, bicriticality, and the regularity property. — We introduce some terminol-
ogy and some concepts related to the transversality relation. This includes the regularity
property mentioned in the selection process of Section 4.4.

5.6.1. The following obvious but fundamental property, which we may sum up
by saying that transversality is hereditary, was forced into the definition of the transver-
sality relation.

Proposition 2. — Let˜I ⊃ I be parameter intervals. Let (P0,Q0, n0), (P1,Q1, n1) ∈ R(I)
and (˜P0,˜Q0, ñ0), (˜P1,˜Q1, ñ1) ∈ R(˜I). Assume that Q0 ⊂ ˜Q0 ⊂ Qu and P1 ⊂˜P1 ⊂ Ps. If ˜Q0

and˜P1 are˜I-transverse, then Q0 and P1 are I-transverse.

Corollary 1. — Let˜I ⊃ I be parameter intervals, and let (P0,Q0, n0), (P1,Q1, n1) ∈ R(˜I)∩
R(I) be such that Q0 ⊂ Qu, P1 ⊂ Ps. If their parabolic composition is allowed in R(˜I), it is also

allowed in R(I).

Proof. — This is the case ˜Q0 = Q0,˜P1 = P1 of the proposition. �

Corollary 2. — Let˜I ⊃ I be parameter intervals. Then R(˜I) is contained in R(I).

Remark 5. — This is a slight abus de langage of no consequence: properly speaking,
we mean that the restriction to I of any (P,Q, n) ∈ R(˜I) belongs to R(I).
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Proof. — This is a consequence, by induction of the length n, of Axiom (R6) and
Corollary 1. �

The following result is also an easy consequence of the definition of the transver-
sality relation.

Proposition 3. — Let I ⊂̂I be parameter intervals, and let (P0,Q0, n0), (P1,Q1, n1) be

elements of R(I) such that Q0 ⊂ Qu and P1 ⊂ Ps. Assume that Q0 �I P1 holds but Q0 �
̂I P1 does

not hold. Then there exists t ∈̂I such that δLR(Q0,P1) < 2|̂I|.
Proof. — Let˜I ⊃ I, and let elements (˜P0,˜Q0, ñ0), (˜P1,˜Q1, ñ1) ∈ R(˜I) with˜P1 ⊃ P1,

˜Q0 ⊃ Q0 such that ˜Q0 �
˜I
˜P1 holds. As Q0 �

̂I P1 does not hold,˜I is strictly contained in
̂I and ˜Q0 �

̂I
˜P1 does not hold. But conditions (T2), (T3) for ˜Q0 �

˜I
˜P1 imply the same for

˜Q0 �
̂I
˜P1. Hence (T1) for ˜Q0 �

̂I
˜P1 does not hold and there exists t ∈̂I such that 2|̂I| >

δLR(˜Q0,˜P1)� δLR(Q0,P1). �

5.6.2. Let I be a (candidate) parameter interval, and let (P0,Q0, n0), (P1,Q1, n1)

be elements of R(I) such that Q0 ⊂ Qu and P1 ⊂ Ps. When Q0 and P1 are not I-
transverse, we say that:

– Q0 and P1 are I-separated if Gt(Q0) ∩ P1 ∩� = ∅ for all t ∈ I; this happens in
particular when δLR(Q0,P1) < 0 for all t ∈ I;

– Q0 and P1 are I-critically related otherwise.

5.6.3. We assume in this subsection that I is a parameter interval for which the
class R(I) has been fully constructed with properties (R1)–(R7).

Let (P,Q, n) ∈ R(I). An I-decomposition of P is a finite family (Pα,Qα, nα) of ele-
ments of R(I) such that the P′

αs are disjoint, strictly contained in P and satisfy, for all
t ∈ I

(5.13) Ws(�,̂R)∩ P =
⊔

α

(Ws(�,̂R)∩ Pα),

where Ws(�,̂R) was defined in Section 2.2. We say that P is I-decomposable if it admits an
I-decomposition. Then, there is a coarsest one, namely by the children of P.

Remark 6. — We will see in Section 8 that any P has only finitely many children.

Let (P,Q, n) ∈ R(I). We say that Q is I-transverse if either Q ∩ Qu = ∅ or Q ⊂ Qu

and there exists an I-decomposition (Pα,Qα, nα) of Ps such that, for any α, Q and Pα are
either I-transverse or I-separated.

We say that Q is I-critical when it is not I-transverse. This is always the case if
Q ⊃ Qu.
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Let (P,Q, n), (P′,Q′, n′) ∈ R(I) satisfy Q′ ⊂ Q. As transversality is hereditary
(Proposition 2), if Q is I-transverse, then Q′ is also I-transverse.

All these notions are also symmetrically defined exchanging P’s and Q’s,future and
past.

We say that (P,Q, n) ∈ R(I) is I-bicritical if both P and Q are I-critical. The corre-
sponding iterate should be thought as a piece of the dynamics corresponding to a return
of the “critical region” to itself.

Definition 2. — Let β > 1. We say that the candidate parameter interval I is β-regular (or just

regular when the value of β is fixed) if any I-bicritical element (P,Q, n) ∈ R(I) satisfies, for all t ∈ I:

(5.14) |P|< |I|β, |Q|< |I|β.

5.6.4. For i = s, u, let λ(pi) (resp. μ(pi)) be the stable (resp. unstable) eigenvalue
of the periodic point pi . Define

(5.15) ωs = − log |λ(ps)|
log |μ(ps)| , ωu = − log |μ(pu)|

log |λ(pu)| .

As we have

(5.16) C−1ε0 � |Ps| � Cε0, C−1ε0 � |Qu| � Cε0,

we will have

(5.17) C−1ε
ωs

0 � |Qs| � Cεωs

0 , C−1ε
ωu

0 � |Pu| � Cεωu

0 .

Remark 7. — The ratios ωs,ωu are smooth functions of the parameter, therefore
the relative variation of the quantities εωs

0 , ε
ωu

0 in I0 is negligible.

Proposition 4. — Assume that 1 < β < 1 + min(ωs,ωu). Then the starting interval I0 is

β-regular.

Proof. — Let as (resp. au) the admissible word in the alphabet a such that Ps = Pas

(resp. Qu = Qau ). By the property (MP2) of Section 2.1, these two words do not have a
letter in common.

Let (Pa,Qa, n) an I0-bicritical rectangle. As Pa ∩ Ps is non-empty, either a starts
with as or as starts with a. Similarly, either a ends with au or au ends with a. As as, au do
not have a common letter, a starts with as, ends with au and n> ns + nu. In other words,
we have

(5.18) (Pa,Qa, n)= (Ps,Qs, ns) ∗ (P′,Q′, n′) ∗ (Pu,Qu, nu),

for some (P′,Q′, n′) ∈ R(I0). We conclude that |Pa|< |I0|β, |Qa|< |I0|β as required. �
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Remark 8. — The final choice of β is made in Section 9.3. Beside the requirement
1< β < 1 + min(ωs,ωu) we will ask when d0

s � d0
u that

(5.19) β <
(1 − d0

u )(d
0
s + d0

u )

d0
s (2d0

s + d0
u − 1)

(if d0
s � d0

u , exchange d0
s and d0

u ). Condition (H4) in Section 1.2 is actually obtained by
asking that the right-hand term in the last inequality is larger than 1.

5.6.5.

Proposition 5. — Let˜I ⊃ I be parameter intervals, and let (P,Q, n) ∈ R(˜I). If Q is˜I-
transverse, then it is also I-transverse.

Proof. — If Q ∩ Qu = ∅, this is obvious. Assume therefore that Q ⊂ Qu. Then there
exists an˜I-decomposition (Pα,Qα, nα)α of Ps by elements of R(˜I) such that for all α, Q
and Pα are either˜I-transverse or˜I-separated.

First observe that (Pα,Qα, nα) ∈ R(I) and therefore this is also an I-decomposition
of Ps. By Corollary 1, if Q and Pα are˜I-transverse, they are also I-transverse. On the other
hand, it is obvious from the definition that if Q and Pα are˜I-separated they are also I-
separated. The result follows. �

Proposition 6. — Let I be a parameter interval, and let (P,Q, n) ∈ R(I). If Q is I-transverse,

then P is I-decomposable.

Proof. — Let us first assume that Q ∩ Qu = ∅. Let a ∈ a be such that Q ⊂ Ra. We
have

(5.20) Ra ∩ Ws(�,̂R)⊂
⋃

(a,a′)∈B

(

Pa,a′ ∩ Ws(�,̂R)
)

∪ Lu;

for each a′ ∈ a such that (a, a′) ∈ B, we have the simple child of P:

(5.21)
(

P(a′),Q(a′), n + 1
)

= (P,Q, n) ∗ (Paa′,Qaa′,1),

and together they form by (5.20) an I-decomposition of P (the canonical one).
Let us now assume that Q ⊂ Qu. As Q is I-transverse, there is an I-decomposition

(Pα,Qα, nα)α of Ps such that, for each α, Q and Pα are not I-critically related. For each α
such that Q and Pα are I-transverse, let (P±

α ,Q
±
α , nα + n + N0) be the two elements pro-

duced by the allowed parabolic composition. Together with the simple children defined
by (5.21), they form an I-decomposition of P. �

Corollary 3. — Let I be a β-regular parameter interval and let (P,Q, n) ∈ R(I). If P is

I-critical and |P|> |I|β or |Q|> |I|β for some t ∈ I, then P is I-decomposable.
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Proof. — Indeed, by the very definition of regularity, Q cannot be I-critical. �

The decomposability of “fat” critical rectangles is crucial to our analysis.

6. Some properties of the classes R(I)

6.1. Preliminaries. — In this section,we start the proof of the existence of the class
R(I). For I = I0, this was done essentially in Section 5.5. Therefore we will, unless spec-
ified otherwise, assume that the level of the interval I is > 0. Moreover, the induction
hypothesis will guarantee that the classes R(˜I), with˜I strictly larger than I, have already
been constructed with the required properties (R1)–(R7).

Once I is fixed, the construction will be by induction on the length n of an element
(P,Q, n). We will denote by RN(I) the set of elements (P,Q, n) in R(I) with n � N. For
small N, parabolic composition does not come into play, and therefore the elements of
RN(I) are those of RN(I0).

Assuming that RN−1(I) has already been constructed with the required properties,
we will consider elements of length N that can be obtained from shorter elements by
simple or (allowed) parabolic composition. For these new elements, we will not only prove
(R2), (R4), (R7) (in Section 7) as required, but also many other properties that are detailed
in the next subsections. The structure theorem of Section 6.5 is particularly important.
All these properties are assumed for RN−1(I), and then they will all be proved for RN(I).

6.2. Children are born from their parent. — Let (P,Q, n) ∈ RN(I), and let (˜P,˜Q, ñ) ∈
RN−1(I) be such that ˜P is the parent of P. Recall that P is a simple child if n = ñ + 1,
non-simple otherwise. When P is simple, there exists (a, a′) ∈ B such that (P,Q, n) is the
simple composition of (˜P,˜Q, ñ) and (Pa,a′,Qa,a′,1).

Proposition 7. — Assume that P is a non-simple child of˜P. Then there exists (P1,Q1, n1) ∈
RN−1(I) such that ˜Q�I P1 holds and

(P,Q, n) ∈ (˜P,˜Q, ñ) � (P1,Q1, n1).

Proof. — 1. We first prove that (P,Q, n) can be written as a parabolic composition
of shorter elements. Otherwise, by (R6), we have

(6.1) (P,Q, n)= (P0,Q0, n0) ∗ (P1,Q1, n1),

with n0, n1 > 0. As P is a non-simple child, we must have n1 > 1. Let then (˜P1,˜Q1, ñ1) be
the element of R(I) such that˜P1 is the parent of P1. If P1 was a simple child, we would
have, for some (a, a′) ∈ B

(P1,Q1, n1)= (˜P1,˜Q1, ñ1) ∗ (Paa′,Qaa′,1),(6.2)
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(P,Q, n)= ((P0,Q0, n0) ∗ (˜P1,˜Q1, ñ1)) ∗ (Paa′,Qaa′,1),(6.3)

in contradiction with the hypothesis that P is a simple child. Therefore, P1 is a non-simple
child; by induction on the length, we can write

(6.4) (P1,Q1, n1) ∈ (˜P1,˜Q1, ñ1) � (P2,Q2, n2)

for some (P2,Q2, n2) ∈ RN−2(I) with ˜Q1 �I P2.
Let (˜P0,˜Q0, ñ0) := (P0,Q0, n0) ∗ (˜P1,˜Q1, ñ1). We then have ˜Q0 ⊂ ˜Q1 and hence

˜Q0 �I P2 from Proposition 2 in Section 5.6.
Thus, the parabolic composition of (˜P0,˜Q0, ñ0) and (P2,Q2, n2) is allowed; we

obviously have:

(6.5) (P,Q, n) ∈ (˜P0,˜Q0, ñ0) � (P2,Q2, n2)

which proves our claim.

2. We next write

(6.6) (P,Q, n) ∈ (P0,Q0, n0) � (P1,Q1, n1)

with n0 maximal, and want to show that P0 =˜P.
Assume that this does not hold, which means n0 < ñ. Let (P′

0,Q
′
0, n

′
0) be the ele-

ment of RN−1(I) such that P′
0 is the child of P0 containing P. As n0 < ñ, we have n′

0 < n. As
g

n0
t (P)⊂ Lu by (6.6), P′

0 must be a non-simple child. Then, from the induction hypothesis,
we can write

(6.7) (P′
0,Q

′
0, n

′
0) ∈ (P0,Q0, n0) � (P′

1,Q
′
1, n

′
1)

for some (P′
1,Q

′
1, n

′
1) ∈ R(I) with Q0 �I P′

1, P′
1 ⊃ P1. Let (˜P1,˜Q1, ñ1) be the element of

RN−2(I) such that˜P1 is the parent of P1 We have thus P′
1 ⊃˜P1. As Q0 is I-transverse to

P′
1, it is also I-transverse to˜P1 (Proposition 2), and we can define (˜P0,˜Q0, ñ0) ∈ RN−1(I)

by

(6.8) (˜P0,˜Q0, ñ0) ∈ (P0,Q0, n0) � (˜P1,˜Q1, ñ1),

and˜P0 ⊃ P. If P1 was a simple child of˜P1, P would be a simple child of˜P0. Therefore, by
the induction hypothesis, we can write

(6.9) (P1,Q1, n1) ∈ (˜P1,˜Q1, ñ1) � (P2,Q2, n2)

for some (P2,Q2, n2) with ˜Q1 �I P2. But then from Proposition 2, we have ˜Q0 �I P2 and

(6.10) (P,Q, n) ∈ (˜P0,˜Q0, ñ0) � (P2,Q2, n2)

which contradicts the maximality of n0. The proof is complete. �
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6.3. Coherence and concavity.

6.3.1. We present together the following two properties of R(I) because the
proofs are interwoven.

The coherence property, asserted in the next proposition, means that larger rec-
tangles are constructed before thinner ones.

Proposition 8 (Coherence). — Let (P,Q, n) ∈ RN(I),˜I be the parent of I, and (P′,Q′, n′) ∈
R(˜I). If P′ ⊂ P, then (P,Q, n) belongs to R(˜I).

The coherence property implies that the parent-child relationship is independent
of the parameter interval under consideration, provided the child is already constructed.

Proposition 9 (Concavity). — Let˜I be the parent of I.

1. Let (P′
0,Q

′
0, n

′
0), (P

′
1,Q

′
1, n

′
1) be elements of RN(I), (P0,Q0, n0), (P1,Q1, n1) be ele-

ments of RN(I)∪ R(˜I) (with possibly n0 or n1 >N) such that

Q0 ⊂ Q′
0 ⊂ Qu, P1 ⊂ P′

1 ⊂ Ps.

If both Q0 �I P′
1 and Q′

0 �I P1 hold, then Q′
0 �I P′

1 also holds.

2. Let I′ be a parameter interval containing˜I, let (P′
0,Q

′
0, n

′
0), (P1,Q1, n1) be elements of

RN(I′), (P0,Q0, n0) an element of R(I′) (with possibly n0 >N) with

Q0 ⊂ Q′
0 ⊂ Qu, P1 ⊂ Ps.

If both Q0 �I′ P1 and Q′
0 �I P1 hold, then Q′

0 �I′ P1 also holds.

3. Let I′ be a parameter interval containing˜I, let (P0,Q0, n0), (P′
1,Q

′
1, n

′
1) be elements of

RN(I′), (P1,Q1, n1) an element of R(I′) (with possibly n1 >N) with

P1 ⊂ P′
1 ⊂ Ps, Q0 ⊂ Qu.

If both Q0 �I′ P1 and Q0 �I P′
1 hold, then Q0 �I′ P′

1 also holds.

The concavity property is very helpful in the sequel. The proof of the proposition
will help to explain why the definition of the transversality relation had to be complicated.

In the following subsections, we will successively:

– prove Proposition 8 for RN(I), assuming Proposition 8 and Proposition 9 for
RN−1(I);

– prove Proposition 9 for RN(I), assuming Proposition 8 for RN(I).
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6.3.2. Proof of Proposition 8. Proof. — Let (˜P,˜Q, ñ) be the element of R(˜I) such that
˜P is the parent of P′ in R(˜I). By enlarging P′ if necessary, one can assume that P′ ⊂ P ⊂˜P,
P �=˜P.

If P′ is a simple child, we have P = P′ and we are done. Assume that P′ is a non-
simple child of˜P.

Let (̂P,̂Q, n̂) be the element of RN(I) such that̂P is the child of˜P in R(I) contain-
ing P; aŝP also contains P′ it has to be a non-simple child.

Applying Proposition 7 twice, we find (P1,Q1, n1) ∈ RN−1(I), (P′
1,Q

′
1, n

′
1) ∈ R(˜I)

such that ˜Q�I P1, ˜Q�
˜I P′

1 both hold and

(̂P,̂Q, n̂) ∈ (˜P,˜Q, ñ) � (P1,Q1, n1),(6.11)

(P′,Q′, n′) ∈ (˜P,˜Q, ñ) � (P′
1,Q

′
1, n

′
1).(6.12)

As P′ ⊂ P ⊂̂P, we have P′
1 ⊂ P1. By Proposition 8 for RN−1(I), we have (P1,Q1, n1) ∈

R(˜I). By Proposition 9, part 3, for RN−1(I), we have ˜Q�
˜I P1 and (̂P,̂Q, n̂) ∈ R(˜I).

As P′ ⊂ P ⊂̂P and P′ is a child of ˜P in R(˜I), we must have P′ = P =̂P and the
proof is complete. �

6.3.3. Proof of Proposition 9.

1. With (P0,Q0, n0), (P′
0,Q

′
0, n

′
0), (P1,Q1, n1), (P′

1,Q
′
1, n

′
1) as in the first part of

Proposition 9, we assume that both Q0 �I P′
1 and Q′

0 �I P1 hold.
By definition of the transversality relation, there exist parameter inter-

vals I1, I2 containing I, elements (˜P0,˜Q0, ñ0) ∈ R(I1), (˜P′
1,
˜Q′

1, ñ
′
1) ∈ RN(I1),

(˜P′
0,
˜Q′

0, ñ
′
0) ∈ RN(I2), (˜P1,˜Q1, ñ1) ∈ R(I2) such that Q0 ⊂ ˜Q0,P′

1 ⊂˜P′
1,Q

′
0 ⊂

˜Q′
0,P1 ⊂˜P1 and

(6.13) ˜Q0 �I1
˜P′

1,

(6.14) ˜Q′
0 �I2

˜P1.

If we have either Q′
0 ⊂ ˜Q0 or P′

1 ⊂˜P1, we can already conclude that Q′
0 �I P′

1.
Assume therefore that ˜Q0 ⊂ Q′

0, ˜P1 ⊂ P′
1. Assume also for instance that I1 ⊂

I2. We have (˜P1,˜Q1, ñ1) ∈ R(I2) and (˜P′
1,
˜Q′

1, ñ
′
1) ∈ RN(I1). By the coherence

property (Proposition 8) for RN(I1), the element (˜P′
1,
˜Q′

1, ñ
′
1) belongs to R(I2).

We will show that

(6.15) ˜Q′
0 �I2

˜P′
1

which implies that Q′
0 and P′

1 are I-transverse.
We check properties (T1)–(T3) of Section 5.4. For all t ∈ I2, by the estimate

(3.49) of Section 3.6 and (T1) for ˜Q′
0 �I2

˜P1, we have

(6.16) δLR(˜Q′
0,
˜P′

1)� δLR(˜Q′
0,
˜P1)� 2|I2|.
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Next, by (3.47) and (T2) for ˜Q′
0 �I2

˜P1, there exists t0 ∈ I2 such that

(6.17) δR(˜Q′
0,
˜P′

1)� δR(˜Q′
0,
˜P1)� 2|˜Q′

0|1−η.

Finally, by (3.48) and (T3) for ˜Q0 �I1
˜P′

1, there exists t1 ∈ I1 ⊂ I2 such that

(6.18) δL(˜Q′
0,
˜P′

1)� δL(˜Q0,˜P′
1)� 2|˜P′

1|1−η.

We have proved (6.15) and this concludes the proof of the first statement in
the proposition.

2. We assume now that, with I′, (P0,Q0, n0), (P′
0,Q

′
0, n

′
0), (P1,Q1, n1) as in the

second part of the proposition, both Q0 �I′ P1 and Q′
0 �I P1 hold.

By definition of the transversality relation, there exist parameter intervalŝI ⊃
I,̂I′ ⊃ I′ and elements (˜P0,˜Q0, ñ0) ∈ R(̂I′), (˜P1,˜Q1, ñ1) ∈ RN(̂I′), (˜P′

0,
˜Q′

0, ñ
′
0),

(˜P′
1,
˜Q′

1, ñ
′
1) ∈ RN(̂I) such that Q0 ⊂ ˜Q0, Q′

0 ⊂ ˜Q′
0, P1 ⊂˜P1, P1 ⊂˜P′

1 and

(6.19) ˜Q0 �
̂I′˜P1,

(6.20) ˜Q′
0 �

̂I
˜P′

1

both hold. If either Q′
0 ⊂ ˜Q0 or I′ ⊂̂I, we conclude immediately that Q′

0 �I′ P1

holds. Assume therefore that ˜Q0 ⊂ Q′
0 and ̂I ⊂ I′. Let P∗

1 be the largest
of˜P1,˜P′

1.
We claim that (P∗

1,Q
∗
1, n

∗
1) always belongs to R(̂I′). This is clear if˜P′

1 ⊂˜P1; on
the other hand, if˜P1 ⊂˜P′

1, it follows from coherence (Proposition 8) for RN(̂I).
As ˜Q0 ⊂ ˜Q′

0, it also follows from coherence for RN(̂I) that (˜P′
0,
˜Q′

0, ñ
′
0) belongs

to R(̂I′).
We will show that

(6.21) ˜Q′
0 �

̂I′ P∗
1

holds, which implies the required conclusion Q′
0 �I′ P1.

We check properties (T1)–(T3) of Section 5.4. For all t ∈̂I′, we have, from
(3.49) and (T1) for ˜Q0 �

̂I′˜P1

(6.22) δLR(˜Q′
0,P

∗
1)� δLR(˜Q0,˜P1)� 2|̂I′|.

From (T2) for ˜Q′
0 �

̂I
˜P′

1, there exists t0 ∈̂I ⊂ I′ ⊂̂I′ such that

(6.23) δR(˜Q′
0,
˜P′

1)� 2|˜Q′
0|1−η.

Then, by (3.47), for the same t0, we have

(6.24) δR(˜Q′
0,P

∗
1)� δR(˜Q′

0,
˜P′

1)� 2|˜Q′
0|1−η.
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When P∗
1 =˜P′

1, it follows directly from (T3) for ˜Q′
0 �

̂I
˜P′

1 that we have

(6.25) δL(˜Q′
0,P

∗
1)� 2|P∗

1|1−η

for some t1 ∈̂I ⊂̂I′.
When P∗

1 =˜P1, we use (T3) for ˜Q0 �
̂I′˜P1 and (3.48) to find t1 ∈̂I′ such that

(6.26) δL(˜Q′
0,P

∗
1)� δL(˜Q0,˜P1)� 2|P∗

1|1−η.

We have thus proved (6.21). This proves the second part of the proposition. The
third part is proven in a symmetric way, exchanging P’s and Q’s.

6.3.4. Further forms of concavity. — One obtains more general statements than in
Proposition 9 by combining its different parts.

Corollary 4. — Let I′ be a parameter interval containing the parent of I, and let (P′
0,Q

′
0, n

′
0),

(P′
1,Q

′
1, n

′
1), (P0,Q0, n0), (P1,Q1, n1) be such that

Q0 ⊂ Q′
0 ⊂ Qu, P1 ⊂ P′

1 ⊂ Ps.

1. Assume that (P′
0,Q

′
0, n

′
0), (P

′
1,Q

′
1, n

′
1) ∈ RN(I), and that (P0,Q0, n0), (P1,Q1, n1) ∈

R(I′). If both Q0 �I′ P1 and Q′
0 �I P′

1 hold, and min(n0, n1)� N, then Q′
0 �I′ P′

1 also

holds.

2. Assume that (P0,Q0, n0), (P′
1,Q

′
1, n

′
1) ∈ RN(I), and that (P′

0,Q
′
0, n

′
0) ∈ RN(I′),

(P1,Q1, n1) ∈ R(I′) (with possibly n1 >N). If both Q′
0 �I′ P1 and Q0 �I P′

1 hold, then

Q′
0 �I′ P′

1 also holds.

3. Assume that (P′
0,Q

′
0, n

′
0), (P1,Q1, n1) ∈ RN(I), and that (P′

1,Q
′
1, n

′
1) ∈ RN(I′),

(P0,Q0, n0) ∈ R(I′) (with possibly n0 >N). If both Q0 �I′ P′
1 and Q′

0 �I P1 hold, then

Q′
0 �I′ P′

1 also holds.

Proof. — 1. For the first statement of the corollary, we first observe that, by coher-
ence for RN(I), the elements (P′

0,Q
′
0, n

′
0), (P

′
1,Q

′
1, n

′
1) belong to R(I′).

Assume for instance that n0 � N. From Q′
0 �I P′

1 and Proposition 2, we have
Q0 �I P′

1. Then, from Q0 �I P′
1 and Q0 �I′ P1, we have Q0 �I′ P′

1 by Proposition 9 for
RN(I). Finally, from Q0 �I′ P′

1 and Q′
0 �I P′

1, we have Q′
0 �I′ P′

1 again by Proposition 9
for RN(I).

2. For the second statement of the corollary, we first observe that, by coherence for
RN(I), the element (P′

1,Q
′
1, n

′
1) belong to R(I′).

From Q′
0 �I′ P1 and Proposition 2, we have Q0 �I′ P′

1. Then, from Q0 �I P′
1 and

Q0 �I′ P1, we have Q0 �I′ P′
1 by Proposition 9 for RN(I). Finally, from Q0 �I′ P′

1 and
Q′

0 �I′ P1, we have Q′
0 �I′ P′

1 again by Proposition 9 for RN(I).
3. The proof of the third statement of the corollary is the same than for the second,

exchanging P’s and Q’s. �
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6.4. Another transversality criterion.

Proposition 10. — Let (P0,Q0, n0), (P1,Q1, n1), (P′
1,Q

′
1, n

′
1) be elements of RN(I) such

that Q0 ⊂ Qu and P1 ⊂ P′
1 ⊂ Ps. Assume that Q0 �I P1 holds and that 2|P′

1|1−η � |I| for some

t1 ∈ I. Then Q0 and P′
1 are also I-transverse.

Proof. — By definition of the transversality relation, there exist˜I ⊃ I, (˜P0,˜Q0, ñ0),
(˜P1,˜Q1, ñ1) ∈ R(˜I) such that Q0 ⊂ ˜Q0, P1 ⊂˜P1 and ˜Q0 �

˜I
˜P1.

If P′
1 ⊂˜P1 this already implies that Q0 �I P′

1. Let us assume that˜P1 ⊂ P′
1. We will

show that ˜Q0 �
˜I P′

1 holds. By coherence (Proposition 8), we have (P′
1,Q

′
1, n

′
1) ∈ R(˜I).

Let us check (T1)–(T3).
By (T1) for Q0 �I P1 and (3.49) in Section 3.6, we have, for all t ∈˜I:

(6.27) δLR(˜Q0,P′
1)� δLR(˜Q0,˜P1)� 2|˜I|.

By (T2) for Q0 �I P1 and (3.47), there exists t0 ∈˜I such that

(6.28) δR(˜Q0,P′
1)� δR(˜Q0,˜P1)� 2|˜Q0|1−η.

Finally, we have, for all t ∈ I, by (3.39)

δL(˜Q0,P′
1)� δLR(˜Q0,P′

1)− C|P′
1|

� 2|I| − C|P′
1|.(6.29)

But, for t = t1, we have, if ε0 is small enough

(6.30) 2|I| − C|P′
1| � 4|P′

1|1−η − C|P′
1| � 2|P′

1|1−η.

We have shown that ˜Q0 �
˜I P′

1 holds, and this implies that Q0 �I P′
1 holds as required. �

6.5. A structure theorem for new rectangles.

6.5.1. Associativity of parabolic composition. — Let I be a parameter interval, and let
(P0,Q0, n0), (P1,Q1, n1), (P2,Q2, n2) be elements in R(I) such that Q0 ⊂ Qu, Q1 ⊂ Qu,
P1 ⊂ Ps, P2 ⊂ Ps. We assume that both Q0 �I P1 and Q1 �I P2 hold.

Parabolic composition of (P0,Q0, n0), (P1,Q1, n1) produces two elements (P+
01,

Q+
01, n+

01), (P
−
01,Q

−
01, n

−
01).

As Q+
01 and Q−

01 are contained in Q1, it follows from Proposition 2 that both
Q+

01 �I P2 and Q−
01 �I P2 hold.

In the same way, parabolic composition of (P1,Q1, n1), (P2,Q2, n2) produces two
elements (P+

12, Q+
12, n

+
12), (P

−
12,Q

−
12, n

−
12) such that both Q0 �I P+

12 and Q0 �I P−
12 hold.

It is clear that the four elements of R(I) obtained by parabolic composition of (P+
01,

Q+
01, n

+
01) or (P−

01,Q
−
01, n

−
01) with (P2,Q2, n2) are the same as the four elements obtained
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by the parabolic composition of (P0,Q0, n0) with (P+
12, Q+

12, n+
12) or (P−

12, Q−
12, n−

12). Their
domains are the components of P0 ∩ (Gt ◦ g

n0
t )

−1P1 ∩ (Gt ◦ g
n1
t ◦ Gt ◦ g

n0
t )

−1P2. If (P,Q, n)
is any of these four elements, we will write

(6.31) (P,Q, n) ∈ (P0,Q0, n0) � (P1,Q1, n1) � (P2,Q2, n2).

The same considerations extend immediately, by induction on k, to the case of elements
(P0,Q0, n0), . . . , (Pk,Qk, nk) such that Pi ⊂ Ps for 0 < i ≤ k, Qi ⊂ Qu for 0 ≤ i < k,
and Qi �I Pi+1 holds for 0 ≤ i < k. Then the successive parabolic compositions of
(P0,Q0, n0), . . . , (Pk,Qk, nk) produce 2k elements and we will write for any such element
(P,Q, n):

(6.32) (P,Q, n) ∈ (P0,Q0, n0) � · · ·� (Pk,Qk, nk).

6.5.2. Statement of the structure theorem. — We have seen in Section 5.5 that parabolic
composition is never allowed in the class R(I0) associated to the starting interval I0 =
[ε0,2ε0]. This class consists exactly of the affine-like iterates associated to the Markov
partition of the initial horseshoe Kgt

.
On the other hand, for elements (P,Q, n) belonging to some class R(I) but which

are not (restrictions of) an element of R(I0), parabolic composition must occur. The
following theorem gives some rather precise information on this process.

Theorem 2. — Let I be a parameter interval of level > 0,˜I be the parent interval, and let

(P,Q, n) be an element of RN(I) which is not (the restriction of) an element of R(˜I). Then there exists

k > 0, elements (P0,Q0, n0), . . . , (Pk,Qk, nk) of R(˜I) such that Qi ⊂ Qu for 0 ≤ i < k, Pi ⊂ Ps

for 0< i ≤ k, Qi �I Pi+1 holds for 0 ≤ i < k, Qi �˜I Pi+1 does not hold for 0 ≤ i < k and

(P,Q, n) ∈ (P0,Q0, n0) � · · ·� (Pk,Qk, nk).

Moreover, these elements are uniquely determined by these conditions, Pi is˜I-critical for 0< i ≤ k and

Qi is˜I-critical for 0 ≤ i < k. The rectangle P0 is the thinnest˜I-defined vertical rectangle containing P,

the rectangle Qk is the thinnest˜I-defined horizontal rectangle containing Q.

The rest of Section 6.5 is devoted to the proof of the theorem.

6.5.3. Proof. — We will first introduce a concept, relative to an element (P,Q, n)
as in the theorem above, that leads to the determination of the (Pi,Qi, ni).

Let m, p be integers such that 0 ≤ m ≤ p ≤ n. We say that [m, p] is an˜I-interval if
there exists (˜P,˜Q, ñ) ∈ R(˜I) such that

gm
t (P)⊂˜P for all t ∈ I and ñ = p − m.

Lemma 1. — The union of two˜I-intervals with non empty intersection is an˜I-interval.
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Proof. — Let [m, p], [m′, p′] be two˜I-intervals with non-empty intersection, and let
(˜P,˜Q, ñ), (˜P′,˜Q′, ñ′) be the corresponding elements of R(˜I). Without loss of generality,
we may assume that m< m′ ≤ p< p′. Replacing if necessary˜P by a larger rectangle, we
also assume that the element (̂P,̂Q, n̂) of R(˜I) such that ̂P is the parent of ˜P satisfies
m + n̂< m′. There are now two cases:

(a) p = m′.
Let Ra be the rectangle containing ˜Q. Then Ra ⊃ ˜Q = gñ(˜P) ⊃ gp(P) = gm′

(P);
thus˜P′ is also contained in Ra and the simple composition

(6.33) (˜P′′,˜Q′′, ñ′′) := (˜P,˜Q, ñ) ∗ (˜P′,˜Q′, ñ′)

is defined. We have m + ñ′′ = p′ and gm
t (P)⊂ P′′.

(b) p> m′.
Then,˜P is not a simple child of̂P, because otherwise we would have n̂ = ñ − 1 ≥

m′ − m. By Proposition 7, there exists (˜P0,˜Q0, ñ0) in R(˜I) such that

(6.34) (˜P,˜Q, ñ) ∈ (̂P,̂Q, n̂) � (˜P0,˜Q0, ñ0).

The element (˜P0,˜Q0, ñ0) of R(˜I) is associated to the˜I-interval [̂m, p], where m̂ = m + n̂ +
N0. We have m + n̂< m′ and gm+̂n

t (P)⊂ Lu, hence also m + n̂ + N0 = m̂ ≤ m′.
To conclude the proof, we argue by induction on the total length p′ − m of the

interval considered. The case p′−m = 0 is trivial. In the other case, we have the˜I-intervals
[̂m, p] and [m′, p′] with m < m̂ ≤ m′ and hence by induction [̂m, p′] is an˜I-interval. Let
(˜P1,˜Q1, ñ1) be the corresponding element of R(˜I); we have gm̂

t (P)⊂˜P1 ⊂˜P0. From (6.34),
̂Q�

˜I
˜P0 holds, hence also does ̂Q�

˜I
˜P1 by Proposition 2. Then, the parabolic composition

of (̂P,̂Q, n̂) and (˜P1,˜Q1, ñ1) is allowed and defines an element of R(˜I) which guarantees
that [m, p′] is an˜I-interval. �

6.5.4. We will now show that the (Pi,Qi, ni) in the theorem are uniquely deter-
mined by their properties. Indeed, define m0 = 0, p0 = n0 and for i > 0:

(6.35) mi = pi−1 + N0, pi = mi + ni.

Lemma 2. — The maximal˜I-intervals are exactly the [mi, pi], 0 ≤ i ≤ k, with associated

elements (Pi,Qi, ni).

Proof. — First, the [mi, pi] are indeed˜I-intervals with associated elements (Pi,Qi, ni).
To complete the proof, it is sufficient to show that no˜I-interval [m, p] can intersect a gap
(pi,mi+1). Assume by contradiction that there exists such a [m, p] with associated ele-
ment (˜P,˜Q, ñ) and minimal ñ = p − m. As g�t (P) ⊂ g

�−pi

t (Lu) does not intersect R for
pi < � < mi+1, we must have m � pi and mi+1 � p. By property (R6) of R(˜I) (Section 5.3)
and the minimality of ñ, there exists (˜P0,˜Q0, ñ0), (˜P1,˜Q1, ñ1) in R(˜I) such that

(6.36) (˜P,˜Q, ñ) ∈ (˜P0,˜Q0, ñ0) � (˜P1,˜Q1, ñ1)
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with ñ0 = pi − m � ni, ñ1 = p − mi+1 � ni+1. But then, from ˜Q0 ⊃ Qi , ˜P1 ⊃ Pi+1 and
˜Q0 �

˜I
˜P1, we deduce from Proposition 2 that Qi �˜I Pi+1 holds, a contradiction. �

6.5.5. Lemma 2 allows us to define k as being the number of maximal˜I-intervals
minus one, and to define the (Pi,Qi, ni) ∈ R(˜I) as the elements of R(˜I) associated to
the successive maximal˜I-intervals. Observe that the maximal˜I-intervals [mi, pi], (0 �
i � k) must indeed satisfy m0 = 0, mi+1 = pi + N0 for 0 � i < k: every � ∈ [0, n] not
contained in an˜I-interval is such that g

�−N1
t (P) ⊂ Lu for some 0 < N1 < N0 and then

no˜I-interval intersects with (�− N1, �− N1 + N0), while the degenerates intervals{�−
N1}, {�− N1 + N0} are˜I-intervals. We observe also that Qi �˜I Pi+1 does not hold because
otherwise [mi, pi+1] would be an˜I-interval.

6.5.6. Let 0 � i < k. Let us assume by induction over i that Pj is˜I-critical for
0< j � i, Qj is˜I-critical for 0 � j < i, Qj �I Pj+1 holds for 0 � j < i and that we have an
element of RN(I):

(6.37) (P(i),Q(i), pi) ∈ (P0,Q0, n0) � · · ·� (Pi,Qi, ni)

such that P ⊂ P(i). The assumption is vacuously true for i = 0. We will prove it at step
i + 1. For i = k, it gives the properties stated in the theorem for the (Pi,Qi, ni).

6.5.7. We first prove that Qi is˜I-critical. Assume by contradiction that Qi is˜I-
transverse. Then Pi is˜I-decomposable. Let then (̂Pi,̂Qi, n̂i) be an element of R(˜I) such
that̂Pi is a child of Pi intersecting g

mi
t (P ∩�). Let (̂P(i),̂Q(i), n̂(i)) be the element of RN(I)

such that̂P(i) is the child of P(i) containing P. BotĥPi and̂P(i) are non-simple children by
Section 6.5.5.

We apply Proposition 7 twice. We find (˜Pi+1,˜Qi+1, ñi+1) in RN−1(I), (˜P′
i+1,

˜Q′
i+1, ñ

′
i+1) in R(˜I) such that both Qi �˜I

˜P′
i+1 and Q(i)�I˜Pi+1 hold and

(̂Pi,̂Qi, n̂i) ∈ (Pi,Qi, ni) � (˜P′
i+1,

˜Q′
i+1, ñ

′
i+1),(6.38)

(̂P(i),̂Q(i), n̂(i)) ∈ (P(i),Q(i), pi) � (˜Pi+1,˜Qi+1, ñi+1).(6.39)

We must have mi + n̂i > n, because otherwise [mi,mi + n̂i] would be an˜I-interval
strictly larger than [mi, pi]. Thus we have ñ′

i+1 > ñi+1. But then, from Qi �˜I
˜P′

i+1 and
Q(i)�I˜Pi+1, we deduce by Corollary 4 (part 2) that Qi �˜I

˜Pi+1. Parabolic composition
yields an element (Pi,Qi, ni) ∈ R(˜I) with Pi�Pi�P̂i, in contradiction with the definition
of̂Pi .

6.5.8. The proof that Pi+1 is ˜I-critical is rather similar. We assume by con-
tradiction that it is ˜I-transverse. Then Qi+1 is ˜I-decomposable and we can find
(P∗

i+1,Q
∗
i+1, n

∗
i+1) ∈ R(˜I) such that Q∗

i+1 is a child of Qi+1 intersecting gpi+1(P ∩ �). It
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is a non-simple child as gpi+1(P ∩ �) is contained in Lu. By Proposition 7, there exists
(P(i)∗ ,Q

(i)
∗ , n

(i)
∗ ) ∈ R(˜I) such that Q(i)

∗ �
˜I Pi+1 holds and

(6.40) (P∗
i+1,Q

∗
i+1, n

∗
i+1) ∈ (P(i)∗ ,Q

(i)
∗ , n

(i)
∗ ) � (Pi+1,Qi+1, ni+1).

We must have n(i)∗ > pi , because otherwise [pi − n(i)∗ , pi+1] would be an˜I-interval strictly
larger than [mi+1, pi+1]. Then, by coherence for RN(I), we have (P(i),Q(i), pi) ∈ R(˜I) and
thus i = 0.

Let (̂P(i),̂Q(i), n̂(i)), (˜Pi+1,˜Qi+1, ñi+1) be as in Section 6.5.7. From Q(i)
∗ �

˜I Pi+1 and
Q(i)�I˜Pi+1, we deduce by Corollary 4 (part 2) (if ñi+1 � ni+1) or Proposition 9 (if ñi+1 �
ni+1) that Q(i)�

˜I Pi+1. This means that Q0 �
˜I P1 and we conclude that [0, p1] is an˜I-

interval, a contradiction.

6.5.9. We now prove that Q(i) and Pi+1 are I-transverse. Let (̂P(i),̂Q(i), n̂(i)),
(˜Pi+1,˜Qi+1, ñi+1) be as in Section 6.5.7. If ñi+1 ≤ ni+1, we have Q(i)�I˜Pi+1 by (6.39) and
thus also Q(i)�I Pi+1 by Proposition 2. Let us assume that ñi+1 > ni+1.

We claim that, under this hypothesis, Qi+1 is˜I-critical. Indeed, if it was˜I-transverse,
Pi+1 would be˜I-decomposable and we would find an element (̂Pi+1,̂Qi+1, n̂i+1) of R(˜I)
such that ̂Pi+1 is a child of Pi+1 intersecting gmi+1(P ∩�). By coherence (Proposition 8),
we should have ̂Pi+1 ⊃˜Pi+1 and [mi+1,mi+1 + n̂i+1] would be an˜I-interval larger than
[mi+1, pi+1], a contradiction which proves our claim.

As (Pi+1,Qi+1, ni+1) is˜I-bicritical, and the parent interval˜I is always assumed to
be β-regular, we have, for all t ∈˜I
(6.41) |Pi+1|< |˜I|β

and thus also (with ε0 small enough)

(6.42) 2|Pi+1|1−η < |I|.
It now follows from Proposition 10 and Q(i)�I˜Pi+1 that Q(i) and Pi+1 are I-transverse.

6.5.10. We finally show that Qi and Pi+1 are I-transverse. When i = 0, we have
Q(0) = Q0, so this has been done in Section 6.5.9.

When i > 0, (Pi,Qi, ni) is˜I-bicritical and, therefore, we have for all t ∈˜I:
(6.43) |Qi|< |˜I|β,
and thus also

(6.44) 2|Qi|1−η < |I|.
It follows from Proposition 10 and Q(i)�I Pi+1 that Qi and Pi+1 are I-transverse.
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To conclude the induction step of Section 6.5.6, we simply observe that the par-
abolic composition of (P(i),Q(i), n(i)) and (Pi+1,Qi+1, ni+1) is allowed in R(I); it produces
an element (P(i+1),Q(i+1), pi+1) ∈ R(I) such that P(i+1) intersects P and therefore con-
tains P.

The last assertion in the theorem follows from Section 6.5.5. The proof of the
theorem is now complete.

6.6. Width estimates.

6.6.1. I-special rectangles. — As long as R(I) has not been fully constructed, we
cannot decide whether a rectangle P or Q is I-critical or not. On the other hand, we can
decide whether˜P or ˜Q is˜I-critical or not when˜I strictly contains I and (˜P,˜Q, ñ) ∈ R(˜I).
The following definition is therefore useful.

Let (P,Q, n) ∈ RN(I). We say that P is I-special if either (P,Q, n) ∈ R(I0) (i.e.
no parabolic composition is ever involved in the construction of P) or, denoting by˜I the
parent of I and by (˜P,˜Q, ñ) the element of R(˜I) such that P ⊂˜P and˜P is smallest possible,
we have that˜P is˜I-critical. We define similarly the property for Q.

There are therefore three cases:

– (P,Q, n) ∈ R(I0); in this case, P is always I-special.
– (P,Q, n) ∈ R(˜I)− R(I0); in this case, P is I-special iff it is˜I-critical.
– (P,Q, n) ∈ R(I)− R(˜I); in this case, we apply the structure theorem in the last

subsection and see that ˜P is the rectangle P0 in the statement of this theorem;
thus P is I-special iff P0 is˜I-critical.

Let us also observe that if (P,Q, n) ∈ R(˜I) and P is I-special, i.e.˜I-critical, then it
is˜I-special by Proposition 3 of Section 5.6.

The same discussion holds for Q, replacing P0 by Qk in the case where (P,Q, n) ∈
R(I)− R(˜I).

The following result will be useful in Section 7.

Proposition 11. — Let (P0,Q0, n0), (P1,Q1, n1) ∈ RN(I) such that Q0 ⊂ Qu,

P1 ⊂ Ps. Assume that Q0 �I P1 holds and that I,Q0,P1 are maximal with this property: any
̂I ⊃ I, (̂P0,̂Q0, n̂0), (̂P1,̂Q1, n̂1) ∈ RN(̂I) with Q0 ⊂ ̂Q0 ⊂ Qu, P1 ⊂ ̂P1 ⊂ Ps such that
̂Q0 �

̂I
̂P1 holds must verifŷI = I,̂Q0 = Q0,̂P1 = P1. Then Q0 and P1 are I-special.

Proof. — We may assume that the level of I is > 0. Let˜I be the parent of I, and
(˜P0,˜Q0, ñ0), (˜P1,˜Q1, ñ1) ∈ RN(˜I) be such that ˜Q0 (resp.˜P1) is the smallest˜I-defined rec-
tangle containing Q0 (resp. P1). We have to show that Q0,P1 are˜I-critical.

Assume for instance by contradiction that ˜Q0 is ˜I-transverse. Let (Pα,Qα, nα)

an ˜I-decomposition of Ps such that, for each α, ˜Q0 and Pα are either ˜I-separated
or ˜I-transverse. Let α such that Pα ∩ P1 �= ∅. Then ˜Q0 and Pα are ˜I-transverse. If
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P1 ⊂ Pα , it follows from Proposition 2 that ˜Q0 and P1 are˜I-transverse. If P1 ⊃ Pα , then
(P1,Q1, n1) ∈ RN(˜I) by coherence for RN(I), and it follows then by Corollary 4 from
˜Q0 �

˜I Pα and Q0 �I P1 that ˜Q0 �
˜I P1 holds.

Thus ˜Q0 �
˜I P1 always holds, in contradiction with the assumption of the lemma.

This shows that ˜Q0 is˜I-critical. The proof that˜P1 is˜I-critical is similar. �

6.6.2. Uniform stretched exponential estimates for widths. — The next proposition is a
substitute for the uniform exponential estimates for widths that are characteristic of the
uniformly hyperbolic dynamics. We denote by γ the constant

(6.45) γ := log 3
2

log 2
∈ (0,1).

Proposition 12. — Let (P,Q, n) be an element of RN(I). For all t ∈ I, we have

|P| � C0 exp(−nγ )

with the stronger estimate

|P| � C0 exp(−2nγ )

when P is I-special.

The constant C0 depends only on the constants in the formulas (3.12) and (3.27)
for the widths in simple and parabolic composition.

Proof. — For (P,Q, n) ∈ R(I0), we have an exponential estimate for |P| which
implies the weaker estimate of the I-special case of the proposition.

We assume now that the level of I is > 0.
For (P,Q, n) ∈ R(˜I)− R(I0) (with˜I the parent of I), the result is true by the in-

duction hypothesis (as observed in Section 6.6.1, if P is I-special, it is also˜I-special).
We now assume that (P,Q, n) ∈ R(I)− R(˜I) and apply the structure theorem of

Section 6.5. We write

(6.46) (P,Q, n) ∈ (P0,Q0, n0) � · · ·� (Pk,Qk, nk)

as in the statement of the theorem. Let us denote by (P′
1,Q

′
1, n

′
1) the rectangle in RN−1(I)

defined by (P1,Q1, n1) � · · ·� (Pk,Qk, nk) such that Q is contained in Q′
1. As P1 is˜I-

critical, P′
1 is I-special. We have

(6.47) (P,Q, n) ∈ (P0,Q0, n0) � (P′
1,Q

′
1, n

′
1).

We use (3.27) (Section 3.5), condition (R7) for RN−1(I) (Section 5.4) and the induction
hypothesis to write

(6.48) |P| 	 |P0||P′
1|1/2 � C3/2

0 exp(−n
γ

0 − n′
1
γ
).
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As n = n0 + n′
1 + N0, this gives the first statement of the proposition.

Assume now that P is I-special. Then P0 is ˜I-critical, hence ˜I-special (cf. Sec-
tion 6.6.1).

When n0 � n′
1, we have from the choice of γ that

(6.49) 2n
γ

0 + n′
1
γ � 2(n0 + n′

1)
γ ,

and therefore the same estimate |P| 	 |P0||P′
1|1/2 now leads to |P| � C0 exp(−2nγ ).

On the other hand, when n0 � n′
1, we proceed as follows. We now have

(6.50) n
γ

0 + 2n′
1
γ � 2(n0 + n′

1)
γ .

As (P0,Q0, n0) is˜I-bicritical and˜I is regular, we have |P0| � |˜I|β for all t ∈˜I. From (3.27),
we have

(6.51) |P0| � C|P0||P′
1|δ(Q0,P′

1)
−1/2.

From Q0 �I P′
1, and (T1), (R7) (Section 5.4), we have δ(Q0,P′

1) � |I| for all t ∈ I. Using
also |P0| � |˜I|β , we obtain

(6.52) |P| 	 |P0|1/2|P′
1| � C3/2

0 exp(−n
γ

0 − 2n′
1
γ
)

and we conclude again that |P| � C0 exp(−2nγ ) from (6.50). �

6.6.3. The following simple estimate says that the width of any rectangle not in
R(I0) is uniformly small with ε0.

Proposition 13. — Let (P,Q, n) ∈ RN(I). If (P,Q, n) does not belong to R(I0), it satisfies,

for all t ∈ I

|P|< ε0
1/2, |Q|< ε0

1/2.

Proof. — We may assume that the level of I is> 0 and that (P,Q, n) does not belong
to R(˜I), where˜I is the parent of I. Write

(6.53) (P,Q, n) ∈ (P0,Q0, n0) � (P′
1,Q

′
1, n

′
1)

as in the proof of Proposition 12. The estimate (6.51) is still valid. From condition (R7)
for RN−1(I) (Section 5.4), we obtain |P′

1| 	 δ(Q0,P′
1) and thus |P| 	 |P0|(δ(Q0,P′

1))
1/2.

As δ(Q0,P′
1) is at most of the order of ε0 and |P0| is small, we get the required estimate

for P. The proof for |Q| is symmetric. �

Lemma 3. — Let (P0,Q0, n0), (P1,Q1, n1) be elements of RN−1(I) such that Q0 ⊂ Qu

and P1 ⊂ Ps. If Q0 �I P1 holds then we have δ(Q0,P1) > |I| for all t ∈ I.
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Proof. — Let˜I ⊃ I, and let elements (˜P0,˜Q0, ñ0), (˜P1,˜Q1, ñ1) ∈ R(˜I) with˜P1 ⊃ P1,
˜Q0 ⊃ Q0 such that ˜Q0 �

˜I
˜P1 holds. From condition (T1), we have δLR(˜Q0,˜P1)� 2|˜I| for

all t ∈ I. Using (3.36)–(3.39) and property (R7) for RN−1(I) we obtain, for all t ∈ I

δ(Q0,P1)� δ(˜Q0,˜P1)

� δLR(˜Q0,˜P1)− C(|Q0| + |P1|) > 1
2
δLR(˜Q0,˜P1)� |˜I| � |I|.(6.54) �

In the following proposition, the setting and the notations are those of the structure
theorem in Section 6.5:˜I is the parent interval of I, (P,Q, n) is an element in RN(I) but
not in R(˜I), k > 0 and (Pi,Qi, ni) ∈ R(˜I), 0 � i � k are as given by the conclusion of the
theorem.

Proposition 14. — For all t ∈ I, we have

|P| � Ck|P0||P1| · · · |Pk||I|−
k

2 .

Moreover, for all t ∈ I, we have

|Pi|< |˜I|β for 0< i < k, |Pk|< |˜I|.
In particular, we have always |P|< |P0||I|1/3.

Proof. — For 0 � i � k, let (P(i),Q(i), pi) be the element in RN(I) such that

(P(i),Q(i), pi) ∈ (P0,Q0, n0) � · · ·� (Pi,Qi, ni)

and P ⊂ P(i). We show by induction on i that

(6.55) |P(i)| � Ci|P0| · · · |Pi||I|−
i

2 .

As P(0) = P0, this is true for i = 0. By Lemma 3 above, we have, for all t ∈ I,

δ(Q(i),Pi+1) > |I|,
so the required estimate for Pi+1 follows from (3.27) in Section 3.5. This proves the first
statement of the proposition.

The estimate |Pi|< |˜I|β for 0< i < k is true because (Pi,Qi, ni) is˜I-bicritical and
˜I is β-regular. To estimate |Pk|, we first observe that, by Proposition 3 in Section 5.6.1,
there exists t ∈˜I such that δLR(Qk−1,Pk) < 2|˜I|. Then, from Corollary 8 for R(˜I) (in Sec-
tion 7.6), we obtain, as Qk−1,Pk are˜I-critical, hence˜I-special, that δLR(Qk−1,Pk) < 4|˜I|
for all t ∈˜I. Finally, by property (R7) for RN−1(I), |Pk| is much smaller than δLR(Qk−1,Pk)

for all t ∈ I, which gives the required estimate.
The last statement in the proposition is an easy consequence of the first two. �



NON-UNIFORMLY HYPERBOLIC HORSESHOES ARISING 55

In the following corollary, the setting is the same that in the proposition. For 0 �
i � k, (P(i),Q(i), pi) is the element defined in the proof of the proposition.

Corollary 5. — Assume that P is I-special. Then, for all t ∈ I, we have

|P(i)|< |˜I|β(i+1)− (1+τ )i
2 for 0 � i < k,

|P|< |˜I|βk+1− (1+τ )k
2 .

In particular, one has always |P|< |I|β+1/3.

Proof. — As P is I-special, P0 is˜I-critical. Therefore, (P0,Q0, n0) is˜I -bicritical and
|P0|< |˜I|β for all t ∈ I. The estimates of the corollary now follow easily from those of the
proposition and (6.55) above. �

Corollary 6. — Let (P∗,Q∗, n∗) ∈ RN(I). Assume that P∗ is I-special and that |P∗| �
|I|β+1/3 for some t ∈ I. If |P∗| � εβ+1/3

0 for some t ∈ I, let I∗ = I0. Otherwise, let I∗ ⊃ I be the

smallest parameter interval such that |P∗|< |I∗|β+1/3 for all t ∈ I. Then (P∗,Q∗, n∗) ∈ RN(I∗).

Proof. — If I = I0, there is nothing to prove. Assume that the level of I is> 0, and let
˜I be the parent interval. Corollary 5 above show that we must have (P∗,Q∗, n∗) ∈ RN(˜I).
Then P∗ is˜I-critical, hence˜I-special. Iterating the argument gives the corollary. �

Observe that, once the existence of the class R(I) is established (for every candidate
I in a β regular parent interval˜I), the corollary implies that every candidate is β-regular,
with β = (1 + τ)−1β . Indeed, I-critical elements are either very thin (	 |I|β ), or already
˜I-defined, and |˜I|β = |I|β .

7. Estimates for the classes R(I)

7.1. Uniform cone condition. — In this subsection, we will check that all elements
(P,Q, n) ∈ RN(I) satisfy the cone condition (AL2) of Section 3.2 for the parameters λ,
u0, v0 of Section 5.3: we have u0 = u

(uv)1/4
, v0 = v

(uv)1/4
, where all (P,Q, n) ∈ R(I0) satisfy

(AL2) with parameters λ, u, v.
Let (A,B) be the implicit representation of the affine-like iterate (P,Q, n); we have

to prove that

λ|Ax| + u0|Ay| � 1,(AL2)

λ|By| + v0|Bx| � 1.

Let u1 = u

(uv)1/8
, v1 = v

(uv)1/8
. We will prove that, for all t ∈ I, we have

(7.1) |Ay|< u−1
1 , |Bx|< v−1

1 .
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This is sufficient to obtain (AL2): we already know that if (P,Q, n) ∈ R(I0) them (AL2)
is satisfied; on the other hand, if (P,Q, n) /∈ R(I0), then, for all t ∈ I, we have from
Proposition 13

(7.2) |Ax|< ε
1
2
0 , |By|< ε

1
2
0 .

With ε0 small enough, (7.1) and (7.2) give (AL2).
Let us now proceed with the proof of (7.1). When (P,Q, n) ∈ R(I0), we have the

stronger estimate:

(7.3) |Ay|< u−1, |Bx|< v−1.

Assume that (P,Q, n) /∈ R(I0). By the structure theorem (Section 6.5), (P,Q, n) is ob-
tained from the parabolic composition of shorter elements (˜P,˜Q, ñ), (̂P,̂Q, n̂) ∈ RN−1(I).
Denote by (˜A,˜B) the implicit representation of the affine-like iterate (˜P,˜Q, ñ). We use
formula (A.86) of Appendix A to obtain

(7.4) |Ay −˜Ay| � C|˜P||˜Q|(δ(˜Q,̂P))− 1
2 .

From (R7), δ(˜Q,̂P) is much larger than |˜Q|. We have therefore

(7.5) |Ay −˜Ay| � |˜P| � C0 exp(−̃nγ ),

where we have used Proposition 12 in the last inequality. We only use (7.5) when ñ is
large (because ˜Q ⊂ Qu), and the series

∑

exp(−mγ ) is convergent. Therefore (7.1) is a
consequence of (7.3) and (7.5).

The proof of (AL2), i.e., the first part of condition (R2) in Section 5.3, is now
complete.

7.2. Bounded distortion. — We now check the second half of property (R2) in Sec-
tion 5.3. We have to prove that, for all (P,Q, n) ∈ RN(I), we have the following estimate
on distortion:

(7.6) D(gn
t /P)� 2D0.

Here, the constant D0 corresponds to the stronger estimate we obtain from (MP6) when
(P,Q, n) ∈ R(I0):

(7.7) D(gn
t /P)� D0.

Define

(7.8) DI(N)= sup
(P,Q,n)∈RN(I)

sup
t∈I

D(gn
t /P).
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From (7.7), we have DI(N)� D0 for N = o(log ε−1
0 ), because no parabolic compo-

sition is involved in this case. We set

(7.9) Ds
I(N) := max

n>0,n′>0
n+n′�N

Ds
I(n, n

′)

with

(7.10) Ds
I(n, n

′) := DI(n)+ C exp(−nγ )(DI(n)+ DI(n
′)).

We also set

(7.11) Dp

I(N) := max
n�0,n′�0

n+n′+N0�N

Dp

I(n, n
′)

with

(7.12) Dp

I(n, n
′) := DI(n)+ C exp(−ηnγ ).

We claim that, if DI(n) for n < N is not too large so that the condition in (3.29)
(Section 3.5) is satisfied, we have

(7.13) DI(N)� max(Ds
I(N),D

p

I(N)).

Indeed, this follows from (3.13) (Section 3.3) for simple composition and (3.29)
(Section 3.5) for parabolic composition; the term C|P1|δ−1 in (3.29) is smaller than |P1|η
by condition (R7) for RN−1(I); then one uses Proposition 12.

It is now clear that (7.6) follows from DI(N) � D0 for N = o(log ε−1
0 ) and (7.9)–

(7.13).

7.3. Estimates for the special rectangles Ps and Qu. — In Section 7.5, we will check the
estimates contained in condition (R4) of Section 5.3 concerning the class R(I).

These estimates, which are related to parabolic composition, are valid for an ele-
ment (P,Q, n) of R(I) which satisfies Q ⊂ Qu (or P ⊂ Ps).

In the present section, we will be concerned with the affine-like iterates which are
directly associated with the elements (Ps,Qs, ns) and (Pu,Qu, nu).

We will make the computations for (Ps,Qs, ns) the other case is obviously symmet-
ric. We will assume that the periodic point ps is fixed: the general case is completely similar,
but the notations are more awkward.

In this subsection, we just write (x, y) for the coordinates in the rectangle Ras
con-

taining ps; we denote by (A,B) the implicit representation of the affine-like iterate

(7.14) Gt : (Ras
)∩ g−1

t (Ras
)→ gt(Ras

)∩ Ras
.
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For n � 0, we denote by (A(n),B(n)) the implicit representation of the nth iterate of
this restriction.

As the equation of Ws
loc(ps) is {x = 0} (cf. (MP3) in Section 2.2), we have

(7.15) A(y,0, t)≡ 0,

from which we deduce

|Ay(y, x, t)| � C|x|,
|At(y, x, t)| � C|x|,

(7.16)
|Ayy(y, x, t)| � C|x|,
|Ayt(y, x, t)| � C|x|.

Denote by μ= μ(t) the unstable eigenvalue of Dgt at ps. For all t, x, y, n, we have

(7.17) C−1μ−n � |A(n)x (y, x, t)| � Cμ−n.

Let (xi, yi)0�i�n be an orbit of gt in Ras
. For all 0 � �� m � n, we have:

(7.18) C−1μm−�|x�| � |xm| � Cμm−�|x�|.
Proposition 15. — The following estimates hold:

|A(n)y (y0, xn, t)| � C|x0| � Cμ−n|xn|,(7.19)

|A(n)t (y0, xn, t)| � Cn|x0| � Cnμ−n|xn|,(7.20)

|A(n)yy (y0, xn, t)| � C|x0| � Cμ−n|xn|.(7.21)

Proof of (7.19). — From formula (3.11) in Section 3.3, we have:

(7.22) A(n)y (y0, xn, t)= A(n−1)
y (y0, xn−1, t)+ AyA(n−1)

x B(n−1)
y �−1,

with B(n−1)
y �−1 exponentially small with n and, using (7.16)–(7.18):

(7.23) |Ay(yn−1, xn, t)A(n−1)
x (y0, xn−1, t) | � C|x0|.

The inequality (7.19) is now clear. �

Proof of (7.20). — We use here formulas (A.6), (A.10) of Appendix A which give

|A(n)t (y0, xn, t)− A(n−1)
t (y0, xn−1, t) |

� Cμ−n
(

|At(yn−1, xn, t) | + |B(n−1)
t (y0, xn−1, t) ||Ay(yn−1, x,t) |

)

,(7.24)
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(7.25) |B(n)t (y0, xn, t)− B(n−1)
t (y1, xn, t) | � C|B(n−1)

y |C0

(

1 + |A(n−1)
t |C0

)

.

As |B(n)y |C0 is exponentially small, we deduce from (7.25) that

(7.26) |B(n)t (y0, xn, t) | � C,

and then, from (7.24), (7.16) that (7.20) holds. �

Proof of (7.21). — We use formulas (A.6), (A.11), (A.18), (A.20) of Appendix A to
obtain

(7.27) A(n)yy = A(n−1)
yy + 2A(n−1)

xy Xy + A(n−1)
xx X2

y + A(n−1)
x Xyy,

with

Xy = AyB(n−1)
y �−1,(7.28)

�= 1 − AyB(n−1)
x ,(7.29)

Xyy = B(n−1)
y �−1

(

AyyB(n−1)
y �−1 + Ay∂y log |B(n−1)

y |
+ AyXy∂x log |B(n−1)

y | − Ay�y�
−1
)

,(7.30)

−�y = AyyB(n−1)
y B(n−1)

x �−1 + AyB(n−1)
xy + AyB(n−1)

xx Xy.(7.31)

In these formulas, A(n−1), B(n−1) and their derivatives are taken at (y0, xn−1, t), A, B
and their derivatives are taken at (yn−1, xn, t). The terms B(n−1)

x , B(n−1)
xx , ∂x log |B(n−1)

y |,
∂y log |B(n−1)

y |, �−1 are bounded by the uniform cone condition and the uniform dis-
tortion; the terms B(n−1)

y , B(n−1)
xy , A(n−1)

x , A(n−1)
xx , A(n−1)

xy are exponentially small. Also, from
(7.16) we have:

|Ay(yn−1, xn, t) | � C|xn|,
(7.32) |Ayy(yn−1, xn, t) | � C|xn|.

We conclude that we can write

(7.33) A(n)yy (y0, xn, t)= A(n)yy (y0, xn−1, t)+μ−nxnrn

with rn exponentially small; this leads to (7.21). �

Corollary 7. — For the special rectangle (Ps,Qs, ns), we have:

|A(ns)
y |C0 � Cε0,

|A(ns)
yy |C0 � Cε0,

|A(ns)
t |C0 � Cε0 log ε−1

0 .
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Proof. — We have only to observe that μ−ns is of order ε0. �

Obviously, the same estimates hold for the other special element (Pu,Qu, nu).

7.4. Further estimates for the class R(I0). — In this subsection, we derive estimates
for the class R(I0) from the estimates for (Ps,Qs, ns), (Pu,Qu, nu) obtained in the last
subsection and from the estimates for simple composition found in Appendix A.3. These
estimates are typically better than the estimates for classes R(I) with smaller I, which will
be obtained in the end of Section 7, because only simple composition is involved into the
construction of elements of R(I0).

Proposition 16. — Let (P,Q, n) be an element of R(I0), and let (A,B) be the associated

implicit representation. For all t, y, x, we have

|At| � C, |Bt| � C,

|Ayt| � C, |Bxt| � C,

|∂t log |Ax|| � Cn, |∂t log |By|| � Cn.

If moreover P ⊂ Ps, we have, for all t, y, x

|Ay| � Cε0, |Ayy| � Cε0, |At| � Cε0| log ε0|.
Similarly, if Q ⊂ Qu, we have, for all t, y, x

|Bx| � Cε0, |Bxx| � Cε0, |Bt| � Cε0| log ε0|.
Proof. — The widths of rectangles in R(I0) are exponentially small with the

number of iterations. Then, the estimate for At,Bt follow by a simple induction
on n from formula (A.67) in Appendix A.3. Similarly, one derives the estimates for
Ayt,Bxt, ∂t log |Ax|, ∂t log |By| from formulas (A.72), (A.73).

When P ⊂ Ps, we write

(P,Q, n)= (Ps,Qs, ns) ∗ (P′,Q′, n′)

for some (P′,Q′, n′) ∈ R(I0). As |Ps| � Cε0, the estimates for Ay,Ayy,At follow from
Corollary 7 and formulas (A.66), (A.71), (A.67) in Appendix A.3. The case where Q ⊂ Qu

is similar. �

7.5. Proof of the property (R4) of Section 5.3. — We have to show that, for an element
(P,Q, n) in RN(I), with associated implicit representation (A,B), we have

(7.34) |Ay| � Cε0, |Ayy| � Cε0
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whenever P ⊂ Ps and

(7.35) |Bx| � Cε0, |Bxx| � Cε0

whenever Q ⊂ Qu. We will deal only with (7.34), the other case being symmetric.
We have already proved (7.34), (7.35) when (P,Q, n) belongs to R(I0). We may

therefore assume that (P,Q, n) does not belong to R(I0). We assume that P ⊂ Ps and
prove (7.34).

In this case, the structure theorem of Section 6.5 guarantees that (P,Q, n) can be
obtained from the parabolic composition of shorter elements (P0,Q0, n0), (P1,Q1, n1).
Let (A0,B0), (A1,B1) be the implicit representations associated to these iterates.

From formulas (A.86), (A.91) in Appendix A.4, we have

|Ay − A0,y| � C|P0||Q0|δ(Q0,P1)
−1/2,

|Ayy − A0,yy| � C|P0||Q0|δ(Q0,P1)
−1/2.

As P ⊂ Ps, we have also P0 ⊂ Ps, hence |P0| � Cε0. On the other hand, by property
(R7) for RN−1(I), |Q0| is for all t ∈ I much smaller than δ(Q0,P1). We have then, from
Proposition 12 in Section 6.6.2

(7.36) |Q0|δ(Q0,P1)
−1/2 � |Q0|1/2 � C exp

(

−1
2

n
γ

0

)

,

which gives

|Ay − A0,y| � Cε0, exp
(

−1
2

n
γ

0

)

,(7.37)

|Ayy − A0,yy| � Cε0 exp
(

−1
2

n
γ

0

)

.(7.38)

As P0 ⊂ Ps, the estimate (7.34) follows immediately by induction on n (starting with Propo-
sition 16) from (7.37), (7.38). The proof of (7.35) is similar.

7.6. Relative speeds of special rectangles. — Let (P0,Q0, n0), (P1,Q1, n1) be elements
of RN(I) such that Q0 ⊂ Qu, P1 ⊂ Ps.

The displacements δ(Q0,P1), δL(Q0,P1), δR(Q0,P1), δLR(Q0,P1)were introduced
in formulas (3.30)–(3.33) of Section 3.6 and are the values at the four corners of the
rectangle of definition of the function C(y0, x1) introduced in Section 3.5 as

(7.39) C(y0, x1)= min
w

C(w, y0, x1).

All these quantities also depend on the parameter t, and we want in this section to esti-
mate the variation with the parameter of the displacements, which amounts to estimate
the partial derivative Ct .
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Let (A0,B0), (A1,B1) be the implicit representations for (P0,Q0, n0), (P1,Q1, n1)

respectively. As will be seen below, an estimate for Ct depends very much on estimates for
the partial derivatives A1,t , B0,t . Good estimates for these two quantities are not available
for all (P0,Q0, n0), (P1,Q1, n1). We will obtain good estimates when Q0,P1 are I-special,
which is sufficient in the applications.

Proposition 17. — Let (P,Q, n) be an element of RN(I) with P ⊂ Ps. Let (A,B) be the

implicit representation of (P,Q, n). If P is I-special, we have for all t, y, x

|At| � ε
1
2
0 .

Proof. — If (P,Q, n) ∈ R(I0), we have from Proposition 14 the stronger estimate:

|At| � Cε0 log ε−1
0 .

We now assume that the level of I is > 0. Let˜I be the parent of I. If (P,Q, n) ∈ R(˜I), P is
also˜I-special (cf. Section 6.6.1) and the estimate of the proposition is true by induction.

We now assume that (P,Q, n) /∈ R(˜I). We apply the structure theorem in Sec-
tion 6.5: let k � 1 and (Pi,Qi, ni), 0 � i � k, be the elements of R(˜I) given by the state-
ment of the theorem. We also denote, for 0 � i � k, by (P(i),Q(i), n(i)) the element of R(˜I)
such that P ⊂ P(i) and

(7.40) (P(i),Q(i), n(i)) ∈ (P0,Q0, n0) � · · ·� (Pi,Qi, ni).

We have (P(k),Q(k), n(k))= (P,Q, n). As P is I-special, P0 is˜I-critical, hence P(i) is I-special
for 0 � i � k. Moreover, for 0 � i < k, Qi,Pi+1 are˜I-critical, hence Q(i),Pi+1 are I-special.

Let (A(i),B(i)), (Ai,Bi) be the implicit representations associated to (P(i),Q(i), n(i)),
(Pi,Qi, ni). The estimate (A.96) in Appendix A.4 gives

(7.41) |A(i+1)
t − A(i)t | � C|P(i)|δ(Q(i),Pi+1)

−1/2(1 + |Ai+1,t| + |B(i)t |).
Here we have from the induction hypothesis |B(i)t | � Cε0 since Q(i) is I-special and
|Ai+1,t| � Cε0 since Pi+1 is I-special.

From Lemma 3 in Section 6.6.3 we have δ(Q(i),Pi+1) > |I| for all t ∈ I. From
Corollary 5 in Section 6.6.3, we have

(7.42) |P(i)| � Ci|˜I|β(i+1)− (1+τ )i
2 .

Plugging these estimates into (7.41) above gives

(7.43) |A(i+1)
t − A(i)t | � Ci+1|˜I|(i+1)(β− 1+τ

2 ).

As β − 1+τ
2 > 1

2 , we obtained the required estimate for |At| by first summing over i and
then on the successive levels of the parameter intervals under consideration.

The proof for Bt is similar. �
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Corollary 8. — Let (P0,Q0, n0), (P1,Q1, n1) be elements of RN(I) with Q0 ⊂ Qu,

P1 ⊂ Ps. Assume that Q0 and P1 are I-special. Then, the partial derivative with respect to the pa-

rameter of the function C (introduced in Section 3.5) satisfies

|Ct + 1| � Cε
1
2
0 .

Proof. — From formula (A.35) in Appendix A, using the notations there, we have

−Ct = θxXt + θyYt + θt,(7.44)

Xt = (A1,t + A1,yYs,t)�
−1
1 ,(7.45)

Yt = (B0,t + B0,xXu,t)�
−1
0 ,(7.46)

with �−1
0 , �−1

1 uniformly bounded. The value of θt is taken at (X,Y, t), with

(7.47) |X| � Cε0, |Y| � Cε0.

On the other hand, we have, in Section 4.1, normalized the parameter in order to have

(7.48) θt(0,0, t)≡ 1.

We, therefore, have

(7.49) |θt(X,Y, t)− 1| � Cε0.

In (7.45) and (7.46), we have |A1,y|< Cε0, |B0,x|< Cε0, by (R4) and |A1,t|< ε
1
2
0 , |B0,t|<

ε
1
2
0 by Proposition 17. The Corollary follows, as θx, θy, Ys,t , Xu,t are uniformly bounded. �

Corollary 9. — Let (P0,Q0, n0), (P1,Q1, n1) be elements of RN(I) with Q0 ⊂ Qu,

P1 ⊂ Ps. Assume that Q0 and P1 are I-special and that Q0 �I P1 holds. Then, we have

max
I
δLR(Q0,P1)� 2 min

I
δLR(Q0,P1).

Proof. — Indeed, by condition (T1) of Section 5.4, we have minI δLR(Q0,P1)� 2|I|
and by Corollary 8 above, we have maxI δLR(Q0,P1)− minI δLR(Q0,P1) < 2|I|. �

We will have a more general version of this statement in the next Subsection
(Proposition 19).
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7.7. Variation of width of special rectangles. — Our main purpose now is to prove prop-
erty (R7) of Section 5.4:

(R7) If (P0,Q0, n0), (P1,Q1, n1) ∈ R(I) satisfy Q0 ⊂ Qu, P1 ⊂ Ps and Q0 �I P1 holds,
then, for all t ∈ I, we have

δ(Q0,P1)� C−1
(

|P1|1−η + |Q0|1−η
)

.

A priori, the transversality condition gives some control through (T2), (T3) in Section 5.4
only for some values of the parameter. However, from Corollary 9 above, we know that the
order of magnitude of δ(Q0,P1) is the same through I, at least when Q0,P1 are I-special
and Q0 �I P1 holds. Therefore, to obtain (R7), we do need to control how the widths |P1|
and |Q0| vary through I. Good estimates will be obtained when Q0,P1 are I-special, and
this will turn out to be sufficient due to Proposition 11 in Section 6.6.1.

Proposition 18. — Let (P,Q, n) be an element of RN(I) with P ⊂ Ps, (A,B) be the associ-

ated implicit representation. If P is I-special, we have, for all t, y, x

|∂t log |Ax|| � C
log |P|

|I| log |I| ,(7.50)

|Ayt| � C.(7.51)

Obviously, there is a similar statement exchanging P and Q, A and B, x and y.

Proof. — When (P,Q, n) ∈ R(I0), n and | log |P|| are of the same order; as
|I|| log |I|| is always smaller than ε0 log ε−1

0 , the estimates in Proposition 16 of Section 7.4
imply the inequalities above.

We will now assume that the level of I is > 0. Let˜I be the parent of I. If (P,Q, n) ∈
R(˜I), P is also˜I-special (cf. Section 6.6.1) and |I|| log |I|| < |˜I|| log |˜I||. Therefore the
estimates of the proposition follow from the induction hypothesis.

We now assume that (P,Q, n) /∈ R(˜I). We apply the structure theorem in Sec-
tion 6.5: let k � 1 and (Pi,Qi, ni), 0 � i � k, be the elements of R(˜I) given by the state-
ment of the theorem. We also denote, for 0 � i � k, by (P(i),Q(i), n(i)) the element of R(˜I)
such that P ⊂ P(i) and

(7.52) (P(i),Q(i), n(i)) ∈ (P0,Q0, n0) � · · ·� (Pi,Qi, ni).

We have (P(k),Q(k), n(k))= (P,Q, n). As P is I-special, P0 is˜I-critical, hence P(i) is I-special
for 0 � i � k. Moreover, for 0 � i < k, Qi,Pi+1 are˜I-critical, hence Q(i),Pi+1 are I-special.

Let (A(i),B(i)), (Ai,Bi) be the implicit representations associated to (P(i),Q(i), n(i)),
(Pi,Qi, ni). The estimates (A.103), (A.104) in Appendix A.4 give, with δ = δ(Q(i),Pi+1)

|∂t log |A(i+1)
x | − ∂t log |A(i)x ||

� C(δ−1 + δ− 1
2 (|B(i)xt | + |Ai+1,yt|)+ |∂t log |Ai+1,x||),(7.53)
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|A(i+1)
yt − A(i)yt | � Cδ− 1

2 |P(i)|(1 + |Q(i)|K),(7.54)

with

(7.55) K = δ−1 + δ− 1
2 (|B(i)xt | + |Ai+1,yt|)+ |∂t log |A(i)x || + |∂t log |B(i)y ||.

Assume, by the induction hypothesis, that we have

|B(i)xt | � C0,(7.56)

|Ai+1,yt| � C0,(7.57)

|∂t log |Ai+1,x|| � C0
log |Pi+1|
|˜I| log |˜I| ,(7.58)

|∂t log |A(i)x || � C0
log |P(i)|
|I| log |I| ,(7.59)

|∂t log |B(i)y || � C0
log |Q(i)|
|I| log |I| .(7.60)

Here C0 is large but independent of ε0. This means that the term δ− 1
2 (|B(i)xt |+ |Ai+1,yt|) in

(7.53) and (7.55) is dominated by δ−1. As |I| = |˜I|1+τ , in order to prove (7.50) by induction,
we need to have, in view of (7.53):

(7.61) C|I|| log |I||δ−1 + CC0|˜I|τ | log |Pi+1|| + C0| log |P(i)|| � C0| log |P(i+1)||.
We have here δ � |I| from Lemma 3 in Section 6.6.3 and, by (3.27):

(7.62) | log |P(i+1)|| � | log |P(i)|| + | log |Pi+1|| − 1
2
| log |I|| − C.

Therefore, (7.61) will hold as far as

(7.63)
(C0

2
+ C

)

| log |I|| + C0C � C0(1 − C|˜I|τ )| log |Pi+1||.

From (R7) for RN−1(I), we know that |Pi+1| is much smaller than δ. On the other hand, as
Qi and Pi+1 are not˜I-transverse, by Proposition 3 in Section 5.6.1, δLR(Qi,Pi+1) (which is
larger than δ) is smaller than 2|˜I| for some t ∈˜I; it then follows from Corollary 8 in the last
subsection applied to Qi,Pi+1 (which are˜I-critical, hence˜I-special), that δLR(Qi,Pi+1),
and thus also δ, stay smaller than C|˜I| for all t ∈˜I. We therefore have

(7.64) | log |Pi+1|| � log |˜I| = (1 + τ) log |I|,
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from which (7.63) follows if we take C0 � 3C (provided ε0 is small enough). This com-
pletes the proof of the induction step for (7.50).

To prove (7.51), we estimate the right-hand side of (7.54). From Corollary 5 in
Section 6.6.3, we have

(7.65) |P(i)| � Ci|˜I|β(i+1)− (1+τ )i
2 .

From (R7) for RN−1(I), we know that |Q(i)| is much smaller than δ. We have seen
above that |I|< δ <C|˜I|.

This gives, as β > 1

δ
− 1

2 |P(i)| � |˜I|(i+1)β/2,(7.66)

δ
− 3

2 |P(i)||Q(i)| � |˜I|(i+1)β/2,(7.67)

δ
− 1

2 |P(i)||Q(i)||∂t log |A(i)x || � |˜I|(i+1)β/2,(7.68)

δ
− 1

2 |P(i)||Q(i)||∂t log |B(i)y || � |˜I|(i+1)β/2.(7.69)

This leads to:

(7.70) |A(i+1)
yt − A(i)yt | � C|˜I|β/2(i+1).

We can now sum over i and then over the different levels of parameter intervals to obtain
(7.51). The proof of Proposition 18 is complete. �

Proof of Property (R7). — Let (P0,Q0, n0), (P1,Q1, n1) be elements of RN(I) such
that Q0 ⊂ Qu, P1 ⊂ Ps and Q0 �I P1 holds.

If̂I ⊃ I, (̂P0,̂Q0, n̂0), (̂P1,̂Q1, n̂1) ∈ RN(̂I) satisfy Q0 ⊂ ̂Q0 ⊂ Qu, P1 ⊂̂P1 ⊂ Ps,
and the inequality in (R7) is satisfied for̂I,̂Q0,̂P1 then it is also satisfied for I,Q0,P1.

We can therefore assume that I,Q0,P1 are maximal with the property Q0 �I P1.
From Proposition 11 in Section 6.6.1, Q0,P1 are then I-special.

The maximality property implies that Q0 �I P1 holds. Then, from Corollary 9 in
Section 7.6, we have

(7.71) max
I
δLR(Q0,P1)� 2 min

I
δLR(Q0,P1).

We have also minI δLR(Q0,P1)� 2|I| from (T1) for Q0 �I P1.
From Proposition 18, we have either maxI |Q0|< |I|2 or maxI |Q0| � C minI |Q0|,

and similarly for P1. It then follows from (T2), (T3) for Q0 �I P1 that, for all t ∈ I

δ(Q0,P1)� C−1(|Q0|1−η + |P1|1−η)

for all t ∈ I.
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The proof of property (R7) is complete. �

Once (R7) has been obtained, we have a stronger form of Corollary 9 in Sec-
tion 7.6:

Proposition 19. — Let (P0,Q0, n0), (P1,Q1, n1) be elements of RN(I) with Q0 ⊂ Qu,

P1 ⊂ Ps. Assume that Q0 �I P1 holds. Then, we have

max
I
δLR(Q0,P1)� 3 min

I
δ(Q0,P1).

Proof. — If̂I ⊃ I, (̂P0,̂Q0, n̂0), (̂P1,̂Q1, n̂1) ∈ RN(̂I) satisfy Q0 ⊂ ̂Q0 ⊂ Qu, P1 ⊂
̂P1 ⊂ Ps, and the inequality in the Proposition is satisfied for̂I,̂Q0,̂P1 then it is also satis-
fied for I,Q0,P1.

We can therefore assume that I,Q0,P1 are maximal with the property Q0 �I P1.
From Proposition 11 in Section 6.6.1, Q0,P1 are then I-special. The maximality property
also implies that Q0 �I P1 holds. By Corollary 9 and (R7), we have then

max
I
δLR(Q0,P1)� 2 min

I
δLR(Q0,P1)

� 2 min
I
(δ(Q0,P1)+ C|Q0| + C|P1|)

� 3 min
I
δ(Q0,P1). �

The existence and properties of the classes R(I), for a candidate parameter interval
I are now fully justified and the proof of the theorem in Section 5.4 is complete. What
we do not know at this moment is whether there exists, besides I0, any regular parameter
interval at all! This will be the subject of Section 9. Before, we develop in the next section
some results that will turn out to be essential in Sections 9, 10 and 11.

8. Number of children and dimension estimates

In this section (except in Section 8.4), we fix a candidate parameter interval I (in
particular, the parent interval˜I is always assumed to be β-regular) and obtain some prop-
erties of the class R(I) which will be important in Sections 9 and 10.

In Section 8.1, we collect some results that could have been proved earlier, but
whose proof was deferred because the results were not necessary for the construction of
the class R(I).

In Section 8.2, we establish some bounds on the number of children of a given
rectangle which will be useful both in Sections 8.3, 8.4 and in Sections 9, 10 and 11.

In Section 8.3, we prove that, in some appropriate sense, the transverse stable and
unstable “dimensions” of the class R(I) are very close to those of R(I0).

Finally, in Section 8.4, we establish an estimate in parameter space which will be
essential in Section 9.
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8.1. Further criteria for transversality. — The following results are useful variants of
Proposition 10 in Section 6.4.

Proposition 20. — Let (P0,Q0, n0), (P1,Q1, n1), (P′
1,Q

′
1, n

′
1) be elements of R(I) such

that Q0 ⊂ Qu, P1 ⊂ P′
1 ⊂ Ps. If P′

1 is I-transverse and Q0 �I P1 holds, then Q0 �I P′
1 also holds.

There is a symmetric statement exchanging P’s and Q’s.

Proof. — There exists an I-decomposition (Pα,Qα, nα) of Qu such that, for any α,
Qα and P′

1 are either I-transverse or I-separated. There exists α such that Qα and Q0 do
intersect. As Q0 �I P1 holds, Qα and P′

1 must be I-transverse. If Qα ⊃ Q0, it follows from
Proposition 2 that Q0 and P′

1 are I-transverse. If Qα ⊂ Q0, the same conclusion follows
from concavity. �

Proposition 21. — Let (P0,Q0, n0), (P1,Q1, n1), (P′
1,Q

′
1, n

′
1) be elements of R(I) such

that Q0 ⊂ Qu, P1 ⊂ P′
1 ⊂ Ps. Assume that Q0 �I P1 holds and that |P′

1| � 1
2 |Q0| for all t ∈ I.

Then Q0 and P′
1 are also I-transverse.

Again, here is a symmetric statement exchanging P’s and Q’s.

Proof. — This follows closely the proof of Proposition 10. By definition of the
transversality relation, there exist˜I ⊃ I, (˜P0,˜Q0, ñ0), (˜P1,˜Q1, ñ1) ∈ R(˜I) such that Q0 ⊂
˜Q0, P1 ⊂˜P1 and ˜Q0 �

˜I
˜P1.

If P′
1 ⊂˜P1 this already implies that Q0 �I P′

1. Let us assume that˜P1 ⊂ P′
1. We will

show that ˜Q0 �
˜I P′

1 holds. By coherence (Proposition 8), we have (P′
1,Q

′
1, n

′
1) ∈ R(˜I).

Let us check (T1)–(T3).
By (T1) for Q0 �I P1 and (3.49) in Section 3.5, we have, for all t ∈˜I:

(8.1) δLR(˜Q0,P′
1)� δLR(˜Q0,˜P1)� 2|˜I|.

By (T2) for Q0 �I P1 and (3.47), there exists t0 ∈˜I such that

(8.2) δR(˜Q0,P′
1)� δR(˜Q0,˜P1)� 2|˜Q0|1−η.

Finally, for this same value t0, we have

δL(˜Q0,P′
1)� δR(˜Q0,P′

1)− C|P′
1|

� 2|Q0|1−η − C|P′
1|

� 2(2|P′
1|)1−η − C|P′

1|
� 2|P′

1|1−η,(8.3)

if ε0 is small enough. This proves that ˜Q0 �
˜I P′

1 holds and thus also Q0 �I P′
1 holds. �
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Corollary 10. — Let (P1,Q1, n1) ∈ R(I). Assume that P1 is I-critical. Then there exists

(P0,Q0, n0) ∈ R(I) such that Q0 and P1 are I-critically related and |Q0|<max(|I|β,2|P1|) for

some t ∈ I.

Proof. — Let (P,Q, n) ∈ R(I) such that Q and P1 are I-critically related and |Q| �
2|P1| for all t ∈ I. We claim that Q is I-critical. Indeed, assume on the contrary that Q is
I-transverse. Let (Pi,Qi, ni) be an I-decomposition of Ps such that, for each i, Q is either
I-separated from Pi or I-transverse to Pi. If P1 is contained in some Pi , Q is I-separated
from P1 if it is I-separated from Pi , and I-transverse to P1 if it is I-transverse to Pi . If
P1 contains some Pi such that Q is I-transverse to Pi, then Q is I-transverse to P1 by
the proposition above. The remaining case is where the Pi contained in P1 form an I-
decomposition of P1 and Q is I-separated from each of them; then Q is I-separated from
P1. In all cases, we get a contradiction. This proves the claim.

Consider now the following inductively constructed sequence of I-decompositions
of Qu, starting with the canonical one by children of Qu. We stop the process when one
element (Pα,Qα, nα) at least in the decomposition is such that Qα �I P1 does not hold and
|Qα|<max(|I|β,2|P1|) for some t ∈ I: it satisfies then the conclusion of the Corollary.

To go from one I-decomposition to the next one, we keep those (Pα,Qα, nα) such
that Qα is I-transverse to P1, or I-separated from P1. Because P1 is I-critical, there are
other elements (Pα,Qα, nα) in the decomposition, which are I-critically related to P1 and
satisfy |Qα| � max(|I|β,2|P1|) for all t ∈ I by assumption. The claim above shows that
Qα is I-critical and therefore I-decomposable (Corollary 3 in Section 5.6.5). We replace
such a Qα by its children.

It is clear that the process has to stop, and the proof of the Corollary is complete. �

Proposition 22. — Let I′ ⊃ I be a parameter interval and let (P0,Q0, n0), (P1,Q1, n1)

be elements of R(I′) such that Q0 ⊂ Qu, P1 ⊂ Ps. Assume that Q0 �I P1 holds and that we have

2|I′|< |P1|1−η, for all t ∈ I′. Then Q0 and P1 are also I′-transverse.

Again, there is a symmetric statement exchanging P’s and Q’s.

Proof. — Let (̂P0,̂Q0, n̂0), (̂P1,̂Q1, n̂1) ∈ R(I′) satisfy Q0 ⊂ ̂Q0 ⊂ Qu, P1 ⊂̂P1 ⊂ Ps;
then 2|I′|< |̂P1|1−η for all t ∈ I′, and if ̂Q0 and̂P1 are I′-transverse, then Q0 and P1 are
I′-transverse.

It is therefore sufficient to consider the case where Q0,P1, I are maximal with the
properties Q0 �I P1, I ⊂ I′.

If I = I′, we are done. We therefore assume that I is strictly smaller than I′. In
this case, by Proposition 11 in Section 6.6.1, Q0 and P1 are I-special. Maximality also
guarantees that Q0 �I P1.

We show that Q0 �I′ P1. Properties (T2), (T3) for Q0 �I P1 imply the same for
Q0 �I′ P1.
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For the value t1 given by (T3), we have

(8.4) δLR(Q0,P1)� δL(Q0,P1)� 2|P1|1−η � 4|I′|.
By Corollary 8 in Section 7.6, this implies

δLR(Q0,P1)� 2|I′|, ∀t ∈ I′,

which is (T1) for Q0 �I′ P1. This contradicts the maximality of I and proves the proposi-
tion. �

8.2. Estimates on the number of children. — We start with some preliminary results.

Proposition 23. — Let I′ ⊃ I be a parameter interval, and let (˜P,˜Q, ñ) be an element of R(I′).
We assume that ˜Q is I′-transverse. Then, any element (P,Q, n) in R(I) such that P is a child of˜P is

already an element of R(I′).

Proof. — We can assume that P is a non-simple child. Then (P,Q, n) is obtained
by parabolic composition in R(I) of (˜P,˜Q, ñ) with some (P1,Q1, n1) ∈ R(I). As ˜Q is
I′-transverse, there exists an I′-decomposition (Pα,Qα, nα) of Ps such that each Pα is
I′-separated or I′-transverse with ˜Q. Let α0 be such that Pα0 and P1 intersect. Then,
˜Q�I′ Pα0 holds, and also ˜Q�I P1; if we had P1 � Pα0 , this would imply that ˜Q is I-
transverse to the parent ˜P1 of P1 and P would not be a child of ˜P. Therefore, we must
have Pα0 ⊂ P1. By coherence (Proposition 8), we have that (P1,Q1, n1) ∈ R(I′). By con-
cavity (Proposition 9), from ˜Q�I P1 and ˜Q�I′ Pα0 , we deduce that ˜Q�I′ P1 also holds and
(P,Q, n) ∈ R(I′). �

Proposition 24. — Let I0 ⊃ I1 ⊃ I be the largest parameter interval such that

(8.5) |I1|β <
(1

2
|I|
)

1
1−η
.

Let (˜P,˜Q, ñ), (P,Q, n) be elements of R(I) such that P is a non-simple child of˜P. Let (P1,Q1, n1),

(˜P1,˜Q1, ñ1) be the elements of R(I) such that

(P,Q, n) ∈ (˜P,˜Q, ñ) � (P1,Q1, n1)

and˜P1 is the parent of P1.

Then, (P1,Q1, n1) belongs to R(I1),˜P1 is I-critical, ˜Q1 is I1-transverse and we have

(8.6) 2|˜P1|1−η > |I|
for all t ∈ I.
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Remark 9. — As parabolic composition is possible, we have I �= I0; then, as β >
(1 − η)−1, we must have I1 � I and I1 is β-regular.

Proof. — As P is a child of˜P, ˜Q�I˜P1 does not hold. Then, it follows from Propo-
sition 19 above that ˜P1 is I-critical, and from Proposition 11 that (8.6) holds. Then, by
definition of I1, we have:

(8.7) |˜P1|> |I1|β

for all t ∈ I. Let us show that (˜P1,˜Q1, ñ1) belongs to R(I1). Otherwise, there would exist
I2 ⊃ I, with parent interval˜I2 ⊂ I1, such that (˜P1,˜Q1, ñ1) belongs to R(I2) but not to
R(˜I2). Then, we would have from Corollary 5 in Section 6.6.3 (as˜P1 is I-critical, hence
I2-special) that |˜P1|< |I2|β+1/3 for all t ∈ I2, in contradiction to (8.7).

Therefore, (˜P1,˜Q1, ñ1) belongs to R(I1). As I1 � I, I1 is β-regular; (˜P1,˜Q1, ñ1)

cannot be I1-bicritical in view of (8.7); ˜P1 is I1-critical and hence ˜Q1 is I1-transverse.
Proposition 23 then shows that (P1,Q1, n1) ∈ R(I1). �

Corollary 11. — Assume that the level of I is > 0, and let˜I be the parent interval of I. Let

(˜P,˜Q, ñ) be an element of R(˜I), such that |˜Q|1−η > 2|I| for all t ∈˜I. Then all children of ˜P in

R(I) belong already to R(˜I).

Proof. — Indeed, let (P,Q, n) ∈ R(I) such that P is a child of˜P. We can assume that
P is a non-simple child. Let I1, (P1,Q1, n1), (˜P1,˜Q1, ñ1) ∈ R(I1) be as in Proposition 24.
We have I1 ⊃˜I. As ˜Q�I P1, we can apply Proposition 21 in Section 8.1 to obtain that
˜Q�

˜I P1 holds and (P,Q, n) ∈ R(˜I). �

Corollary 12. — Let (˜P,˜Q, ñ) be an element of R(I). The number of (P,Q, n) ∈ R(I) such

that P is a child of˜P is finite.

Proof. — We argue by induction on the level of the parameter interval I.
If I is the starting interval I0,˜P has only simple children and the assertion is obvious.

Assume that I � I0. The number of simple children is finite, and we have to show that the
same is true for the number of non-simple children. For every non-simple child P of˜P, let
I1, (P1,Q1, n1), (˜P1,˜Q1, ñ1) ∈ R(I1) be as in Proposition 24. By the induction hypothesis,
there is for each fixed˜P1 only a finite number of possibilities for P1. On the other hand,
in view of relation (8.6), there are obviously only a finite number of possibilities for ˜P1.
The induction step is complete, and this completes the proof. �

We want to make the finiteness assertion quantitative, and will do that in two dis-
tinct ways. In each case, we have to estimate in the proof of Corollary 12 the number of
possibilities for˜P1, and the number of possibilities for P1 once˜P1 is fixed.
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Proposition 25. — Let (˜P,˜Q, ñ) be an element of R(I). The number of (P,Q, n) ∈ R(I)
such that P is a child of˜P is at most |I|−cη.

The constant c, as the other constants denoted by C, and the content c′ in the next
proposition, depends only on the initial diffeomorphism f , not on τ � η� ε0.

Proof. — We argue again by induction on the level of I, following the proof of
Corollary 12. The notations are those of Proposition 24. When I = I0, the number of
(simple) children is at most the number of rectangles in the Markov partition, which is
much smaller than ε−cη

0 when ε0 is small enough.
When I �= I0, the number of possibilities for P1 when˜P1 is fixed in at most |I1|−cη

by the induction hypothesis. We have to estimate the number of possibilities for ˜P1. We
know that ˜Q�I˜P1 does not hold, but ˜Q�I P1 holds.

As ˜P1 is I-critical, it is I-special. We have from (8.6) and Proposition 18 in Sec-
tion 7.7

(8.8) max
I

|˜P1| � C min
I

|˜P1|.

From Proposition 19 in Section 7.7, we have also, using (8.8)

(8.9) max
I
δ(˜Q,˜P1) <max

I
δ(˜Q,P1)� C min

I
δ(˜Q,P1) <C min

I
(δ(˜Q,˜P1)+ |˜P1|).

Lemma 4. — We have for all t ∈ I

(8.10) δ(˜Q,˜P1)� C|˜P1|1−η.

Proof. — As ˜Q�I˜P1 does not hold, at least one of the following three properties
must be true:

δLR(˜Q,˜P1) < 2|I| for some t0 ∈ I;(8.11)

δR(˜Q,˜P1) < 2|˜Q|1−η for all t ∈ I;(8.12)

δL(˜Q,˜P1) < 2|˜P1|1−η for all t ∈ I.(8.13)

If (8.13) holds, we are done.
If (8.12) holds, we argue as follows. As ˜Q�I P1 holds but ˜Q�I˜P1 does not hold, it

follows from Proposition 20 in Section 8.1 that |˜P1|> 1
2 |˜Q| for some t0 ∈ I. Then, from

(8.8) and (8.9), we have

max
I
δ(˜Q,˜P1)� C min

I
(δ(˜Q,˜P1)+ |˜P1|)� C min

I
(|˜Q|1−η + |˜P1|)

� C max
I

|˜P1|1−η � C min
I

|˜P1|1−η.
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Finally, assume that (8.11) holds. As ˜Q�I P1 holds but ˜Q�I˜P1 does not hold, it
follows from Proposition 9 in Section 6.4 that 2|˜P1|1−η > |I| for all t ∈ I. Then, from (8.8)
and (8.9), we have

max
I
δ(˜Q,˜P1)� C min

I
(δ(˜Q,˜P1)+ |˜P1|)� C(|I| + max

I
|˜P1|)

� C max
I

|˜P1|1−η � C min
I

|˜P1|1−η. �

We are now able to estimate the number of possibilities for˜P1 and show that this
number is at most

(8.14) C|I|−
η

1−η .

This indeed follows from (8.9), (8.6) and the fact that if two distinct ˜P1 are not disjoint,
the ratio of their widths is bounded away from 1 (so the˜P1 at a given scale are disjoint;
one then sums over scales). The total number of children is thus bounded by

(8.15) C + 2C|I|−
η

1−η |I1|−cη,

where I1 was the largest parameter interval satisfying

(8.16) |I1|β <
(1

2
|I|
)

1
1−η
.

If |I| > 2εβ(1−η)
0 , we have I1 = I0; in this case, the term |I1|−cη in (8.15) is unnecessary

because˜P1 has only simple children. If |I| � 2εβ(1−η)
0 , we have

(8.17) |I1|β(1+τ)−1 �
(1

2
|I|
)

1
1−η

and the term in (8.15) is bounded by |I|−cη provided that ε0 is small enough and

(8.18) cη >
η

1 − η + cη
1 + τ
1 − ηβ

−1.

As η, τ are very small, any choice of c > β

β−1 yields (8.18). Then, as c > 1, such a choice

is also convenient when |I|> 2εβ(1−η)
0 , and this concludes the proof of Proposition 25. �

In Proposition 25, we have estimated the total number of children in terms of the
level of the parameter interval.

In the next proposition, we are interested, not in the total number of children, but
in the number of children of a given width. The estimate is independent on the level of
the parameter interval.
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Proposition 26. — Let (˜P,˜Q, ñ) be an element of R(I). For any ε > 0, the number of elements

(P,Q, n) ∈ R(I) such that P is a non-simple child of ˜P satisfying |P| � ε|˜P| for some t ∈ I, is at

most ε−c′η.

Proof. — Let ε > 0, and let (P,Q, n) be an element of R(I) such that P is a non-
simple child of˜P. We assume, for some t0 ∈ I, that:

(8.19) |P| � ε|˜P|.
Let (P1,Q1, n1), (˜P1,˜Q1, ñ1) ∈ R(I) be as in Proposition 24. From (3.27), we have, for all
t ∈ I:

(8.20) |P| � C|˜P||P1|δ(˜Q,P1)
− 1

2 .

Property (R7) guarantees that, for all t ∈ I

(8.21) δ(˜Q,P1)� C−1|P1|1−η.

Combining (8.19), (8.20), (8.21), we have, for some t0 ∈ I

(8.22) δ(˜Q,P1)� C−1ε
2

1−η
1+η .

As we always have

(8.23) δ(˜Q,P1)� Cε0,

there is no non-simple child satisfying (8.19) unless ε < ε
1
2
0 ; we will assume that this holds

in the sequel.
From Lemma 4 above, we have, for all t ∈ I:

(8.24) δ(˜Q,˜P1)� C|˜P1|1−η,

and thus, from (3.36), also

δ(˜Q,P1)� δR(˜Q,˜P1)

� δ(˜Q,˜P1)+ C|˜P1|
� C|˜P1|1−η.(8.25)

Combining (8.22) and (8.25), we get, for some t0 ∈ I

(8.26) |˜P1| � C−1ε
2

1+η ,

an inequality which actually holds for all t ∈ I in view of (8.8).
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As in the proof of Proposition 25, the number of (˜P1,˜Q1, ñ1) for which both (8.25),
(8.26) hold is easily seen to be at most

(8.27) Cε
− 2η

1+η .

To estimate the number of P1 for a given˜P1, we will apply Proposition 25 in an appro-
priate way.

Define a parameter interval̂I ⊃ I as follows. If |I|β � ε2, let̂I = I. If |I|β < ε2, let
̂I ⊃ I be the largest parameter interval such that |̂I|β < ε2. We have thus in any case

(8.28) |̂I| � min(ε0, ε
2(1+τ )
β ).

As˜P1 is I-critical, hence I-special, it follows from (8.26) and Corollary 6 in Section 6.6.3
that (˜P1,˜Q1, ñ1) belongs to R(̂I). Moreover, when̂I �= I, we have |˜P1|> |̂I|β for all t ∈ I
from (8.26) and the definition of̂I. Therefore, (˜P1,˜Q1, ñ1) cannot bêI-bicritical. As˜P1 is
̂I-critical, ˜Q1 iŝI-transverse and we conclude from Proposition 23 that (P1,Q1, n1) also
belongs to R(̂I). The same is also obviously true when̂I = I.

We apply Proposition 25: for each fixed (˜P1,˜Q1, ñ1), the number of children P1 is
at most |̂I|−cη.

From (8.28), we have, for some appropriate c0

(8.29) |̂I|−cη � ε−c0η.

Combining this with the previous estimate in (8.27) for the number of possibilities for˜P1

gives therefore the required estimate. �

8.3. A dimension estimate. — The goal of this subsection is to obtain a bound on
the number of elements (P,Q, n) in R(I) with width |P| bounded from below. This is a
first step towards estimating the transverse dimension of the stable set Ws(�), which is
necessary in order to achieve our parameter selection in Section 9.

Let I be a parameter interval, and let (P∗,Q∗, n∗) be an element of R(I). We
introduce, in the spirit of Laplace, Dirichlet and Poincaré, the series

(8.30) �(P∗, I, s)=
∑

max
I

|P|s,
where the sum runs over elements (P,Q, n) ∈ R(I) such that P ⊂ P∗. Here s is a complex
variable and the series is at first a formal object, but we will soon see that it is uniformly
convergent in a half-plane {Re s > σ0}. The goal of this subsection is to obtain a nice
estimate for σ0 and for � in this half-plane.

The dependence of the estimate on P∗ is also quite straightforward, through the
simple scaling factor maxI |P∗|s.

Let us recall that we denote by d0
s the transverse Hausdorff dimension of the stable

foliation Ws(K) of the horseshoe K for the value 0 of the parameter. Let us also denote



76 JACOB PALIS AND JEAN-CHRISTOPHE YOCCOZ

by dt
s the transverse Hausdorff dimension of the stable foliation Ws(Kgt

) for the value
t of the parameter. It is well-known that dt

s depends smoothly on the parameter. The
transverse Hausdorff dimension controls in a precise way the number of cylinders (for the
Markov partition) of a given size; more precisely, as these cylinders correspond exactly
to the elements of R(I0), we know that, for any t ∈ I0 and all ε > 0 the number of
(P,Q, n) ∈ R(I0) such that |P| � ε is exactly of the order of ε−dt

s .
Let us say that P (with (P,Q, n) ∈ R(I)) is a simple descendant of P∗ if (P,Q, n) is

the simple composition of (P∗,Q∗, n∗) by an element of R(I0). Consider the series

(8.31) �0(P∗, s)=
∑

max
I

|P|s,

where the sum runs over simple descendants of P∗. By what we have just recalled, for any
t ∈ I0, the series converge in a half-plane {Re s> d0

s +Cε0} and satisfies, for s � d0
s +2Cε0

(8.32) |�0(P∗, s)|<C max
I

|P∗|s(Re s − d0
s )

−1.

For �(P∗, I, s) with a parameter interval I �= I0, we have to allow a slightly larger
margin with relation to the initial value d0

s .

Proposition 27. — Let (P∗,Q∗, n∗) ∈ R(I). The series �(P∗, I, s) is uniformly convergent

in the half-plane {Re s � d0
s + ε 1

3 d0
s

0 } and we have, for s � d0
s + ε 1

5 d0
s

0

|�(P∗, I, s)−�0(P∗, s) | � max
I

|P∗|sε 1
20 d0

s

0 .

Proof. — Let (P,Q, n) be an element of R(I) with P ⊂ P∗. Consider the interme-
diary rectangles

P∗ = P(0)⊂ P(1)⊂ · · · ⊂ P(�)= P

with P(i) the parent of P(i + 1). Let

(8.33) �0 < �1 < · · ·< �k−1

be the indices such that P(�j + 1) is a non-simple child of P(�j). Obviously, P is a simple
descendant of P∗ iff k = 0.

We also define for 0 � j � k elements (P(j),Q(j), n(j)) ∈ R(I0) by the following prop-
erties

(P(�0),Q(�0), n(�0))= (P(0),Q(0), n(0)) ∗ (P(0),Q(0), n(0)),(8.34)

(P(�j),Q(�j), n(�j))= (P(�j−1 + 1),Q(�j−1 + 1), n(�j−1 + 1))

∗ (P(j),Q(j), n(j)),(8.35)
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(P,Q, n)= (P(�k−1 + 1),Q(�k−1 + 1), n(�k−1 + 1))

∗ (P(k),Q(k), n(k)).(8.36)

We now estimate the widths from (3.12), for all t ∈ I:

|P(�0)| � C|P∗||P(0)|,(8.37)

|P(�j)| � C|P(�j−1 + 1)||P(j)|,(8.38)

|P| � C|P(�k−1 + 1)||P(k)|.(8.39)

From (3.27) and property (R7), we also have:

(8.40) |P(�j + 1)|< ε 1
2
0 |P(�j)|.

Define mj for 0 � j < k to be the largest integer such that, for all t ∈ I

(8.41) |P(�j + 1)| � 2−mjε
1
2
0 |P(�j)|.

From Proposition 26, for each fixed P(�j), the number of non-simple children P(�j + 1)
satisfying (8.41) is at most

(8.42)
(

2mj+1ε
− 1

2
0

)c′η
.

Combining (8.37), (8.38), (8.39) and (8.41), we also have

(8.43) max
I

|P| � Ck+1 max
I

|P∗|
( k
∏

0

max
I

|P(j)|
)

ε
k
2
0 2−�k−1

0 mj ,

with the usual convention that �k−1
0 mj = 0 when k = 0.

We will take this to the power s and sum over P. We introduce (corresponding to
the term |P(j)|s)

�0(s) :=
∑

(̂P,̂Q,̂n)∈R(I0)

max
I

|̂P|s

=
∑

a
�(Ra, I, s),(8.44)

and also

(8.45) θ(s) :=
∑

m�0

(Cε
1
2
0 2−m)s(2m+1ε

− 1
2

0 )c
′η.

The function �0 is controlled by (8.32), while θ satisfies

(8.46) θ(s)= 2c′ηCsε
1
2 (s−c′η)
0

(

1 − 2−(s−c′η))−1
,
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and therefore, for C−1 < s<C:

(8.47) C−1ε
1
2 (s−c′η)
0 � θ(s)� Cε

1
2 (s−c′η)
0 .

From (8.32), we have, for s> d0
s + 2Cε0:

(8.48) �0(s)� C(s − d0
s )

−1.

In particular, for s � d0
s + ε1/3d0

s

0 , we have

�0(s)� Cε
− 1

3 d0
s

0 ,(8.49)

�0(s)θ(s)� Cε
1
10 d0

s

0 .(8.50)

But, from (8.43), we have for real s

(8.51) �(P∗, I, s)−�0(P∗, s)� Cs max
I

|P∗|s
∑

k>0

�k+1
0 (s)θ k(s),

and therefore we deduce from (8.50) that the series defining� is uniformly convergent in

the half plane {Re s � d0
s + ε 1

3 d0
s

0 }.
For s> d0

s + ε 1
5 d0

s

0 , we have, from (8.48), (8.47):

�0(s)� Cε
− 1

5 d0
s

0 ,(8.52)

�2
0θ(s)� Cε

1
15 d0

s

0 ,(8.53)

which gives the second part of the proposition. �

Corollary 13. — Let d∗
s = d0

s + ε
1
5 d0

s

0 , (P∗,Q∗, n∗) ∈ R(I), ε > 0. The number of

(P,Q, n) ∈ R(I) with P ⊂ P∗, |P|> ε|P∗| is at most ε−d∗
s .

Proof. — Indeed, the number of simple descendants P with maxI |P|> εmaxI |P∗|
is of order � ε−d0

s +Cε0 , and the number of non-simple ones with maxI |P|> εmaxI |P∗| is
	 ε−d∗

s from the proposition. �

8.4. Transfer to parameter space.

8.4.1. Our goal in this subsection will be to prove the following result, which
expresses a transfer of the dimension estimate of Section 8.2 to parameter space.
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Proposition 28. — Let˜I be a regular parameter interval. Let (P∗,Q∗, n∗) be an element of

R(˜I) such that Q∗ is˜I-critical and

(8.54) |Q∗| � 1
2
|˜I|(1+τ)(1−η)−1

for all t ∈˜I. Then, the number of candidates I ⊂˜I of the next level, such that Q∗ is I-critical, is at most

|˜I|−τd+
s , where d+

s = d0
s + Cητ−1 can be made arbitrarily close to d0

s .

Recall that the total number of candidates is |˜I|−τ . Proposition 28 is the key esti-
mate that will allow us in Section 9 to proceed with the selection process for parameters.
The rest of the section is devoted to the proof of Proposition 28.

8.4.2. We make some general observations, that could have been made much
earlier, but are only useful now.

Let (P,Q, n), (P0,Q0, n0), (P′
0,Q

′
0, n

′
0), be elements of R(I) such that P ⊂ Ps, Q′

0 ⊂
Q0 ⊂ Qu, and P′

0 �= P0. From property (MP7) of the Markov partition (Section 3.4), it is
easy to see that the condition (3.50) of Section 3.6.4 is satisfied. As explained in this
subsection, we have then, for any t ∈ I

δ(Q0,P)+ C−1|Q0| � δ(Q′
0,Ps),(8.55)

δR(Q0,P)+ C−1|Q0| � δR(Q′
0,P),(8.56)

δL(Q0,P)− C−1|Q0| � δL(Q′
0,P),(8.57)

δLR(Q0,P)− C−1|Q0| � δLR(Q′
0,P).(8.58)

Let now (P,Q, n), (P0,Q0, n0), (P1,Q1, n1), be elements of R(I) such that Q ⊂
Qu, P0 ⊂ Ps, P1 ⊂ Ps and P0 ∩ P1 = ∅. From the discussion in Section 3.6.2, we have
either

δR(Q,P0) < δ(Q,P1),
(8.59)

δLR(Q,P0) < δL(Q,P1),

or the same inequalities after exchanging P0 and P1.

Proposition 29. — Assume that (8.59) holds (see Figure 8).

1. If Q and P1 are I-separated, then Q and P0 are I-separated.

2. If Q and P0 are I-transverse, and |P1|1−η � |I| for some t ∈ I, then Q and P1 are I-
transverse.

Proof. — 1. Fix t ∈ I. We will assume that G(Q ∩ Lu) ∩ P1 ∩� is empty and show
that G(Q ∩ Lu)∩ P0 ∩� is also empty.
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FIG. 8. — Proposition 29, part 2

Let γ a vertical-like curve which is the intersection of a decreasing sequence of
simple descendants of P1. The curve γ is contained in Ws(�,̂R)∩ P1.

If γ does not intersect G(Q ∩ Lu), P0 does also not intersect G(Q ∩ Lu) and the
conclusion holds.

On the other hand, if the intersection of γ with G(Q ∩ Lu) is not connected, γ
intersects the image G(γ ′ ∩ Lu), where γ ′ is any intersection of a decreasing sequence of
simple descendants of Q; the intersection would be contained in G(Q ∩ Lu) ∩ P1 ∩�,
which is empty by hypothesis.

Therefore we can assume that the intersection γ0 of γ with G(Q∩Lu) is non empty
and connected. Let O0 be the Jordan domain whose boundary is the union of γ0 and the
arc in the boundary of G(Q ∩ Lu) with the same endpoints than γ0.

The intersection of P0 with G(Q∩Lu) is contained in O0. We will show that O0 ∩�
is empty, which implies that G(Q ∩ Lu)∩ P0 ∩� is empty.

Consider (G ◦ gn)−1(O0) ⊂ P. Part of the boundary of this Jordan domain is an
horizontal segment contained in the boundary of P. The other part of the boundary
is (G ◦ gn)−1(γ0) which does not intersect Wu(�,̂R). In particular, it does not intersect
Ls (in case Ls ∩ P is not empty), and it does not cross any Qa,a′ , (a, a′) ∈ B. Therefore,
either it does not intersect any Qa,a′ at all, in which case we can already conclude that
(G ◦ gn)−1(O0) ∩� is empty, or it intersects a single Qa,a′ . In this last case, there exists a
simple child Q(1) of Q (defined by (Pa,a′,Qa,a′,1) ∗ (P,Q, n)= (P(1),Q(1), n + 1)) with the
following property: let γ1 be the subarc of γ0 defined by γ1 = γ0 ∩ G(Q(1) ∩ Lu), and O1

be the Jordan domain whose boundary is the union of γ1 and the arc in the boundary of
G(Q(1) ∩ Lu) with the same endpoints than γ1; then O0 ∩�= O1 ∩�.

We now apply to Q(1),O1, γ1 the same arguments that we used for Q,O0, γ0.
Either we conclude that O1 ∩� is empty or we find a simple child Q(2) of Q(1), a sub-
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arc γ2 ⊂ γ1 and a Jordan domain O2 whose boundary contains γ2 such that O2 ∩� =
O1 ∩�.

Iterating, either we conclude at some stage that Ol ∩� is empty (and then we have
O0 ∩�= Ol ∩�= ∅), or we construct a decreasing sequence Q(l) of simple descendants
of Q such that γ ∩ G(Q(l) ∩ Lu) is not empty for all l. But this is impossible, because the
intersection γ ′ of the Q(l) is contained in Wu(�,̂R) and the intersection γ ∩ G(γ ′ ∩ Lu)

would be contained in G(Q ∩ Lu)∩ P1 ∩�.
2. Assume now that Q and P0 are I-transverse, and that |P1|1−η � |I| for some t ∈ I.
Let˜I ⊃ I and (˜P,˜Q, ñ), (˜P0,˜Q0, ñ0) ∈ R(˜I) be such that ˜Q ⊃ Q, ˜P0 ⊃ P0 and

˜Q�
˜I
˜P0 holds. If P1 ⊂˜P0, we immediately conclude that Q and P1 are I-transverse. We

assume, therefore, that P1 ∩˜P0 = ∅; replacing (P0,Q0, n0) by (˜P0,˜Q0, ñ0), and (P,Q, n)
by (˜P,˜Q, ñ), we can also assume that (P,Q, n), (P0,Q0, n0) ∈ R(˜I) and Q�

˜I P0 holds.
Let (˜P1,˜Q1, ñ1), be the element of R(˜I) with P1 ⊂˜P1 and smallest˜P1.
We will prove that Q and˜P1 are˜I-transverse. We assume by contradiction that it

is not the case. We have, for all t ∈˜I, that

(8.60) δLR(Q,˜P1) > δLR(Q,P0)� 2|˜I|,
and also for some t0 ∈˜I,
(8.61) δR(Q,˜P1) > δR(Q,P0)� 2|Q|1−η.

Therefore, we must have, for all t ∈˜I, that

(8.62) δL(Q,˜P1) < 2|˜P1|1−η.

We cannot have in this case˜P1 = P1, because, for all t ∈ I,

(8.63) δL(Q,P1) > δLR(Q,P0)� 2|˜I|,
and (8.62), (8.63) together would contradict the hypothesis of the proposition. Therefore,
˜P1 strictly contains P1 and˜I strictly contains I. But, then, applying the structure theorem
of Section 6.5 to the child of˜P1 which contains P1, we obtain that ˜Q1 is˜I-critical. As˜I is
β-regular, it then follows from (8.62), (8.63) and (3.39) that˜P1 is˜I-transverse. This implies
that there exists (P′,Q′, n′) ∈ R(˜I) with Q ∩ Q′ �= ∅ such that Q′ �

˜I
˜P1 holds.

When Q ⊂ Q′, it follows that Q�
˜I
˜P1 holds.

When Q′ ⊂ Q and P0 ⊂˜P1, it follows by concavity from Q′ �
˜I
˜P1 and Q�

˜I P0 that
Q�

˜I
˜P1 holds.

When Q′ ⊂ Q and P0 ∩˜P1 = ∅, we consider a thin simple descendant P∗
1 of˜P1 such

that |P∗
1|1−η < |˜I| for some t1 ∈˜I. We have, as in (8.60), δLR(Q,P∗

1)� 2|˜I| for all t ∈˜I, and,
as in (8.61), δR(Q,P∗

1)� 2|Q|1−η for some t0 ∈˜I. But we have also, at t1 ∈˜I, δL(Q,P∗
1) >

δLR(Q,P0)� 2|˜I|> 2|P∗
1|1−η. Therefore, Q�

˜I P∗
1 holds. We conclude by concavity from

Q′ �
˜I
˜P1 and Q�

˜I P∗
1 that Q�

˜I
˜P1 holds.

We thus obtain a contradiction in all cases. This proves that Q�
˜I
˜P1 holds and thus

also Q�I P1. �
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8.4.3. We now switch back to the setting of Proposition 28.
Let (P,Q, n) ∈ R(˜I) with P ⊂ Ps. We say that P is eventually˜I-transverse to Q∗ if

there exists an˜I-decomposition (Pα,Qα, nα) of P such that Q∗ and Pα are˜I-transverse
for every α. We say that P is eventually˜I-Q∗-critical if it is neither˜I-separated from Q∗ nor
eventually˜I-transverse to Q∗.

Lemma 5. — If P is eventually˜I-transverse to Q∗ and 2|P|1−η � |˜I| holds for some t ∈˜I,
then Q∗ �

˜I P holds.

Proof. — This is an immediate consequence of Proposition 10 in Section 6.4. �

Lemma 6. — If P is eventually˜I-Q∗-critical, then P is˜I-critical.

Proof. — Assume on the contrary that P is˜I-transverse. Let (Pα,Qα, nα) be an
˜I-decomposition of Qu such that, for each α, Qα and P are either ˜I-separated or ˜I-
transverse.

If Q∗ ⊂ Qα for some α, Q∗ and P would be˜I-separated if Qα and P are˜I-separated,
and˜I-transverse if Qα and P are˜I-transverse.

If there exists α such that Qα ⊂ Q∗ and Qα �
˜I P holds, then Q∗ �

˜I P also holds by
Proposition 10 in Section 6.4.

In the remaining case, the Qα ⊂ Q∗ form an˜I-decomposition of Q∗ and they are
all˜I-separated from P; this imply that Q∗ itself is˜I-separated from P.

In all cases, we get a contradiction. The proof of the lemma is complete. �

Lemma 7. — If P is eventually˜I-Q∗-critical and |P|> |˜I|β holds for some t ∈˜I, then some

child of P is also eventually˜I-Q∗-critical.

Proof. — We assume by contradiction that none of the children is eventually˜I-Q∗-
critical.

By Lemma 6 and Corollary 3 (in Section 5.6.5), P is ˜I-critical and thus ˜I-
decomposable. If all children of P were eventually˜I-transverse to Q∗, we would put to-
gether the corresponding˜I-decompositions and obtain that P is eventually˜I-transverse
to Q∗. If all children of P were˜I-separated from Q∗, P would be˜I-separated from Q∗

Therefore some child of P is eventually˜I-transverse to Q∗, and some other child of P is
˜I-separated from Q∗.

We will show that Q∗ is ˜I-transverse. We will construct an ˜I-decomposition
(Pα,Qα, nα) of Ps such that every Pα is either˜I-separated from Q∗ or˜I-transverse to Q∗.

Actually, it is sufficient to have an˜I-decomposition such that every Pα is either
˜I-separated from Q∗ or eventually˜I-transverse to Q∗.

Starting from the trivial decomposition of Ps, we have at step i an˜I-decomposition
(P(i)α ,Q

(i)
α , n

(i)
α ). As long as there is one (P(i)α ,Q

(i)
α , n

(i)
α ) with P ⊂ P(i)α , we observe that P(i)α is

˜I-critical and therefore˜I-decomposable and break it into its children to go to step i + 1.
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After a finite number of steps, each P(i)α is either a child of P or disjoint from P.
The P(i)α which are children of P are either eventually˜I-transverse to Q∗ or˜I-

separated from Q∗ by assumption.
The P(i)α which are disjoint from P may sit on one or the other side of P. On one

side, we apply the first part of Proposition 29 to Q∗, P(i)α and a child of P which is˜I-
separated from Q∗ to conclude that P(i)α is˜I-separated from Q∗.

We claim that those on the other side are eventually˜I-transverse to Q∗. Indeed, let
P(i)α be such a rectangle. If it is˜I-transverse to Q∗, we are done. Assume this is not the case.

Let P
(i)

α be a simple descendant of P(i)α such that |P(i)α |1−η < |˜I| for some t ∈˜I. By Propo-

sition 29 (part 2) applied to˜I,Q∗,P0,P
(i)

α , we have Q∗ �
˜I P

(i)

α . As P(i)α is not˜I-transverse
to Q∗, it must be˜I-critical (by Proposition 20 in Section 8.1), hence˜I-decomposable. We
replace P(i)α by its children and repeat the argument till the rectangles are thin enough to
apply directly Proposition 29 (part 2) to˜I,Q∗,P0,P(i)α .

This proves our claim and the proof of the lemma is complete. �

Lemma 8. — If P0, P1 are eventually˜I-Q∗-critical and disjoint, then we have |P0| � C|˜I|,
|P1| � C|˜I| for all t ∈˜I.

Proof. — Exchanging P0,P1 if necessary, we can assume that (8.59) holds for
Q∗,P0,P1.

From Lemma 7, we can find (̂P0,̂Q0, n̂0), (̂P1,̂Q1, n̂1) in R(˜I) witĥP0 ⊂ P0,̂P1 ⊂
P1, such that botĥP0,̂P1 are eventually˜I-Q∗-critical and we have

(8.64) |̂P0|< |˜I|β, |̂P1|< |˜I|β for all t ∈˜I.
AŝP0 is not˜I-separated from Q∗, we must have

(8.65) δLR(Q∗,̂P0)� 0

for some t0 ∈˜I.
From (8.54) and (8.64), as Q∗ �

˜I
̂P1 does not hold, we must have

(8.66) δLR(Q∗,̂P1) < 2|˜I|
for some t1 ∈ I.

Observe that Q∗ is ˜I-critical by assumption and that P0,P1 are ˜I-critical by
Lemma 6. From Corollary 8 in Section 7.6, it follows that, for i = 0,1

max
˜I
δLR(Q∗,Pi)− min

˜I
δLR(Q∗,Pi)� 2|˜I|,(8.67)

max
˜I
δL(Q∗,Pi)− min

˜I
δL(Q∗,Pi)� 2|˜I|.(8.68)
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From Proposition 18 in Section 7.7, for i = 0,1, we have either |Pi|< |˜I| for all t ∈˜I (the
required conclusion), or

(8.69) max
˜I

|Pi| � min
˜I

|Pi|.

Recall that, by (8.55)–(8.58), we have, for i = 0,1, if Pi �=̂Pi

δLR(Q∗,Pi) > δLR(Q∗,̂Pi)+ C−1|Pi|,(8.70)

δL(Q∗,Pi) < δL(Q∗,̂Pi)− C−1|Pi|(8.71)

for any t ∈˜I.
If P0 =̂P0, we have |P0|< |˜I| by (8.64). If P0 �=̂P0, we have

C−1|P0| � C−1|P0| + δLR(Q∗,̂P0) at t0, from (8.63)

� δLR(Q∗,P0) at t0, from (8.68)

� δL(Q∗,P1) at t0

� δL(Q∗,P1)+ C|˜I| at t1, from (8.65)

� δLR(Q∗,̂P1)+ C|˜I| at t1

� C|˜I| from (8.64).

If P1 =̂P1, we have |P1|< |˜I| by (8.64). If P1 �=̂P1, we have

2|˜I| − C−1|P1| � δLR(Q∗,̂P1)− C−1|P1| at t1, from (8.64)

� δL(Q∗,̂P1)− C−1|P1| at t1

� δL(Q∗,P1) at t1, from (8.69)

� δL(Q∗,P1)− C|˜I| at t0, from (8.65)

� δLR(Q∗,̂P0)− C|˜I| at t0

� −C|˜I| from (8.63).

We have proven the required estimates. �

8.4.4. Consider the set � of elements (P,Q, n) ∈ R(˜I) which are eventually˜I-
Q∗-critical, satisfy

(8.72) |P| � |˜I|1+τ

for all t ∈˜I and are maximal (in P) with respect to these two properties.
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Lemma 9. — We have

#�� |˜I|−τd+
s ,

where d+
s = d0

s + Cητ−1 is as in the statement of Proposition 28.

Proof. — Assume that � is non-empty. From Lemma 8, there exists C0 > 0 and a
unique element (P0,Q0, n0) ∈ R(˜I) with the following properties:

– P ⊂ P0 for all (P,Q, n) ∈�
– |P0|>C0|˜I| for some t ∈˜I
– every child P1 of P0 which contains a rectangle P with (P,Q, n) ∈ � satisfies

|P1| � C0|˜I| for all t ∈˜I.
As P0 is eventually˜I-Q∗-critical, P0 is˜I-critical by Lemma 6.

There are two kind of elements (P,Q, n) ∈�:

– those such that P is a child of P0; the number of such elements is at most |˜I|−cη

by Proposition 25;
– those such that the parent˜P of P is contained in some child P1 of P0.

In this last case, from the definition of � we have

(8.73) |˜P|> |˜I|1+τ for some t ∈˜I.

As P is˜I-critical by Lemma 6, ˜P is also˜I-critical, hence˜I-special and we have, from
Proposition 18 in Section 7.7, that

(8.74) |˜P|>C−1|˜I|1+τ for all t ∈˜I.

Let P1 be a child of P0; we have |P1| � C0|˜I| for all t ∈˜I by the definition of P0. For given
P1, the number of possible ˜P is therefore bounded by C|˜I|−τd∗

s from Corollary 13, with

d∗
s = d0

s + ε 1
5 d0

s

0 .
The number of P for given ˜P, and the number of children P1 of P0, are both

bounded from Proposition 25 by |˜I|−cη. Summing up, the total number of elements of �
is bounded by

|˜I|−cη + |˜I|−2cη(C|˜I|τ )−d∗
s ,

in accordance with the statement of Lemma 9, choosing appropriately the constant in
the definition of d+

s . �
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8.4.5. Proof of Proposition 28. — By Lemma 6 and Corollary 3 (in Section 5.6.5), if
(P,Q, n) ∈ R(˜I) is such that P is eventually˜I-Q∗-critical, and |P| � |˜I|β for some t ∈˜I,
then P is˜I-decomposable.

Therefore, there exists an ˜I-decomposition (Pα,Qα, nα) of Ps such that every
(Pα,Qα, nα) is either eventually˜I-separated from Q∗ or eventually˜I-transverse to Q∗

or an element of �.
Let I ⊂˜I be a candidate interval of the next level, i.e. |I| = |˜I|1+τ , such that Q∗ is

I-critical.
We claim that there exists (P,Q, n) ∈� such that P is eventually I-Q∗-critical.
Indeed, every (Pα,Qα, nα) which is eventually˜I-transverse to Q∗ (resp. eventually

˜I-separated from Q∗) is a fortiori I-transverse to Q∗ (resp. I-separated from Q∗). If every
(Pα,Qα, nα) ∈� was also either eventually I-transverse to Q∗ or eventually I-separated
from Q∗, we would obtain a decomposition of Ps which expresses that Q∗ is I-transverse.
This proves the claim.

On the other hand, fix (P,Q, n) ∈�. We show that there are at most C1 candidates
I ⊂˜I such that P is eventually I-Q∗-critical. Together with Lemma 9, this will imply the
statement of Proposition 28 (after modifying the value of the constant in the definition of
d+

s ).
Both P (by Lemma 6) and Q∗ (by assumption) are˜I-critical, hence˜I-special. By

Corollary 8 in Section 7.6, we have, for all t ∈˜I

(8.75)

∣

∣

∣

∣

d

dt
δLR(Q∗,P)− 1

∣

∣

∣

∣

� Cε
1
2
0 .

If, for all t ∈ I, we have

(8.76) δLR(Q∗,P) < 0,

then P is I-separated from Q∗.
We claim that if, for all t ∈ I, we have

(8.77) δ(Q∗,P) > 2|I|,
then P is eventually I-transverse to Q∗. As we have |P| � |I| from the definition of � and
|Q|< |I| from the assumption of the proposition, we have, for all t ∈˜I
(8.78) δLR(Q∗,P) < δ(Q∗,P)+ C(|P| + |Q∗|) < δ(Q∗,P)+ C|I|,
which allows to conclude.

Finally, we prove the claim.
Observe first that, if (P′,Q′, n′) ∈ R(I) satisfies P′ ⊂ P, |P′| � 1

2 |˜I|(1+τ)(1−η)−1
for all

t ∈˜I, then Q∗ �I P′ holds. Indeed, δLR(Q∗,P′), δL(Q∗,P′), δR(Q∗,P′) are all larger than
δ(Q∗,P); then (T3) follows from (8.75) above; as both |Q∗|1−η, |P|1−η are smaller than |I|,
(T1) and (T2) also follow from (8.75).
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On the other hand, if (P′,Q′, n′) ∈ R(I) satisfies P′ ⊂ P and P′ is not I-transverse to
Q∗, from the observation (applied to a thin simple descendant of P′) and Proposition 20,
we deduce that P′ is I-critical hence I-decomposable, and we can replace it by its chil-
dren. Starting with P, we iterate the process till getting rectangles thin enough for the
observation to apply. This proves the claim and thus also Proposition 28.

9. Strong regularity and parameter selection

As it was mentioned in Section 4.5, regularity is a rather qualitative property which
is not appropriate for the quantitative estimates needed for parameter selection. We will
introduce in this section, a stronger quantitative property, that we call strong regularity.

Think of each bicritical element as a return from the “critical region” to itself. We
want to control the number of bicritical elements of a given width (including, of course,
that there are no “fat” bicritical elements). In order to do this, we also need a control on
the size of the critical region itself.

In the whole of Section 9, we fix a parameter interval˜I which is assumed by induc-
tion to be strongly regular (the definition is given at the end of Section 9.2). In Section 9.3,
we check that strong regularity implies β-regularity for an appropriate β > 1. Therefore
the properties proven in Sections 5–8 will be applicable. The aim of Section 9 is to esti-
mate how many candidates I ⊂˜I fail to be strongly regular.

In Section 9.1, the estimates (SR1), (SR2) on the size of the critical region are
presented. In Section 9.2, the estimates (SR3) on the number of bicritical elements are
introduced. This leads to the definition of strong regularity at the end of this Subsection,
namely that the full set of estimates (SR1), (SR2), (SR3) must be satisfied, and to the
choice of β in Section 9.3, where condition (H4) of Section 1.2 is finally explained. It is
also proven in Section 9.3 that strong regularity implies β-regularity. In Section 9.4, we
check that the starting interval I0 is strongly regular. Then, in Section 9.5, we estimate
how many candidates I ⊂˜I fail to satisfy (SR1). Condition (SR2) is more delicate and is
dealt with in Section 9.6.

In the rest of Sections 9, 9.7–9.13, we estimate the number of candidates which
fail to satisfy (SR3); a general overview of the strategy to do this is first presented in
Section 9.7. The conclusions of the process of parameter selection are presented in Sec-
tion 9.14.

9.1. Partitions and size of the critical locus.

Definition 3. — We denote by C+(I) the set of (P,Q, n) in R(I) such that P is I-critical,

|P| � |I|1+τ for all t ∈ I, and P is maximal with this property: the parent˜P of P satisfies |˜P|> |I|1+τ

for some t ∈ I.

Obviously, if (P,Q, n), (P′,Q′, n′) are distinct elements in C+(I), P and P′ are dis-
joint. Moreover, if (̂P,̂Q, n̂) belongs to R(I),̂P is I-critical, and |̂P| � |I|1+τ for all t ∈ I,
there is a unique (P,Q, n) ∈ C+(I) such that̂P ⊂ P.
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Exchanging P’s and Q’s, we define C−(I) in a similar way. The sets C+(I), C−(I)
correspond to the I-critical locus at the |I|1+τ scale.

We will need in the sequel to consider̂I-criticality (for some parameter interval
̂I ⊃ I) for rectangles in R(I) but not in R(̂I).

Definition 4. — Let̂I ⊃ I be parameter intervals, and let (P,Q, n) ∈ R(I). We say that P is

thin̂I-critical if there exists (̂P,̂Q, n̂) ∈ R(̂I) with P ⊂̂P,̂P iŝI-critical and

min
̂I

|̂P|1−η � 2|̂I|.

The notion is useful in connection in Proposition 22 of Section 8.1, as in the fol-
lowing

Lemma 10. — Let I be a candidate parameter interval (with regular parent˜I), and let (P,Q, n)
be an element of R(I) which is not the restriction of an element of R(˜I). Let k > 0 and (Pi,Qi, ni),

for 0 � i � k, be the elements of R(˜I) given by the structure theorem (of Section 6.5). Then Qi and

Pi+1 are thin˜I-critical for 0 � i < k.

Proof. — As Qi is I-transverse but not˜I-transverse to Pi+1, this follows from Propo-
sition 22 in Section 8.1. �

Definition 5. — Let˜I be a regular interval, (P,Q, n) ∈ C+(˜I). We denote by Cr(P) the set

of candidates I ⊂˜I such that P contains a thin I-critical rectangle. We define symmetrically Cr(Q) for

(P,Q, n) ∈ C−(˜I).

Lemma 11. — Let̂I be the largest parameter interval containing˜I with |̂I|β � |˜I|(1+τ)2 . Let

I ⊂˜I be a candidate interval and let (P,Q, n) ∈ C+(I). Then (P,Q, n) belongs to R(̂I), and there

exists (˜P,˜Q, ñ) ∈ C+(˜I) with P ⊂˜P and I ∈ Cr(˜P).

Proof. — We first prove that (P,Q, n) belongs to R(̂I). Let I′ ⊃ I be a parameter
interval distinct from I0 with parent˜I′; assume that (P,Q, n) belongs to R(I′) but not to
R(˜I′). By the structure theorem of Section 6.5, the element (P0,Q0, n0) ∈ R(˜I′) with P0

smallest containing P is˜I′-bicritical and satisfy |P0|< |˜I′|β for all t ∈˜I′. This contradicts
the maximality of P with respect to the property maxI |P| � |I|1+τ if |˜I′|β � |I|1+τ and
shows that (P,Q, n) belongs to R(̂I).

In particular, (P,Q, n) belongs to R(˜I) and P is˜I-special. From Proposition 18 in
Section 7.7, we have |P|<C|I|1+τ < |˜I|1+τ for all t ∈˜I. Therefore, there exists (˜P,˜Q, ñ) ∈
C+(˜I) with P ⊂˜P. Finally, we observe that P is thin I-critical and therefore I belongs to
Cr(˜P). �

We will state several inequalities related to the size of the sets C+(I), C−(I). All these
inequalities are part of the definition of strong regularity: they have to be satisfied by a
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strongly regular parameter interval. In Sections 9.5, 9.6, we will see that they are satisfied
by most candidates in a strongly regular parameter interval˜I. These estimates are used
in Sections 9.12, 9.13 in the control of the number of bicritical elements.

We will control the cardinalities of C+(I), C−(I), through:

#C+(I)� C
( |I|
ε0

)σ

ε
−τd0

s

0 ,(SR1)s

#C−(I)� C
( |I|
ε0

)σ

ε
−τd0

u

0 .(SR1)u

The exponent σ will be completely specified in Section 9.5. It is very close to 1 − d0
s − d0

u

when τ, η, ε0 are small.
We need also to control C+(I), C−(I) in another, more complicated, way.

∑

(Pα,Qα,nα)∈C+(I)

max
I

|Qα|ρu � C|Qs|ρu

( |I|
ε0

)σu

,(SR2)s

∑

(Pω,Qω,nω)∈C−(I)

max
I

|Pω|ρs � C|Pu|ρs

( |I|
ε0

)σs

.(SR2)u

The exponents ρs, ρu, σs, σu will be specified in Sections 9.6 and 9.14. When τ, η, ε0 are
small, they are respectively close to d0

s , d
0
u ,1 − d0

s ,1 − d0
u . We write |Pu|, |Qs| for the max-

imum of these quantities over I0.
We actually need a stronger version of (SR2)s, better suited for induction purposes.

Let I ⊂˜I be a candidate interval.

Definition 6. — We denote by ̂C+(I) to be the set of (P,Q, n) ∈ C+(˜I) such that I ∈ Cr(P).
We define symmetrically ̂C−(I). We also define ̂C+(I0) := {(Ps,Qs, ns)}, ̂C−(I0) := {(Pu,Qu, nu)}.

Let ((Pi,Qi, ni))i be a finite family of elements of R(I) with the Pi disjoint and each Pi

contained in some P with (P,Q, n) ∈ ̂C+(I). We ask that, for any such family

(SR2)′s
∑

i

max
I

|Qi|ρu � C|Qs|ρu

( |I|
ε0

)σu

.

We define symmetrically (SR2)′u.

Observe that, by Lemma 11, (SR2)s is a consequence of (SR2)′s.
The heuristics behind (SR2)s is the following: in the mean, one expects that ele-

ments of R(I) more or less satisfy

(9.1) |P|d0
s ∼ |Q|d0

u

and, for (P,Q, n) ∈ ̂C+(I) , one should have

(9.2) |P| ∼ |I|
which explains the relation between (SR1)s and (SR2)s.
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9.2. Classes and number of bicritical rectangles. — Once the size of the critical locus
is under control, we must pay attention to the number of bicritical rectangles, which
represent the returns of the critical locus to itself under the dynamics.

In order to have an appropriate induction scheme, we need to bound the number
of bicritical rectangles according to all width scales and also according to the level of
criticality (i.e., the distance to critical locus) of both P and Q. As we will see in the next
subsection, the number of bicritical elements experiments a “phase transition” which is
crucial for our argument but brings a lot of complications.

Let I be a candidate interval as above, and let Iα , Iω be parameter intervals such
that I ⊂ Iα ∩ Iω. Let also x be a positive number.

Definition 7. — We denote by Bi+(I, Iα, Iω; x) the set of elements (P,Q, n) ∈ R(I) such that

P is thin Iα-critical, Q is thin Iω-critical and |P| � x for some t ∈ I.
Similarly, Bi−(I, Iα, Iω; x) is the set of elements (P,Q, n) ∈ R(I) such that P is thin Iα-

critical, Q is thin Iω-critical and |Q| � x for some t ∈ I.

At this point, we have to break the symmetry between past and future, P’s and
Q’s, stable and unstable directions: the estimates are indeed not symmetric, except when
d0

s = d0
u , i.e., in the conservative case of area-preserving diffeomorphisms.
We will assume that d0

s � d0
u (and d0

s + d0
u � 1). The case d0

u � d0
s is obviously sym-

metric.
For I, Iα , Iω, x as above we want to have, for a fixed large enough constant A (we

will see in Section 9.14 that A = 3 is a convenient choice)

#Bi+(I, Iα, Iω; x)� ε−Aτ
0 B,(SR3)s

with

B = max(B0,B1),(9.3)

B0 =
( x

ε0|Pu|
)−ρ0

( |Iα|
ε0

)σ0+σ1
( |Iω|
ε0

)σ0

,(9.4)

B1 =
( x

ε0|Pu|
)−ρ1

( |Iα|
ε0

)σ1
(

min
( |Iα|
ε0
,
|Iω|
ε0

))σ0

.(9.5)

Here |Pu| denotes the supremum over I0 of the width of Pu: the exponents ρ0, ρ1, σ0, σ1

will be specified more precisely later, but anyway they satisfy

ρ0 = d0
s + o(1),(9.6)

ρ1 = d0
s

d0
s + d0

u

(2d0
s + d0

u − 1)+ o(1),(9.7)
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σ0 = 1 − d0
s + o(1),(9.8)

σ1 = d0
s − d0

u + o(1).(9.9)

The meaning of the o(1) terms in these formulas is that they become arbitrarily small
when τ � η� ε0 are small enough.

For the Bi− sets, we should have:

#Bi−(I, Iα, Iω; x)� ε−Aτ
0 B′,(SR3)u

with

B′ = max(B′
0,B

′
1),(9.10)

B′
0 =

( x

ε0|Qs|
)−ρ′

0
( |Iα|
ε0

)σ0+σ1
( |Iω|
ε0

)σ0

,(9.11)

B′
1 =

( x

ε0|Qs|
)−ρ′

1
( |Iα|
ε0

)σ1
(

min
( |Iα|
ε0
,
|Iω|
ε0

))σ0

,(9.12)

ρ ′
0 = d0

u

d0
s

ρ0 = d0
u + o(1),(9.13)

ρ ′
1 = d0

u

d0
s

ρ1 = d0
u

d0
s + d0

u

(2d0
s + d0

u − 1)+ o(1).(9.14)

Observe that the formulas (9.7), (9.14) for ρ1, ρ ′
1 are not symmetric.

Definition 8. — A parameter interval I is strongly regular if its parent is (when I �= I0) and if

it satisfies the conditions (SR1), (SR2)′ (hence also (SR2)) of Section 9.1 and (SR3)s, (SR3)u for all

Iα ⊃ I, Iω ⊃ I, 0< x< 1.

Remark 10.

1. At this point, the definition of strong regularity is not complete because the
exponents ρ0, ρ1, ρ ′

0, ρ ′
1, σ0, σ1, A have not been completely specified. These

exponents should be viewed for the present time as parameters constrained by
(9.6)–(9.9) and (9.13), (9.14).

2. The inequalities (SR3)s, (SR3)u form a family parametrized not only by I, but
also by the parameter intervals Iα ⊃ I and Iω ⊃ I and the real number 1> x> 0.
Because each inequality, at least when I = Iα or I = Iω, is only obtained after
parameter selection, we will discretize the continuous variable x by considering
only the values x = 2−l , l � 0. There is still an infinite number of inequalities,
but we will see that they are trivially satisfied if l is large enough.
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9.3. Phase transition and the choice of β . — We comment on the estimate (SR3)s. First,
observe that B does not depend on I. The reason will appear in Section 9.8 when we show
that most elements in Bi+(I, Iα, Iω; x) belong actually to R(˜I).

From the formulas (9.6), (9.7), we have

(9.15) ρ1 < ρ0.

Set

(9.16) xcr := ε0|Pu|
(

max
( |Iα|
ε0
,
|Iω|
ε0

))

σ0
ρ0−ρ1 .

Then, we have B = B0 for x � xcr and B = B1 for x � xcr : this is the “phase transition”
mentioned earlier. Roughly speaking, the reason for this phase transition is that, when
I = Iα = Iω, we are able to eliminate, in the scale transition from˜I to I, more bicritical
elements of small width (x< xcr ) than of large width (x> xcr ).

We have

ρ0 − ρ1 = d0
s (1 − d0

s )

d0
s + d0

u

+ o(1),(9.17)

σ0

ρ0 − ρ1
= d0

s + d0
u

d0
s

+ o(1) > 1.(9.18)

For x = xcr , we have

(9.19) B = Bcr :=
( |Iα|
ε0

)σ0+σ1
( |Iω|
ε0

)σ0
(

max
( |Iα|
ε0
,
|Iω|
ε0

))− ρ0σ0
ρ0−ρ1 .

Assume Iα = Iω; we then have

(9.20) Bcr =
( |Iα|
ε0

)σ1+σ0
ρ0−2ρ1
ρ0−ρ1 .

Here, the exponent satisfies

(9.21) σ1 + σ0
ρ0 − 2ρ1

ρ0 − ρ1
= 2 − 2d0

s − 2d0
u + o(1) < 0.

As |Iα| � ε0, we have Bcr � 1. As B is a decreasing function of x, we have ε−Aτ
0 B< 1 (in

which case (SR3)s means that the Bi+ set is empty!) iff B1 < ε
Aτ
0 which corresponds to

(9.22) x> x := ε1+Aτ/ρ1
0 |Pu|

( |Iα|
ε0

)

σ0+σ1
ρ1 .
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The exponent here satisfies

(9.23)
σ0 + σ1

ρ1
= 1 − d0

u

d0
s

d0
s + d0

u

2d0
s + d0

u − 1
+ o(1).

We are finally able to justify the assumption (H4) of our Main Theorem stated in Sec-
tion 1.2! Indeed, with d0

s � d0
u , it means that

(H4) 2(d0
s )

2 + (d0
u )

2 + 2d0
s d0

u < 2d0
s + d0

u

and this is exactly what is needed to guarantee that

(9.24)
σ0 + σ1

ρ1
> 1.

The discussion for (SR3)u is similar; the critical threshold is

(9.25) x′
cr := ε0|Qs|

(

max
( |Iα|
ε0
,
|Iω|
ε0

))

σ0
ρ′

0−ρ′
1 ,

with

ρ ′
0 − ρ ′

1 = d0
u (1 − d0

s )

d0
s + d0

u

+ o(1)= d0
u

d0
s

(ρ0 − ρ1),(9.26)

σ0

ρ ′
0 − ρ ′

1

= σ0

ρ0 − ρ1

d0
s

d0
u

= d0
s + d0

u

d0
u

+ o(1) > 1.(9.27)

When Iα = Iω, we have

(9.28) B′
cr :=

( |Iα|
ε0

)σ1+σ0
ρ′

0−2ρ′
1

ρ′
0−ρ′

1 = Bcr � 1.

Thus, we have ε−Aτ
0 B′ < 1 iff

(9.29) x> x′ := ε1+Aτ/ρ′
1

0 |Qs|
( |Iα|
ε0

)

σ0+σ1
ρ′

1 .

We have here

(9.30)
σ0 + σ1

ρ ′
1

= σ0 + σ1

ρ1

d0
s

d0
u

� σ0 + σ1

ρ1
.
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Choice of β . — We will choose the constant β (related to the regularity property) in order
to have

(9.31) 1< β <
1 − d0

u

d0
s

d0
s + d0

u

2d0
s + d0

u − 1

and also, from Proposition 4 in Section 5.6.4

(9.32) β < 1 + min(ωs,ωu).

From (9.31), we will have

(9.33) β <
σ0 + σ1

ρ1
� σ0 + σ1

ρ ′
1

.

Then, in (9.22), (9.29), we will have

(9.34) x< |Iα|β, x′ < |Iα|β.

Proposition 30. — If a candidate interval satisfies (SR3)s and (SR3)u, then it is β-regular. In

particular, strong regularity implies β-regularity.

Proof. — We argue by induction on the level of the parameter interval. For the
starting interval I0, we already know from Proposition 4 that it is β-regular (independently
of (SR3)s, (SR3)u). Assume that I �= I0 satisfies (SR3)s, (SR3)u and that (P,Q, n) ∈ R(I) is
I-bicritical. Assume also, for instance, that

(9.35) max
I

|Q| � max
I

|P|

and, by contradiction that

(9.36) max
I

|P| � |I|β.

From Corollary 5 in Section 6.6, we know that (P,Q, n) ∈ R(˜I) (˜I being the parent of I).
As (P,Q, n) is˜I-bicritical, we must have, by the induction hypothesis

(9.37) max
˜I

|P|< |˜I|β.

Therefore, P would be thin I-critical; similarly Q would be thin I-critical. But in view of
(9.34), the estimate (SR3)s says that such a (P,Q, n) satisfying (9.36) does not exist. �



NON-UNIFORMLY HYPERBOLIC HORSESHOES ARISING 95

9.4. The starting interval. — We establish in this subsection the starting point of an
inductive construction of strongly regular parameters. We assume that the ρ exponents
satisfy

(9.38) ρu > d0
u + Cε0, ρs > d0

s + Cε0, ρ0 > d0
s + Cε0, ρ ′

0 > d0
u + Cε0,

with C large enough. The exponents σ do not come into play for the starting interval.

Proposition 31. — The starting interval is strongly regular.

Proof. — We start by checking (SR1) for I0.
The set C+(I0) consists of the elements (P,Q, n) ∈ R(I0) such that P ⊂ Ps, |P| �

ε1+τ
0 for all t ∈ I0, and which are maximal with this property. Such a (P,Q, n) is there-

fore the simple composition of (Ps,Qs, ns) with an element (P′,Q′, n′) ∈ R(I0) satisfying,
according to (3.12) in Section 3.3

C−1ετ0 < |P′|<Cετ0

for all t ∈ I0. As recalled in the beginning of Section 8.3, for each t ∈ I0, the number of

P′ with |P′|>C−1ετ0 is of order ε−τdt
s

0 which is also the order of ε−τd0
s

0 . This proves (SR1)s.
The estimate (SR1)u is obtained in the same way.

We turn to (SR2)′s. Let ((Pi,Qi, ni))i be a finite family of elements of R(I0) with
the Pi disjoint and contained in Ps. We have to prove that

(SR2)′s
∑

i

max
I0

|Qi|ρu � C|Qs|ρs .

We can write each (Pi,Qi, ni) as the simple composition of (Ps,Qs, ns) with an element
(P′

i,Q
′
i, n

′
i) ∈ R(I0). The P′

i are disjoint. We need to have

(9.39)
∑

i

max
I0

|Q′
i|ρu � C.

This will be a consequence from the existence of equilibrium measures for Hölder po-
tentials on regular Cantor sets defined by expansive C1+α maps: fix a parameter t ∈ I0;
choose an horizontal segment in each rectangle of the Markov partition, and let J be their
union; the intersection of J with the local stable foliation Ws(K,R) is a regular Cantor set
Ks; there exists on Ks a probability measure (a Gibbs state for the appropriate potential)
such that, for each (P,Q, n) ∈ R(I0), the measure of the cylinder of Ks defined by P,
divided by |Q|dt

u , is uniformly bounded away from 0 and ∞. As the P′
i are disjoint, this

proves that, for each t ∈ I0, we have

(9.40)
∑

i

|Q′
i|dt

u � C.
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But Proposition 15 in Section 7.4 shows that, for each (P,Q, n) ∈ R(I0)

(9.41) min
I0

|Q′
i| �

(

max
I0

|Q′
i|
)1+Cε0

.

Therefore (9.39) is a consequence of (9.40), (9.41) as

(9.42) ρu > d0
u + Cε0.

The estimate (SR2)u is proved in the same way, under the requirement

(9.43) ρs > d0
s + Cε0.

Let us now prove (SR3)s and (SR3)u. The only case to consider is Iα = Iω = I0.
Then Bi+(I0, I0, I0; x) (resp. Bi−(I0, I0, I0; x)) is the set of (P,Q, n) ∈ R(I0) such that P ⊂
Ps, Q ⊂ Qu and |P| � x (resp. |Q| � x) for some t ∈ I0. We write (P,Q, n) as a simple
composition

(9.44) (P,Q, n)= (Ps,Qs, ns) ∗ (P′,Q′, n′) ∗ (Pu,Qu, nu))

(cf. (5.18) in Section 5.6.4). The same argument than for (SR1)s above now gives

(9.45) #Bi+(I0, I0, I0; x)� C
( x

ε0|Pu|
)−(d0

s +Cε0)

,

and similarly

(9.46) #Bi−(I0, I0, I0; x)� C
( x

ε0|Qs|
)−(d0

u +Cε0)

.

Therefore, we obtain (SR3)s and (SR3)u as we have:

ρ0 > d0
s + Cε0,(9.47)

ρ ′
0 > d0

u + Cε0.(9.48) �

9.5. The induction step for (SR1). — In Proposition 28 of Section 8.3, we introduced
d+

s = d0
s + Cητ−1. Let also d+

u = d0
u + Cητ−1. The exponent σ in the estimates (SR1) will

be defined as

(9.49) σ = min(1 − d+
u − (1 + τ)d∗

s − τ − cητ−1,1 − d+
s − (1 + τ)d∗

u − τ − cητ−1).

The aim of this Subsection is to prove the following result.

Proposition 32. — Assume that the parent interval˜I is β-regular and satisfies one of the two

inequalities (SR1). Then all candidates I ⊂˜I satisfy the same inequality except perhaps for a proportion

not larger than C|˜I|τ 2
.
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Before proving the Proposition above, we first state and prove

Proposition 33. — For any (P,Q, n) ∈ C+(˜I), we have

#Cr(P)� C|˜I|−τd+
u .

Proof. — Let (P∗,Q∗, n∗) ∈ R(˜I) be an element such that P∗ ⊂ P and

(9.50) |P∗| � 1
2
|˜I|(1+τ)(1−η)−1

for all t ∈˜I. By Proposition 28 in Section 8.3, there are at most |˜I|−τd+
u candidates I ⊂˜I

such that P∗ is I-critical.
Let now I ∈ Cr(P). We will prove that I is within distance C|˜I|1+τ either from the

boundary of˜I, or from a candidate I′ ⊂˜I such that P∗ is I′-critical. This implies the
estimate of the Proposition.

By definition, there exists (P1,Q1, n1) ∈ R(I) such that P1 ⊂ P, P1 is I-critical and

(9.51) |P1|1−η � 2|I| for some t1 ∈ I.

We take such a (P1,Q1, n1) with P1 maximal. Then, (P1,Q1, n1) belongs in fact to R(˜I):
indeed, otherwise, by the structure theorem, the element (˜P1,˜Q1, ñ1) ∈ R(˜I) with small-
est˜P1 ⊃ P1 would be˜I-bicritical and we would have |˜P1|< |˜I|β < 2|I| for all t ∈˜I.

As P1 is I-critical, it is I-special. From Proposition 18 in Section 7.7, we obtain that

(9.52) |P1|1−η � C|I| for all t ∈ I.

By Corollary 10 in Section 8.1, there exists (P0,Q0, n0) ∈ R(I) such that Q0, P1 are
I-critically related and |Q0|<max(|I|β,2|P1|) for some t0 ∈ I. In particular, we have

(9.53) |Q0|1−η � C|I| for some t0 ∈ I.

We take such a (P0,Q0, n0) with Q0 maximal. We claim that (P0,Q0, n0) belongs to R(˜I)
and that Q0 is˜I-critical.

Indeed, let (˜P0,˜Q0, ñ0) the element of R(˜I) such that ˜Q0 contains Q0 and is the
smallest with this property.

Assume by contradiction that ˜Q0 is ˜I-transverse. Let (Pα,Qα, nα) be an ˜I-
decomposition of Ps such that, for each α, ˜Q0 and Pα are either ˜I-separated or ˜I-
transverse. If P1 ⊂ Pα for some α, we would conclude that ˜Q0 and P1 are˜I-separated if
˜Q0 and Pα are˜I-separated, and ˜Q0 and P1 are˜I-transverse if ˜Q0 and Pα are˜I-transverse.
If there exists α such that Pα ⊂ P1 and ˜Q0 �

˜I Pα holds, then ˜Q0 �
˜I P1 holds also by Propo-

sition 10 in Section 6.4. In the remaining case, the Pα ⊂ P1 form an˜I-decomposition of
P1 and they are all˜I-separated from ˜Q0; this imply that P1 itself is˜I-separated from ˜Q0.
The contradiction obtained in all cases show that ˜Q0 is˜I-critical.
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But then, if Q0 �= ˜Q0, the element (˜P0,˜Q0, ñ0) is˜I-bicritical by the structure theo-
rem and we would have |˜Q0|< |˜I|β for all t ∈˜I, contradicting the maximality of Q0.

Thus we know that both Q0 and P1 are˜I-defined and˜I-special.In particular, from
Proposition 18 in Section 7.7 and (9.53), we have

(9.54) |Q0|1−η � C|I| for all t ∈˜I.
If we had δLR(Q0,P1) > C0|I| for all t ∈ I and C0 large enough, we would

have Q0 �I P1 from the estimates on |Q0|, |P1| above. On the other hand, if we had
δLR(Q0,P1) < 0 for all t ∈ I, Q0 and P1 would be I-separated. As they are I-critically
related, we must have, for some t ∈ I and C0 > 2

(9.55) 0 � δLR(Q0,P1)� C0|I|.
Assume that I is not within distance 4C0|I| from the boundary of ˜I. Let J be the
3C0|I|-neighborhood of I contained in˜I. From Corollary 8 in Section 7.6, the quan-
tity δLR(Q0,P1) will be larger than 2C0|I| at the upper endpoint of J and less than −C0|I|
at the lower endpoint. As P1 and P∗ are both contained in P and |P|< |I| for all t ∈ I, we
have, (taking C0 larger if necessary) that, for all t ∈ I

(9.56) |δLR(Q0,P∗)− δLR(Q0,P1)| � C0|I|.
Therefore, the value of δLR(Q0,P∗) at the lower endpoint of J is less than 0 and the value
at the upper endpoint is at least C0|I|. Then, in view of the estimates on |Q0|, |P∗| and
Lemma 3 in Section 6.6.3, there is a candidate interval I′ intersecting J such that P∗ is
I′-critical. As explained above, this allows to obtain the conclusion of the proposition. �

Proof of Proposition 32. Let (˜P,˜Q, ñ) ∈ C+(˜I); we bound the number of (P,Q, n) ∈ C+(I)
(for some candidate I ⊂˜I) with P ⊂˜P. Recall that (P,Q, n) ∈ R(˜I) by Lemma 11 in
Section 9.1. Let̂P be the parent of P (if P �=˜P). It satisfies |̂P| � |˜I|(1+τ)2 for some t ∈˜I. By
Corollary 13 in Section 8.3, the number of possiblêP (for fixed˜P) is at most |˜I|−d∗

s τ(1+τ).
From Proposition 25 in Section 8.2, eacĥP has at most |˜I|−cη children. We conclude that
the number of possible P for each˜P is at most |˜I|−d∗

s τ(1+τ)−cη.
We obtain therefore, in view of Lemma 11, Proposition 33 and the induction hy-

pothesis
∑

I⊂˜I
#C+(I)� |˜I|−cη−τ(1+τ)d∗

s

∑

C+(˜I)

#Cr(˜P)

� #C+(˜I)|˜I|−cη−τ(1+τ)d∗
s max #Cr(˜P)

� C#C+(˜I)|˜I|−cη−τd+
u −τ(1+τ)d∗

s

� C
( |˜I|
ε0

)σ

ε
−τd0

s

0 |˜I|−cη−τd+
u −τ(1+τ)d∗

s .(9.57)
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As the total number of candidates is |˜I|−τ , we will have, except for a proportion at most
C|˜I|τ 2

of candidates I

#C+(I)�
( |˜I|
ε0

)σ

ε
−τd0

s

0 |˜I|τ−τ 2−cη−τd+
u −τ(1+τ)d∗

s

�
( |I|
ε0

)σ

ε
−τd0

s

0 |˜I|τ−τ 2−cη−τd+
u −τ(1+τ)d∗

s −τσ .(9.58)

In order to obtain the required estimate, we want to have

(9.59) τ − τ 2 − cη− τd+
u − τ(1 + τ)d∗

s − τσ � 0,

which amounts to

(9.60) σ � 1 − d+
u − (1 + τ)d∗

s − τ − cητ−1.

In the same way, to obtain (SR1)u for all but a proportion C|˜I|τ 2
of candidates I from

(SR1)u for˜I, we will ask that

(9.61) σ � 1 − d+
s − (1 + τ)d∗

u − τ − cητ−1.

In conclusion, we take σ to be the largest number satisfying (9.60), (9.61) above and the
proof of the proposition is complete.

9.6. The induction step for (SR2)′.

9.6.1. Recall that the exponents ρ ′
0 (in (SR3)u), ρu (in (SR2)′s) and d∗

u are all close
to d0

u when τ � η� ε0 are small. Similarly, ρ0 (in (SR3)s), ρs (in (SR2)′u) and d∗
s are all

close to d0
s . We now assume moreover that

(9.62) ρ ′
0 − ετ0 > ρu > d∗

u + ετ0 , ρ0 − ετ0 > ρs > d∗
s + ετ0 .

The exponents σs, σu in (SR2)′ are defined as

(9.63) σs := 1 − 3τ − d+
s , σu := 1 − 3τ − d+

u .

The aim of this subsection is to prove the following result

Proposition 34. — Assume that the parent interval˜I is strongly regular. Then all candidates

I ⊂˜I satisfy (SR2)′s and (SR2)′u except perhaps for a proportion not larger than C|˜I|τ 2
.

Proof. — We first explain the general idea (for (SR2)′s).
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Let (P,Q, n) ∈ C+(˜I). Let ((Pi,Qi, ni))i be a finite family of elements of R(˜I) with
the Pi disjoint and contained in P. As (SR2)′s is satisfied by˜I, and P is contained in some P∗

with (P∗,Q∗, n∗) ∈ ̂C+(˜I) by Lemma 11, the supremum over such families of the quantity
∑

i

max
˜I

|Qi|ρu

is finite. Denote this supremum by c(P). We have, still from (SR2)′s, that

(9.64)
∑

C+(˜I)

c(P)� C|Qs|ρu

( |˜I|
ε0

)σu

.

Let now I ⊂˜I be a candidate interval such that I ∈ Cr(P). Let ((Pi,Qi, ni))i be a finite
family of elements of R(I) with the Pi disjoint and contained in P. Denote by c(P, I) the
supremum (in R ∪ +∞) over all such families of the quantity

∑

i

max
I

|Qi|ρu .

We also consider two related quantities c(P, I, old) and c(P, I, new) obtained by taking the
supremum of the same quantity

∑

i maxI |Qi|ρu over a more restricted set of families: we
still ask that the Pi are disjoint and contained in P, but for c(P, I, old) we ask moreover
that all (Pi,Qi, ni) belong to R(˜I), and for c(P, I, new) that none of them belong to R(˜I).

Clearly, we have

c(P, I)� c(P, I, old)+ c(P, I, new),

and also

(9.65) c(P, I, old)� c(P).

On the other hand, by Lemma 11, the candidate I will satisfy (SR2)′s iff

(9.66)
∑

̂C+(I)

c(P, I)� C|Qs|ρu

( |I|
ε0

)σu

.

In each term of the sum, we separate the old and new part and will deal successively with
these two terms.

9.6.2. The sum over the old parts is easily controlled for most candidates. We
have

∑

I⊂˜I

∑

̂C+(I)

c(P, I, old)�
∑

I⊂˜I

∑

̂C+(I)

c(P) by (9.72)
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�
∑

C+(˜I)

c(P)#Cr(P)

� C|˜I|−τd+
u

∑

C+(˜I)

c(P) by Proposition 33

� C|˜I|−τd+
u |Qs|ρu

( |˜I|
ε0

)σu

, by (9.71).(9.67)

Consequently, all candidates I except for a proportion at most |˜I|2τ 2
will satisfy

(9.68)
∑

̂C+(I)

c(P, I, old)� C|˜I|τ−2τ 2−τd+
u |Qs|ρu

( |˜I|
ε0

)σu

.

From the definition σu := 1 − 3τ − d+
u we obtain, for all candidates I except for a propor-

tion at most |˜I|2τ 2

(9.69)
∑

̂C+(I)

c(P, I, old)� |Qs|ρu

( |I|
ε0

)σu

.

9.6.3. The sum over the new parts is more complicated.
Let I ⊂˜I be a candidate and let (P′,Q′, n′) be an element in R(I) but not in R(˜I)

such that P′ is contained in some P with (P,Q, n) ∈ ̂C+(I). For a finite family of such
elements with disjoint P′, we must bound the sum S :=∑

maxI |Q′|ρu .
We apply the structure theorem of Section 6.5. We obtain an integer k > 0 and

elements (P′
l,Q

′
l, n

′
l) ∈ R(˜I) for 0 � l � k such that

– (P′,Q′, n′) is obtained from the parabolic composition of the (P′
l,Q

′
l, n

′
l);

– for 0 � l < k, Q′
l and P′

l+1 are˜I-critical and Q′
l �˜I P′

l+1 does not hold;
– for all t ∈ I, |Q′| � Ck|I|−k/2

∏ |Q′
l| (cf. Proposition 13 in Section 6.6.3).

Recall that, by Lemma 10 in Section 9.1, Q′
l and P′

l+1 are thin˜I-critical for 0 � l < k.
Observe that P′

0 is also thin˜I-critical because it is contained in the rectangle P such that
(P,Q, n) ∈ C+(˜I) and P′ ⊂ P.

We claim that P′
k is contained in some ˜P with (˜P,˜Q, ñ) ∈ ̂C+(˜I). As P′

k is thin˜I-
critical, it is sufficient to prove that a simple descendant P of P′

k with max̃I |P| < |˜I|1+τ

is˜I-critical. If P was˜I-transverse, there would exist (P
′
,Q

′
, n′) with Q

′ ∩ Q′
k−1 �= ∅ and

Q
′ �

˜I P. As Q′
k−1 �I P′

k also holds, we would deduce by concavity that Q′
k−1 �

˜I P′
k holds, a

contradiction which proves the claim.
Consider now a finite family of such (P′,Q′, n′) with disjoint P′. In the sum

S = ∑

maxI |Q′|ρu , we first do the partial sum over those (P′,Q′, n′) which share the
same fixed integer k and the same fixed (P′

l,Q
′
l, n

′
l) for 0 � l < k. Except for the fact that
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the parabolic composition of the (P′
l,Q

′
l, n

′
l) for 0 � l � k produces 2k elements, the dis-

jointness of the P′ implies the disjointness of the P′
k . Therefore, from the estimate for |Q′|

above, we are able to use (SR2)′s for˜I to bound the partial sum by

(9.70) S(Q′
0, . . . ,Q

′
k−1) := 2k

(

C|Qs|ρu

( |˜I|
ε0

)σu

)

Ckρu|I|−kρu/2
∏

0�l<k

max
˜I

|Q′
l|ρu .

When we now sum over Q′
0, . . . ,Q

′
k−1, we are led to introduce

(9.71) S′
bi :=

∑

max
˜I

|Q|ρu,

where the sum is taken over all (P,Q, n) ∈ R(˜I) such that P and Q are thin˜I-critical.
This sum will be estimated below. In terms of S′

bi we have for the full some S

S �
∑

k�1

∑

Q′
0,...,Q

′
k−1

S(Q′
0, . . . ,Q

′
k−1)

� C|Qs|ρu

( |˜I|
ε0

)σu ∑

k�1

(2Cρu|I|−ρu/2S′
bi)

k

� C|Qs|ρu

( |˜I|
ε0

)σu|I|−ρu/2S′
bi,(9.72)

provided |I|−ρu/2S′
bi <C−1 with C large enough.

In the next subsection, we will prove the

Proposition 35. — Let θu be a number (independent of τ � η� ε0) such that d0
u /2< θu <

1 − d0
s . Under the hypotheses of the proposition, we have (if τ � η� ε0 are small enough)

(9.73) S′
bi � |˜I|θu .

Remark 11. — It is easy to check that hypothesis (H4) on d0
u , d

0
s implies that d0

u /2<
1 − d0

s .
The estimate of the proposition is sufficient to get C|I|−ρu/2S′

bi < |˜I|τσu and thus

(9.74) S � |Qs|ρu

( |I|
ε0

)σu

.

The proof of (SR2)s is therefore complete except for the estimate for S′
bi .

Proof of Proposition 35. It is easy to relate S′
bi to the cardinality of the sets Bi−(˜I,˜I,˜I; x).

Indeed, we have clearly

(9.75) S′
bi �

∑

l�0

#Bi−(˜I,˜I,˜I;2−l)2(1−l)ρu .
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To estimate the cardinality of Bi−(˜I,˜I,˜I;2−l), we will use (SR3)u except when l is very
large; in this case, the following result will provide a slightly better estimate.

Proposition 36. — Assume that (SR1)u holds for˜I. Then, for any candidate interval I, any

x> 0, the number of (P,Q, n) ∈ R(I) with Q thin I-critical and maxI |Q| � x is at most

C
( |˜I|
ε0

)σ

ε
−τd0

u

0

( x

|I|
)−d∗

u

.

Proof. — Let (P,Q, n) ∈ R(I) with Q thin I-critical. We claim that Q ⊂ ˜Q for
some (˜P,˜Q, ñ) ∈ C−(˜I). Indeed, let (P′,Q′, n′) ∈ R(I) such that Q ⊂ Q′, Q′ is I-critical,
and minI |Q′|1−η � 2|I|. Replacing if necessary Q′ by the smallest˜I-defined rectangle
containing Q′, we may assume that (P′,Q′, n′) ∈ R(˜I) (see Corollary 5 in Section 6.6.3).
Then, as Q′ is˜I-special, we have from Proposition 18 in Section 7.7 that max̃I |Q′|1−η �
C|I|. Therefore Q′, and also Q is contained in ˜Q for some (˜P,˜Q, ñ) ∈ C−(˜I).

In the estimate of the Proposition, we can now assume that x< |I|, otherwise there
is no (P,Q, n) with the required properties. Let (˜P,˜Q, ñ) ∈ C−(˜I); we have max̃I |˜Q| � |I|.
From Corollary 13 in Section 8.3, the number of (P,Q, n) ∈ R(I) with Q thin I-critical,
Q ⊂ ˜Q, and maxI |Q| � x is at most ( x

|I|)
−d∗

u .

As the cardinality of C−(˜I) is at most C(|˜I|/ε0)
σ ε

−τd0
u

0 by (SR1)u, we obtain the
required estimate. �

Corollary 14. — One has

#Bi−(I, I, I; x)� B′# := C
( x

ε0|Qs|
)−d∗

u
( |I|
ε0

) σ
1+τ +d∗

u

ε
−τ(d0

u + σ
1+τ )

0 |Qs|−d∗
u .

The estimate of the Corollary does not take into account that, for the elements
(P,Q, n) ∈ Bi−(I, I, I; x), P is I-critical. Therefore, it is not surprising that it is worse than

(SR3)u for middle-sized x. Indeed, on one side, the constant ε
−τ(d0

u + σ
1+τ )

0 |Qs|−d∗
u is large

(much larger than ε−Aτ
0 ). On the other side, comparing the exponents of ( x

ε0|Qs|) and ( |I|
ε0
)

in B′#,B′
1,B

′
0 when τ � η� ε0 are small, one gets

– −d∗
u (close to −d0

u ) and σ

1+τ + d∗
u (close to 1 − d0

s ) for B′#;

– −ρ ′
1 (close to − d0

u

d0
s +d0

u
(2d0

s + d0
u − 1) >−d0

u ) and σ0 +σ1 (close to 1 − d0
u � 1 − d0

s )
for B′

1;
– −ρ ′

0 (close to −d0
u ) and 2σ0 + σ1 (close to 2 − d0

u − d0
s > 1 − d0

u ) for B′
0.

The only range where B′# is smaller than B′ = max(B′
0,B

′
1) is when x is very small be-

cause, although ρ ′
0 and d∗

u are both close to d0
u , we have ρ ′

0 > d∗
u . Forgetting about powers



104 JACOB PALIS AND JEAN-CHRISTOPHE YOCCOZ

of ετ0 , we define x′
min (for˜I) by

(9.76)
( x′

min

ε0|Qs|
)−d∗

u
( |I|
ε0

) σ
1+τ +d∗

u |Qs|−d∗
u =

( x′
min

ε0|Qs|
)−ρ′

0
( |I|
ε0

)2σ0+σ1

,

which amounts to

(9.77)
x′

min

ε0|Qs| =
[

( |I|
ε0

)2σ0+σ1− σ
1+τ −d∗

u |Qs|d∗
u

] 1
ρ′0−d∗

u

.

The quantity σ ∗
u := 2σ0 + σ1 − σ

1+τ − d∗
u is close to 1 − d0

u and the exponent 1
ρ′

0−d∗
u

is very
large.

We now come back to the estimation of S′
bi . We divide the sum over l in the right-

hand term of (9.82) in three parts:

– x′ � 2−l � x′
cr .

Here x′ = ε1+Aτ/ρ′
1

0 |Qs|( |˜I|
ε0
)
σ0+σ1
ρ′1 is defined (in (9.29)) by the relation ε−Aτ

0 B′
1 = 1 and

satisfies x′ < |˜I|β . The set Bi−(˜I,˜I,˜I; x) is empty for x> x′. In the range under considera-
tion, the cardinality of the set Bi−(˜I,˜I,˜I;2−l) is bounded by ε−Aτ

0 B′
1. We get, as ρ ′

1 < ρu

(9.78) S′
1 :=

∑

x′�2−l�x′
cr

#Bi−(˜I,˜I,˜I;2−l)2(1−l)ρu � Cx′ρu .

As x′ < |˜I|β , we have

(9.79) S′
1 	 |˜I|d0

u � |˜I|1−d0
s .

– x′
cr � 2−l � x′

min.

In this range, the cardinality of the set Bi−(˜I,˜I,˜I;2−l) is bounded by ε−Aτ
0 B′

0. As
we have ρ ′

0 > ρu + ετ0 , we get

S′
2 :=

∑

x′
cr�2−l�x′

min

#Bi−(˜I,˜I,˜I;2−l)2(1−l)ρu

� Cε−Aτ
0 (ρ ′

0 − ρu)
−1
( x′

min

ε0|Qs|
)ρu−ρ′

0
(ε0|Qs|)ρu

( |˜I|
ε0

)2σ0+σ1

� Cε−τ(A+1)
0 (ε0|Qs|)ρu|Qs|−d∗

u

ρ′0−ρu

ρ′0−d∗
u

( |˜I|
ε0

)2σ0+σ1−σ ∗
u

ρ′0−ρu

ρ′0−d∗
u .(9.80)

Here, 2σ0 + σ1 and σ ∗
u are respectively close to 2 − d0

u − d0
s and 1 − d0

u , ρ
′
0−ρu

ρ′
0−d∗

u
belongs to

(0,1), and ρu is close to d0
u . This allows to obtain, when τ � η� ε0 are small enough

(9.81) S′
2 	 |˜I|θu .
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– x′
min � 2−l .

In this range, we use B′# to bound the cardinality of the set Bi−(˜I,˜I,˜I;2−l). As we
have ρu > d∗

u + ετ0 , we get, using (9.83)

S′
3 :=

∑

x′
min�2−l

#Bi−(˜I,˜I,˜I;2−l)2(1−l)ρu

� Cε
−τ(d0

u + σ
1+τ )

0 (ρu − d∗
u )

−1
( x′

min

ε0|Qs|
)ρu−ρ′

0
(ε0|Qs|)ρu

( |˜I|
ε0

)2σ0+σ1

� Cε
−τ(1+d0

u + σ
1+τ )

0 (ε0|Qs|)ρu|Qs|−d∗
u

ρ′0−ρu

ρ′0−d∗
u

( |˜I|
ε0

)2σ0+σ1−σ ∗
u

ρ′0−ρu

ρ′0−d∗
u .(9.82)

Up to a meaningless power of ετ0 , this is the same bound as for S′
2.

Summing the three estimates for S′
1,S

′
2,S

′
3 give the required estimate for S′

bi . The
proof of (SR2)′s is now complete.

Proof of (SR2)′u. — The proof of (SR2)′u is essentially symmetric to the proof of
(SR2)′s, but we have to be somewhat careful because we used (SR3) which is not symmet-
ric.

We divide the sums of the maxI |Pi|ρs (over a finite family of elements of R(˜I) with
the Qi disjoint and contained in a Q with (P,Q, n) ∈ ̂C−(I)) into an old an a new part as
for (SR2)s. The old part is dealt with exactly as above. For the new part, we introduce

(9.83) Sbi :=
∑

max
˜I

|P|ρs,

where the sum is taken over all (P,Q, n) ∈ R(˜I) such that P and Q are thin˜I-critical. We
now claim that

(9.84) Sbi � |˜I|θs,
where θs is any fixed constant in (d0

s /2,1 − d0
u ) independent of τ � η� ε0. The deduc-

tion of (SR2)′u from this estimate is the same as for (SR2)′s. To prove the claim, we proceed
as in the proof of Proposition 35. The estimate corresponding to Proposition 36 and its
Corollary is now

(9.85) #Bi+(I, I, I; x)� B# := C
( x

ε0|Pu|
)−d∗

s
( |I|
ε0

) σ
1+τ +d∗

s

ε
−τ(d0

s + σ
1+τ )

0 |Pu|−d∗
s .

The threshold where B# gets better than B = max(B0,B1) is xmin with

(9.86)
xmin

ε0|Pu| =
[

( |I|
ε0

)σ ∗
s |Pu|d∗

s

] 1
ρ0−d∗

s
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with σ ∗
s := 2σ0 + σ1 − σ

1+τ − d∗
u close to 1 − d0

s . We have

(9.87) Sbi �
∑

l�0

#Bi+(˜I,˜I,˜I;2−l)2(1−l)ρs,

and the right-hand sum is divided into three parts:

– x � 2−l � xcr .

Here x = ε1+Aτ/ρ1
0 |Pu|( |˜I|

ε0
)
σ0+σ1
ρ1 is defined by the relation ε−Aτ

0 B1 = 1 and satisfies
x < |˜I|β . The set Bi+(˜I,˜I,˜I; x) is empty for x > x. In the range under consideration, the
cardinality of the set Bi+(˜I,˜I,˜I;2−l) is bounded by ε−Aτ

0 B1. We get, as ρ1 < ρs

(9.88) S1 :=
∑

Cx�2−l�xcr

#Bi+(˜I,˜I,˜I;2−l)2(1−l)ρs � Cxρs � |˜I|1−d0
u .

– xcr � 2−l � xmin.

In this range, the cardinality of the set Bi+(˜I,˜I,˜I;2−l) is bounded by ε−Aτ
0 B0. As

we have ρ0 > ρs + ετ0 , we get

S2 :=
∑

xcr�2−l�xmin

#Bi+(˜I,˜I,˜I;2−l)2(1−l)ρs

� Cε−Aτ
0 (ρ0 − ρs)

−1
( xmin

ε0|Pu|
)ρs−ρ0

(ε0|Pu|)ρs

( |˜I|
ε0

)2σ0+σ1

� Cε−τ(A+1)
0 (ε0|Pu|)ρs |Pu|−d∗

s
ρ0−ρs

ρ0−d∗
s

( |˜I|
ε0

)2σ0+σ1−σ ∗
s
ρ0−ρs

ρ0−d∗
s
.(9.89)

Here, 2σ0 + σ1 and σ ∗
s are respectively close to 2 − d0

u − d0
s and 1 − d0

s , ρ0−ρu

ρ0−d∗
s

belongs to
(0,1), and ρs is close to d0

s . This allows to obtain

(9.90) S2 	 |˜I|θs .
– the sum S3 over xmin � 2−l has the same bound as for S2, up to a meaningless

power of ετ0 .

Summing the three estimates for S1,S2,S3 give the required estimate for Sbi . The proof
of (SR2)′u is complete. �

9.7. The induction step for (SR3)s: general overview and easy cases.

9.7.1. Very small values of x. — Let I ⊂˜I be a candidate interval. When x is very
small, one obtains directly a (trivial) estimate for the cardinality of Bi+(I, Iα, Iω; x) which
turns out to be better than (SR3)s. Indeed, from Corollary 13 in Section 8.3, one certainly
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has

(9.91) #Bi+(I, Iα, Iω; x)� Cx−d∗
s .

This very rough estimate is nevertheless better than (SR3)s when x is very small because
ρ0 > d∗

s (see (9.69) above). More precisely, we define

(9.92) xmin := |˜I|C(ρ0−d∗
s )

−1
,

with C large enough. For x � xmin, we have x−d∗
s 	 B0 for all intervals Iα, Iω containing I.

Therefore we have proved the

Proposition 37. — The estimate (SR3)s is satisfied for all candidates I, all Iα , Iω ⊃ I, as soon

as x � xmin.

9.7.2. Old and new elements. — Let I ⊂˜I be a candidate interval.

Definition 9. — We denote by Biold
+ (I, Iα, Iω; x) the set of (P,Q, n) ∈ Bi+(I, Iα, Iω; x) which

belong to R(˜I), by Binew
+ (I, Iα, Iω; x) the set of (P,Q, n) ∈ Bi+(I, Iα, Iω; x) which do not belong to

R(˜I).

We will estimate separately the cardinalities of the two sets. The estimate for
Binew

+ (I, Iα, Iω; x) is based on the structure theorem of Section 6.5 and is valid for all can-
didates I ⊂˜I. In Section 9.8, we will prove the

Proposition 38. — Assume that˜I is strongly regular. There exists a constant σ2 > 0, depending

only on d0
u , d

0
s ,ωu, such that one has, for all candidates I ⊂˜I, all Iα, Iω ⊃ I, all x � xmin

#Binew
+ (I, Iα, Iω; x)� |˜I|σ2B,

where ε−Aτ
0 B is the bound for #Bi+(I, Iα, Iω; x) predicted by (SR3)s.

On the other hand, the estimate for Biold
+ (I, Iα, Iω; x) is trivial (from the strong reg-

ularity of˜I) when both Iα and Iω contain˜I. Indeed, one has in this case

(9.93) Biold
+ (I, Iα, Iω; x)⊂ Bi+(˜I, Iα, Iω; x)

(we don’t have always equality because the maximum value of |P| is taken over I in one
case and over˜I in the other case). Combining this with Proposition 38, we get

Proposition 39. — Assume that˜I is strongly regular. Then (SR3)s is satisfied for all candidates

I ⊂˜I, all Iα, Iω ⊃˜I, all x � xmin.
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Proof. — We have only to observe that the series
∑

k�0 ε
σ2
k (where εk = ε(1+τ)k

0 is the
length of intervals of generation k), related to the iterated application of Proposition 38 is
convergent with sum � Cεσ2

0 . �

9.7.3. The case I = Iα �= Iω. — Let I ⊂˜I be a candidate interval. We consider here
a set Biold

+ (I, I, Iω; x) with Iω ⊃˜I. We will estimate the size of this set for most candidates
I ⊂˜I, assuming that˜I is strongly regular.

Let (P,Q, n) be an element of Biold
+ (I, I, Iω; x). As P in thin I-critical, there exists

(P∗,Q∗, n∗) ∈ R(I) such that P ⊂ P∗, P∗ is I-critical and minI |P∗|1−η � 2|I|. By coher-
ence, (P∗,Q∗, n∗) ∈ R(˜I) and P∗ is˜I-special; then, by Proposition 18 in Section 7.7,
we have max̃I |P∗|1−η � C|I|. It follows that there exists (˜P,˜Q, ñ) ∈ C+(˜I) such that
P ⊂ P∗ ⊂˜P. Moreover, we have I ∈ Cr(˜P) by definition of Cr(˜P). Observe also that P∗ is
˜I-critical, hence P is thin˜I-critical, and that max̃I |P| � maxI |P| � x.

Definition 10. — For (˜P,˜Q, ñ) ∈ C+(˜I), we denote by Bi+(˜P) the set of (P,Q, n) ∈
Bi+(˜I,˜I, Iω; x) such that P ⊂˜P.

We have just seen that

(9.94) Biold
+ (I, I, Iω; x)⊂

⊔

(˜P,˜Q,̃n)∈C+(˜I)
I∈Cr(˜P)

Bi+(˜P).

As the sets Bi+(˜P) are disjoint, we have

(9.95)
∑

C+(˜I)

#Bi+(˜P)� #Bi+(˜I,˜I, Iω; x).

We now sum over candidates I ⊂˜I the estimate for the cardinality of Biold
+ (I, I, Iω; x)

deduced from the inclusion above. We obtain, using Proposition 33 in Section 9.5 and
(9.102)

∑

I⊂˜I
#Biold

+ (I, I, Iω; x)�
∑

C+(˜I)

#Bi+(˜P)#Cr(˜P)

� C|˜I|−τd+
u

∑

C+(˜I)

#Bi+(˜P)

� C|˜I|−τd+
u #Bi+(˜I,˜I, Iω; x).(9.96)

From now on, we assume that the exponents σ0 (close to 1 − d0
s ) and σ1 (close to d0

s − d0
u )

in (SR3) satisfy

(9.97) σ0 + σ1 � 1 − 3τ − d+
u .
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We also assume that

(9.98) ρ0 � d∗
s + ετ 2/2

0 .

Proposition 40. — Assume that˜I is strongly regular. Then, except for a proportion of candidates

not greater than |˜I|τ 2
, the estimate (SR3)s is satisfied by Bi+(I, I, Iω; x) for all x � xmin and all

Iω ⊃˜I.
Proof. — In view of Proposition 38, we have only to consider Biold

+ (I, I, Iω; x). For
fixed x = 2−l � xmin and fixed Iω ⊃˜I, it follows from (9.96) that we have

(9.99) #Biold
+ (I, I, Iω; x)� C|˜I|τ−2τ 2 |˜I|−τd+

u #Bi+(˜I,˜I, Iω; x),

except for a proportion of candidates no greater than |˜I|2τ 2
.

Let xcr = ε0|Pu|( |Iω|
ε0
)

σ0
ρ0−ρ1 . For x � xcr , we have

(9.100) #Bi+(˜I,˜I, Iω; x)� ε−Aτ
0

( x

ε0|Pu|
)−ρ0

( |˜I|
ε0

)σ0+σ1
( |Iω|
ε0

)σ0

,

while for x � xcr , we have

(9.101) #Bi+(˜I,˜I, Iω; x)� ε−Aτ
0

( x

ε0|Pu|
)−ρ1

( |˜I|
ε0

)σ0+σ1

.

As σ0 + σ1 � 1 − 3τ − d+
u , we have

(9.102) C|˜I|τ−2τ 2−τd+
u 	 |˜I|τ(σ0+σ1),

and therefore, when a candidate I satisfies (9.99), we have

(9.103) #Biold
+ (I, I, Iω; x)	 ε−Aτ

0 B = ε−Aτ
0 max(B0,B1).

Thus, to get the required estimate, it is sufficient to remove a proportion � |˜I|2τ 2
of

candidates for each x = 2−l � xmin and each Iω ⊃˜I. The number of values of l is
� C(ρ0 − d∗

s )
−1 � Cε−τ 2/2

0 log2 |˜I|. The number of possibilities for Iω is the level k of
the interval I. From |I| = ε(1+τ)k

0 , we have

(9.104) k = log( log |I|
log ε0
)

log(1 + τ) .

Now, we have, for ε0 small enough

(9.105) C|˜I|2τ 2
ε

−τ 2/2
0 log2 |˜I| log( log |I|

log ε0
)

log(1 + τ) 	 |˜I|τ 2
,

and the proof of the proposition is complete. �
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9.7.4. The case I = Iω �= Iα . — The case is essentially symmetric to the case that
we have just considered above. We will now assume that (9.98) holds and that

(9.106) σ0 � 1 − 3τ − d+
s .

Proposition 41. — Assume that˜I is strongly regular. Then, except for a proportion of candidates

not greater than |˜I|τ 2
, the estimate (SR3)s is satisfied by Bi+(I, Iα, I; x) for all x � xmin and all Iα ⊃˜I.

Proof. — The only difference with the proof of Proposition 40 is that we now have,
for each x = 2−l � xmin, each Iα ⊃˜I
(9.107) #Biold

+ (I, Iα, I; x)� C|˜I|τ−2τ 2 |˜I|−τd+
s #Bi+(˜I, Iα,˜I; x),

except from a proportion of candidates no greater than |˜I|2τ 2
, where Bi+(˜I, Iα,˜I; x) is now

controlled by

(9.108) #Bi+(˜I, Iα,˜I; x)� ε−Aτ
0

( x

ε0|Pu|
)−ρ0

( |˜I|
ε0

)σ0
( |Iα|
ε0

)σ0+σ1

,

for x � xcr = ε0|Pu|( |Iα |
ε0
)

σ0
ρ0−ρ1 , and by

(9.109) #Bi+(˜I, Iα,˜I; x)� ε−Aτ
0

( x

ε0|Pu|
)−ρ1

( |˜I|
ε0

)σ0
( |Iα|
ε0

)σ1

,

for x � xcr .
Using σ0 � 1 − 3τ − d+

s allows to conclude as in the proof of Proposition 40. �

9.7.5. The case I = Iα = Iω, x large. — Except for the proof of Proposition 38, the
only case left in the induction step for (SR3)s is I = Iα = Iω, x � xmin. In this case, we have

B0 =
( x

ε0|Pu|
)−ρ0

( |I|
ε0

)2σ0+σ1

,(9.110)

B1 =
( x

ε0|Pu|
)−ρ1

( |I|
ε0

)σ0+σ1

.(9.111)

Observe that we have

(9.112) Biold
+ (I, I, I; x)⊂ Biold

+ (I, I,˜I; x).

In the proof of Proposition 40, we have shown that for x = 2−l � x̃cr := ε0|Pu|( |˜I|
ε0
)

σ0
ρ0−ρ1 , we

have

(9.113) #Biold
+ (I, I,˜I; x)� ε−Aτ

0 B1,

except for a proportion � |˜I|2τ 2
of candidates I. We get therefore the required estimate

for Biold
+ (I, I, I; x) when x � x̃cr .
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Proposition 42. — Assume that˜I is strongly regular. Then, except for a proportion of candidates

not greater than |˜I|τ 2
, the estimate (SR3)s is satisfied by Bi+(I, I, I; x) for all x � x̃cr , where

(9.114) x̃cr = ε0|Pu|
( |˜I|
ε0

)
σ0

ρ0−ρ1
.

9.7.6. The case I = Iα = Iω, xmin � x � x̃cr : idea of the proof. — This remaining
case is by far the hardest! In this range of x, the required bound for the cardinality of
Bi+(I, I, I; x) is given by B0 (except at the very top of the range); the exponent 2σ0 + σ1

(close to 2 − d0
s − d0

u ) in (9.110) means that we have to take into account the criticality of
both P and Q in the selection process.

Let I ⊂˜I be a candidate interval and let (P,Q, n) ∈ Biold
+ (I, I, I; x). The argument

at the beginning of Section 9.7.3 shows that there exists (Pα,Qα, nα) ∈ C+(˜I) such that
P ⊂ Pα and I ∈ Cr(Pα). Similarly, there exists (Pω,Qω, nω) ∈ C−(˜I) such that Q ⊂ Qω and
I ∈ Cr(Qω). We also observe that (P,Q, n) ∈ Bi+(˜I,˜I,˜I; x).

Definition 11. — For (Pα,Qα, nα) ∈ C+(˜I), (Pω,Qω, nω) ∈ C−(˜I), we denote by

Bi+(Pα,Qω) the set of (P,Q, n) ∈ Bi+(˜I,˜I,˜I; x) such that P ⊂ Pα and Q ⊂ Qω.

We have just seen that, for any candidate I, we have

(9.115) Biold
+ (I, I, I; x)⊂

⊔

(Pα,Qα,nα)∈C+(˜I)
I∈Cr(Pα)

⊔

(Pω,Qω,nω)∈C−(˜I)
I∈Cr(Qω)

Bi+(Pα,Qω).

As the sets Bi+(Pα,Qω) are disjoint, we have

(9.116)
∑

C+(˜I)

∑

C−(˜I)

#Bi+(Pα,Qω)� #Bi+(˜I,˜I,˜I; x).

If we were able to prove (for a “random” candidate I) that the events I ∈ Cr(Pα)
and I ∈ Cr(Qω) are roughly “independent”, i.e. if the proportion of candidates in
Cr(Pα)∩ Cr(Qω) was roughly the product |˜I|τ(2−d+

s −d+
u ) of the proportions in Cr(Pα) and

Cr(Qω) (cf. Proposition 33 in Section 9.5), we would be able to proceed as in the proof
of Proposition 40. But this is unfortunately not the case.

Instead, we will use some degree of independence, in the range of x under consid-
eration, of the variables Pα and Qω in Bi+(Pα,Qω). To explain the technique, consider
first the unrealistic model case where we assume that

(9.117) #Bi+(Pα,Qω)= b+(Pα)b−(Qω),

for some functions b+, b− on C+(˜I), C−(˜I), respectively.
From (9.115), we would get

(9.118) #Biold
+ (I, I, I; x)� φ+(I)φ−(I),
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with

φ+(I)=
∑

I∈Cr(Pα)

b+(Pα),(9.119)

φ−(I)=
∑

I∈Cr(Qω)

b−(Qω).(9.120)

We now average separately φ+ and φ−. We obtain
∑

I

φ+(I)�
(

max
C+(˜I)

#Cr(Pα)
)
∑

C+(˜I)

b+(Pα),(9.121)

∑

I

φ−(I)�
(

max
C−(˜I)

#Cr(Qω)
)
∑

C−(˜I)

b−(Qω),(9.122)

where Cr(Pα) and Cr(Qω) are estimated by Proposition 33 in Section 9.5. From (9.116),
we have

(9.123)
∑

C+(˜I)

b+(Pα)
∑

C−(˜I)

b−(Qω)=
∑

C+(˜I)×C−(˜I)

#Bi+(Pα,Qω)� #Bi+(˜I,˜I,˜I; x).

It is then sufficient to eliminate candidates for which either φ+ or φ− is much above its
average value to obtain (SR3)s for the remaining intervals.

As (9.117) does not hold, we will find an appropriate substitute as follows.
We will subdivide each class Bi+(Pα,Qω) into subclasses Bi+(Pα,Qω, �); the index

� runs through a finite large set L dependent on˜I and x but independent on Pα and
Qω. Moreover, we will have functions b+(Pα, �), b−(Qω, �) on C+(˜I) × L, C−(˜I) × L,
respectively, such that,

(9.124) #Bi+(Pα,Qω, �)� b+(Pα, �), b−(Qω, �).

We then set, for each � ∈ L:

φ+,�(I)=
∑

I∈Cr(Pα)

b+(Pα, �),(9.125)

φ−,�(I)=
∑

I∈Cr(Qω)

b−(Qω, �).(9.126)

We average each of these functions to get, in view of Proposition 33 in Section 9.5,
∑

I

φ+,�(I)� C|˜I|−τd+
u b+(�),(9.127)

∑

I

φ−,�(I)� C|˜I|−τd+
s b−(�),(9.128)
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with

b+(�)=
∑

C+(˜I)

b+(Pα, �),(9.129)

b−(�)=
∑

C−(˜I)

b−(Qω, �).(9.130)

For each �, we will have

φ+,�(I)� |˜I|τ(1−d+
u −3τ)b+(�),(9.131)

φ−,�(I)� |˜I|τ(1−d+
s −3τ)b−(�)(9.132)

except for a proportion of candidates not greater than C|˜I|3τ 2
. Set

(9.133) ̂B =
∑

L

b+(�)b−(�).

Because we need to eliminate candidates for each �, L should not be too large. We will
show in Section 9.10 that

(9.134) #L � |˜I|−τ 2
.

Taking into account that we must eliminate candidates for each x = 2−l � xmin, the total
proportion of the failed candidates is at most |˜I|τ 2

(cf. proof of Proposition 40 in Sec-
tion 9.7.3). On the other hand, for the surviving candidates, the discussion above gives

#Biold
+ (I, I, I; x)�

∑

I∈Cr(Pα)∩Cr(Qω)

#Bi+(Pα,Qω)

�
∑

L

∑

I∈Cr(Pα)

∑

I∈Cr(Qω)

b+(Pα, �)b−(Qω, �)

=
∑

L

φ+,�(I)φ−,�(I)

� |˜I|τ(2−d+
s −d+

u −6τ)
̂B.(9.135)

If we are able to prove that

(9.136) |˜I|τ(2−d+
s −d+

u −6τ)
̂B � ε−Aτ

0 B,

where B is the bound from (SR3)s, we get the required conclusion.
In the next four subsections, we will

– prove Proposition 38 (estimate on the size of Binew
+ (I, Iα, Iω; x));

– define precisely L and the subclasses Bi+(Pα,Qω, �);
– bound the cardinality of L (prove (9.134));
– obtain an appropriate estimate for̂B.
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9.8. Size of Binew
+ (I, Iα, Iω; x).

9.8.1. The goal of Section 9.8 is to prove Proposition 38 in Section 9.7.2. Let us
recall the statement: there exists a constant σ2 > 0, depending only on d0

u , d
0
s ,ωu, such

that, if˜I is strongly regular, one has, for all candidates I ⊂˜I, all Iα, Iω ⊃ I, all x � xmin

(9.137) #Binew
+ (I, Iα, Iω; x)� |˜I|σ2B,

where ε−Aτ
0 B is the bound for #Bi+(I, Iα, Iω; x) predicted by (SR3)s.

It is sufficient to prove this estimate when Iα, Iω contain˜I. Indeed, let˜Iα =˜I ∪ Iα ,
˜Iω =˜I ∪ Iω. We have Binew

+ (I, Iα, Iω; x)⊂ Binew
+ (I,˜Iα,˜Iω; x). On the other hand, the bounds

ε−Aτ
0 B, ε−Aτ

0
˜B predicted by (SR3)s for #Bi+(I, Iα, Iω; x), #Bi+(I,˜Iα,˜Iω; x) respectively sat-

isfy B � |˜I|Cτ˜B. Therefore the estimate (9.144) for #Binew
+ (I,˜Iα,˜Iω; x) imply the estimate

for #Binew
+ (I, Iα, Iω; x) with a slightly smaller value of σ2 > 0.

We will therefore now assume that both Iα, Iω contain˜I.

9.8.2. Let I ⊂˜I be a candidate interval, let Iα, Iω be parameter intervals contain-
ing˜I, let x = 2−l � xmin and let (P,Q, n) ∈ #Bi+(I, Iα, Iω; x).

We apply the structure theorem of Section 6.5. We obtain an integer k > 0 and
elements (Pi,Qi, ni) ∈ R(˜I) for 0 � i � k such that

– (P,Q, n) ∈ (P0,Q0, n0) � · · ·� (Pk,Qk, nk);
– for 0 � i < k, Qi and Pi+1 are˜I-critical and Qi �˜I Pi+1 does not hold;
– for all t ∈ I, |P| � Ck|I|−k/2

∏

0�i�k |Pi| (cf. Proposition 14 in Section 6.6.3).

For 0 � i � k, denote by xi = 2−li the largest integral negative power of 2 such that |Pi| �
xi for some t ∈˜I.

Lemma 12. — We have (P0,Q0, n0) ∈ Bi+(˜I, Iα,˜I; x0), (Pk,Qk, nk) ∈ Bi+(˜I,˜I, Iω; xk),

and (Pi,Qi, ni) ∈ Bi+(˜I,˜I,˜I; xi) for 0< i < k.

Remark 12. — This lemma is the reason why we need to consider different levels of
criticality for P and Q.

Proof. — For 0 � i < k, Qi and Pi+1 are thin˜I-critical by Lemma 10 in Section 9.1.
As P is thin Iα-critical, there exists (P′,Q′, n′) ∈ R(Iα) with P ⊂ P′ and minIα |P′|1−η �
2|Iα|. As Iα ⊃˜I and P0 is the thinnest˜I-defined rectangle containing P, one has P0 ⊂ P′

and P0 is thin Iα-critical. Similarly, Qk is thin Iω-critical. In view of the definition of the
xi, the proof of the lemma is complete. �

From the definition of the xi and the estimate for |P| above, we get

(9.138) x � Ck|I|− k

2

k
∏

0

xi.
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Let us write

#(x0) := #Bi+(˜I, Iα,˜I; x0),

#(xk) := #Bi+(˜I,˜I, Iω; xk),

#(xi) := #Bi+(˜I,˜I,˜I; xi) for 0< i < k.

Then, as each parabolic composition produces two elements, we have

(9.139) #Binew
+ (I, Iα, Iω; x)�

∑

k>0

2k
∑

x0,...,xk

k
∏

0

#(xi)

where the xi in the sum are of the form 2−li and must satisfy (9.138).
The term #(xi) is estimated by the induction hypothesis (SR3)s for˜I. The bound

for #(xi) has a phase transition at a threshold xi,cr , with (cf. (9.16))

x0,cr = ε0|Pu|
( |Iα|
ε0

)
σ0

ρ0−ρ1
,

xk,cr = ε0|Pu|
( |Iω|
ε0

)
σ0

ρ0−ρ1
,(9.140)

xi,cr = ε0|Pu|
( |˜I|
ε0

)
σ0

ρ0−ρ1
, for 0< i < k.

We divide the sum in the right-hand part of (9.139) into two parts. In the first sum,
denoted by Sl , we put the terms for which every xi is above the threshold xi,cr . In the
second sum, denoted by Ss, we put the terms for which at least one of the xi is below xi,cr .

9.8.3. Terms with all xi large. — Let us consider a term in Sl . All #(xi) are bounded
by ε−Aτ

0 B1 and we have

(9.141)
k
∏

0

#(xi)� ε−(k+1)Aτ
0

( k
∏

0

xi

)−ρ1

(ε0|Pu|)(k+1)ρ1

( |Iα|
ε0

)σ1
( |˜I|
ε0

)(k+1)σ0+kσ1

.

In view of (9.138), the right-hand side is bounded by

(9.142) C
( x

ε0|Pu|
)−ρ1

( |Iα|
ε0

)σ1
( |˜I|
ε0

)σ0

Zk,

with

(9.143) Z := Cε−2Aτ
0

(

ε0|Pu||I|−
1
2

)ρ1
( |˜I|
ε0

)σ0+σ1

.
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For all 0 � i � k, from (9.140) and C−1ε
ωu

0 � |Pu| � C−1ε
ωu

0 (cf. (9.17) in Section 5.6.4), we
have xi,cr > |˜I|C for some large enough C. Therefore, for each k > 0, the number of terms
in Sl is at most (C| log2 |˜I||)k+1 � (C| log2 |˜I||)2k .

We thus obtain for Sl the bound

(9.144) Sl � C
( x

ε0|Pu|
)−ρ1

( |Iα|
ε0

)σ1
( |˜I|
ε0

)σ0 ∑

k>0

Zk
1,

with

(9.145) Z1 := 2(C| log2 |˜I||)2Z.

In view of (9.143), we have

(9.146) Z1 	
( |˜I|
ε0

)σ0+σ1−ρ1 |˜I| 1
3ρ1,

where the exponent σ0 + σ1 − ρ1 is strictly positive from the hypothesis (H4), as we have
seen in Section 9.3 (cf. (9.24)).

As Z1 <
1
2 , we obtain from (9.144) that

Sl �
1
2

( x

ε0|Pu|
)−ρ1

( |˜I|
ε0

)2σ0+σ1−ρ1
( |Iα|
ε0

)σ1|˜I| 1
3ρ1

� 1
2

( x

ε0|Pu|
)−ρ1

(

min
|Iα|
ε0
,
|Iω|
ε0

)σ0
( |Iα|
ε0

)σ1|˜I| 1
3ρ1

= 1
2

B1|˜I|
1
3ρ1,(9.147)

where we have used that both Iα ,Iω contain˜I and σ0 + σ1 − ρ1 > 0.

9.8.4. Terms with some xi small. — Consider a term in the sum Ss. Let J be the
non-empty subset of indices i ∈ {0, . . . , k} for which xi < xi,cr , and write j = #J.

We first estimate the product
∏

i #(xi). As ρ0 > ρ1, we have from (9.138)

(9.148)
∏

J

x
−ρ0
i

∏

Jc

x
−ρ1
i �

(

C−k|I| k

2 x
)−ρ0

.

As we also have˜I ⊂ Iα ,˜I ⊂ Iω, we obtain

(9.149)
∏

i

#(xi)� Cε−Aτ
0

( x

ε0|Pu|
)−ρ0

( |Iα|
ε0

)σ0+σ1
( |Iω|
ε0

)σ0

Yj−1
0 Yk

1,
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with

Y0 = (ε0|Pu|)ρ0−ρ1

( |˜I|
ε0

)σ0

,(9.150)

Y1 = Cε−Aτ
0 |I|−ρ0/2(ε0|Pu|)ρ1

( |˜I|
ε0

)σ0+σ1

.(9.151)

We have

(9.152) Y0 < 1,

and, as C−1ε
ωu

0 � |Pu| � C−1ε
ωu

0 (cf. (5.17)), we can rewrite Y1 as

(9.153) Y1 = C
(

˜I
ε0

)σ0+σ1− 1
2ρ0(1+τ)

ε
ρ1− 1

2ρ0(1+τ)+ρ1ωu−Aτ

0 .

The exponent σ0 +σ1 − 1
2ρ0(1+τ) is close to 1−d0

u −1/2d0
s when τ � η� ε0 are small.

We have 1 − d0
u − 1/2d0

s > 0 from (H4) (see also the remark after Proposition 35). The
exponent ρ1 − 1

2ρ0(1 + τ) is close to 1
2d0

s (3d0
s + d0

u − 2)(d0
s + d0

u )
−1 when τ � η� ε0 are

small. From d0
s + d0

u � 1, d0
s � d0

u , we have 3d0
s + d0

u − 2 � 0 (with equality iff d0
u = d0

s =
1/2). On the other hand, the exponent ρ1ωu is close to ωud

0
s (2d0

s + d0
u −1)(d0

s + d0
u )

−1 > 0
when τ � η� ε0 are small. All this means that we can find a number σ2 > 0, depending
only on d0

u , d
0
s ,ωu (and only on d0

u , d
0
s when (d0

u , d
0
s ) �= (1/2,1/2)) such that

(9.154) Y1 � |˜I|2σ2 .

Consider now, for fixed k, the number of terms in Ss. From Proposition 14 in Sec-
tion 6.6.3, we have xi � |˜I| for each i; then (9.138) and x � xmin imply that xi > xmin

for each i. As xmin = |˜I|C(ρ0−d∗
s )

−1
, the number of terms is bounded by

(9.155)
(

C(ρ0 − d∗
s )

−1 log2 |˜I|−1
)k+1

.

Using k + 1 � 2k for k > 0 and (9.149), (9.152), we obtain the following bound for Ss

(9.156) Ss �
( x

ε0|Pu|
)−ρ0

( |Iα|
ε0

)σ0+σ1
( |Iω|
ε0

)σ0 ∑

k>0

Yk

with

(9.157) Y = 2C(ρ0 − d∗
s )

−2(log |˜I|−1)2Y1.

From (9.98) in Section 9.7.3, we have (ρ0 − d∗
s )

−2 � ε−τ 2

0 � |˜I|−τ 2
. We obtain therefore

(9.158)
∑

k>0

Yk <
1
2
|˜I|σ2 .
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We have thus shown that

(9.159) Ss � 1
2

B0|˜I|σ2 .

Taking σ2 smaller if necessary, we can assume that

(9.160) 0< σ2 � 1
3
ρ1.

The estimates (9.147) and (9.159) complete the proof of Proposition 38.

9.9. Subclasses of bicritical elements.

9.9.1. Complement to the structure theorem. — The following result will be used several
times in the construction of the classes of bicritical elements.

Proposition 43. — Let I ⊂˜I be a candidate interval. Let (P,Q, n), (P′,Q′, n′) ∈ R(I) with

P ⊂ P′. Assume that (P,Q, n) does not belong to R(˜I). Let k > 0 be the integer and (Pi,Qi, ni) ∈
R(˜I) for 0 � i � k be the elements given by the structure theorem.

1. If (P′,Q′, n′) belongs to R(˜I), we have P′ ⊃ P0.

2. If (P′,Q′, n′) does not belong to R(˜I), there exists 0 < j � k and (P′
j,Q

′
j, n

′
j) ∈ R(˜I)

with P′
j ⊃ Pj such that

(P′,Q′, n′) ∈ (P0,Q0, n0) � · · ·� (Pj−1,Qj−1, nj−1) � (P′
j,Q

′
j, n

′
j)

is the decomposition associated to (P′,Q′, n′) by the structure theorem.

Remark 13. — Taking j = 0 and (P′
0,Q

′
0, n

′
0) = (P′,Q′, n′), the first case can be

considered as a special case of the second case.

Proof. — The first case follows from the fact that P0 is the thinnest˜I-defined rec-
tangle containing P.

We now assume that (P′,Q′, n′) does not belong to R(˜I). By coherence, P0 is also
the thinnest˜I-defined rectangle containing P′. Therefore, (P0,Q0, n0) is also the first
element in the decomposition associated to (P′,Q′, n′) by the structure theorem.

Let (̂P,̂Q, n̂) ∈ (P1,Q1, n1) � · · ·� (Pk,Qk, nk) be the element such that

(P,Q, n) ∈ (P0,Q0, n0) � (̂P,̂Q, n̂).

We claim that, when k > 1, i.e. when (̂P,̂Q, n̂) does not belong to R(˜I),

(̂P,̂Q, n̂) ∈ (P1,Q1, n1) � · · ·� (Pk,Qk, nk)

is the decomposition associated to (̂P,̂Q, n̂) by the structure theorem. Indeed, this follows
easily from the characterization of the (Pi,Qi, ni) in terms of maximal˜I-intervals (see
Lemma 2 in Section 6.5.2).
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Define similarly (̂P′,̂Q′, n̂′) such that

(P′,Q′, n′) ∈ (P0,Q0, n0) � (̂P′,̂Q′, n̂′).

As P ⊂ P′, we have ̂P ⊂̂P′. If k = 1, we have (̂P,̂Q, n̂) = (P1,Q1, n1), we take j =
1, (P′

1,Q
′
1, n

′
1) = (̂P′,̂Q′, n̂′) to satisfy the conclusions of the proposition. If k > 1, the

claim above allows also to conclude by induction on k. �

9.9.2. Bound elements.

Definition 12. — Let (Pα,Qα, nα) ∈ C+(˜I), (Pω,Qω, nω) ∈ C−(˜I). An element (P,Q, n)
∈ Bi+(Pα,Qω) is bound if n � nα + nω. Otherwise, we say that (P,Q, n) is free. We will denote by

Bi+(Pα,Qα,♦) the subset of bound elements of Bi+(Pα,Qω).

Thus, ♦ is an element of L. On the other hand, free elements will correspond to many elements

of L. Recall that we have xmin � x � x̃cr . When x 	 x̃cr , most elements are free. If we would allow

x � x̃cr , on the opposite, most elements would be bound.

Proposition 44. — For any (Pα,Qα, nα), (Pω,Qω, nω) ∈ R(˜I), and any n � nα+nω, there

is at most one element (P,Q, n) ∈ R(˜I) of length n such that P ⊂ Pα , Q ⊂ Qω.

Proof. — We argue by induction on the level of the parameter interval.
When˜I is the starting interval I0, no parabolic composition is involved and the

result follows from usual symbolic dynamics: as n � nα + nω, the word associated to a
bound element is determined by its initial and final parts.

Assume that the result holds for parameter intervals strictly larger than˜I. Denote
by˜I1 the parent interval of˜I.

Assume first that both (Pα,Qα, nα) and (Pω,Qω, nω) belong to R(˜I1). We claim
that any bound element also belongs to R(˜I1), which allow us to conclude the proof by the
induction hypothesis. Indeed, if (P,Q, n) satisfies P ⊂ Pα , Q ⊂ Qω and does not belong to
R(˜I1), we apply the structure theorem: it gives elements (P0,Q0, n0), (Pk,Qk, nk) ∈ R(˜I1)

such that P0 is the thinnest rectangle containing P defined over˜I1, Qk is the thinnest
rectangle containing Q defined over˜I1, and n � n0 + nk + N0. Therefore, n0 � nα , nk � nω
and n> nα + nω.

We now consider the case when, for instance, (Pα,Qα, nα) does not belong to
R(˜I1). We now apply the structure theorem to (Pα,Qα, nα) and also to an element
(P,Q, n) ∈ R(˜I) with P ⊂ Pα , Q ⊂ Qω, n � nα + nω. From Proposition 43, we obtain
integers 0< j � k, elements (Pi,Qi, ni) ∈ R(˜I1) for 0 � i � k such that

(9.161) (P,Q, n) ∈ (P0,Q0, n0) � · · ·� (Pk,Qk, nk)

and also (˜Pj,˜Qj, ñj) ∈ R(˜I1) such that˜Pj ⊃ Pj and

(9.162) (Pα,Qα, nα) ∈ (P0,Q0, n0) � · · ·� (Pj−1,Qj−1, nj−1) � (˜Pj,˜Qj, ñj).
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Similarly, there exists m with 0 � m � k and (˜P′
m,
˜Q′

m, ñ
′
m) in R(˜I1) such that ˜Q′

m ⊃ Qm

and

– either m = k, (˜P′
m,
˜Q′

m, ñ
′
m)= (Pω,Qω, nω);

– or m< k and we have,

(9.163) (Pω,Qω, nω) ∈ (˜P′
m,
˜Q′

m, ñ
′
m) � · · ·� (Pk,Qk, nk).

The relations n � nα + nω, nj � ñj , nm � ñ′
m imply that m � j.

If m < j, the sequence (Pi,Qi, ni) and the choice of the result (out of two possi-
bilities) in each parabolic composition are completely determined by Pα and Qω: the
assertion of the proposition follows.

When m = j, the sequence (Pi,Qi, ni) for i �= m = j is determined by Pα , Qω; but
we also have Pj ⊂˜Pj , Qj = Qm ⊂ ˜Qm and nj � ñj + ñ′

m, so by the induction hypothesis
(Pj,Qj, nj) is also determined by Pα , Qω and n. Again, the choices of the results in the
parabolic compositions are also determined by Pα , Qω. The proof of the proposition is
complete. �

Recall that, by Proposition 12 in Section 6.6.2, we have

(9.164) max
˜I

|P| � C0 exp(−nγ )

for any (P,Q, n) ∈ R(˜I), with γ = log 3
2/ log 2> 1

2 .
If (P,Q, n) ∈ Bi+(Pα,Qω,♦), we have max̃I |P|�x�xmin = |˜I|C(ρ0−d∗

s )
−1

, and there-
fore

(9.165) n � (ρ0 − d∗
s )

−2(log |˜I|)2.
We thus shall define

(9.166) b+(Pα,♦)= b−(Qω,♦)= (ρ0 − d∗
s )

−1 log |˜I|−1,

and we will indeed have, from Proposition 44,

(9.167) #Bi+(Pα,Qω,♦)� b+(Pα,♦)b−(Qω,♦).

9.9.3. Decomposition of a free element. — Let (Pα,Qα, nα) ∈ C+(˜I), (Pω,Qω, nω) ∈
C−(˜I) and let (P,Q, n) ∈ Bi+(Pα,Qω) be a free element. We will analyze with respect to
the structure theorem the way in which (P,Q, n), (Pα,Qα, nα), (Pω,Qω, nω) have been
created. This will allow us in the sequel to define various subclasses of free elements.

Denote bŷI0 the largest parameter interval such that (P,Q, n) ∈ R(̂I0). Elements
(P,Q, n) for whicĥI0 is the starting interval I0 are said to have depth 0. They form a first
free subclass of Bi+(Pα,Qω) denoted by Bi+(Pα,Qω,0).
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We now assume that̂I0 �= I0 and denote by˜I0 the parent interval of̂I0. We apply
the structure theorem. We obtain an integer k > 0, elements (P0,Q0, n0), . . . , (Pk,Qk, nk)

in R(˜I0) such that

(9.168) (P,Q, n) ∈ (P0,Q0, n0) � · · ·� (Pk,Qk, nk).

By Proposition 43, we find 0 � j � k and (˜Pj,˜Qj, ñj) ∈ R(˜I0) such that either j = 0,
(˜Pj,˜Qj, ñj)= (Pα,Qα, nα) (if (Pα,Qα, nα) ∈ R(˜I0)) or j > 0 and

(9.169) (Pα,Qα, nα) ∈ (P0,Q0, n0) � · · ·� (˜Pj,˜Qj, ñj).

Similarly, we find 0 � m � k and (˜P′
m,
˜Q′

m, ñ
′
m) ∈ R(˜I0) such that either m = k, (˜P′

m,
˜Q′

m, ñ
′
m)= (Pω,Qω, nω) or m< k and

(9.170) (Pω,Qω, nω) ∈ (˜P′
m,
˜Q′

m, ñ
′
m) � · · ·� (Pk,Qk, nk).

We also have Pj ⊂˜Pj , Qm ⊂ ˜Q′
m. Moreover, as (P,Q, n) is free, we must have j � m and,

when j = m, we must also have nj = nm > ñj + ñ′
m.

We say that (P,Q, n) is fully decomposed if one has here j < m or j = m and
(Pj,Qj, nj) ∈ R(I0). Such elements are said to have depth one.

Assume that (P,Q, n) is not fully decomposed. Then, we have j = m, Pj ⊂˜Pj , Qj ⊂
˜Q′

j and the largest parameter interval̂I1 for which (Pj,Qj, nj) ∈ R(̂I1) is not the starting
interval I0. We denote by˜I1 the parent interval. We rewrite

(P1,Q1, n1) := (Pj,Qj, nj),

(P1
α,Q

1
α, n

1
α) := (˜Pj,˜Qj, ñj),(9.171)

(P1
ω,Q

1
ω, n

1
ω) := (˜P′

j,
˜Q′

j, ñ
′
j),

and proceed with these elements as we did with (P,Q, n), (Pα,Qα, nα), (Pω,Qω, nω): we
will find integers 0 � j1 � m1 � k1 (with k1 > 0), elements (P1

i ,Q
1
i , n

1
i ) for 0 � i � k1 and

also (P2
α,Q

2
α, n

2
α), (P

2
ω,Q

2
ω, n

2
ω), all in R(˜I1), such that

(P1,Q1, n1) ∈ (P1
0,Q

1
0, n

1
0) � · · ·� (P1

k1
,Q1

k1
, n1

k1
),

(P1
α,Q

1
α, n

1
α) ∈ (P1

0,Q
1
0, n

1
0) � · · ·� (P1

j1−1,Q
1
j1−1, n

1
j1−1) � (P2

α,Q
2
α, n

2
α),

(9.172)
(P1
ω,Q

1
ω, n

1
ω) ∈ (P2

ω,Q
2
ω, n

2
ω) � (P1

m1+1,Q
1
m1+1, n

1
m1+1) � · · ·

� (P1
k1
,Q1

k1
, n1

k1
).

Again, we say that (P1,Q1, n1) is fully decomposed if either j1 < m1 or j1 = m1 and
(P1

j1
,Q1

j1
, n1

j1
) is defined over the starting interval I0; otherwise we set

(9.173) (P2,Q2, n2) := (P1
j1
,Q1

j1
, n1

j1
),
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and we go on. The sequence of parameter intervalŝI0 ⊂̂I1 ⊂ · · · is strictly increasing and
therefore the process will stop. We define inductively the depth of (P,Q, n) to be the depth
of (P1,Q1, n1) plus one.

9.9.4. Size of the subclass of depth 0. — We will define in this subsection b+(Pα,0),
b−(Qω,0) in order to have

(9.174) #Bi+(Pα,Qω,0)� b+(Pα,0)b−(Qω,0).

Let (Pα,Qα, nα) ∈ C+(˜I), (Pω,Qω, nω) ∈ C−(˜I) and let (P,Q, n) ∈ Bi+(Pα,Qω,0). Then
both (Pα,Qα, nα), (Pω,Qω, nω) ∈ R(I0) and (P,Q, n) is obtained by a simple composi-
tion

(9.175) (P,Q, n)= (Pα,Qα, nα) ∗ (P′,Q′, n′) ∗ (Pω,Qω, nω).

We have here, by definition of Bi+(Pα,Qω) and C+(˜I)

(9.176) x � max
˜I

|P| � C max
˜I

|Pα|max
˜I

|P′|max
˜I

|Pω| � C|˜I|1+τ max
˜I

|P′|max
˜I

|Pω|.

This gives

(9.177) max
˜I

|P′| � C−1|˜I|−(1+τ)
(

max
˜I

|Pω|
)−1

x.

From the reminder at the beginning of Section 8.3, we can thus define, as d0
s + Cε0 <

d∗
s < ρs,

(9.178) b+(Pα,0)=
{

(C|˜I|1+τ x−1)ρs if (Pα,Qα, nα) ∈ R(I0),

0 otherwise,

(9.179) b−(Qω,0)=
{

(max̃I|Pω|)ρs if (Pω,Qω, nω) ∈ R(I0),

0 otherwise.

Then, (9.174) is satisfied.

9.9.5. Subclasses of higher depth. — Let (Pα,Qα, nα) ∈ C+(˜I), (Pω,Qω, nω) ∈ C−(˜I)
and let (P,Q, n) ∈ Bi+(Pα,Qω) be an element of depth s> 0.

Let us first restate and extend somewhat the notations and the setting of Sec-
tion 9.9.2. We set

(P0,Q0, n0) := (P,Q, n),
(P0
α,Q

0
α, n

0
α) := (Pα,Qα, nα),(9.180)

(P0
ω,Q

0
ω, n

0
ω) := (Pω,Qω, nω).
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We have

– a strictly increasing sequence of parameter intervals

(9.181) ̂I0 ⊂̂I1 ⊂ · · · ⊂̂Is−1 ⊂̂Is = I0

with˜I ⊂̂I0; we denote by˜Ir the parent interval of̂Ir for 0 � r < s;
– a sequence (Pr,Qr, nr), 0 � r � s such that (Pr,Qr, nr) belongs to R(̂Ir) but not

to R(˜Ir) for r < s; also (Ps,Qs, ns) ∈ R(̂Is−1);
– two sequences (Pr

α,Q
r
α, n

r
α), (P

r
ω,Q

r
ω, n

r
ω), 0 � r � s; for each r < s, resp. r = s,

the two elements belong to R(̂Ir), resp. R(˜Is−1);
– two sequences (Pr

+,Q
r
+, n

r
+), (P

r
−,Q

r
−, n

r
−), 0 < r � s; for each r, the two ele-

ments belong to R(̂Ir−1).

These data are related by the following properties: for each 0< r � s, we have

(Pr−1,Qr−1, nr−1) ∈ (Pr
−,Q

r
−, n

r
−) � (Pr,Qr, nr) � (Pr

+,Q
r
+, n

r
+),(9.182)

(Pr−1
α ,Q

r−1
α , n

r−1
α ) ∈ (Pr

−,Q
r
−, n

r
−) � (Pr

α,Q
r
α, n

r
α),(9.183)

(Pr−1
ω ,Q

r−1
ω , n

r−1
ω ) ∈ (Pr

ω,Q
r
ω, n

r
ω) � (Pr

+,Q
r
+, n

r
+).(9.184)

The process stops at step s because of one of the two following cases occur
(a) (Ps,Qs, ns) does not belong to R(˜Is−1); then, by the structure theorem, there

exists an integer h> 0, elements (Ps
0,Q

s
0, n

s
0) · · · (Ps

h,Q
s
h, n

s
h) in R(˜Is−1) with

(9.185) (Ps,Qs, ns) ∈ (Ps
0,Q

s
0, n

s
0) � · · ·� (Ps

h,Q
s
h, n

s
h)

and also

(9.186) Ps
0 ⊂ Ps

α, Qs
h ⊂ Qs

ω.

(b) (Ps,Qs, ns) belongs to R(I0); in this case we set h = 0.
We also observe that the parabolic compositions in (9.182) through (9.184) take

place in R(̂Ir−1) but not in R(˜Ir−1); in (9.185), they take place in R(̂Is−1) but not in
R(˜Is−1).

A subclass Bi+(Pα,Qω, �), i.e. an element of L, distinct from the two (♦,0) that
we already know is determined by the following data

– the depth s(> 0);
– the sequencêI0 ⊂ · · · ⊂̂Is = I0;
– the integer h � 0;
– when h> 1, for each 0< i < h, the largest negative integral power of 2, denoted

by xi , such that max̃I |Ps
i | � xi ;

– when h> 0, the largest negative integral powers of 2, denoted by x0, xh, such that
max̃I |P−| � x0, max̃I |P+| � xh; here, the elements (P−,Q−, n−), (P+,Q+, n+)
are determined by P ⊂ P−, Q ⊂ Q+ and
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(P−,Q−, n−) ∈ (P1
−,Q

1
−, n

1
−) � · · ·� (Ps

−,Q
s
−, n

s
−)

� (Ps
0,Q

s
0, n

s
0),(9.187)

(P+,Q+, n+) ∈ (Ps
h,Q

s
h, n

s
h) � (Ps

+,Q
s
+, n

s
+) � · · ·

� (P1
+,Q

1
+, n

1
+).(9.188)

One has by construction P− ⊂ Pα,Q+ ⊂ Qω.
Thus, we group together in a subclass Bi+(Pα,Qω, �) the elements of Bi+(Pα,Qω)

who share the same data; the elements of L, distinct from ♦, 0, are the sets of data for
which at least one subclass Bi+(Pα,Qω, �) is non-empty, for some (Pα,Qα, nα) in C+(˜I),
(Pω,Qω, nω) in C−(˜I).

The definition of the set L is now complete.

9.9.6. Sizes of subclasses of higher depth. — The context and notations are the same as
above. We want to define b+(Pα, �) and b−(Qω, �) in order to satisfy (9.124) in Section 9.8.

We first observe that (Pα,Qα, nα) determines (P1
−,Q

1
−, n

1
−), . . . , (P

s
−,Q

s
−, n

s
−),

(Ps
α,Q

s
α, n

s
α) and the result of parabolic compositions between these elements. Similarly,

(Pω,Qω, nω) determines (P1
+,Q

1
+, n

1
+), . . . , (P

s
+,Q

s
+, n

s
+), (P

s
ω,Q

s
ω, n

s
ω) and the result of

parabolic compositions between these elements. Therefore, the only “freedom” for the
element (P,Q, n) in the subclass Bi+(Pα,Qω, �) is through (Ps,Qs, ns), and this freedom
is constrained by the relations Ps ⊂ Ps

α , Qs ⊂ Qs
ω.

Consider first a subclass with h = 0, i.e., (Ps,Qs, ns) ∈ R(I0). The widths of the
strips are related as follows: for every t ∈˜I, we have

(9.189) C−1 |Ps|
|Ps
α||Ps

ω|
� |P|

|Pα||Pω| � C
|Ps|

|Ps
α||Ps

ω|
.

This allows us to take, as in the case of depth 0,

(9.190) b+(Pα, �)=
{

(C|˜I|1+τ x−1)ρs if (Ps
α,Q

s
α, n

s
α) ∈ R(I0),

0 otherwise,

(9.191) b−(Qω, �)=
{

max̃I |Pω|ρs if (Ps
ω,Q

s
ω, n

s
ω) ∈ R(I0),

0 otherwise.

Consider now a subclass with h> 0, i.e., case (a) in Section 9.9.4 above.
By Lemma 10 (Section 9.1), for h> 1 and 0< i < h, Ps

i and Qs
i are thin˜Is−1-critical,

hence element (Ps
i ,Q

s
i , n

s
i) belongs to Bi+(˜Is−1,˜Is−1,˜Is−1; xi). In the parabolic composition

(P,Q, n) ∈ (P−,Q−, n−) � (Ps
1,Q

s
1, n

s
1) � · · ·� (Ps

h−1,Q
s
h−1, n

s
h−1)

� (P+,Q+, n+),
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we have δ(Q−,Ps
1) > |̂Is−1|, . . . , δ(Qs

h−1,P+) > |̂Is−1| for all t ∈˜I by Lemma 3 (Sec-
tion 6.6.3), hence, using (3.27)

max
˜I

|P| � Ch|̂Is−1|−h/2 max
˜I

|P−|max
˜I

|Ps
1| · · ·max

˜I
|P+|.

This gives, by definition of the xi

(9.192) x �
(

C|̂Is−1|−
1
2

)h

x0x1 · · · xh.

Thus, the data of every subclass must satisfy (9.192). Assuming that (9.192) holds, we set
b+(Pα, �)= 0 if (Pα,Qα, nα) /∈ R(̂I0). When (Pα,Qα, nα) ∈ R(̂I0), we set

(9.193) b+(Pα, �)= 2h
(
∏

0<i<h

#Bi+(˜Is−1,˜Is−1,˜Is−1; xi)
)

#Bi+(Pα,˜Is−1; x0).

Here, Bi+(Pα,˜Is−1, x0) is by definition the set of elements (P−,Q−, n−) in R(˜I) such that
P− ⊂ Pα , Q− is thin˜Is−1-critical and max̃I |P−| � x0.

Similarly, when (9.192) holds, we set b−(Qω, �)= 0 if (Pω,Qω, nω) /∈ R(̂I0). When
(Pω,Qω, nω) ∈ R(̂I0), we set

(9.194) b−(Qω, �)= #Bi+(˜Is−1,Qω; xh),

where now Bi+(˜Is−1,Qω; xh) is the set of elements (P+,Q+, n+) in R(˜I) such that Q+ ⊂
Qω, P+ is thin˜Is−1-critical and max̃I |P+| � xh.

The factor 2h in (9.193) takes care of the possible results of the “free” parabolic
compositions, i.e., those compositions which are not constrained by (Pα,Qα, nα) or
(Pω,Qω, nω).

The definition of L, b+, b− is now complete, and relation (9.124) is satisfied.

9.10. The size of the index set L. — It is not difficult from (9.192) to see that the index
set L is finite, but we need an explicit bound on its cardinality (cf. (9.134)).

We assume that, with C large enough,

(9.195) ρ0 > d∗
s + Cτ−2 log log ε−1

0

log ε−1
0

,

where log log ε−1
0

log ε−1
0

	 τ 2 when ε0 is small enough.

Proposition 45. — The index set L satisfies

#L � |˜I|−τ 2
.
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Proof. — It is sufficient to count the subclasses of strictly positive depth (there are
only two subclasses besides these ones).

In a first step, we fix the depth s> 0 and the sequence of intervalŝI0 ⊂ · · · ⊂̂Is−1 ⊂
̂Is = I0. There is one subclass with h = 0 and we will estimate the number of subclasses
with h > 0 (the integer h itself is not fixed). This number is bounded by the number of
(h + 1)-tuples (x0, . . . , xh) (of negative integral powers of 2) which satisfy (9.192).

By Proposition 14 (Section 6.6.3), we have

xi < |˜Is−1|β for 0< i < h,(9.196)

xh < |˜Is−1|.(9.197)

As P− ⊂ Pα , we also have, for a non-empty subclass

(9.198) x0 < |˜I|1+τ .

We rewrite (9.192) as

(9.199)
x0

|˜I|1+τ

(

∏

0<i<h

xi

|˜Is−1|β
)

xh

|˜Is−1| � x

|˜I|1+τ |˜Is−1|β(h−1)+1

(

C−1|̂Is−1|
1
2

)h

.

Using β > 1, and taking base-two logarithms, it is sufficient to bound the number of
non-negative integral solutions of

(9.200) n0 + · · · + nh � A0 − A1h,

with

A0 = log2(|˜I|x−1),(9.201)

A1 = 1
3

log2 |̂Is−1|−1.(9.202)

We have x � x∗
cr � x̃cr = ε0|Pu|( |˜I|

ε0
)

σ0
ρ0−ρ1 	 |˜I|, because σ0 > ρ0 − ρ1 and |Pu| 	 1. There-

fore A0 is large; it is obvious that A1 is also large. By taking A0 slightly larger and A1

slightly smaller, we can assume that both A0, A1 are integers. The number of non-negative
integral solutions of (9.200) (including those with h = 0) is then the coefficient of zA0 in
the power series for

(9.203) χ(z) :=
∑

h�0

zA1h(1 − z)−h−2 = (1 − z)−1(1 − z − zA1)−1.

We estimate this coefficient by a Cauchy integral on the circle |z| = 1 − 2A−1
1 log A1. On

this circle, we have

|zA1|< A−1
1 ,(9.204)
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|χ(z)|< 1
2

A2
1(log A1)

−2.(9.205)

The number of solutions of (9.200) is therefore not greater than

(9.206) A2
1(log A1)

−2(1 − 2A−1
1 log A1)

−A0 .

In view of (9.202), this quantity is smaller than

(9.207) (log |̂Is−1|)2 exp
(

CA0
log | log |̂Is−1||

| log |̂Is−1||
)

.

This is a bound for the number of subclasses with fixed depth s and fixed sequencêI0 ⊂
· · · ⊂̂Is−1. We have now to sum over these remaining data. Observe that (9.207) depends
on |̂Is−1|, not on the depth s and the intervalŝIr , 0 � r < s − 1.

Fix an interval̂I with˜I ⊂̂I ⊂ I0,̂I �= I0. Let S(̂I) be the number of parameter
intervals I∗ with˜I ⊂ I∗ ⊂̂I, I∗ �=̂I. Every I∗ in this range may or may not be one of thêIr ,
for a sequencêI0 ⊂ · · · ⊂̂Is−1 terminating witĥIs−1 =̂I; in other terms, there are exactly
2S(̂I) such sequences (of various lengths). This means that the total number of subclasses
(with s> 0) is bounded by

(9.208)
∑

̂I

2S(̂I)(log |̂I|)2 exp
(

CA0
log | log |̂I||

| log |̂I||
)

.

We have here

log | log |̂I||
| log |̂I|| � log log ε−1

0

log ε−1
0

,(9.209)

| log |˜I|| = (1 + τ)S(̂I)| log |̂I||,(9.210)

S(̂I)� 2τ−1 log2

(

log |˜I|−1

log ε−1
0

)

=: Smax.(9.211)

The sum (9.208) is thus bounded by

C2Smax(log ε−1
0 )

2 exp
(

CA0
log log ε−1

0

log ε−1
0

)

� (log |˜I|−1)2τ
−1

exp
(

CA0
log log ε−1

0

log ε−1
0

)

.(9.212)

As x � xmin := |˜I|C(ρ0−d∗
s )

−1
, we have

(9.213) A0 � C(ρ0 − d∗
s )

−1 log |˜I|−1.
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If the constant in (9.195) is large enough, we obtain

(9.214) CA0
log log ε−1

0

log ε−1
0

<
1
2
τ 2 log |˜I|−1.

Introducing this in (9.212) concludes the proof of the proposition. �

9.11. The size of̂B.

9.11.1. According to the roadmap exposed in Section 9.7.6, we have now to
estimate the quantity set in Section 9.7.6

(9.140) ̂B =
∑

L

b+(�)b−(�)

with

b+(�)=
∑

C+(˜I)

b+(Pα, �),(9.136)

b−(�)=
∑

C−(˜I)

b−(Qω, �).(9.137)

Consider first the bound elements. In view of (9.173), we have:

b+(♦)= #C+(˜I)(ρ0 − d∗
s )

−1 log |˜I|−1,
(9.215)

b−(♦)= #C−(˜I)(ρ0 − d∗
s )

−1 log |˜I|−1.

Consider next the class of depth 0, and also the classes of higher depth with h = 0: in
view of (9.178)–(9.179) and (9.190)–(9.191), we have in these cases

b+(�)� (C|˜I|1+τ x−1)ρs #C+(˜I),(9.216)

b−(�)�
∑

C−(˜I)

(

max
˜I

|Pω|
)ρs

.(9.217)

Also, the number of such classes, according to the discussion in the proof of Proposition 45
is not larger than

(9.218) 2Smax �
(

log |˜I|−1

log ε−1
0

)2τ−1

.
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9.11.2. The remaining subclasses are more complicated! Formulas (9.193),
(9.194) suggest an induction. We thus assume that (SR3)s is satisfied for all parameter
intervals containing˜I. We have, for a class of depth s> 0 with h> 0:

b+(�)� 2h

(

∏

0<i<h

(#Bi+(˜Is−1,˜Is−1,˜Is−1; xi))

)

#Bi+(˜I,˜I,˜Is−1; x0),(9.219)

b−(�)� #Bi+(˜I,˜Is−1,˜I; xh).(9.220)

We recall from (9.199) that

x �
(

C|̂Is−1|−
1
2

)h

x0x1 · · · xh.

Observe that, from (9.16), the critical value x̂cr in each of the Bi+ sets above is the
same and equal to

(9.221) x̂cr := ε0|Pu|
( |˜Is−1|
ε0

)

σ0
ρ0−ρ1 .

As in Section 9.8, we separate the subclasses into two parts: those for which every xi is
above the critical value x̂cr and the others.

9.11.3. Subclasses with all xi large. — In this case, we have from (SR3)s

#Bi+(˜Is−1,˜Is−1,˜Is−1; xi)� ε−Aτ
0

( xi

ε0|Pu|
)−ρ1

( |˜Is−1|
ε0

)σ0+σ1

, for 0< i < h,(9.222)

#Bi+(˜I,˜I,˜Is−1; x0)� ε−Aτ
0

( x0

ε0|Pu|
)−ρ1

( |˜I|
ε0

)σ0+σ1

,(9.223)

#Bi+(˜I,˜Is−1,˜I; xh)� ε−Aτ
0

( xh

ε0|Pu|
)−ρ1

( |˜Is−1|
ε0

)σ1
( |˜I|
ε0

)σ0

.(9.224)

Multiplying these inequalities, we obtain, taking (9.192) into account

(9.225) b+(�)b−(�)� Ah
2A3,

with

A2 = 2ε−2Aτ
0

( |˜Is−1|
ε0

)σ0+σ1
(

Cε0|Pu||̂Is−1|−
1
2

)ρ1

,(9.226)

A3 = Cρ1

( x

ε0|Pu|
)−ρ1

( |˜I|
ε0

)σ0+σ1

.(9.227)
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9.11.4. Subclasses with some xi small.

Lemma 13. — Let I ⊂˜I be a candidate interval. Let (P,Q, n) ∈ R(I). If P and Q are thin

I0-critical, then we have maxI |P| � Cε0|Pu| and maxI |Q| � Cε0|Qs|.
Proof. — We prove the first statement by induction on the level of the largest

interval I1 such that (P,Q, n) ∈ R(I1). If I1 = I0, the statement follows from the fact
that (P,Q, n) is the simple composition of (Ps,Qs, ns), some (P′,Q′, n′) ∈ R(I0) and
(Pu,Qu, nu) (see Section 9.4). If I1 �= I0 and˜I1 is the parent interval, consider the thinnest
˜I1-defined rectangle P0 containing P. As P is thin I0-critical, P0 is also thin I0-critical. By
Lemma 10 in Section 9.1, Q0 is thin I0-critical. By the induction hypothesis, we have
max̃I1 |P0| � Cε0|Pu|. As P ⊂ P0, we are able to conclude.

The proof of the other statement is symmetric. �

For 0 < i < h, the cardinality of Bi+(˜Is−1,˜Is−1,˜Is−1; xi) is controlled by (9.229) if
xi � x̂cr and by

(9.228) #Bi+(˜Is−1,˜Is−1,˜Is−1; xi)� ε−Aτ
0

( xi

ε0|Pu|
)−ρ0

( |˜Is−1|
ε0

)2σ0+σ1

,

if xi � x̂cr . Similarly, we have (9.230) if x0 � x̂cr and

(9.229) #Bi+(˜I,˜I,˜Is−1; x0)� ε−Aτ
0

( x0

ε0|Pu|
)−ρ0

( |˜I|
ε0

)σ0+σ1
( |˜Is−1|
ε0

)σ0

,

if x0 � x̂cr ; we have (9.231) if xh � x̂cr and

(9.230) #Bi+(˜I,˜Is−1,˜I; xh)� ε−Aτ
0

( xh

ε0|Pu|
)−ρ0

( |˜Is−1|
ε0

)σ0+σ1
( |˜I|
ε0

)σ0

if x0 � x̂cr .
By Lemma 13, all the terms xj

ε0|Pu| are bounded by C. As ρ0 > ρ1, we can when
necessary replace the exponent ρ1 (for those xj which are larger than x̂cr ) by ρ0. On the
other hand comparing the σ exponents, we see that we always have an additional factor
(

|˜Is−1|
ε0
)σ0 when xj � x̂cr compared with xj � x̂cr (including the cases j = 0, h). As at least one

xj is � x̂cr , multiplying the estimates together gives

(9.231) b+(�)b−(�)�˜Ah
2
˜A3,

with

˜A2 = 2ε−2Aτ
0

( |˜Is−1|
ε0

)σ0+σ1
(

Cε0|Pu||̂Is−1|−
1
2

)ρ0

,(9.232)

˜A3 = Cρ0

( x

ε0|Pu|
)−ρ0

( |˜I|
ε0

)2σ0+σ1

.(9.233)
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9.11.5. Partial sums of the b+(�)b−(�). — We observe that in both (9.225) and
(9.231), our estimate for b+(�)b−(�) depends on the class � only througĥIs−1 and h.

We first sum over subclasses with a fixed depth s and fixed sequencêI0 ⊂ · · · ⊂̂Is−1,
using the same method of generating series as in the proof of Proposition 45.

To deal with the two cases above at the same time, we observe that σ0 + σ1 −
1
2ρ0(1 + τ) is close to 1 − d0

u − 1
2d0

s when τ � η� ε0 are small, with 1 − d0
u − 1

2d0
s > 0

from (H4). A fortiori σ0 + σ1 − 1
2ρ1(1 + τ) > 0 is positive and bounded away from 0.

Thus, A2 and ˜A2 are larger when˜Is−1 is larger; the largest case is˜Is−1 = I0, which gives

(9.234) max(A2,˜A2)�̂A2 := 2ε−2Aτ
0

(

Cε
1
2 (1−τ)
0 |Pu|

)ρ1

.

We have max(A3,˜A3)� C˜B, where ε−Aτ
0

˜B is the bound from (SR3)s for the cardi-
nality of Bi+(˜I,˜I,˜I; x).

We set

χ1(z)=
∑

h>0

̂Ah
2zA1h(1 − z)−h−2

=̂A2zA1(1 − z)−2(1 − z −̂A2zA1)−1.(9.235)

The partial sum of b+(�)b−(�) is thus not larger than C˜B times the coefficient of zA0 in
the power series for χ1(z). Recall that A0, A1 were defined in (9.201), (9.202).

We estimate this coefficient by Cauchy integration on the circle {|z| = 1 − A−1
0 −

̂A2}, on which we have

|1 − z|−2 � (̂A2 + A−1
0 )

−2 � A2
0,(9.236)

|1 − z −̂A2zA1|−1 � A0,(9.237)

|χ1(z)| �̂A2A3
0,(9.238)

|z−A0| � C(1 +̂A2)
A0 .(9.239)

The partial sum of b+(�)b−(�) is therefore dominated by

(9.240) C(1 +̂A2)
A0
̂A2A3

0
˜B.

9.11.6. Sum of the b+(�)b−(�) over all free subclasses with h > 0. — We now have to
sum over sequenceŝI0 ⊂ · · · ⊂̂Is−1 and depth s; but (9.240) is independent of these data
and the same remarks as in the proof of Proposition 45 apply. So, we finally obtain for
the sum of b+(�)b−(�) over subclasses with s> 0 and h> 0, a bound by

(9.241) C(1 +̂A2)
A0
̂A2A3

02Smax
˜B

with Smax := 2τ−1 log2(
log |˜I|−1

log ε−1
0
) (cf. (9.211)).
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Recall that (cf. (9.213))

(9.242) A0 � C(ρ0 − d∗
s )

−1 log |˜I|−1.

As |Pu| is of the order of εωu

0 , we have

(9.243) ̂A2 � ερ1/2
0 .

This gives

(9.244) (1 +̂A2)
A0 � |˜I|−Cε

ρ1/2
0 (ρ0−d∗

s )
−1
.

From (9.195), we have

(9.245) (ρ0 − d∗
s )

−1 	 τ 2 log ε−1
0 .

The bound that we finally obtain (from (9.241)) for the sum of the b+(�)b−(�) over
subclasses with s> 0 and h> 0 is therefore

(9.246) ε
ρ1/3
0 |˜I|−ερ1/3

0 (log |˜I|−1)3τ
−1
˜B.

9.11.7. We summarize the calculations in this subsection in

Proposition 46. — The quantitŷB =∑

L b+(�)b−(�) is bounded bŷB1 +̂B2 +̂B3, with

̂B1 = (#C+(˜I))(#C−(˜I))(log |˜I|−1)2(ρ0 − d∗
s )

−2,

̂B2 =
( log |˜I|−1

log ε−1
0

)2τ−1

(C|˜I|1+τ x−1)ρs(#C+(˜I))
∑

C−(˜I)

(

max
˜I

|Pω|
)ρs

,

̂B3 = ερ1/3
0 |˜I|−ερ1/3

0 (log |˜I|−1)3τ
−1
˜B.

9.12. End of the induction step for (SR3)s.

9.12.1. In order to complete the induction step for (SR3)s, it is sufficient, in view
of (9.136) (Section 9.7.6), to show that

(9.247) ̂B|˜I|τ(2−d+
s −d+

u −6τ) � ε−Aτ
0 B

where B is the bound in (SR3)s.
We will bound each of the three expressionŝBiε

Aτ
0 |˜I|τ(2−d+

s −d+
u −6τ), i = 1,2,3, with

̂Bi defined in Proposition 46.
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9.12.2. First consider̂B3. For x � x̃cr , we have

(9.248) ˜B =˜B0 = |˜I|−τ(2σ0+σ1)B0 � |˜I|−τ(2σ0+σ1)B,

and, therefore,

(9.249) ̂B3|˜I|τ(2−d+
s −d+

u −6τ) � ερ1/3
0 (log |˜I|−1)3τ

−1 |˜I|ωB,

with ω= τ(2 − d+
s − d+

u − 6τ − 2σ0 − σ1)− ερ1/3
0 .

We choose the exponents σ0, σ1 in order to have

(9.250) ω > τ 2

which is guaranteed by

(9.251) 2σ0 + σ1 � 2 − d+
s − d+

u − 8τ.

Then, as ερ1/3
0 (log |˜I|−1)3τ

−1 |˜I|τ 2 	 1 the required estimate holds for̂B3.

9.12.3. Next consider ̂B1. We use (SR1)s, (SR1)u to control the sizes of C+(˜I),
C−(˜I), and (9.245) to estimate (ρ0 − d∗

s )
−1. This gives

̂B1ε
Aτ
0 |˜I|τ(2−d+

s −d+
u −6τ)

� C log2 |˜I|−1(ρ0 − d∗
s )

−2
( |˜I|
ε0

)2σ
ε
τ(A−d0

s −d0
u )

0 |˜I|τ(2−d+
s −d+

u −6τ)

� Cτ 4 log2 ε−1
0 log2 |˜I|−1

( |˜I|
ε0

)2σ+τ(2−d+
s −d+

u −6τ)
ε
τ(A−d0

s −d0
u +2−d+

s −d+
u −6τ)

0 .(9.252)

On the other hand, in the range x � x̃cr , B0 is smaller at x̃cr where it is equal to
( x̃cr

ε0|Pu|
)−ρ0

( |I|
ε0

)2σ0+σ1 =
( |˜I|
ε0

)− ρ0σ0
ρ0−ρ1

( |I|
ε0

)2σ0+σ1

=
( |˜I|
ε0

)− ρ0σ0
ρ0−ρ1

+(1+τ)(2σ0+σ1)

ε
τ(2σ0+σ1)
0 .(9.253)

We ask that

(9.254) − ρ0σ0

ρ0 − ρ1
+ (1 + τ)(2σ0 + σ1)� 2σ + τ(2 − d+

s − d+
u − 6τ)− τ 2,

and

(9.255) A − d0
s − d0

u + 2 − d+
s − d+

u − 6τ � 2σ0 + σ1 + 1.

Then, we will have, for all xmin � x � x̃cr

̂B1ε
Aτ
0 |˜I|τ(2−d+

s −d+
u −6τ) � Cτ 4 log2 ε−1

0 log2 |˜I|−1
( |˜I|
ε0

)τ 2

ετ0 B0

	 B0.(9.256)



134 JACOB PALIS AND JEAN-CHRISTOPHE YOCCOZ

9.12.4. In the case of̂B2, we use (SR1)s to control the size of C+(˜I) and (SR2)u to
control

∑

C−(˜I)(max̃I |Pω|)ρs . This gives

̂B2ε
Aτ
0 |˜I|τ(2−d+

s −d+
u −6τ)

� C
( log |˜I|−1

log ε−1
0

)2τ−1

x−ρs

( |˜I|
ε0

)σ+σs |Pu|ρsε
τ(A−d0

s )

0 |˜I|(1+τ)ρs+τ(2−d+
s −d+

u −6τ)

� C
( log |˜I|−1

log ε−1
0

)2τ−1( x

ε0|Pu|
)−ρs

( |˜I|
ε0

)(1+τ)ρs+τ(2−d+
s −d+

u −6τ)+σ+σs

εA′τ
0 ,(9.257)

with

(9.258) A′ := A + ρs − d0
s + 2 − d+

s − d+
u − 6τ.

We want to show that the right-hand side of (9.257) is smaller than

(9.259) B0 =
( x

ε0|Pu|
)−ρ0

( |I|
ε0

)2σ0+σ1

.

As ρ0 > ρs, it is sufficient to check this at x̃cr . After multiplying by ( x̃cr

ε0|Pu|)
ρs , we have to

show that

(9.260) C
( log |˜I|−1

log ε−1
0

)2τ−1( |˜I|
ε0

)(1+τ)ρs+τ(2−d+
s −d+

u −6τ)+σ+σs

εA′τ
0

is smaller than

(9.261)
( |˜I|
ε0

)
σ0(ρs−ρ0)
ρ0−ρ1

+(1+τ)(2σ0+σ1)

ε
τ(2σ0+σ1)
0 .

We will therefore ask that

σ0(ρs − ρ0)

ρ0 − ρ1
+ (1 + τ)(2σ0 + σ1)

� (1 + τ)ρs + τ(2 − d+
s − d+

u − 6τ)+ σ + σs − τ 2,(9.262)

and

(9.263) A + ρs − d0
s + 2 − d+

s − d+
u − 6τ � 2σ0 + σ1 + 1.

Then the required estimate is a consequence of

(9.264) C
( log |˜I|−1

log ε−1
0

)2τ−1( |˜I|
ε0

)τ 2

ετ0 	 1.
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9.12.5. Requirements on the exponents. — Let us recall the various conditions imposed

in this section on the various exponents. In Section 8, we introduced d∗
s = d0

s + ε 1
5 d0

s

0 ,

d∗
u = d0

u + ε 1
5 d0

u

0 , d+
s = d0

s + Cητ−1, d+
u = d0

u + Cητ−1.

– The exponent σ in (SR1) was defined in (9.49), Section 9.5, by

σ = min(1 − d+
u − (1 + τ)d∗

s − τ − cητ−1,

1 − d+
s − (1 + τ)d∗

u − τ − cητ−1).(9.265)

– The exponents σs, σu in (SR2) were defined in (9.63), Section 9.6.1, by

(9.266) σs := 1 − 3τ − d+
s , σu := 1 − 3τ − d+

u .

– The exponents ρs, ρu in (SR2) were asked to be close to d0
s , d0

u respectively, to
satisfy in (9.38), Section 9.4

(9.267) ρu > d0
u + Cε0, ρs > d0

s + Cε0,

and later in (9.62) (Section 9.6.1) the stronger condition

(9.268) ρu > d∗
u + ετ0 , ρs > d∗

s + ετ0 .
– The exponent ρ0 in (SR3)s was required to be close to d0

s . We asked also that
ρs > d0

s + Cε0 (cf. (9.38), Section 9.4), ρ0 > ρs + ετ0 (cf. (9.62), Section 9.6.1),
ρ0 � d∗

s + ετ 2/2
0 (cf. (9.98), Section 9.7.3), and finally (cf. (9.195), Section 9.10)

(9.269) ρ0 > d∗
s + Cτ−2 log log ε−1

0

log ε−1
0

.

– The exponent ρ1 in (SR3)s was required to be close to d0
s (d

0
u + 2d0

s − 1)×
(d0

s + d0
u )

−1.
– The exponents ρ ′

0, ρ ′
1 were defined by ρ ′

0 = d0
u

d0
s
ρ0, ρ ′

1 = d0
u

d0
s
ρ1.

– The exponents σ0, σ1 in (SR3) were required to be close to 1 − d0
s , d0

s − d0
u

respectively. In (9.97), Section 9.7.3, we asked that

(9.270) σ0 + σ1 � 1 − 3τ − d+
u ,

and in (9.106), Section 9.7.4, that

(9.271) σ0 � 1 − 3τ − d+
s .



136 JACOB PALIS AND JEAN-CHRISTOPHE YOCCOZ

Finally, in (9.251), (9.254), (9.262) above, we required that

2σ0 + σ1 � 2 − d+
s − d+

u − 8τ,

− ρ0σ0

ρ0 − ρ1
+ (1 + τ)(2σ0 + σ1)� 2σ + τ(2 − d+

s − d+
u − 6τ)− τ 2,

(9.272)
σ0(ρs − ρ0)

ρ0 − ρ1
+ (1 + τ)(2σ0 + σ1)

� (1 + τ)ρs + τ(2 − d+
s − d+

u − 6τ)+ σ + σs − τ 2.

– The exponent A in (SR3) was required above to satisfy

(9.273) A − d0
s − d0

u + 2 − d+
s − d+

u − 6τ � 2σ0 + σ1 + 1,

(9.274) A + ρs − d0
s + 2 − d+

s − d+
u − 6τ � 2σ0 + σ1 + 1.

We have proved that, if all these conditions are satisfied, all candidates but a proportion
not larger than C|˜I|τ 2

satisfy (SR3)s. Before checking that these requirements on the ex-
ponents are compatible, we need to review (briefly) the induction step for (SR3)u because
new requirements will appear from it.

9.13. The induction step for (SR3)u. — The proof that most candidates I in a strongly
regular parent˜I satisfy (SR3)u follows the same plan than for (SR3)s. However, condition
(SR3) is not symmetric, hence we must check that the various steps work in the same way.
We review briefly these steps below.

– Very small values of x (Section 9.7.1): we use now

(9.275) #Bi−(I, Iα, Iω; x)� Cx−d∗
u ,

for x � x′
min := |˜I|C(ρ′

0−d∗
u )

−1
.

– Old and new elements (Section 9.7.2) are defined as before.
– Observe that σ0, σ1 play the same role in (SR3)u than in (SR3)s. Therefore, the

results in Sections 9.7.3, 9.7.4, 9.7.5 work exactly in the same way, replacing

x̃cr in Proposition 42 by x̃′
cr := ε0|Qs|( |˜I|

ε0
)

σ0
ρ′0−ρ′1 . We require as in (9.98) that ρ ′

0 �
d∗

u + ετ 2/2
0 , but this is actually a consequence of the definition of ρ ′

0 and of (9.269)
above.

– Size of Binew (Section 9.8). One proceeds as in Sections 9.8.1, 9.8.2, separating
then the sum corresponding to (9.139) into two parts S′

l and S′
s. In the first sum

(Section 9.8.3), the exponent ρ1 must be replaced by ρ ′
1 = ρ1

d0
u

d0
s
� ρ1. In particu-

lar the exponent σ0 +σ1 −ρ ′
1 in (9.146) is still positive. The same considerations
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apply for S′
s. In the case d0

s = d0
u = 1/2, the exponent σ ′

2 corresponding to σ2

now depends on ωs.
– Except for the obvious modifications in the definitions of the b+(Pα, �),

b−(Qω, �), Section 9.9 is unchanged. In particular, the set L is defined in the
same way; to estimate its cardinality, we now assume

(9.276) ρ ′
0 > d∗

u + Cτ−2 log log ε−1
0

log ε−1
0

,

but, in view of the definition of ρ ′
0 = ρ0d0

u /d
0
s , this is the same thing than (9.269),

up to the value of the constant C.
– The quantitieŝB′

i , i = 1,2,3 that appear instead of thêBi of Proposition 46 are

̂B′
1 = (#C+(˜I))(#C−(˜I))(log |˜I|−1)2(ρ ′

0 − d∗
u )

−2,

̂B′
2 =

( log |˜I|−1

log ε−1
0

)2τ−1

(C|˜I|1+τ x−1)ρu(#C−(˜I))
∑

C+(˜I)

(

max
˜I

|Qα|
)ρu

,

̂B′
3 = ερ′

1/3
0 |˜I|−ερ

′
1/3

0 (log |˜I|−1)3τ
−1
˜B′.

– Dealing witĥB′
3 requires (9.251) as for̂B3.

– Dealing with ̂B′
1 requires (9.254), (9.255) as for ̂B1. Indeed, observe that in

(9.254), we have

(9.277)
ρ0

ρ0 − ρ1
= ρ ′

0

ρ ′
0 − ρ ′

1

in view of the proportionality of the exponents by the factor d0
u /d

0
s .

– To control̂B′
2, we now require, corresponding to (9.262), (9.263)

σ0(ρu − ρ ′
0)

ρ ′
0 − ρ ′

1

+ (1 + τ)(2σ0 + σ1)

� (1 + τ)ρu + τ(2 − d+
s − d+

u − 6τ)+ σ + σu − τ 2,(9.278)

A + ρu − d0
u + 2 − d+

s − d+
u − 6τ � 2σ0 + σ1 + 1.(9.279)

9.14. Conclusion.

Theorem 3. — Assume that the exponents in (SR1), (SR2), (SR3) satisfy the requirements

of Section 9.12.5 and also (9.278), (9.279). Then, all candidates I in a strongly regular interval˜I
are strongly regular, except for a proportion not larger than C|˜I|τ 2

. Moreover, it is possible to choose the

exponents in order to satisfy these assumptions.
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Proof. — The first statement has been proved in Sections 9.5 through 9.13!
We choose the undefined exponents (σ , σs, σu are already defined) in the following

order. First, take ρu = d∗
u + 2ετ0 , ρs = d0

s

d0
u
ρu. Then (9.268) is satisfied, and thus also (9.267).

Next, choose

ρ1 = d0
s (d

0
u + 2d0

s − 1)(d0
s + d0

u )
−1,

ρ ′
1 = d0

u (d
0
u + 2d0

s − 1)(d0
s + d0

u )
−1,

ρ0 = d0
s

(

1 + τ−3 log log ε−1
0

log ε−1
0

)

,

ρ ′
0 = d0

u

(

1 + τ−3 log log ε−1
0

log ε−1
0

)

.

Then all the requirements on the ρ exponents are satisfied.
The exponents σ0, σ1 must satisfy (9.270), (9.271), the three relations in (9.272),

and (9.278). Each of this six relations defines in the σ0, σ1-plane an affine half-plane
whose boundary passes very close to the point (1 − d0

s ,1 − d0
u ) which has to be close

to (σ0, σ1). Observe first that the coefficient of σ1 in each of the six relations is positive.
This implies that the intersection of the 6 linear half-planes parallel to these 6 affine half-
planes contains an open cone at the origin. But then it is possible to find (σ0, σ1) close to
(1 − d0

s ,1 − d0
u ) in the intersection of the affine half-planes.

Finally, the constraints on A are clearly satisfied if A is large enough. Actually,
A = 3 works! �

Definition 13. — A strongly regular parameter (in I0) is one which is the intersection of a

decreasing sequence of strongly regular parameter intervals.

Corollary 15. — Except for a set of relative measure � Cετ
2

0 , parameters in I0 are strongly

regular.

Proof. — By Proposition 31, the starting interval is strongly regular. From the the-
orem, in a strongly regular parameter interval of level k, all points are contained in a
strongly regular interval of the next level except for a set of relative Lebesgue measure
� ετ 2

k . As we have

(9.280)
∑

k�0

ετ
2

k � Cετ
2

0 ,

the statement of the Corollary follows. �
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10. The well-behaved part of the dynamics for strongly regular
parameters

10.1. Prime elements and prime decomposition. — In the last two sections, we fix a
strongly regular parameter, i.e. the intersection of a decreasing sequence (Im)m�0 of
strongly regular parameter intervals.

The sequence R(Im) is increasing and we set

(10.1) R =
⋃

m�0

R(Im).

Definition 14. — An element (P,Q, n) ∈ R is prime if n > 0 and it cannot be written as a

simple composition of two shorter elements.

Obviously, for any (a, a′) ∈ B, the element (Paa′,Qaa′,1) is prime. Such elements
are called trivial primes. Non trivial primes are those of length bigger than 1.

There are only finitely many trivial primes. On the other hand, there are typically
countably many non trivial ones.

Lemma 14. — Let (P,Q, n) ∈ R be an element which can be written as a simple composition

(P,Q, n)= (P1,Q1, n1) ∗ (P2,Q2, n2). Let (˜P2,˜Q2, ñ2) be the element such that˜P2 is the parent

of P2, and let (˜P,˜Q, ñ) := (P1,Q1, n1) ∗ (˜P2,˜Q2, ñ2). Then˜P is the parent of P.

Proof. — If P2 is a simple child, we have n2 = ñ2 + 1, n = ñ + 1 and P is a simple
child of˜P.

We now assume that P2 is a non-simple child of˜P2. Let (P′,Q′, n′) ∈ R the element
such that P′ is the child of ˜P containing P. We will show that P′ = P. We have gñ

t (P) ⊂
g

ñ2
t (P2)⊂ Lu, hence P′ also is a non-simple child.

Applying twice Proposition 7 (Section 6.2), we can write, in some R(Im)

(P2,Q2, n2) ∈ (˜P2,˜Q2, ñ2) � (P3,Q3, n3),

(P′,Q′, n′) ∈ (˜P,˜Q, ñ) � (P′
3,Q

′
3, n

′
3).

We have ˜Q ⊂ ˜Q2 and also P3 ⊂ P′
3 because P ⊂ P′. As ˜Q2 �Im

P3 and ˜Q�Im
P′

3 hold,
concavity (Proposition 9, Section 6.3) imply that ˜Q2 �Im

P′
3 also holds. As P2 is a child of

˜P2, we must have P3 = P′
3 and P′ = P. �

Proposition 47. — Any element (P,Q, n) ∈ R with n> 0 can be uniquely written as a simple

composition of a finite sequence of prime elements.

Proof. — The existence of such a decomposition is clear. We have to show it is
unique. Assume on the opposite that we can write
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(P,Q, n)= (P1,Q1, n1) ∗ · · · ∗ (Pr,Qr, nr)

= (P′
1,Q

′
1, n

′
1) ∗ · · · ∗ (P′

s,Q
′
s, n

′
s).(10.2)

It is sufficient to show that (P1,Q1, n1)= (P′
1,Q

′
1, n

′
1). This is true if n1 = n′

1. Assume for
instance that n1 < n′

1. Then we have P ⊂ P′
1 ⊂ P1 with P′

1 �= P1. But a repeated application
of the lemma above shows that all rectangles in-between P and P1 can be written as simple
compositions of (P1,Q1, n1) with some other element. In particular, this is the case for
(P′

1,Q
′
1, n

′
1), which cannot be prime. �

Remark 14. — In the prime decomposition

(10.3) (P,Q, n)= (P1,Q1, n1) ∗ · · · ∗ (Pr,Qr, nr),

P1 can be characterized as the thinnest prime rectangle containing P.

We will denote by P the set of prime elements of R. We denote by R∗ the set of
elements of R of length > 0.

Let (P,Q, n) be an element of R∗ and let

(10.4) (P,Q, n)= (P1,Q1, n1) ∗ · · · ∗ (Pr,Qr, nr),

be its prime decomposition. We define

T+((P,Q, n))= (P2,Q2, n2) ∗ · · · ∗ (Pr,Qr, nr),
(10.5)

T−((P,Q, n))= (P1,Q1, n1) ∗ · · · ∗ (Pr−1,Qr−1, nr−1),

if r > 1. When (P,Q, n) is prime, with P ⊂ Ra and Q ⊂ Ra′ , we set

T+((P,Q, n))= (Ra′,Ra′,0),
(10.6)

T−((P,Q, n))= (Ra,Ra,0).

For S = (P,Q, n) ∈ R, we write S ∗ R, resp. R ∗ S, for the set of elements which can be
written as (P,Q, n) ∗ (P′,Q′, n′), resp. (P′,Q′, n′) ∗ (P,Q, n), for some (P′,Q′, n′) ∈ R.
We have partitions

(10.7) R∗ =
⊔

P
S ∗ R =

⊔

P
R ∗ S.

10.2. Number of factors in a prime decomposition. — We write r(S) for the number
of factors in the prime decomposition of an element S of R (setting r(S) = 0 if S has
length 0). Let (P,Q, n), (P′,Q′, n′) be elements of R such that P′ is a child of P. When
P′ is a simple child, it is obtained by simple composition of P with an element of length 1
and we have

(10.8) r(P′,Q′, n′)= r(P,Q, n)+ 1.
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On the other hand, assume that P′ is a non-simple child of P. Let m be such that
(P′,Q′, n′) ∈ R(Im). By Proposition 7 (Section 6.2), we can write

(10.9) (P′,Q′, n′) ∈ (P,Q, n) � (̂P,̂Q, n̂),

for some (̂P,̂Q, n̂) ∈ R(Im) such that Q�Im
̂P holds. Let

(10.10) (P,Q, n)= (P1,Q1, n1) ∗ · · · ∗ (Pr,Qr, nr)

be the prime decomposition of (P,Q, n).
Define, for 1 � i � r

(Pi,Qi, ni)= (Pi,Qi, ni) ∗ · · · ∗ (Pr,Qr, nr)

= (T+)i−1(P,Q, n).(10.11)

We have an increasing sequence

(10.12) Q = Q1 ⊂ Q2 ⊂ · · · ⊂ Qr = Qr.

Let r′ be the largest integer in {1, . . . , r} such that Qr′ and ̂P are Il-transverse for some
l � m (and then for all large enough l). Define (˜P,˜Q, ñ) ∈ R by the condition Q′ ⊂ ˜Q
and

(10.13) (˜P,˜Q, ñ) ∈ (Pr′,Qr′, nr′) � (̂P,̂Q, n̂).

Proposition 48. — The simple composition

(10.14) (P′,Q′, n′)= (P1,Q1, n1) ∗ · · · ∗ (Pr′−1,Qr′−1, nr′−1) ∗ (˜P,˜Q, ñ).
is the decomposition of (P′,Q′, n′) in prime factors. In particular, we have

r(P′,Q′, n′)= r′ � r(P,Q, n).

Proof. — It is sufficient to show that (˜P,˜Q, ñ) is prime. Assume by contradiction
that we can write

(10.15) (˜P,˜Q, ñ)= (˜P1,˜Q1, ñ1) ∗ (˜P2,˜Q2, ñ2)

with ñ1, ñ2 > 0. Define

(10.16) (P′
1,Q

′
1, n

′
1)= (P1,Q1, n1) ∗ · · · ∗ (Pr′−1,Qr′−1, nr′−1) ∗ (˜P1,˜Q1, ñ1).

Claim. — There exists r′ � j � r such that

(10.17) (P′
1,Q

′
1, n

′
1)= (P1,Q1, n1) ∗ · · · ∗ (Pj,Qj, nj).
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Proof of claim. — We have P′ ⊂ P′
1, P′ �= P′

1, hence P ⊂ P′
1, n′

1 � n. As ñ1 > 0, the
smallest integer j such that

(10.18) n′
1 � n1 + · · · + nj,

satisfies r′ � j � r. From

(10.19) (P′,Q′, n′)= (P′
1,Q

′
1, n

′
1) ∗ (˜P2,˜Q2, ñ2)

and Lemma 14, we can write (P1,Q1, n1) ∗ · · · ∗ (Pj,Qj, nj) as a simple composition

(10.20) (P1,Q1, n1) ∗ · · · ∗ (Pj,Qj, nj)= (P′
1,Q

′
1, n

′
1) ∗ (P,Q, n)

for some (P,Q, n) ∈ R. Still by Lemma 14, we can write

(10.21) (Pj,Qj, nj)= (P′
,Q

′
, n′) ∗ (P,Q, n)

for some (P
′
,Q

′
, n′) ∈ R. We have n′ > 0 by definition of j. As (Pj,Qj, nj) is prime, we

have n = 0, which proves the claim
We will now prove that, for l large enough, Qj+1 �Il

̂P holds, a contradic-
tion with the definition of r′. Indeed, from (10.19) we have ˜P2 ⊂ Pj+1, ˜P2 �= Pj+1.
Let (P∗,Q∗, n∗) ∈ R the element such that P∗ is the child of Pj+1 containing ˜P2.
By Proposition 7 (Section 6.2), we can write (with l large enough) (P∗,Q∗, n∗) ∈
(Pj+1,Qj+1, nj+1) � (̂P∗,̂Q∗, n̂∗), for some (̂P∗,̂Q∗, n̂∗) with ̂P∗ ⊃̂P. Then Qj+1 �Il

̂P∗

holds and Qj+1 �Il
̂P also holds.

Thus, we obtain a contradiction and the proof of the proposition is complete. �

10.3. A weighted estimate on the number of children. — We present in this subsection a
variation over the estimates in Section 8.3, which will be important in the definition of a
transfer operator.

As mentioned already in Section 9.4, there exist from classical results of Bowen,
Ruelle and Sinai an invariant probability measure m+ on K such that the measure of an
I0-defined rectangle P is of the order |P|dt

s , where dt
s is the transverse Hausdorff dimension

of the stable foliation Ws(K). Recall that dt
s is a smooth, hence Lipschitz, function of t.

We fix a constant κ ∈ (0,1) close to 1, but independent of ε0. Let also d−
s < dt

s ,
close to dt

s .
For S = (P,Q, n), we set

(10.22) ‖P‖ = |P|d−
s κ r(S)

(we will also write r(P) instead of r(S)).
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Proposition 49. — Assume that logκ−1 < C−1 and dt
s − d−

s < C−1 logκ−1 with C large

enough. For any m � 1, any (P,Q, n) ∈ R, we have

∑

P′
‖P′‖ � Cκ

m

2 ‖P‖

where the sum in the left-hand side is over elements (P′,Q′, n′) such that P′ is a descendant of the mth

generation of P.

We will first state a Lemma, then prove the proposition from the Lemma, and
finally prove the Lemma.

Lemma 15. — Let ε1 > 0. If ε0 is small enough, we have

∑

P′
‖P′‖ � ε1‖P‖

for all (P,Q, n) ∈ R, where the sum in the left-hand side is over non-simple children of P.

Proof of the Proposition. — Let m0 � 1 be an integer to be determined later. Consider
all chains

(10.23) P = P0 ⊃ P1 ⊃ · · · ⊃ Pm0 = P′

where P is given and Pi+1 is a child of Pi .
First consider the case where Pi+1 is, for each i, a simple child of Pi . One has then

r(P′)= m0 + r(P), and one can write (P′,Q′, n′)= (P,Q, n) ∗ (̂P,̂Q, n̂) with (̂P,̂Q, n̂) ∈
R(I0). We have

‖P′‖ � Cκm0‖P‖|̂P|d−
s

� Cκm0‖P‖m+(̂P)|̂P|d−
s −dt

s

� Cκm0‖P‖m+(̂P) exp(Cm0(d
t
s − d0

s ))

� Cκ
2
3 m0‖P‖m+(̂P),

if dt
s − d−

s < C−1 logκ−1 with C large enough. Under this condition the part of the sum
in Proposition 49 corresponding to simple descendants satisfies (as

∑

m+(̂P)� 1)

(10.24)
∑

‖P′‖ � Cκ
2
3 m0‖P‖.

We choose m0 such that in (10.24) we have

(10.25) Cκ
2
3 m0 � 1

2
κ

m0
2 .
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On the other hand, from the lemma above, it follows that for every˜P, we have

(10.26)
∑

‖˜P′‖ � C‖˜P‖

where the sum is over all children of˜P. Using the lemma again, when we sum over chains
such that Pi+1 is a non-simple child of Pi for at least one i, we obtain

(10.27)
∑

‖˜P′‖ � m0Cm0−1ε1‖P‖.
Taking ε1 small enough, we obtain

(10.28)
∑

‖P′‖ � κ
m0
2 ‖P‖

where the sum is now over all chains. The proposition follows immediately from (10.28)
and (10.26). �

Lemma 16. — Let (P0,Q0, n0), (P′
0,Q

′
0, n

′
0), (P1,Q1, n1) ∈ R with Q0 ⊂ Q′

0. If

Q0 �Im
P1 holds for m large enough and

8|Q′
0|1−η < δ(Q0,P1),

then Q′
0 �Im

P1 holds for m large enough.

Proof. — If 3|P1|1−η < δ(Q0,P1), Q′
0 �Im

P1 holds for m large enough by direct ver-
ification of (T1), (T2), (T3) of Section 5.4. If on the other hand, 3|P1|1−η � δ(Q0,P1),
we can apply Proposition 21 in Section 8.1 to conclude that Q′

0 �Im
P1 holds for m large

enough. �

Proof of Lemma 15. — Let (P,Q, n) ∈ R. Any non-simple child P′ of P is obtained
as

(10.29) (P′,Q′, n′) ∈ (P,Q, n) � (P1,Q1, n1)

and we denote by˜P1, the parent of P1. One has

(10.30) |P′| � C|P||P1|δ(Q,P1)
− 1

2 .

Therefore, we will have

(10.31) ‖P‖−1
∑

‖P′‖ � C
∑

|P1|d−
s κ r(P′)−r(P)δ(Q,P1)

− 1
2 d−

s .

By Proposition 48, there is an increasing sequence

(10.32) Q = Q1 ⊂ Q2 ⊂ · · · ⊂ Qr(P) = Qr(P)
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such that r(P′) is the largest integer r′ for which Qr′ and P1 are Im-transverse for large
enough m. We claim that

(10.33) r(P)− r(P′)� C log(δ(Q,P1))
−1.

Indeed, let 1 � r � r(P) such that

(10.34) |Qr| � δ(Q,P1)
2.

By Lemma 16, Qr �Im
P1 holds for m large enough, hence r � r(P). On the other hand,

there exists κ∗ ∈ (0,1) such that

(10.35) |Qr| � κ∗|Qr+1|
for r < r(P). The claim follows.

Therefore, if κ is close enough to 1, we have

(10.36) κ r(P′)−r(P) � (δ(Q,P1))
− 1

6 d−
s

and the right-hand side of (10.31) is bounded by

(10.37) C
∑

|P1|d−
s (δ(Q,P1))

− 2
3 d−

s .

Using (R7) (Section 5.4), this is smaller than

(10.38) C
∑

|P1|
1
3 d−

s .

To estimate this sum, we first fix the parent˜P1 and sum over children P1; it follows from
Proposition 26 (Section 8.2) that the corresponding sum is bounded by C|˜P1| 1

3 d−
s . Then

(10.38) is not greater than

(10.39) C
∑

|˜P1|
1
3 d−

s .

For each integer m, let us count now how many˜P1 may satisfy

(10.40) 2−m � |˜P1| � 2−m−1.

As P′ is a child of P, Q is transverse to P1 but not to ˜P1. From Lemma 16, we have
therefore

(10.41) δ(Q,˜P1)� 8|˜P1|1−η � 8 2−m(1−η)

which shows that there are no more than C2mη such˜P1’s. This implies that the sum (10.39)

is at most of order Cε
1
3 d−

s

0 , which yields the statement of the lemma. �
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Remark 15. — In Lemma 15, the value d−
s that has been used to define ‖P‖ is

irrelevant. The assertion of the lemma is still true if we replace d−
s by any positive number

bounded away from 0.

Corollary 16. — Let ε1 > 0. If ε0 is small enough, we have

∑

P
n|P|d−

s < ε1

where the sum in the left-hand side is over non-trivial primes (P,Q, n).

Proof. — Let (P,Q, n) be a non trivial prime. We have, by Proposition 12 in Sec-
tion 6.6.2

(10.42) n �
(

log(C|P|−1)
)

log 2
log 3/2

.

Choosêd−
s < d−

s but so close to d−
s that the hypothesis dt

s −̂d−
s < C−1 logκ−1 of Propo-

sition 49 is still satisfied. If ε0 is small enough, we have, for any non trivial prime P, as
|P|< ε0

(10.43) n|P|d−
s � |P|̂d−

s .

Observe also that the thinnest (˜P,˜Q, ñ) ∈ R(I0) with P ⊂˜P satisfies ˜Q ⊂ Qu hence |˜P| �
εα0 for some fixed positive α.

We apply the proposition usinĝd−
s instead of d−

s ; we obtain, as r(P)= 1 for primes

∑

n|P|d−
s �

∑

|P|̂d−
s

= κ−1
∑

‖P‖
� Cκ−1(1 − κ 1

2 )−1
∑

‖˜P‖,(10.44)

where, in the last sum, (˜P,˜Q, ñ) runs through the elements of R(I0) with |˜P| of the order
of εα0 . We have

∑

‖˜P‖ � C
∑

ε
α̂d−

s

0 κC−1 log ε−1
0

� Cεα(
̂d−

s −dt
s )+C−1 logκ−1

0 ,(10.45)

and the exponent is positive from the hypothesis of Proposition 49. Putting this into
(10.44) yields Corollary 16. �
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Remark 16. — We do not know the range of d for which
∑

P
|P|d

is convergent. The corollary shows at least that there are relatively few primes: the sum is
convergent for d > d0

s − C−1, C large enough.

10.4. Stable curves. — Let (Pk,Qk, nk)k�0 be a sequence of elements of R such that
Pk+1 is strictly contained in Pk for k � 0. Let Ra be the rectangle of the Markov partition
which contains P0. The vertical part of the boundary of Pk is the union of two graphs
{xa = ϕ±

k (ya)}.
Proposition 50. — The intersection

⋂

k�0 Pk is the graph {xa = ϕ∞(ya)} of a C1+Lip function,

whose C1+Lip norm of ϕ∞ is bounded independently of the sequence (Pk)k�0. Moreover, we have, for all

k � 0, ya ∈ Iu
a

|ϕ±
k (ya)− ϕ∞(ya)| � C|Pk|,

|Dϕ±
k (ya)− Dϕ∞(ya)| � C|Pk|.

Proof. — Let (Ak,Bk) be the implicit representation associated to (Pk,Qk, nk). We
have

(10.46) ϕ±
k (ya)= Ak(ya, x

±
b ),

where x±
b are the endpoints of Is

b and Qk ⊂ Rb. The partial derivatives Ak,y, Ak,yy are
bounded by u−1

0 , 2D0 respectively and we have

(10.47) |ϕ+
k (ya)− ϕ−

k (ya)| � C|Pk|.
This implies the statement of the proposition, except for the last inequality.

To compare the derivatives of ϕ±
k and ϕ±

k+1, we use (A.66) in Appendix A if Pk+1 is
a simple child of Pk , (A.86) if it is a non-simple child. We obtain that, for every ya, x, there
exists x∗ such that

(10.48) |Ak+1,y(ya, x)− Ak,y(ya, x
∗)| � C|Pk||Qk|,

in the first case and

(10.49) |Ak+1,y(ya, x)− Ak,y(ya, x
∗)| � C|Pk||Qk|δ−1/2,

in the second case. Here, we have δ	 |Qk| from (R7) in Section 5.4. Using that

(10.50) |Ak,y(ya, x
∗)− Ak,y(ya, x

±
b )| � C‖Ak,xy‖∞ � C|Pk|,
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we conclude that in both cases we have

(10.51) |Dϕ±
k (ya)− Dϕ±

k+1(ya)| � C|Pk|.
As there exists κ∗ ∈ (0,1) such that |Pk+1| � κ∗|Pk| for all k � 0, we obtain, for all l > k

(10.52) |Dϕ±
k (ya)− Dϕ±

l (ya)| � C|Pk|,
and the required inequality follows, letting l go to +∞. �

Definition 15.

1. A stable curve is the intersection ω=⋂

k�0 Pk of a decreasing sequence of vertical-like rectan-

gles as above. An unstable curve is the intersection ω′ =⋂

k�0 Q′
k of a decreasing sequence of

horizontal-like strips.

2. The set of stable curves, resp. unstable curves, is denoted by R∞
+ , resp. R∞

− . The union of

stable curves, resp. unstable curves, is denoted by ˜R∞
+ , resp. ˜R∞

− .

3. Any stable curve ω ⊂ Ra has a canonical defining sequence characterized by the following

conditions: P0 = Ra and, for each k, Pk+1 is a child of Pk .

4. Two stable curves are equal or disjoint. Hence there is a canonical projection

π : ˜R∞
+ �→ R∞

+ .

We will now define dynamics on a part of the sets R∞
+ , ˜R∞

+ .

Let N+ be the set of stable curves ω which are contained in infinitely many prime
elements and let D+ be the complementary subset in R∞

+ . For (P,Q, n) ∈ P , denote by
R∞

+ (P) the set of stable curves ω ∈ D+ such that P is the thinnest prime containing ω.
We, thus, have partitions

R∞
+ = N+

⊔

D+,(10.53)

D+ =
⊔

P
R∞

+ (P).(10.54)

We denote by ˜N+, ˜D+, ˜R∞
+ (P) the respective pre-images by π .

Let (P,Q, n) ∈ P , ω ∈ R∞
+ (P). For any (Pk,Qk, nk) with ω⊂ Pk ⊂ P, we can write

(cf. Remark after Proposition 47)

(10.55) (Pk,Qk, nk)= (P,Q, n) ∗ (P′
k,Q

′
k, n

′
k)

for some (P′
k,Q

′
k, n

′
k) ∈ R; we have

(10.56) T+(Pk,Qk, nk)= (P′
k,Q

′
k, n

′
k)
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and we define ω′ = T+(ω) to be the stable curve obtained by the intersection of the P′
k

when Pk decrease to ω. We have

(10.57) gn(Pk)⊂ P′
k, gn(ω)⊂ ω′

and we also define

(10.58) ˜T+ / ˜R∞
+ (P)= gn / ˜R∞

+ (P).

We, thus, have a commutative diagram

(10.59)

˜D+
˜T+−−−→ ˜R∞

+
⏐

⏐

�
π

⏐

⏐

�
π

D+
T+−−−→ R∞

+

We observe that for (P,Q, n) ∈ P with Q ⊂ Ra, the image T+(ω) of any ω ∈ R∞
+ (P) is

contained in Ra.
Conversely, let (P,Q, n) ∈ P with Q ⊂ Ra and let ω′ ∈ R∞

+ , ω′ ⊂ Ra. For any
(P′

k,Q
′
k, n

′
k) with ω ⊂ P′

k , we define (Pk,Qk, nk) by (10.55); the intersection ω =⋂

k�0 Pk

is the unique stable curve in R∞
+ (P) such that T+(ω)= ω′.

Thus, T+ induces a bijection from R∞
+ (P) on the set R∞

+ (a) of stable curves con-
tained in Ra. For ω ∈ R∞

+ (P), we have

(10.60) ˜T+(ω)= ω′ ∩ Q.

10.5. Topology and geometry of R∞
+ and ˜R∞

+ . — Each stable curve is a compact subset
of R =⋃

Ra. Therefore, R∞
+ may be viewed as a subset of the set of non empty compact

subsets of R endowed with the Hausdorff topology. The topology induced on R∞
+ can

also be viewed directly: for any ω = ⋂

Pk in R∞
+ , a basis of neighbourhoods of ω is

obtained by considering for each k the set Vk of stable curves contained in Pk .
Equipped with this topology, R∞

+ is a Cantor set. Each R∞
+ (P), P ∈ P , is a closed

subset, and also a Cantor set. The restriction of T+ to each R∞
+ (P) is a homeomorphism

onto R∞
+ (a) (with Q ⊂ Ra).

However, the subset N+ may be dense and the map T+ in general is not continuous
on the whole of D+. We will see in the sequel that N+ is, in some appropriate sense,
negligible.

For each ω ∈ R∞
+ (a), we denote by ϕω the C1+Lip map such that ω= {xa = ϕω(ya)};

for each a ∈ a, each y0
a ∈ Iu

a, the map

φy0
a
: R∞

+ (a) �→ Is
a,

(10.61)
ω �→ ϕω(y

0
a)
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is a homeomorphism onto its image. Letting y0
a vary, we get an homeomorphism from

R∞
+ (a)× Iu

a onto ˜R∞
+ (a).

Regarding the transverse regularity of the partial foliation ˜R∞
+ (a), we have the

following result.

Proposition 51. — For all a ∈ a, all distinct ω, ω′ ∈ R∞
+ (a), all y ∈ Iu

a, we have

∣

∣

∣

∣

∂

∂y
log |ϕω − ϕω′ |

∣

∣

∣

∣

� C.

In particular, the homeomorphisms φy′ ◦ φ−1
y are bi-Lipschitzian, uniformly in y, y′.

Proof. — For (P,Q, n) ∈ R, let y = ϕ±
P (x) be the vertical-like curves bounding P.

We will prove that, for (P,Q, n), (P′,Q′, n′) ∈ R with P,P′ contained in the same Ra and
P ∩ P′ = ∅, ε, ε′ ∈ {±}, we have, for all y ∈ Iu

a

(10.62)

∣

∣

∣

∣

∂

∂y
log |ϕεP − ϕε′P′ |

∣

∣

∣

∣

� C.

This clearly implies the estimate of the proposition. To prove (10.62), we first observe that
the inequality is obvious if we allowed the constant in the right-hand term to depend on
P,P′. Let N > 0 and C(N) be the smallest constant such that (10.62) is satisfied when
(P,Q, n), (P′,Q′, n′) ∈ R are as required with n, n′ < N. We will show that C(N) stays
bounded.

Let (P,Q, n), (P′,Q′, n′) ∈ R with P,P′ contained in the same Ra, P ∩ P′ = ∅ and
max(n, n′) = N. Let (˜P,˜Q, ñ) ∈ R be the element such that ˜P is the smallest rectangle
containing both P and P′. Let P, P

′
be the children of˜P which contain P, P′ respectively.

We distinguish two cases.

1. At least one of P, P
′
is a simple child.

In this case, we observe that, for all y ∈ Iu
a, we have

(10.63) C−1|˜P| � |ϕεP(y)− ϕε′P′(y)| � C|˜P|.

On the other hand, we have seen in the proof of Proposition 50 (cf. (10.52)) that

|DϕεP(y)− Dϕ+
˜P (y)| � C|˜P|,

(10.64)
|Dϕε′P′(y)− Dϕ+

˜P (y)| � C|˜P|.

We obtain (10.62) with some uniform constant C0.
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2. Both P, P
′
are non-simple children.

Let ε, ε′ such that

|ϕεP(y)− ϕε′P′(y)| � |ϕεP(y)− ϕε
′

P
′(y)|.

We apply the proposition in Appendix B, whose hypotheses are clearly satisfied.
By definition of C(N), we obtain

(10.65)

∣

∣

∣

∣

∂

∂y
log |ϕεP − ϕε′

P
′ |
∣

∣

∣

∣

� C(C(N)|˜Q|1/2 + 1).

From (10.52), we have

|DϕεP(y)− DϕεP(y)| � C|P|,
|Dϕε′P′(y)− Dϕε

′
P

′(y)| � C|P′|
and from (MP7)

|ϕεP(y)− ϕε′P′(y)| � C−1(|P| + |P′|).
In view of this and (10.65), (10.66), we obtain (10.62) with a constant C =

C1(1 + |˜Q|1/2C(N)) for some uniform constant C1.

Observe that, when the second case occurs, N has to be large (at least of the order
of log ε−1

0 ) and we must have |˜Q| 	 ε0. Therefore, one has C(N)� C0 for N 	 log ε−1
0

and

(10.66) C(N + 1)� max(C0,C1(1 + C(N)ε1/2
0 )).

This implies that C(N) is bounded (by max(C0,2C1), as soon as ε1/2
0 max(C0,2C1) < 1)

and ends the proof of the proposition. �

The result of Proposition 51 implies that the transverse Hausdorff dimension ds =
ds(g) of ˜R∞

+ is well-defined, being equal to the Hausdorff dimension of φy(R∞
+ (a)) for any

a ∈ a, y ∈ Iu
a. We have just proved that it does not depend on y. That it does not depend

on a is seen as follows: for (a, a′) ∈ B, g sends ˜R∞
+ ∩ Paa′ into ˜R∞

+ ∩ Ra′ ; the transverse
Hausdorff dimension of ˜R∞

+ ∩ Ra′ is therefore not smaller than that of ˜R∞
+ ∩ Ra; as this is

true for all (a, a′) ∈ B, the conclusion follows.
We will also identify below in this section the transverse Hausdorff dimension ds

through a transfer operator in the classical manner of Bowen, Ruelle and Sinai.
Let ω, ω̂ be two stable curves and j > 0. Assume that ω and ω̂ belong to the domain

of (T+)j . We say that ω and ω̂ belong to the same component of the domain of (T+)j

if, for each 0 � i < j, there exists a prime Pi such that (T+)i(ω) and (T+)i(ω̂) belong to
R∞

+ (Pi).
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Proposition 52. — There exists θ0 ∈ (0,1) such that, if ω, ω̂ belong to the same component of

the domain of (T+)j , we have

|ϕω(y)− ϕω̂(y)| � Cθ j

0,

|Dϕω(y)− Dϕω̂(y)| � Cθ j

0,

for all y.

Proof. — With (T+)i(ω) ∈ R∞
+ (Pi) for 0 � i < j, let (P,Q, n)= (P0,Q0, n0) ∗ · · · ∗

(Pj−1,Qj−1, nj−1). We have ω, ω̂ ⊂ P and |P| � Cθ j

0 for some fixed θ0 ∈ (0,1). The esti-
mates are therefore a consequence of those in Proposition 50. �

10.6. Transverse dilatation. — This subsection is a preparation for the definition of
a transfer operator in the next subsection. The weight function in this transfer operator
is, up to a coboundary term, given by a transverse dilatation.

Let (P,Q, n) ∈ P , ω= {x = ϕω(y)} a stable curve in R∞
+ (P), ω

′ = T+(ω) its image.
Let (A,B) be the implicit representation of (P,Q, n).

For z = (ϕω(y), y) ∈ ω, let

(10.67) vω(z)= ∂

∂y
+ Dϕω(y)

∂

∂x

be the normalized tangent vector to ω at z.
The matrix of D˜T+ at z, computed in the bases ( ∂

∂x
, vω(z)) at z, ( ∂

∂x
, vω′(z′)) at

z′ =˜T+(z), is lower triangular; the first diagonal coefficient is

(10.68) A−1
x (y, x

′)
(

1 − Bx(y, x
′)Dϕω′(y′)

)

.

We denote by˜b(z) the logarithm of the absolute value of this coefficient. As ϕω is C1+Lip

uniformly in ω and gn : P �→ Q has bounded distortion, we have, for all z, z∗ ∈ ω
(10.69) |˜b(z)−˜b(z∗)| � C|z − z∗|.
Let j > 0 and let ω, ω̂ be stable curves which belong to the same component of the
domain of (T+)j . Let z, ẑ be point of ω, ω̂, respectively, with the same y coordinate. It
follows from Proposition 52 that one has

(10.70) |˜b(z)−˜b(ẑ)| � Cθ j

0.

We also have, from the definition of˜b:

(10.71) |˜b(z)+ log |P|| � C.
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We want to get rid of the dependence of ˜b on the y coordinate along ω by adding a
coboundary term. We define

(10.72) D∞
+ =

⋂

j�0

Dom(T+)j =
⋂

j�0

(T+)−j(D+).

For each a, fix some y0
a ∈ Iu

a. Then, for ω ∈ D∞
+ , ω⊂ Ra, z ∈ ω, define

(10.73) �b(z)=
∑

i�0

(

˜b((˜T+)i(z))−˜b((˜T+)i(z0))
)

,

where z0 is the point on ω with vertical coordinate equal to y0
a .

From the cone condition, we have, for i � 0:

(10.74) ‖(˜T+)i(z)− (˜T+)i(z0)‖ � Cλ−i.

The series defining �b is uniformly convergent from (10.69), (10.74), and �b is bounded
on ˜D∞

+ := π−1(D∞
+ ).

Write z1 for the point on T+(ω) ∈ Ra′ with vertical coordinate y0
a′ . We have

(10.75) �b(z)−�b(˜T+(z))=˜b(z)− b(ω),

with

(10.76) b(ω)=˜b(z0)+
∑

i�0

[

˜b((˜T+)i+1(z0))−˜b((˜T+)i(z1))
]

.

We call b the (logarithmic) mean transverse dilatation.

Proposition 53. — The mean transverse dilatation b, which differs from ˜b on D∞
+ by the

coboundary of the bounded function �b, satisfies

(10.77) |b(ω)− b(ω̂)| � Cθ j

1

if ω, ω̂ belong to the same component of the domain of (T+)j . Here θ1 is a fixed constant in (0,1) larger

than θ0.

Proof. — We have only to prove (10.77). Let z0 ∈ ω, z1 ∈ T+(ω) as above and let
ẑ0 ∈ ω̂, ẑ1 ∈ T+(ω̂) be similarly defined. We have, for i � 0, using (10.69) and (10.74):

|˜b((˜T+)i+1(z0))−˜b((˜T+)i(z1))| � Cλ−i,(10.78)

|˜b((˜T+)i+1(ẑ0))−˜b((˜T+)i(ẑ1))| � Cλ−i.(10.79)

From (10.70), we also have

(10.80) |˜b(z0)−˜b(ẑ0)| � Cθ j

0.
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For 0 � i < j/2, we will compare˜b((˜T+)i+1(z0)) and˜b((˜T+)i+1(ẑ0)) as follows. Let z̃i+1 be
the point on Ti+1

+ (ω̂) with the same y-coordinate as (˜T+)i+1(z0). From (10.70), we have

(10.81) |˜b(̃zi+1)−˜b((˜T+)i+1(z0)))| � Cθ j−i−1
0 ,

From Proposition 52, the cone condition, and (10.69), we also have

‖̃zi+1 − (˜T+)i+1(z0))‖ � Cθ j−i−1
0 ,

‖̃zi+1 − (˜T+)i+1(ẑ0)‖ � Cθ j−i−1
0 ,(10.82)

|˜b(̃zi+1)−˜b((˜T+)i+1(ẑ0)))| � Cθ j−i−1
0 .

We therefore have

(10.83) |˜b((˜T+)i+1(ẑ0)))−˜b((˜T+)i+1(z0)))| � Cθ j−i−1
0 .

Similarly, we get, for 0 � i < j/2

(10.84) |˜b((˜T+)i(ẑ1)))−˜b((˜T+)i(z1)))| � Cθ j−i

0 .

To estimate the difference b(ω)− b(ω̂), we use first (10.80), then (10.78), (10.79)
to truncate the sums at j/2, and finally (10.81), (10.82) to estimate the difference of the
remaining terms. We obtain (10.77) with

(10.85) θ1 = max(θ 1/2
0 , λ−1/2). �

10.7. Definition of a transfer operator. — As�b is bounded, it follows from (10.71) that

(10.86) |b(ω)+ log |P|| � C

for all (P,Q, n) ∈ P , ω ∈ R∞
+ (P).

It is then a consequence of Corollary 16 in Section 10.3 that the series

(10.87)
∑

T+ω′=ω
exp(−db(ω′))

over pre-images ω′ of a given stable curve ω is converging, uniformly in ω, for d � d−
s .

Here d−
s < dt

s should satisfy the hypotheses of Proposition 49 and Corollary 16. We will,
therefore, define a transfer operator Ld for d � d−

s as follows: for a bounded function h

defined on D∞
+ , for ω ∈ D∞

+ , we set

(10.88) Ldh(ω)=
∑

T+ω′=ω
exp(−db(ω′))h(ω′).

We can also view this sum over pre-images as a sum over inverse branches of T+, which
are in one-to-one correspondence with the primes (P,Q, n) such that Q and ω belong
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to the same rectangle Ra. Accordingly, we split the series in two parts: a finite sum cor-
responding to the trivial primes, (cf. Section 10.1), which we denote by L0

d and which is
defined for all values of d , and a perturbative term which we denote by �Ld . The for-
mula (10.88) defines a bounded operator from the space of bounded functions on D∞

+
into itself, but to have nice spectral properties we need, as usual, to restrict to spaces of
slightly more regular functions.

Let θ be a constant with

(10.89) θ1 < θ < 1

where θ1 comes from Proposition 53 and satisfies θ1 > λ
−1 (cf. (10.85)). Denote by E the

space of bounded functions h on D∞
+ which satisfy, for some constant C> 0,

(10.90) |h(ω)− h(ω̂)| � Cθ j

whenever ω, ω̂ belong to the same component of the domain of (T+)j . We denote by
‖h‖∞ the usual norm on bounded functions, by |h|E the best possible C in (10.90), and
set

(10.91) ‖h‖E = max(|h|E,‖h‖∞).

It is clear that E is a Banach space.

Proposition 54. — For d � d−
s , Ld restricts to a bounded operator on E. Moreover, the norm of

the perturbative part �Ld is as small as we want if ε0 is small enough.

Proof. — Let h ∈ E, ω, ω̂ ∈ D∞
+ , j > 0. Assume that ω, ω̂ belong to the same com-

ponent of the domain of (T+)j . Let (P,Q, n) be a prime such that Q, ω, ω̂ belong to the
same rectangle Ra, and let ω1, ω̂1 be the inverse images of ω, ω̂ by T+ corresponding to
this inverse branch. By the definition of | |E, we have

(10.92) |h(ω1)− h(ω̂1)| � |h|Eθ j+1.

From Proposition 53, we have

(10.93) |b(ω1)− b(ω̂1)| � Cθ j+1
1 .

It follows from (10.86) that

(10.94) | exp(−db(ω1))− exp(−db(ω̂1))| � C(d)|P|dθ j+1
1 .

Putting together (10.92) and (10.94), we have

|h(ω1) exp(−db(ω1))− h(ω̂1) exp(−db(ω̂1))|
� C(d)|P|d(θ j+1|h|E + θ j+1

1 ‖h‖∞).(10.95)
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Summing over (non trivial) primes yields for d � d−
s :

|�Ldh|E < ε1‖h‖E,(10.96)

|Ldh|E <C‖h‖E,(10.97)

where ε1 can be made arbitrarily small if ε0 is small enough, according to Corollary 16.
The same estimates (for d � d−

s ) for ‖�Ldh‖∞ and ‖Ldh‖∞ are easier and can be seen
directly. The proposition follows. �

10.8. Spectral properties of the transfer operator. — Let us denote by R∞
+ (K) the set of

stable curves ω which are intersections of a sequence of rectangles belonging to R(I0);
these stable curves are precisely those which meet the initial horseshoe K.

Observe that R∞
+ (K)⊂ D∞

+ . Denote by EK the space of bounded functions h on
R∞

+ (K) which satisfy

(10.98) |h(ω)− h(ω̂)| � Cθ j,

whenever ω, ω̂ belong to the same component of the domain of (T+)j . Define |h|EK,
‖h‖EK as above, which makes EK a Banach space.

Let h ∈ E; the restriction of h to R∞
+ (K) belongs to EK and we have

(10.99) ‖h/R∞
+ (K)‖EK � ‖h‖E.

The formula for L0
d defines a bounded operator, still denoted by L0

d , on EK and we have
a commutative diagram

(10.100)

E −−−→
L0

d

E

r

⏐

⏐

�

⏐

⏐

�
r

EK −−−→
L0

d

EK

where r : E �→ EK is the restriction operator. The bounded operator L0
d : EK �→ EK is the

subject of the classical theory by Bowen, Ruelle, Sinai for uniformly hyperbolic systems.
Let us recall some standard results of this theory.

(a) There is a direct sum invariant decomposition

(10.101) EK = Rh′
d ⊕ H′

d

depending analytically on the parameter d , such that h′
d is a positive eigenfunc-

tion, with associated eigenvalue λ′
d > 0, and such that

(10.102) sp
(

L0
d/H

′
d

)

⊂ {|z|< λ′
d}.
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(b) There exists a (unique) probability measure μ′
d on R∞

+ (K) such that

(10.103) H′
d =

{

h ∈ EK,

∫

hdμ′
d = 0

}

.

One normalizes h′
d to have

∫

h′
ddμ′

d = 1. Then, the probability measure ν ′
d = h′

dμ
′
d is

invariant under the restriction of T+ to R∞
+ (K) (observe that ˜T+ on ˜R∞

+ (K) is just the
restriction of g).

Let E0 be the kernel of the restriction operator r : E �→ EK. It is invariant under L0
d .

Lemma 17. — One has, for all d ∈ R.

sp
(

L0
d/E

0
)

⊂ {|z| � θλ′
d}.

Proof. — Let h ∈ E0, j � 0. We have

(10.104) (L0
d)

jh(ω)=
0
∑

(T+)j (ω′)=ω
h(ω′) exp(−db(j)(ω′)),

where the symbol
∑0 indicates that we only consider inverse branches of T+ associated

with trivial primes. The notation b(j) denotes the Birkhoff sum

(10.105) b(j)(ω′)=
∑

0�i<j

b((T+)i(ω′)).

We observe that in the sum in (10.104), each ω′ belongs to the same component of the
domain of (T+)j as a stable curve in R∞

+ (K). As h belongs to E0, this implies that for such
a ω′ we have

(10.106) |h(ω′)| � |h|Eθ j.

On the other hand, we have

(10.107)
0
∑

exp(−db(j)(ω′))� Cλ
′ j
d ,

and it follows that

(10.108) ‖(L0
d)

jh‖∞ � Cλ
′ j
dθ

j‖h‖E.

Let ω̂ ∈ R∞
+ belong to the same component of the domain of (T+)� as ω. Denote

by ω̂′ the inverse image of ω̂ associated to the same sequence of trivial primes as ω′. We
have

(10.109) |h(ω′)− h(ω̂′)| � |h|Eθ j+�,
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and, from Proposition 53

(10.110) |b(j)(ω′)− b(j)(ω̂′)| � Cθ�1 .

Using also (10.106) and (10.107), we obtain

(10.111)
∣

∣(L0
d)

jh(ω)− (L0
d)

jh(ω̂)
∣

∣� Cθ j+�λ
′ j
d ‖h‖E,

which implies the statement of the Lemma. �

We deduce from Lemma 17 that there is a unique function in E, still denoted by
h′

d , which restricts to h′
d on R∞

+ (K) and satisfies

(10.112) L0
d(h

′
d)= λ′

dh′
d .

Moreover, defining a supplementary hyperplane by

(10.113) H′′
d = r−1(H′

d)⊕ E0,

we have that H′′
d is invariant under L0

d and

(10.114) sp
(

L0
d/H

′′
d

)

⊂ {|z| � λ′′
d },

where λ′′
d < λ

′
d is independent of ε0.

Using Proposition 54, we now consider Ld itself, assuming that ε0 is small enough
and d � d−

s .
As the norm of the perturbation part �Ld is arbitrarily small, we conclude that Ld

has a positive eigenfunction hd , with associated eigenvalue λd arbitrarily close to λ′
d , and

an invariant supplementary hyperplane Hd satisfying

(10.115) sp
(

Ld/Hd

)

⊂ {|z|< λd}.
Moreover, hd , λd and Hd depend analytically on d for d > d−

s because Ld does. We check
that

(10.116) hd � C−1 > 0.

Indeed, the sequence h(n) = λ−n
d Ln

d(1) converges to a positive multiple of hd . We
have

(10.117) h(n)(ω)= λ−n
d

∑

(T+)n(ω′)=ω
exp(−db(n)(ω′)).

Let ω, ω̂ be elements of D∞
+ in the same rectangle Ra; let ω′, ω̂′ be pre-images of ω, ω̂ by

(T+)n associated with the same sequence of primes. We have (cf. (10.110))

(10.118) |b(n)(ω′)− b(n)(ω̂′)| � C,
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and it follows that

(10.119) C−1 � (h(n)(ω′))−1h(n)(ω)� C.

This implies (10.116). One normalizes hd in order to have

(10.120) hd = lim
n→+∞λ

−n
d Ln

d(1).

Denote then by μd the linear form on E with kernel Hd normalized by μd(hd)= 1. We
have, for all h ∈ E

(10.121) lim
n→∞λ

−n
d Ln

dh = μd(h)hd .

As Ld is a positive operator, μd is positive. Observe also that for all (P,Q, n) ∈ R, the
characteristic function χP (equal to 1 if ω ⊂ P, 0 otherwise) belongs to E and satisfies
LnχP > 0 everywhere for some n > 0. Therefore, there exists a unique probability mea-
sure on R∞

+ , still denoted by μd , which coincides with μd on the intersection of E with
C(R∞

+ ).

10.9. The Gibbs measure. — From the defining property (10.121) of μd , we have,
for all h ∈ E

(10.122) μd(Ldh)= λdμd(h).

We will now check the classical Jacobian property for μd .
Let (P,Q, n) ∈ P , with Q ⊂ Ra. The application T+ is a bijection TP from the set

R∞
+ (P) onto R∞

+ (a).
Let h be a function in E which vanishes outside R∞

+ (P). Then, Ldh vanishes outside
R∞

+ (a), and satisfies on R∞
+ (a)

Ldh(ω)= h(T−1
P ω) exp(−db(T−1

P ω)).

Plugging this into (10.122) gives

(10.123) λd

∫

h(ω)dμd(ω)=
∫

R∞+ (a)
h(T−1

P ω) exp(−db(T−1
P ω))dμd(ω).

This relation is the Jacobian property of the measure μd .
Consider in particular the case where h is the characteristic function of R∞

+ (P). We
then obtain

(10.124) λdμd(R∞
+ (P))=

∫

R∞+ (a)
exp(−db(T−1

P ω))dμd(ω).

We now will specify the value of d by asking that

(10.125) λd = 1.

Indeed, we have the following
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Proposition 55. — One has ∂

∂d
λd < 0 for d � d−

s , and also λd−
s
> 1, limd→+∞ λd = 0.

Therefore, there exists a unique d � d−
s with λd = 1.

Proof. — We first prove that ∂

∂d
λd < 0. The Birkhoff sums of˜b for ˜T+ grow at least

linearly, and b −˜b is the coboundary of a bounded function. Therefore, there exists j > 0
such that the Birkhoff sum b(j) of b for T+ is everywhere > 1. For h ∈ E, we have

(10.126)
∂

∂d
Lj

d(h)(ω)= −
∑

(T+)j (ω′)=ω
h(ω′)b(j)(ω′) exp(−db(j)(ω′))

which is everywhere < 0 is h > 0. We will apply this with h = hd . We differentiate with
respect to d the relation Lj

d(hd)= λj

dhd to get

(10.127)
∂

∂d
Lj

d(hd)−
(

∂

∂d
λ

j

d

)

hd = (Lj

d − λj

d)

(

∂

∂d
hd

)

.

The right-hand term belongs to Hd . Applying μd shows that ∂

∂d
λ

j

d and then also ∂

∂d
λd is

< 0.

Next, d−
s was chosen in order to be smaller than the transverse Hausdorff dimen-

sion of Ws(K). This means that the eigenvalue λ′
d−

s
for L0

d−
s

on EK satisfies λ′
d−

s
> 1. As

�Ld−
s

is also a nonnegative operator, we have λd−
s

� λ′
d−

s
> 1.

Finally, with j as above and h ∈ E, h> 0 we have

(10.128) Lj

d(h)(ω)=
∑

(T+)j (ω′)=ω
h(ω′) exp(−db(j)(ω′))� ed−

s −dLj

d−
s
(h)(ω)

which implies that λd � e
1
j (d

−
s −d)

λd−
s

. �

We will denote by ds the value of d such that λd = 1. We shall indeed see that ds is
the transverse Hausdorff dimension of ˜R∞

+ which we were able to define in Section 10.5.
We just write μ for the measure μds

and h∗ for the eigenfunction hds
.

Proposition 56. — For any (P,Q, n) ∈ R, we have

C−1|P|ds � μ({ω⊂ P})� C|P|ds .

Proof. — Let

(10.129) (P,Q, n)= (P1,Q1, n1) ∗ · · · ∗ (Pr,Qr, nr)

be the prime decomposition of (P,Q, n). If ω ∈ D∞
+ satisfies (T+)i(ω) ∈ R∞

+ (Pi+1) for
0 � i < r, we claim that

(10.130) C−1|P|ds � exp(−dsb
(r)(ω))� C|P|ds



NON-UNIFORMLY HYPERBOLIC HORSESHOES ARISING 161

(see the definition of b(r) in (10.105)). Indeed, let z ∈ ω; denoting, by˜b(r) the Birkhoff sum
of˜b for ˜T+,˜b(r)(z) is the logarithm of the absolute value of the first diagonal coefficient
of the matrix of D(˜T+)r at z, hence we have, by bounded distortion

(10.131) C−1|P| � exp(−˜b(r)(z))� C|P|.
On the other hand, as b −˜b is the coboundary of a bounded function the difference
|˜b(r)(z)− b(r)(ω)| is bounded by C and the claim follows.

From the Jacobian property, we have

μ({ω⊂ P})� C−1|P|dsμ({ω ∈ R∞
+ (a)})

� C−1|P|ds,(10.132)

where Ra is the rectangle containing Q.
For the opposite inequality, we have also to take into account the other inverse

branches of Tr
+ when we estimate Lr

ds
(χP), where χP is the characteristic function of

{ω⊂ P}. For 0 � i � r, let

(10.133) (Pi,Qi, ni)= (Pi+1,Qi+1, ni+1) ∗ · · · ∗ (Pr,Qr, nr)

(with (Pr,Qr, nr)= (Ra,Ra,0)). We have

(10.134) Lds
χP = χ 1

P +�χ 1
P

where

(10.135) χ 1
P(ω

1)=
{

0 if ω1 �⊂ P1,

exp(−dsb(ω
0)) if ω1 = T+(ω0) for some ω0 ∈ R∞

+ (P)

and

(10.136) �χ 1
P � C

∑

|P∗
1|ds,

where the sum runs over prime elements (P∗
1,Q

∗
1, n

∗
1) with P∗

1 contained in P and distinct
from P (when r = 1). By Proposition 49 in Section 10.3, we obtain

(10.137) μ(�χ 1
P)� C|P|dsκ

r−1
2 .

If r > 1, we write similarly

(10.138) Ldχ
1
P = χ 2

P +�χ 2
P ,

where χ 2
P is associated with the inverse branch defined by the prime P2 and vanishes

outside P2. The perturbative term satisfies

(10.139) �χ 2
P � C|P1|ds

∑

|P∗
2|ds,
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where the sum now is over primes P∗
2 contained in P1 and distinct from P1 (when r = 2).

Proposition 49 now gives

μ(�χ 2
P)� C|P1|ds |P1|dsκ

r−2
2

� C|P|dsκ
r−2

2 .(10.140)

We iterate this process. At step i, we will have

(10.141) μ(�χ i
P)� C|P|dsκ

r−i

2

where the constant C does not gets worse by the same argument used above to justify
(10.130).

At the last step, we have from (10.130)

(10.142) μ(χ r
P)� C|P|ds .

The contribution of the perturbative terms is bounded by

(10.143) μ

( r−1
∑

1

�χ i
P

)

� C|P|ds

r
∑

1

κ
r−i

2 � C|P|ds .
�

Corollary 17. — The transverse Hausdorff dimension of ˜R∞
+ is � ds. More precisely, for any

C1 curve γ which is transverse to ˜R∞
+ , the Hausdorff measure in dimension ds of the intersection of γ

with ˜R∞
+ is finite.

We will see below that the transverse Hausdorff dimension is equal to ds.

Proof. — Let δ > 0, choose a finite collection of disjoint rectangles Pi with |Pi| � δ
for each i and ˜R∞

+ ⊂ ∪Pi. We have

1 =
∑

μ(Pi)� C−1
∑

|Pi|ds

� C−1
∑

[diam(γ ∩ Pi)]ds(10.144)

and the statement of the Corollary follows. �

The following statement shows that the dynamics T+ is only undefined on a small
set.

Proposition 57. — The transverse Hausdorff dimension of the set ˜R∞
+ − ˜D∞

+ is � d−
s < ds.

Moreover, we have

μ(˜R∞
+ − ˜D∞

+ )= 0.
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Proof. — We have

(10.145) ˜R∞
+ − ˜D∞

+ =
⋃

n�0

(T+)−n(N+).

As each (T+)n has countably many inverse branches which are Lipschitzian, it is sufficient
to prove that the transverse Hausdorff dimension of N+ is � d−

s and that μ(N+)= 0. By
the definition of N+, for any δ > 0, the union of prime rectangles P with |P|< δ contains
N+. It then follows from Corollary 16 (in Section 10.3) that the Hausdorff dimension of
N+ is � d−

s and (using also Proposition 56) that μ(N+)= 0. �

10.10. Transverse Hausdorff dimension of ˜R∞
+ .

Theorem 4. — The transverse Hausdorff dimension of ˜R∞
+ is the number ds characterized by

λds
= 1.

Remark 17. — We have already seen that the Hausdorff measure in dimension ds of
the intersection of ˜R∞

+ with a transverse curve is always finite. We do not know whether
it is positive or always zero.

10.10.1. Proof. — Let γ be a horizontal segment in some Ra. We denote by [γ ]
the set of stable curves which meet γ . We will show that, for all γ , we have

(10.146) A(γ ) := μ([γ ])
(diamγ )ds

� C logC0(diamγ )−1.

This clearly implies that the transverse Hausdorff dimension of ˜R∞
+ is � ds, which is

sufficient to prove the theorem in view of Corollary 17.

10.10.2. We start with some preliminary work. In the rectangle Ras
which con-

tains Ls, we choose a horizontal line J = {ys = y∗
s }. We will use x to denote the xs coordi-

nate on J (we use a different notation because we will have in the same formulas points
on J and points in Ras

). Let J be the set of x such that (x, y∗
s ) ∈ Ps, and J∞ the set of

x ∈ J such that (x, y∗
s ) ∈ Ps ∩ ˜R∞

+ . For x ∈ J∞, let xs = ϕ(ys, x) be the equation of the stable
curve through (x, y∗

s ) (thus, we have x = ϕ(y∗
s , x)).

For each x ∈ J∞, ϕ is a C1+Lip function of ys. Moreover, from (R4) in Section 5.3
and Proposition 50 in Section 10.4, we have

|ϕy(ys, x)| � Cε0,(10.147)

|ϕy(ys, x)− ϕy(y
′
s, x)| � Cε0|ys − y′

s|.(10.148)
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On the other hand, it follows from Proposition 51 in Section 10.5 that, for x, x′ ∈ J∞

with x′ > x, we have

(10.149) C−1(x′ − x)� ϕ(ys, x
′)− ϕ(ys, x)� C(x′ − x).

We extend the definition of ϕ letting x run in the whole interval J, to obtain an
homeomorphism from Iu

as
×J onto Ps and still having (10.147)–(10.149), with now x, x′ ∈ J.

This can be done for instance by linear interpolation in the x variable, for each fixed ys.
The next step is to switch, via the diffeomorphism G+ of Section 2.3, from the

coordinates xs, ys to the coordinates xs,w. We have (with the notations of Section 2.3)
ys = Ys(w, xs); plugging this into ϕ gives a family of curves parametrized by x

(10.150) xs = ϕ(Ys(w, xs), x).

Lemma 18. — Each curve {xs = ϕ(Ys(w, xs), x)} is a graph {xs = φ(w, x)} of a C1+Lip

function of w. The function φ satisfies the same relations (10.147)–(10.149) than ϕ, namely

|φw(w, x)| � Cε0,

|φw(w, x)− φw(w′, x)| � Cε0|w−w′|,
C−1(x′ − x)� φ(w, x′)− φ(w, x)� C(x′ − x),

for all w,w′, x< x′.

Proof. — In view of (10.147), the first statement follows from the implicit function
theorem, which gives also

(10.151) φw = ϕyYs,w(1 − ϕyYs,x)
−1.

The first two estimates of the lemma now follow from (10.147), (10.148) and the fact that
the partial derivatives of Ys of first and second order are bounded.

For the last inequality, let xs = φ(w, x), x′
s = φ(w, x′). We have xs = ϕ(Ys(w, xs), x),

x′
s = ϕ(Ys(w, x

′
s), x

′) and let x∗
s = ϕ(Ys(w, xs), x

′). Then, from (10.149), we get

(10.152) C−1(x′ − x)� x∗
s − xs � C(x′ − x).

From (10.147), one obtains

(10.153) |x′
s − x∗

s | � Cε0(x
′
s − xs),

from which we deduce as required

(10.154) C−1(x′ − x)� x′
s − xs � C(x′ − x). �
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10.10.3. In the rectangle Rau
which contains Lu, consider a C2 curve γ = {yu =

ψ(xu)} contained in Qu, where ψ satisfies

|ψx| � Cε0, |ψxx| � Cε0.(10.155)

Using the diffeomorphism G− of Section 2.3 to switch to the coordinates w, yu via xu =
Xu(w, yu), the curve is transformed into {yu = ψ(Xu(w, yu))}. By the implicit function
theorem, this is still a graph {yu =�(w)}, with � satisfying

|�w| � Cε0, |�ww| � Cε0.(10.156)

In the spirit of Section 3.5, we now introduce

(10.157) C(w, x) :=w2 − θ(�(w),φ(w, x)).
Observe that, for each x, the zeros of C(w, x) correspond to the points of intersection of
the curve G(γ ∩ Lu) with the curve xs = ϕ(ys, x).

Lemma 19.

1. For each x ∈ J, C(w, x) is a C1+Lip function of w, satisfying

|Cw(w, x)− 2w| � Cε0,

|Cw(w, x)− Cw(w
′, x)− 2(w−w′)| � Cε0|w−w′|.

2. For each x ∈ J, C(w, x) attains its minimum value at a unique point w∗, which is in the

interior of the domain of definition of the w variable. Writing

δ(x) := −min
w

C(w, x),

one has, for x< x′ in J

C−1(x′ − x)� |δ(x′)− δ(x)| � C(x′ − x).

3. Let x0, x1 ∈ J such that δ(x0) > δ(x1) > 0 and let w0,w1 such that C(w0, x0) =
C(w1, x1)= 0. We have

δ(x0)
1/2|w0 −w1| � C−1|x0 − x1|.

Proof. — The first part of the lemma follows immediately from the corresponding
properties of � and φ, using that the partial derivatives of θ of order one and two are
bounded. The first statement in the second part of the lemma is an immediate conse-
quence of the properties of Cw stated in the first part. One has also, from the first part

|Cw(w, x)− 2(w−w∗)| � Cε0|w−w∗|,(10.158)
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|C(w, x)+ δ(x)− (w−w∗)2| � Cε0|w−w∗|2.(10.159)

To prove the inequality in the second part of the lemma, the upper bound is just a conse-
quence from the fact that, for each w, C(w, x) is a Lipschitz function of x. For the lower
bound, we first recall that the partial derivatives θx, θy do not vanish and are bounded
away from 0. Assume for instance that θx > C−1. Let w∗ be the point where C(w, x)
attains its minimal value −δ(x). We have, from Lemma 18,

φ(w∗, x′)� φ(w∗, x′)+ C−1(x′ − x),

hence

C(w∗, x′)= (w∗)2 − θ(�(w∗),φ(w∗, x′))

� (w∗)2 − θ(�(w∗),φ(w∗, x))− C−1(x′ − x)

= −δ(x)− C−1(x′ − x),

and the lower bound follows.
In the setting of the third part of the lemma, we have

(10.160) C(w0, x0)− C(w1, x0)= C(w1, x1)− C(w1, x0),

where, by an argument just seen above,

(10.161) |C(w1, x1)− C(w1, x0)| � C−1|x0 − x1|.
On the other hand, we have

(10.162) |C(w0, x0)− C(w1, x0)| � C|w0 −w1|max
w

|Cw(w, x0)|,
where the maximum is taken for w between w0 and w1. But it follows from the first part
of the lemma (second inequality) that this maximum is taken at w0 (because we have
assumed that δ(x0) > δ(x1) > 0), and then from (10.158), (10.159) that |Cw(w0, x0)| �
Cδ(x0)

1/2. Plugging this above completes the proof of the third part of the lemma. �

10.10.4. We now come back to the proof of the estimate (10.146). Let γ0

be a horizontal closed segment in some rectangle Ra. Clearly, we may assume that
μ([γ0]) > 0. By shortening γ0 if necessary, we can assume that there is a stable curve
through each endpoint of γ0. Let (P0,Q0, n0) ∈ R the element such that P0 is the thinnest
rectangle containing any stable curve in [γ0]. There are at least two children of P0 which
contain a stable curve in [γ0].

We say that γ0 has complexity 0 if at least one of the following two conditions are
satisfied:

– At least one stable curve in [γ0] is contained in a simple child of P0.
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– There is a child P′
0 of P0 such that the set of stable curves in [γ0] contained in P′

0
has μ-measure � 1

3μ([γ0]).
If none of these conditions, we say that γ0 has complexity > 0.

When γ0 has complexity 0, it is easy to obtain (10.146) (and even better). Assume
first that the first condition is satisfied. Then, as γ0 intersects at least two children of P0,
we have

(10.163) diamγ0 � C−1|P0|.
On the other hand, we have

(10.164) μ([γ0])� μ({ω⊂ P0})� C|P0|ds

by Proposition 56, which proves (10.146).
Assume now that the second condition is satisfied. Then, as γ0 intersects at least

two children of P0, we have now

(10.165) diamγ0 � C−1|P′
0|.

On the other hand, we have

(10.166) μ([γ0])� 3μ({ω⊂ P′
0})� C|P′

0|ds

by Proposition 56, which proves again (10.146).
We have shown that A(γ0) is bounded for segments of complexity 0.

10.10.5. We now assume that the complexity of γ0 is > 0. If some stable curve
through an endpoint of γ0 is contained in a child P′

0 of P0, but there is a stable curve
contained in P′

0 not in [γ0], we shorten γ0 to remove from [γ0] all stable curves contained
in P′

0. We do this for both endpoints. The shortened curve, that we denote by γ ′
0, satisfies

μ([γ ′
0]) � 1

3μ([γ0]) (because the second condition above is not satisfied). The negation
of the second condition also implies that at least two children of P0 contain a curve in
[γ ′

0]. We can still assume there is a stable curve through each endpoint of γ ′
0. Any child

P′
0 of P0 which contains a curve in [γ ′

0] is non-simple, and all stable curves contained in
P′

0 belong to [γ ′
0].

In particular, P0 has non-simple children, hence Q0 is contained in Qu. By (R4),
g

n0
t (γ

′
0) is a graph {yu =ψ(xu)} satisfying (10.155). As there is a stable curve through each

endpoint of γ ′
0, the images of these endpoints by g

n0
t are contained in Lu; but then (10.155)

implies that g
n0
t (γ

′
0) is contained in Lu. Let J1 ⊂ J be the compact interval image by the

projection on the second coordinate x of the curve G ◦ g
n0
t (γ

′
0).

We define δ0 := maxJ1 δ(x), δ
′
0 := minJ1 δ(x). From Lemma 19, part 3, we have

(10.167) δ
1/2
0 diam G ◦ gn0

t (γ
′
0)� C−1|J1|,
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from which it follows that

(10.168) δ
1/2
0 diamγ ′

0 � C−1|P0||J1|.
We denote by (P′

0,i)i the (non-simple) children of P0 which contain a stable curve
in [γ0]. Each P′

0,i is obtained from its parent P0 by parabolic composition:

(10.169) (P′
0,i,Q

′
0,i, n

′
0,i) ∈ (P0,Q0, n0) � (P0,i,Q0,i, n0,i).

Observe that it is possible that two P′
0,i (but no more than two) correspond to the same

P0,i . The widths are related through

(10.170) C−1 � |P′
0,i||P0|−1|P0,i|−1δ(Q0,P0,i)

1
2 � C.

Here, δ(Q0,P0,i) is the quantity of Section 3.5.
For each i, we choose a stable curve {xs = ϕ(ys, xi)} contained in P0,i and such that

δ(xi) is not of the form δ02−l . We have xi ∈ J1 by construction of γ ′
0. We also have (cf.

Section 3.6.3)

(10.171) |δ(Q0,P0,i)− δ(xi)| � C(|Q| + |P0,i|),
and therefore, in view of (R7) in Section 5.4

δ(xi)� (|Q| + |P0,i|),(10.172)

C−1 � |P′
0,i||P0|−1|P0,i|−1δ(xi)

1
2 � C.(10.173)

We now distinguish two cases

– δ′
0 <

1
2δ0.

For any nonnegative integer l, let J∗
1,l be the set of x ∈ J such that δ02−l �

δ(x)� δ02−l−1. By Lemma 19, part 2, it is a compact interval satisfying

(10.174) |J∗
1,l| � Cδ02−l .

Let L be the set of nonnegative integers l such that J∗
1,l contains some xi . It

follows from (10.172) that L is finite. From (10.172), it also follows that it is
possible to find, for l ∈ L, an interval J1,l whose endpoints are at a distance
	 δ02−l from those of J∗

1,l and which has the following property: if xi ∈ J∗
1,l , for

any stable curve ϕ(ys, x) contained in P0,i , one has x ∈ J1,l . One has still

(10.175) |J1,l| � Cδ02−l .

– δ′
0 � 1

2δ0.
In this case, we set L = {0}, J1,0 = J1.

In both cases, for l ∈ L, let γ1,l ⊂ J be the horizontal segment J1,l × {y∗
s }.
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10.10.6. In the first case, we write

μ([γ0])� 3μ([γ ′
0])� C

∑

i

|P′
0,i|ds (from Proposition 56)

� C|P0|ds

∑

i

|P0,i|dsδ(xi)
− 1

2 ds (from (10.173))

� C|P0|dsδ
− 1

2 ds

0

∑

L
2

lds

2

(l)
∑

|P0,i|ds

� C|P0|dsδ
− 1

2 ds

0

∑

L
2

lds

2

(l)
∑

μ({ω⊂ P0,i})

(from Proposition 56)

� C|P0|dsδ
− 1

2 ds

0

∑

L
2

lds

2 μ([γ1,l]).(10.176)

We have written
∑(l) for the partial sum over those P0,i satisfying xi ∈ J∗

1,l .
When δ′

0 � 1
2δ0, a similar but simpler argument gives

(10.177) μ([γ0])� C|P0|dsδ
− 1

2 ds

0 μ([γ1,0]).
By definition of A(γ ), we have, for all l

(10.178) μ([γ1,l])= A(γ1,l)(diamγ1,l)
ds .

When δ′
0 � 1

2δ0, we now use (10.168), (10.177) to conclude that

(10.179) A(γ0)� CA(γ1,0).

When δ′
0 <

1
2δ0, we use (10.176), (10.175), (10.168) to obtain

μ([γ0])� C max
L

A(γ1,l)|P0|dsδ

1
2 ds

0

∑

L
2

−lds

2

� C max
L

A(γ1,l)|P0|dsδ

1
2 ds

0

� C max
L

A(γ1,l)(δ0|J1|−1 diamγ0)
ds .(10.180)

But in this case, we have |J1| � C−1δ0 from Lemma 19, part 2, and we conclude that

(10.181) A(γ0)� C max
L

A(γ1,l).
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To obtain (10.146), it is thus sufficient to define, for all horizontal segments γ0 with
μ([γ0]) > 0, a complexity index c(γ0) ∈ N which vanishes as explained in Section 10.10.4
and satisfies otherwise

c(γ0)� C log log |P0|−1,(10.182)

c(γ0)= 1 + max
L

c(γ1,l).(10.183)

10.10.7. We want to use (10.183) to give an inductive definition of c(γ0). This will
work if the γ1,l are in some sense “simpler” than γ0. If all γ1,l have complexity 0, we just set
c(γ0)= 1. Assume therefore that some γ1,l , that we just denote by γ1, has complexity > 0
(according to Section 10.10.4). Observe that J∗

1,l must contain at least two xi : otherwise,
the unique P0,i such that xi ∈ J∗

1,l would be the thinnest rectangle containing any stable
curve in [γ1], and γ1 would have complexity 0 by the first condition of Section 10.10.4.

Therefore, there exists an element (P1,Q1, n1) ∈ R with the following properties:

– each P0,i with δ(xi) ∈ J∗
1,l is contained in some non-simple child of P1;

– at least two non-simple children of P1 contain some such P0,i .

Lemma 20. — One has

|P1|1−η � C−1δ02−l.

Moreover P1 is I-critical for any parameter interval I containing t.

Proof. — Let i such that P0,i ⊂ P1. There exists a parameter interval I containing t

such that Q0 and P0,i are I-transverse. On the other hand, as P′
0,i is a child of P0, Q0 and

P1 are I-critically related for every parameter interval I containing t. By Proposition 21
in Section 8.1, we must have |P1|> 1

3 |Q0|. If we had |P1|1−η 	 δ02−l , we would also have
|Q0|1−η 	 δ02−l and (T1), (T2), (T3) for Q0 �I P1 would hold for a sufficiently small pa-
rameter interval I containing t. This contradiction proves the first statement. The second
follow from Proposition 24 in Section 8.2. �

10.10.8. We assume in this subsection that P0 also is I-critical for any I contain-
ing t.

Let I∗ be the largest parameter interval for which we have

(10.184) |P0|> |I∗|β.
Observe that P0 is I∗-defined by Corollary 6 in Section 6.6.3. Then, (P0,Q0, n0) cannot
be I∗-bicritical as I∗ is β-regular, hence Q0 is I∗-transverse. This implies that there exists
P0,i with δ(xi) ∈ J∗

1,l and P∗ containing the stable curve {xs = ϕ(ys, xi)} such that Q0 and
P∗ are I∗-transverse. From Section 3.6 and Lemma 3 in Section 6.6.3, we have

(10.185) δ02−l � δ(xi)� δ(Q0,P∗)� |I∗|.
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On the other hand, it follows from the definition of I∗ that

(10.186) |I∗|β � |P0|1+τ .

Inequalities (10.185), (10.186), and Lemma 20 give

(10.187) |P0|< |P1|
1
2 (1+β)

.

This estimate means that every P1 that occur (for the various γ1 = γ1,l such that
the complexity of γ1,l is > 0) is indeed simpler than P0. Moreover, by Lemma 20, the
hypothesis of Section 10.10.8 is satisfied by any such P1. We can therefore under the
assumption of Section 10.10.8 use (10.183) to define inductively c(γ0). The inequality
(10.182) follows then from (10.187).

10.10.9. Finally we deal with the general case. By Lemma 20, the index c(γ1,l)

is already defined for every l ∈ L. We define c(γ0) by (10.183) and check (10.182). For
every l ∈ L, we have either c(γ1,l)= 0 or c(γ1,l) > 0 and

(10.188) c(γ1,l)� C log log |P1|−1,

where P1 is associated to γ1,l as in Section 10.10.7.
From Proposition 12 in Section 6.6.2, we have

(10.189) log log |P0|−1 � C−1 log n0.

On the other hand, we have, from Lemma 20 and (10.172)

(10.190) C−1 log |P1|−1 � log(δ02−l)� log |Q0|−1 � Cn0.

From this, we obtain

(10.191) log log |P1|−1 � log log |P0|−1 + C,

and (10.182) follows.
The proof of the theorem is now complete.

10.11. Invariant measures. — From the Gibbs measure μ, which is not invariant
but has the Jacobian property, we define a measure ν on R∞

+ by dν = h∗dμ. Recall that
μ(R∞

+ − D∞
+ )= 0 and that h∗ is normalized by μ(h∗)= 1. This means that ν is a proba-

bility measure on R∞
+ and that ν(D∞

+ )= 1.

Proposition 58. — The probability measure dν = h∗dμ is T+-invariant, ergodic. It satisfies,

for all (P,Q, n) ∈ R:

C−1|P|ds � ν({ω⊂ P})� C|P|ds .
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Proof. — As h∗ is bounded and bounded away from 0 (cf. (10.116)), the estimate for
ν({ω⊂ P}) follows from the same estimate for μ({ω⊂ P}) in Proposition 56.

Let us prove that ν is T+-invariant. We first observe that, if h0, h1 ∈ E, the product
h0h1 also belongs to E; indeed we have

(10.192) |h0h1|E � ‖h0‖∞|h1|E + |h0|E‖h1‖∞.

In particular, for any h ∈ E, hh∗ also belongs to E. Let h ∈ E. We write
∫

h(T+ω)dν(ω)=
∫

h(T+ω)h∗(ω)dμ(ω)

=
∑

P

∫

h(T+ω)h∗(ω)χ∗
P (ω)dμ(ω),(10.193)

where χ∗
P is the characteristic function of R∞

+ (P). The Jacobian property (10.123) (Sec-
tion 10.9) gives

∫

h(T+ω)h∗(ω)χ∗
P (ω)dμ(ω)

=
∫

R∞+ (a)
h(ω)h∗(T−1

P (ω)) exp(−dsb(T−1
P (ω)))dμ(ω)(10.194)

where Q ⊂ Ra and TP is the restriction of T+ to R∞
+ (P). Summing over P and using that

h∗ is Lds
-invariant gives

(10.195)
∫

h(T+ω)dν(ω)=
∫

h(ω)dν(ω).

But E ∩ C(R∞
+ ) is dense in the space of continuous functions C(R∞

+ ); the invariance of
ν follows.

Let us prove that the invariant measure ν is ergodic. Let A ⊂ R∞
+ be a T+-invariant

Borel subset with ν(A) > 0 and Ac its complement. Let ε > 0. We will prove that there
exists a ∈ a such that

(10.196) ν(A ∩ R∞
+ (a))� (1 − ε)ν(R∞

+ (a)).

As ε > 0 is arbitrary, this easily implies ν(A)= 1.
As ν(A) > 0, we can find (P,Q, n) such that

(10.197) ν({ω⊂ P} ∩ Ac)� ε′ν({ω⊂ P}),
where ε′ε−1 is small. Let r be the number of factors in the prime decomposition of
(P,Q, n). Up to a set of measure 0, we have

(10.198) {ω⊂ P} =
⋃

0�j�r

⋃

Pj

(T+)−j(R∞
+ (Pj)) mod 0
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where Pj runs through prime elements satisfying Pj ⊂ (T+)j(P) and (T+)−j is the inverse
branch of (T+)j whose image contains P. From (10.197), there exists 0 � j � r and Pj

such that

(10.199) ν(Ac ∩ (T+)−j(R∞
+ (Pj)))� ε′ν((T+)−j(R∞

+ (Pj))).

We apply the Jacobian property, taking (10.118) into account to get (10.196) with ε = Cε′.
We have proved that ν is ergodic, and the proof of the proposition is complete. �

We will now lift ν to obtain a ˜T+-invariant probability measure on ˜R∞
+ .

Proposition 59. — There exists a unique probability measure ν̃ on ˜R∞
+ which is ˜T+-invariant

and projects onto ν under π . It is ergodic.

Proof. — The arguments are standard.

Existence. — Denote by M(ν) the set of probability measures on R∞
+ which project

onto ν. This is a compact set for the weak topology, invariant under ˜T+ because ν is
T+-invariant. One obtains a ˜T+-invariant measure in M(ν) by taking any ν̃0 ∈ M(ν)

and choosing a weak limit of a subsequence of

(10.200)
1
n

n−1
∑

0

[(˜T+)j]∗(̃ν0).

Uniqueness. — The set of fixed points for the action of ˜T+ on M(ν) is thus non-empty.
It is also compact and convex. If it has more than one point, it has at least two distinct
extremal points ν̃0, ν̃1. As ν is ergodic, ν̃0 and ν̃1 are also ergodic. Still by the ergodicity
of ν, some stable curve ω must meet the basins of both ν̃0 and ν̃1. But stable curves are
contracted exponentially fast under positive iteration by T+; we should thus have ν̃0 = ν̃1,
a contradiction.

We have already said that ν̃ is ergodic. �

Finally, we want to “spread” the ˜T+-invariant measure ν̃ in order to obtain a g-
invariant measure σ . Let �=�g as in the Introduction (cf. Section 1.2).

We first observe that the support of ν̃ is contained into � ∩ ˜R∞
+ : if N ⊂ ˜R∞

+ is
compact and disjoint from �, then N is disjoint from the image of (˜T+)j if j is large
enough, hence ν̃(N)= 0.

Let now h be a continuous, and thus bounded, function on�. For x ∈�∩ D∞
+ , we

write

(10.201) ˜T+(x)= gN(x)(x),
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where N(x)= n if x ∈ ˜R∞
+ (P) with (P,Q, n) ∈ P . We define:

(10.202) Sh(x)=
∑

0�j<N(x)

h(gj(x)).

The function Sh is defined ν̃-almost everywhere. It satisfies:

(10.203) |Sh(x)| � ‖h‖∞N(x).

By Proposition 58 and Corollary 16 in Section 10.3, the function N is ν̃-integrable. We
have therefore defined an operator

(10.204) S : C(�) �→ L1(̃ν),

where C(�) stands for the space of continuous functions on �=�g .
We define a finite measure σ on � by

(10.205)
∫

hdσ =
∫

Shd ν̃,

for h ∈ C(�). From the definition of Sh, we have

(10.206) S(h ◦ g)= Sh + h ◦˜T+ − h.

Thus, the ˜T+-invariance of ν̃ implies that σ is g-invariant. It is ergodic. The Lyapunov
exponents of ˜T+ for ν̃ are non-zero because ˜T+ is uniformly hyperbolic. To get the Lya-
punov exponents of g for σ we have only to change time, which is possible since N is
ν̃-integrable.

In the next and last section, we will see that in some appropriate geometric sense,
the measure σ captures “most” of the dynamics on �, and therefore can be considered
as a naturally defined geometric invariant measure on �.

We end this section by observing that everything that has been done for T+ and
positive iteration in Section 10, can also be done for T− and negative iteration, leading
to another naturally defined geometric invariant measure σ− on �.

11. Some further geometric properties of the invariant set

In this final section we pursue the geometric study of the invariant set �=�g in
two directions. First, we will describe in a rather precise way, both from a dynamical and
a geometrical point of view, the intersection of an unstable curve in R∞

− , as defined in
Section 10.4, with the invariant set �. In the second part of the section, we prove that �
is a saddle-like invariant set in the measure-theoretical sense: both its stable and unstable
sets have Lebesgue measure 0; thus, no attractors are present in �.
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11.1. One-dimensional analysis of the invariant set. — Let ω∗ ∈ R∞
− be an unstable

curve as defined in Section 10.4. Let (P∗
k ,Q

∗
k , n

∗
k )k�0 be the canonical sequence associated

to ω∗ (cf. definition also in Section 10.4). We have

(11.1) ω∗ =
⋂

k�0

Q∗
k ,

where Q∗
0 is a rectangle Ra and Q∗

k+1 is a child of Q∗
k for each k � 0. We want to analyze

the intersection ω∗ ∩ �. In Section 10, we have analyzed the set ˜R∞
+ and we know,

in particular, that ω∗ ∩ � contains the subset ω∗ ∩ ˜R∞
+ ; this last subset has Hausdorff

dimension ds characterized in terms of the transfer operator studied in Section 10; in
particular, this dimension is independent of ω∗.

Let us summarize the results of our analysis in this section.

Theorem 5. — The intersection ω∗ ∩� is the disjoint union of

– a, at most countable, family of Cantor sets �i(ω
∗),

– a, at most countable, set Cr(ω∗),
– an exceptional set E(ω∗),

with the following properties

(i) For each i, there exists a piece ω∗(i) of ω∗ containing �i(ω
∗), an unstable curve ω∗

i and

an integer ni such that

(11.2) gni(ω∗(i))= ω∗
i ,

(11.3) gni(�i(ω
∗))= ω∗

i ∩ ˜R∞
+ .

In particular, there is a special index i = 0 for which n0 = 0, ω∗(0) = ω∗
0 = ω∗,

�0(ω
∗)= ω∗ ∩ ˜R∞

+ .

(ii) For every point c ∈ Cr(ω∗), there exists a stable curve ω+(c) ∈ R∞
+ , an unstable curve

ω−(c) ∈ R∞
− , a positive integer n(c) such that gn(c)(c) is a quadratic tangency point be-

tween ω+(c) and gN0(ω−(c)∩ Lu).

(iii) The Hausdorff dimension of E(ω∗) is not greater than

(11.4)
( 1

d0
s

+ 1
2(d0

s + d0
u − 1)

)−1 + o(1)

where the o(1) term is small provided τ is small enough. Consequently, the Hausdorff

dimension of ω∗ ∩� is equal to ds.

(iv) Every point x ∈ E(ω∗) is the intersection of a decreasing sequence of pieces (ω∗(in(x)))n�0.
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Remark 18.

1. The structure of ω∗ ∩� will be made more precise in the next subsections. We
have tried here to extract the most significant features of our analysis.

2. Even with d0
s + d0

u > 1, it may happen that � is a uniformly hyperbolic horse-
shoe; then, the family (�i(ω

∗))i is finite, Cr(ω∗) and E(ω∗) are empty. When
� is not uniformly hyperbolic, the family (�i(ω

∗))i is countable and E(ω∗) is a
Cantor set; it is not clear in this case if Cr(ω∗) can be empty.

11.2. Parabolic cores. — Let (P,Q, n) ∈ R, R as in Section 10.1.

Definition 16. — The parabolic core of P, denoted by c(P), is the set of points of Ws(�,̂R)
which belong to P but not to any child of P. The parabolic core of Q, denoted by c(Q), is the set of

points of Wu(�,̂R) which belong to Q but not to any child of Q.

We have partitions

R ∩ Ws(�,̂R)=
⊔

R
c(P) � ˜R∞

+ ,(11.5)

R ∩ Wu(�,̂R)=
⊔

R
c(Q) � ˜R∞

− .(11.6)

If Ra is the rectangle which contains ω∗, we also have

(11.7) ω∗ ∩�=
⊔

P⊂Ra

(ω∗ ∩ c(P)) � (ω∗ ∩ ˜R∞
+ ).

The parabolic core is empty if and only if P is I-decomposable for a small enough para-
meter interval containing the given strongly regular parameter value. In particular, c(P)
is empty if Q is I-transverse. Thus, the union in (11.5), (11.7) can be restricted to those
(P,Q, n) ∈ R such that Q is I-critical for all I.

We will denote by C(ω∗) the set of elements (P,Q, n) ∈ R such that c(P) ∩ ω∗ is
not empty. For any (P,Q, n) ∈ C(ω∗), Q is I-critical for all I.

11.3. Decomposition of c(P)∩ω∗. — Let (P,Q, n) ∈ C(ω∗). For k � 0, set

(Pk,Qk, nk)= (P∗
k ,Q

∗
k , n

∗
k ) ∗ (P,Q, n),(11.8)

ω∗
P =

⋂

k�0

Qk.(11.9)

The unstable curve ω∗
P is contained in Q and we have

(11.10) gn(ω∗ ∩ c(P))⊂ ω∗
P ∩ Lu.
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We define a tree A(ω∗,P) as follows. The vertices are the rectangles P′ ⊂ Ps with the
following property: for any parameter interval I (containing the given parameter value,
say t), for any Qk ⊃ ω∗

P, Qk and P′ are not I-separated, and Qk and the parent of P′ are
I-critically related.

We connect two vertices by an (oriented) edge if one is the parent of the other. We
say that a vertex P′ is critical if, for all I and Qk ⊃ ω∗

P, Qk and P′ are I-critically related.
Otherwise, we say that P′ is transverse. The parent of a vertex is always a critical vertex,
except if this vertex is Ps, the root of the tree. When P′ is a transverse vertex, the smallest
integer k such that Qk , P are I-transverse for I small enough is called the level of P′.

Let P′ be a critical vertex; then, for every parameter interval I � t, P′ is I-critical
and, therefore, decomposable.

Let P′ be a transverse vertex of level 0. We have Q0 = Q. Therefore, the parabolic
composition (P,Q, n) � (P′,Q′, n′) is well defined and produces two children of P.

Let P′ be a transverse vertex of level k > 0. For all m � k, the parabolic composition

(Pm,Qm, nm) � (P′,Q′, n′)

is well-defined and produces two elements (P±
m ,Q

±
m , n

±
m ). The formulas

ω∗
P,P′,+ :=

⋂

Q+
m ,

(11.11)
ω∗

P,P′,− :=
⋂

Q−
m ,

define unstable curves ω∗
P,P′,± contained in Q′. We also define pieces ω∗(P,P′,±) of ω∗

through

gnP,P′ (ω∗(P,P′,±))= ω∗
P,P′,±,(11.12)

nP,P′ := n + n′ + N0.(11.13)

Lemma 21. — Let x be a point in ω∗ ∩ c(P), y = gn+N0(x). Either y belongs to a transverse

vertex of level > 0 or it belongs to an infinite decreasing sequence of critical vertices.

Proof. — We have gn(x) ∈ Lu (cf. (11.10)), y ∈ Ls ⊂ Ps, and Ps is the root and a
critical vertex of the tree A(ω∗,P). We assume that the first possibility in the statement
of the lemma does not hold and construct, starting with Ps, a sequence of critical vertices
containing y.

Assume that y belongs to a critical vertex P′. As P′ is indecomposable and
y ∈ Ws(�), y belongs to some child P′

1 of P′. This rectangle is a vertex of the tree:
otherwise, Qk and P′

1 would be I-separated if I and Qk are thin enough, and then
gN0(gn(ω∗)∩ Lu)∩ P′

1 (which contains y) would be empty. The vertex P′
1 cannot be trans-

verse of level 0 because, as remarked above, the parabolic composition of (P,Q, n) and
(P′

1,Q
′
1, n

′
1) would produce a child of P containing x, contradicting the hypothesis that

x ∈ c(P). Finally P′
1 cannot be transverse of level > 0 by hypothesis. It must be a critical

vertex, and the induction step is complete. �
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Proposition 60. — There is at most one point x ∈ ω∗ ∩ c(P) such that y = gn+N0(x) belongs

to a decreasing sequence of critical vertices. When such a point exists, the intersection of this decreasing

sequence of vertices is a stable curve which intersects gN0(Lu ∩ω∗
P) at y as a quadratic tangency point.

Proof. — Let x be a point in ω∗ ∩ c(P) such that y = gn+N0(x) belongs to a decreasing
sequence (P′

�)��0 of critical vertices. Denote by ω+ the stable curve which is the intersec-
tion of these critical vertices. For all parameter intervals I, all k � 0, �� 0, Qk and P′

� are
I-critically related. This implies that

(11.14) lim
k→+∞
�→+∞

δ(Qk,P′
�)= 0.

For large k and �, let γk (resp. (γ ′
� ) be the image in Qk (resp. the inverse image in P′

�)
of the intersection of Pk with an horizontal curve (resp. the intersection of Q′

� with a
vertical curve). By (11.14), the distance between the vertical-like curve γ ′

� and the tip of
the parabolic-like curve gN0(γk) goes to zero as k, � go to +∞. Passing to the limit, we
see that ω+ has a tangency with gN0(ω∗

P ∩ Lu). This tangency is quadratic in the following
sense (cf. also the remark after the end of the proof): First, gN0(ω∗

P ∩ Lu) is contained, with
the exception of the tangency point, in one of the components of Ps −ω+; moreover, the
angle between the tangent lines to ω+(x), gN0(Lu ∩ ω∗

P) at points on these curves at the
same distance and on the same side of the tangency point is of the same order as this
distance to the tangency point. This is a consequence of the uniform estimates (3.21),
(3.22) in Section 3.5.

As ω+ and gN0(Lu ∩ω∗
P) meet at only one point, this point must be y. If x′ is a point

with the same property as x, and we construct ω′
+ in the same way as ω+, we must have

ω+ = ω′
+ because otherwise gN0(Lu ∩ω∗

P)∩ω+ or gN0(Lu ∩ω∗
P)∩ω′

+ is empty. But, then,
we have y′ := gn+N0(x′)= y and x′ = x. �

Remark 19. — Calculations involving partial derivatives of higher order for the
maps (A,B), which implicitly represent elements of R, show that stable curves and un-
stable curves are actually of class C∞, with uniform estimates in the Ck topology for
all k. Then, quadratic tangency can be taken in the usual sense. However, the calcula-
tions involved, especially when considering parabolic composition, are quite long and
not very interesting; we decided to stick to the C1+Lip regularity class, where the notion of
“quadratic” tangency, as explained in the proof of Proposition 60, still makes sense.

It is easy to see exactly when a point x ∈ ω∗ ∩ c(P) with the property specified in
Proposition 60 does exist: a necessary and sufficient condition is that the tree A(ω∗,P)
is infinite. In this case, the point x will be a point of the set Cr(ω∗) in the statement of
Theorem 5 and the point y = gn+N0(x) is said to be critical.

Summarizing what we have established so far, two cases may happen:
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(1) The tree A(ω∗,P) is finite. Then, the intersection ω∗ ∩ c(P) is the finite disjoint
union of the sets

(11.15) ω∗(P,P′,±)∩�
where P′ runs through the vertices of the tree which are transverse of level > 0.
The image under gnP,P′ of the set (11.15) is the intersection ω∗

P,P′,± ∩�.
(2) The tree A(ω∗,P) is infinite. Then, the intersection ω∗ ∩ c(P) is the count-

able disjoint union of the sets ω∗(P,P′,±) ∩ � as above and a single point
x ∈ Cr(ω∗). The point x = xP is the limit of the pieces ω∗(P,P′,±) (whose di-
ameters goes to 0 as |P′| goes to 0).

11.4. The structure of ω∗ ∩�. — We are now ready to prove all the statements in
Theorem 5, mentioned above in Section 11.1, with the exception of (iii) (the estimate on
the Hausdorff dimension of E(ω∗)).

The structure of ω∗ ∩ � that we are looking for, which is roughly described in
Theorem 5, is obtained by iterating the partition (11.7) and the decomposition of ω∗ ∩
c(P) described in Section 11.3.

At the first step, we have partitioned ω∗ ∩� into the following subsets:

– the intersection ω∗ ∩ ˜R∞
+ ; points in this set are said of type I;

– for each (P,Q, n) ∈ C(ω∗) such that A(P,ω∗) is infinite, a point xP such that
yP = gn+N0(xP) is critical; such points xP are said of type II;

– for each (P,Q, n) ∈ C(ω∗), each vertex (P′,Q′, n′) of A(ω∗,P) which is trans-
verse of level bigger than 0, each ε ∈ {+,−}, the intersection ω∗(P,P′, ε) ∩�;
the image of this set under gnP,P′ is the intersection ω∗

P,P′,ε∩� of another unstable
curve with �.

The intersection ω∗
P,P′,ε ∩� will be analyzed in the same way that ω∗ ∩�.

Consider a point z0 ∈ ω∗ ∩ �. If it is of type I, it belongs to the set �0(ω
∗) :=

ω∗ ∩ ˜R∞
+ of the statement of Theorem 5. If it is of type II, it belongs to Cr(ω∗). Assume

now that it is of type III. Then, it belongs to some ω∗(P,P′, ε)∩� as above. Define

(11.16) z1 = gnP,P′ (z0),

which belongs to ω∗
P,P′,ε∩�=: ω∗

1. This point may in turn be of type I, II, III with respect
to ω∗

1. The process stops if z1 is of type I or II; if z1 is of type III, it belongs to some piece
ω∗

1(P1,P′
1, ε1); we define

(11.17) z2 = g
nP1,P

′
1 (z1),

which belongs to ω∗
2 ∩�, with

(11.18) ω∗
2 := g

nP1,P
′
1 (ω∗

1(P1,P′
1, ε)).

Iterating this process lead to one of three possible outcomes:
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(1) the zk ’s are defined and of type III for all k � 0; the corresponding initial points
z0 form the set E(ω∗).

(2) the zk ’s are defined for 0 � k � � and z� is of type I, i.e. it belongs to ˜R∞
+ ; let

(Pk,P′
k, εk) for 0 � k < � be the data involved in the definitions of the zk ’s. We

collect together the initial points z0’s with the same set of data; such a set form
one of the Cantor sets �i(ω

∗) in Theorem 5.
(3) the zk ’s are defined for 0 � k � � and z� is of type II. Then z0 belongs to the set

Cr(ω∗).

We have now completely defined the partition of ω∗ ∩� described in Theorem 5.
The properties (i), (ii), (iv) follow immediately from the definitions.

11.5. Hausdorff dimension of the exceptional set E(ω∗).

11.5.1. The self-similar structure apparent in the definition of E(ω∗) is the key
to obtain an estimate of the dimension of this set. More specifically, we have

(11.19) E(ω∗)=
⊔

(P,P′,ε)

g−nP,P′ (E(ω∗
P,P′,ε)),

where ε ∈ {+,−}, P runs through C(ω∗) and P′ through vertices of A(ω∗,P) which are
transverse of level > 0.

11.5.2. The estimate on the Hausdorff dimension will follow from a standard
result that we formulate in a general setting.

Let α, d ∈ (0,1). Let � be a set. For each ω ∈�, we are given

– a subset E(ω) ⊂ [0,1] which is the union of at most countably many disjoint
compact subintervals of [0,1];

– a map Fω = (gω, fω) from E(ω) into [0,1] ×�.

These data satisfy

– Each map fω is constant on each component of E(ω).
– The restriction of each map gω to each component of E(ω) is an uniformly

expansive C1+α diffeomorphism onto [0,1] with uniformly bounded distortion.

The second condition means that there exists 0< λ< 1, C0 > 0, independent of ω, such
that, writing hJ for the inverse of the restriction of gω to a component J of E(ω), we have,
for x, y ∈ [0,1]

|DhJ(x)| � λ,
| log |DhJ(x)| − log |DhJ(y)| � C0|x − y|α.

Define E := {(x,ω) ∈ [0,1]×�, x ∈ E(ω)} and the map F : E → [0,1]×� by F(x,ω)=
Fω(x). Let E =⋂

n�0 F−n(E). For ω ∈�, let E(ω) := {x ∈ [0,1], (x,ω) ∈ E }.
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Proposition 61. — Assume that one has, for every ω ∈�
∑

J

|J|d � exp(−C0d(1 − λα)−1),

where the sum runs over the components J of E(ω). Then the Hausdorff dimension of each set E(ω) is

at most d.

Proof. — For n > 0, ω ∈ �, let En := ⋂

0�m<n F−m(E) be the domain of Fn, and
En(ω) := {x ∈ [0,1], (x,ω) ∈ En} be the fiber of En. Each En(ω) is the union of at most
countably many disjoint compact intervals.

Let n> 0, ω ∈�, J be a component of En(ω). There exists ω′ and a C1+α diffeo-
morphism hJ from [0,1] onto J such that Fn(x,ω)= (h−1

J (x),ω
′) for x ∈ J. Moreover, we

have, for x, y ∈ [0,1]
|DhJ(x)| � λn,

| log |DhJ(x)| − log |DhJ(y)| � C0(1 − λα)−1|x − y|α.
For n> 0, ω ∈�, define

Sn(ω)=
∑

J

|J|d,

where the sum runs over the components J of En(ω). Here, each interval has length
� λn. Therefore the components of En(ω) form a covering of E(ω) by intervals of small
diameter. We have by hypothesis S1(ω) � exp(−C0d(1 − λα)−1). We will show that
Sn+1(ω)� Sn(ω), which implies the conclusion of the proposition.

In the sum for Sn+1(ω), we first sum over components J∗ of En+1(ω) which are
contained in a fixed component J of En(ω). With ω′ as above, such J∗ are exactly the
images by hJ of the components J′ of E(ω′). The lengths are related through the mean-
value theorem by

|J| = |DhJ(x)|, |J∗| = |DhJ(y)||J′|,
for some x ∈ [0,1], y ∈ J′. We therefore have

|J∗| � exp(C0(1 − λα)−1)|J||J′|.
We finally obtain

Sn+1(ω)=
∑

J

∑

J′
|J∗|d

� exp(C0d(1 − λα)−1)
∑

J

(

|J|d
∑

J′
|J′|d

)
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= exp(C0d(1 − λα)−1)
∑

J

(|J|dS1(ω
′))

�
∑

J

|J|d = Sn(ω).
�

11.5.3. We now come back to the setting of the theorem.

Lemma 22. — The maps

gnP,P′ : ω∗(P,P′, ε)→ ω∗
P,P′,ε

have uniformly bounded distortion.

Proof. — Let k be an integer larger than the level of the transverse vertex P′. Then,
the parabolic composition of (Pk,Qk, nk) (cf. (11.8)) and (P′,Q′, n′) is defined and pro-
duces an element (P′

k,Q
′
k, n

′
k) such that Q′

k contains ω∗
P,P′,ε. Let γ ∗

k be an horizontal seg-
ment in P∗

k , γk its image under gn∗
k , γ ′

k the image of γ ∗
k ∩ P′

k under gn′
k .

The affine-like maps

(11.20) gn∗
k : P∗

k → Q∗
k , gn′

k : P′
k → Q′

k,

have bounded distortion, hence the one-dimensional map

(11.21) gn∗
k ◦ (gn′

k)−1 : γ ′
k → γk

have also uniformly bounded distortion. Letting k go to +∞, γ ′
k converge to ω∗

P,P′,ε and
γk to ω∗ in the C2−ε-topology for all ε > 0. The statement of the lemma follows. �

Lemma 23. — Let

δ(ω∗
P,P

′)= lim
k→+∞

δ(Qk,P′).

We have

C−1 � diamω∗(P,P′, ε)

|P||P′|(δ(ω∗
P,P′))−

1
2

� C.

Proof. — As in the proof of Lemma 22, we write

(11.22) gnP,P′ = gn′
k ◦ (gn∗

k )−1.

From the estimate (3.27) for parabolic composition in Section 3.5, we have

(11.23) C−1 � diam(γ ∗
k ∩ P′

k)

|Pk|, |P′|(δ(Qk,P′))−
1
2

� C.
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We also have, from the estimates on simple composition

C−1 � diamω∗(P,P′, ε)|P∗
k |

diamγ ∗
k

� C,(11.24)

C−1 � |Pk|
|P||P∗

k |
� C.(11.25)

Multiplying these three inequalities yields the Lemma. �

11.5.4. From (11.19), we see that E(ω∗) is a set of the type considered in Propo-
sition 61. The property of uniformly bounded distortion has been checked in Lemma 22,
and the property of uniform expansion is clear from Lemma 23.

Let us introduce

(11.26) χ(d)=
∑

(P,P′,ε)

[diamω∗(P,P′, ε)]d .

If we are able, for some value of d , to show that the series defining χ is convergent
and χ(d) is small enough, then by Proposition 61, we will deduce that the Hausdorff
dimension of E(ω∗) is � d .

In order to study χ , we will first fix P in C(ω∗) and sum over (P′, ε). As ε takes
only two values, and in view of Lemma 23, we define, for P ∈ C(ω∗):

(11.27) χP(d)=
∑

P′
|P′|dδ(ω∗

P,P
′)−

1
2 d
.

We will then have

(11.28) χ(d)� C
∑

P

|P|dχP(d).

In the sum (11.27), P′ is a transverse vertex of level > 0. We claim that

(11.29) δ(ω∗
P,P

′)� δmax := min(ε0,C|Q|1−η).

The bound by ε0 is clear. To show that δ(ω∗
P,P

′) � C|Q|1−η, we recall that, for large
k and small I containing t, Qk and P′ are I-transverse, while Q and P′ are I-critically
related for any I containing t. By Proposition 21 in Section 8.1, we must have |Q| >
1
3 |P′|. If we had δ(ω∗

P,P
′)� |Q|1−η, we would also have δ(Q,P′)� |Q|1−η, δ(Q,P′)�

|P′|1−η; conditions (T1), (T2), (T3) for Q�I P′ would be satisfied for I small enough, a
contradiction. The claim is proved.

In the series (11.27), we first sum over those P′ such that

(11.30) 2−�δmax � δ(ω∗
P,P

′)� 2−�−1δmax
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for some fixed �� 0. This allows us to write

(11.31) χP(d)� Cδ−d/2
max

∑

��0

2
�d

2

(
(�)
∑

|P′|d
)

,

where
∑(�) means that P′ is constrained by (11.30). We divide

∑(�) into two parts.

11.5.5. In the first part, denoted by
∑(�)

1 , we consider only those P′ such that its
parent˜P′ satisfies

(11.32) |˜P′| � 2−�δmax.

To estimate
∑(�)

1 |P′|d , first observe that, with d bounded away from 0, it follows from
Proposition 26 in Section 8.1 that the sum of |P′|d over children of a fixed parent ˜P′ is
bounded by C|˜P′|d . We must therefore bound

∑(�)

1 |˜P′|d .
Also, as˜P′ is a critical vertex,˜P′ cannot be very thin: we have δ(ω∗

P,P
′)� 3|P′|1−η.

Indeed, otherwise, for large k and small I containing t, conditions (T1), (T2), (T3) for
Qk �I P′ would be satisfied. We have therefore

(11.33) |˜P′| � C−1[δ(ω∗
P,P

′)](1−η)−1 � C−1(δmax2−�)(1−η)−1
.

Finally, the number of ˜P′ with |˜P′| of order 2−m−�δmax is at most C2m and the integer m

here is restricted by (11.33) to the range

(11.34) 1 � 2m � C(δmax2−�)−η(1−η)−1
.

We, therefore, obtain for d bounded away from 0 and 1,

(�)
∑

1

|P′|d � C
(�)
∑

1

|˜P′|d

� Cδd
max2−�d ∑

m

2m(1−d)

� C(δmax2−�)d−η.(11.35)

11.5.6. In the second part of
∑(�), denoted by

∑(�)

2 , we have on the opposite

(11.36) |˜P′|> 2−�δmax.

We claim that, in this case, the number of possible˜P′ is bounded by C.
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– If there is some ˜P′ with |˜P′| � 2−�δmax, it will contain all P′ satisfying (11.30),
because (according to (MP7)) there is a strip of width � C−1|˜P′| along each ver-
tical boundary of˜P′ which does not intersect � and therefore does not contain
any P′ satisfying (11.30). Two such˜P′ cannot both be the parents of the same P′,
hence there is at most one such˜P′.

– The remaining ˜P′ satisfy C2−�δmax > |˜P′| > 2−�δmax. We divide this range into
a bounded number of shorter range, such that two ˜P′ with widths in the same
range are disjoint. But there can be at most C disjoint˜P′ with |˜P′|> 2−�δmax and
containing some P′ satisfying (11.30).

This proves the claim.
As each P′ is a transverse vertex, we must have (by (R7))

(11.37) |P′| � C(2−�δmax)
(1−η)−1

.

In particular, from (11.36), (11.37), P′ is a non-simple child of˜P′. From Proposition 26 in
Section 8.2, the number of P′ with |P′| of order 2−mε0 is at most 2c′mη.

We have

(11.38)
(�)
∑

2

|P′|d � εd
0

∑

m

2−m(d−c′η) � Cεc′η
0 (2

−�δmax)
d−c′η.

11.5.7. Putting (11.35) and (11.38) together yields (replacing if necessary c′ by
max(c′,1))

(11.39)
(�)
∑

|P′|d � C(δmax2−�)d−c′η

and introducing this in (11.31) allows us to estimate χP:

(11.40) χP(d)� Cδ
1
2 d−c′η
max .

Finally, we obtain

(11.41) χ(d)� C
∑

C(ω∗)
|P|d[min(ε0, |Q|)] 1

2 d−Cη
.

11.5.8. We do not know exactly the set C(ω∗), but we know that if (P,Q, n) ∈
C(ω∗), the parabolic core c(P) is non-empty and Q must be I-critical for all parameter
intervals I containing the given parameter value.

We use Hölder’s inequality to separate the P and Q in (11.41): for any p, q > 1
such that

(11.42)
1
p

+ 1
q

= 1,
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we have

(11.43) χ(d)� Cχ+(d)
1
pχ−(d)

1
q

where

χ+(d)=
∑

Q critical

|P|dp,(11.44)

χ−(d)=
∑

Q critical

min(ε0, |Q|)( 1
2 d−Cη)q

.(11.45)

We will choose d , p, q satisfying (11.42) in order to have χ+(d) bounded and χ−(d) small
(when ε0 is small). For such a choice, we can conclude that the Hausdorff dimension of
E(ω∗) is � d .

11.5.9. We first consider χ−(d). We write d− = q( 1
2d − Cη). We divide the sum

for χ−(d) into three parts according to the width of Q. We recall that |Qu| is of the same
order than ε0.

– |Q| � |Qu|.
In this case, as Q is critical, it contains Qu. The number of such Q is �

C log ε−1
0 , hence this part of the sum is bounded by Cεd−

0 log ε−1
0 hence this part

of the sum is bounded by Cεd−
0 log ε−1

0 .
– |Qu|> |Q| � C−1

0 ε
1+τ
0 = C−1

0 ε1.
In this case, Q must be contained in Qu. By Corollary 13 (Section 8.3), the

number of such Q is at most Cε−τd∗
u

0 and the corresponding part of the sum is
bounded by Cεd−−τd∗

u

0 .
– C−1

0 εl > |Q| � C−1
0 εl+1 for some l > 0.

We first fix l and will afterwards sum over l.
Let I be the parameter interval of length εl−1 containing t. By Corollary 6

(Section 6.6.3), Q is I-defined. As Q is I-critical, it is I-special; by Proposition 18
(Section 7.7), we have maxI |Q| � εl (we choose C0 in order to obtain this). By
definition of C−(I) (in Section 9.1), there exists (P′,Q′, n′) ∈ C−(I) such that Q ⊂
Q′. We have maxI |Q′| � εl and |Q| � C−1

0 εl+1; by Corollary 13, the number of
Q for given Q′ is � Cε−τd∗

u

l . On the other hand, as I is strongly regular, we have
from (SR1)u (Section 9.1) that

(11.46) #C−(I)� C
( |I|
ε0

)σ

ε
−τd0

u

0 ,

where σ , defined in (9.49) (Section 9.4), is close to 1 − d0
u − d0

s .
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The part of the sum for χ−(d) corresponding to this fixed value of l is there-
fore bounded by

(11.47) Cε−τd0
u

0

(εl−1

ε0

)σ

ε
−τd∗

u

l εd−
l = Cε−σ−τd0

u

0 ε
σ+(1+τ)(d−−τd∗

u )

l−1 .

For the sum over l to converge, we ask that

(11.48) d− � − σ

1 + τ + τd∗
u + τ,

where the right-hand side is close to d0
s + d0

u − 1. When this is the case, the sum

over l is, for ε0 small enough, bounded by Cε−σ−τd0
u +τ

0 . From the definition of σ
in (9.49), we have, as 1 − d0

s − d0
u � 0, that σ � −τ .

We conclude that, if (11.48) holds, we have χ−(d) < ετ0 .

11.5.10. We now consider χ+(d). We write d+ = pd . We divide again the sum
for χ+(d) into three parts according to the width of Q.

– |Q| � |Qu|.
As Q must contain Qu, this part of the sum is bounded by C (if d+ is bounded

away from 0, which will be the case).
– |Qu|> |Q| � (2ε0)

(1−η)−1
.

In this case, Q must be contained in Qu. By Corollary 13 (Section 8.3), the
number of such Q is at most Cε−Cη

0 . By Corollary 6 (Section 6.6.3), Q is I0-
defined, hence (P,Q, n) is the simple composition of some element in R(I0)

by (Pu,Qu, nu). In particular, we have |P| � C|Pu| and this part of the sum is
bounded by ε−Cη

0 |Pu|d+ � C (with d+ bounded away from 0).
– (2εl)

(1−η)−1
> |Q| � (2εl+1)

(1−η)−1
for some l � 0.

We first fix l and will afterwards sum over l.
Let I be the parameter interval of length εl containing t. By Corollary 6 (Sec-

tion 6.6.3), Q is I-defined; as (2εl)
(1−η)−1

> |Q|, Q is thin I-critical. By definition

of ̂C−(I) (Section 9.1), there exists (P′,Q′, n′) ∈ ̂C−(I) such that Q ⊂ Q′. As I is
strongly regular, condition (SR2)′u (Section 9.1) is satisfied.

We take d+ = ρs, where ρs is the exponent in (SR2)′u, defined in Section 9.14
and close to d0

s . However, to apply (SR2)′u, we need the Q to be disjoint. To
achieve this, we divide the range

(2εl)
(1−η)−1

> |Q| � (2εl+1)
(1−η)−1

into several smaller ranges

(1 − C−1)i(2εl)
(1−η)−1

> |Q| � (1 − C−1)i+1(2εl)
(1−η)−1

, i = 0,1, . . .
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where C is large enough to insure that two Q with widths in the same range are
disjoint. The number of smaller ranges is � Cτ log ε−1

l . The bound for
∑ |P|d+

in each range given by (SR2)′u is C|Pu|ρs( εl

ε0
)σs , where σs = 1 − d+

s − 3τ (cf. (9.63)
in Section 9.6.1) is close to 1 − d0

s . Therefore the contribution to the sum for
χ+(d) coming for this value of l is bounded by

Cτ |Pu|ρs

(

εl

ε0

)σs

log ε−1
l .

The sum over l � 0 is clearly converging and bounded by C (much better actu-
ally).

With d+ = ρs, we obtain therefore χ+(d)� C.

11.5.11. We can now choose d, p, q to finish the proof. We take 1
p
= d

ρs
, as already

mentioned. In order to satisfy (11.48), we take

1
q

= d − 2Cη
2(− σ

1+τ + τd∗
u + τ) .

The relation 1
p
+ 1

q
= 1 determines d . When τ � η� ε0 are small, we obtain a value for

d close to
( 1

d0
s

+ 1
2(d0

s + d0
u − 1)

)−1
< d0

s .

As explained above, the Hausdorff dimension of E(ω∗) is � d and the proof of the theo-
rem is complete.

11.6. The stable and unstable sets of�. — Our goal at the end of this final section is to
prove that the invariant set � is a saddle-like object in the following measure-theoretical
sense:

Theorem 6. — For a strongly regular parameter, both the stable set Ws(�) and the unstable set

Wu(�) have Lebesgue measure 0.

The situation is symmetrical and we will deal with the stable set.
We have:

(11.49) Ws(�)=
⋃

n�0

g−n(Ws(�,̂R)∩ R).

Therefore, it is sufficient to show that Ws(�,̂R)∩ R has Lebesgue measure 0. We write

(11.50) R ∩ Ws(�,̂R)=
⋃

n�0

(

Ws(�,̂R)∩ R ∩ g−n(˜R∞
+ )
)

� E +,
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with

(11.51) E + = {z ∈ Ws(�,̂R)∩ R, gn(z) /∈ ˜R∞
+ for all n � 0}.

We have seen in Section 10 that ˜R∞
+ is Lipschitzian with transverse Hausdorff dimen-

sion ds. Therefore, the Hausdorff dimension of ˜R∞
+ is 1 + ds and its Lebesgue measure

is 0. The same is true of g−n(˜R∞
+ ). We have to prove that the Lebesgue measure of E + is

equal to 0.

11.7. Decomposition of E +. — By the definition of E + and of the parabolic cores,
we can write

(11.52) E + =
⊔

P0

E +(P0),

where

(11.53) E +(P0)= E + ∩ c(P0)

and (P0,Q0, n0) runs through the set C− of elements of R with c(P0) �= ∅. In particular,
Q0 is I-critical for all I containing the given parameter value.

For any such P0, we have

gn0(E +(P0))⊂ Q0 ∩ Lu ∩ E +,(11.54)

gn0+N0(E +(P0))⊂ Ls ∩ E +.(11.55)

For P1 ∈ C−, define

(11.56) E +(P0,P1)= {z ∈ E +(P0), g
n0+N0(z) ∈ c(P1)}.

We have a partition

(11.57) E +(P0)=
⊔

P1

E +(P0,P1).

At step k, we have a partition

(11.58) E + =
⊔

P0,...,Pk

E +(P0, . . . ,Pk)

where the (Pi,Qi, ni) run through C−. We write

m0 = n0,

m1 = n0 + N0 + n1,
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...(11.59)

mj = n0 + N0 + n1 + N0 + · · · + nj−1 + N0 + nj

= mj−1 + N0 + nj.

For 0 � j � k, we have

gmj (E +(P0, . . . ,Pk))⊂ Qj ∩ Lu ∩ E +,(11.60)

gmj+N0(E +(P0, . . . ,Pk))⊂ Ls ∩ E +.(11.61)

We define, for Pk+1 ∈ C−

(11.62) E +(P0, . . . ,Pk,Pk+1)= {z ∈ E +(P0, . . . ,Pk), g
mk+N0(z) ∈ c(Pk+1)}

and we have

(11.63) E +(P0, . . . ,Pk)=
⊔

Pk+1

E +(P0, . . . ,Pk,Pk+1).

However, in order to have E +(P0, . . . ,Pk) �= ∅ strong restrictions on the Pi must take
place. We have already mentioned that (Pi,Qi, ni) ∈ C−. This is the only restriction on
(P0,Q0, n0). But, from (11.55), P1 must meet Ps and we also know that Q1 is critical. As
the parameter is regular, we must have

(11.64) max(|P1|, |Q1|)� εβ0 .
Lemma 24. — Let k � 1. Assume that E +(P0, . . . ,Pk+1) is not-empty. We have

max(|Pk+1|, |Qk+1|)� C|Qk|˜β,
with ˜β = β(1 − η)(1 + τ)−1.

Proof. — Let I be the largest parameter interval containing t such that

(11.65) max(|Pk+1|, |Qk+1|) > |I|β.
We first observe that, as Pk+1 ⊂ Ps and Qk+1 ⊂ Qu, we have max(|Pk+1|, |Qk+1|)� εβ0 and
I is not the starting interval I0. Therefore, we have, by definition of I

(11.66) max(|Pk+1|, |Qk+1|)� |I| β
1+τ .

Let (˜Pk+1,˜Qk+1, ñk+1) ∈ R(I) be the element such that˜Pk+1 is the thinnest I-defined rec-
tangle containing Pk+1. We claim that˜Pk+1 is I-transverse. Indeed

– If (˜Pk+1,˜Qk+1, ñk+1) = (Pk+1,Qk+1, nk+1), this follows from (11.65), as Qk+1 is
I-critical and I is β-regular.
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– If (˜Pk+1,˜Qk+1, ñk+1) �= (Pk+1,Qk+1, nk+1), from Corollary 5 (Section 6.6.3), we
have that |Qk+1| � |I|β+ 1

3 and therefore |˜Pk+1| > |Pk+1| > |I|β . As ˜Qk+1 is I-
critical (by the structure theorem of Section 6.5),˜Pk+1 must again be I-transverse.

The claim is proved. Next, we observe that Qk and˜Pk+1 cannot be I-separated, because
G(Qk ∩ Lu) ∩ c(Pk+1) contains gmk+N0(E +(P0, . . . ,Pk+1)). On the other hand, there can-
not exist an element (P∗,Q∗, n∗) ∈ R(I) with Q∗ ⊃ Qk and Q∗ �I Pk+1: we would have
Qk �I′ Pk+1 for small I′ and the corresponding non-simple descendants of Pk would con-
tain gmk−1+N0(E +(P0, . . . ,Pk+1)), in contradiction with the definition of c(Pk).

Therefore, the I-transversality of ˜Pk+1 implies the existence of (P′,Q′, n′) ∈ R(I)
with Q′ ⊂ Qk and Q′ �I˜Pk+1. By coherence, Qk is I-defined. By Proposition 10 (Sec-
tion 6.4), as Qk and˜Pk+1 are not I-transverse, we must have 2|Qk|1−η > |I|.

The estimate of the lemma follows from this and (11.66). �

Taking ̂β < ˜β but close to β and ε0 sufficiently small, the estimate of the lemma
and (11.64) give

(11.67) max(|Pj|, |Qj|)� ε̂β j

0 .

11.8. Size and area of parabolic cores.

Proposition 62. — Let (P,Q, n) ∈ C−. With Leb standing for Lebesgue measure, we have

diam(gn(c(P)))� C|Q| 1
2 (1−η)

,(11.68)

Leb(gn(c(P)))� C|Q| 3
2 − 1

2 η,(11.69)

Leb(c(P))� C|P||Q| 1
2 (1−η)

.(11.70)

Remark 20. — A posteriori, c(P), which is contained in Ws(�,̂R), will have zero
Lebesgue measure. However, we estimate here the diameter and Lebesgue measure of a
larger set, as will be apparent in the proof.

Proof. — We start with a general observation on an affine-map with implicit rep-
resentation (A,B). The Jacobian of the map is the product A−1

x By. The distortion of
Lebesgue measure under the map, which is produced by the oscillation of the logarithm
of the Jacobian, is, therefore, controlled by the distortion of the affine-like map in the
sense of Section 3.2. In particular, the distortion of Lebesgue measure by the restriction
of iterates corresponding to the elements of R is uniformly bounded.

Thus, the third inequality (11.70) in the proposition is a consequence of the sec-
ond. On the other hand, as gn(c(P)) ⊂ Q, the second inequality (11.69) is an obvious
consequence of the first. We have, therefore, only to prove (11.68). Set

(11.71) Z = gn+N0(c(P)).
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This set is contained in gN0(Q ∩ Lu) ∩ Ws(�,̂R), and, a fortiori, in Ps. we have to show
that diam Z � C|Q| 1

2 (1−η).
In order to do this, we will use the machinery introduced in the proof of Theo-

rem 4, Sections 10.10.2 and 10.10.3. We extended the lamination of Ps by stable curves
into a foliation by C1+Lip vertical-like curves {xs = ϕ(ys, x)} with Lipschitzian holonomy.
Then, given a horizontal-like curve γ = {yu = ψ(xu} in Qu satisfying (10.155), we intro-
duced a function C(w, x) (vanishing at the points of intersection of G0 ◦ G−(γ ) with
G+({xs = ϕ(ys, x)})) and a function δ(x)= −minw C(w, x), whose properties are given in
Lemma 19 in Section 10.10.3.

We choose for γ one of the two horizontal-like boundary curves of Q, more pre-
cisely the one which gives the greater values of δ (corresponding to δL, δLR in the context
of Section 3.6.

Lemma 25. — If a curve {xs = ϕ(ys, x)} contains a point of Z, then we have

0 � δ(x)� C|Q|1−η.

Proof. — That δ(x)� 0 follows from the choice of γ and the fact that Z ⊂ G(Q ∩
Lu). We prove the other inequality by contradiction, assuming that there is a point z′ =
gn+N0(z)= (ϕ(ys, x), ys) ∈ Z with δ(x)� C0|Q|1−η, C0 large.

Let (P′,Q′, n′) ∈ R be an element such that z′ ∈ P′. We claim that |P′| � 3|Q′|.
Indeed, if we had |P′| < 3|Q′|, the inequality δ(x) � C0|Q|1−η with C0 large enough
would directly imply (T1), (T2), (T3) for Q�I P′, I small enough. But then z would belong
to a descendant of P, in contradiction with the definition of c(P). The claim is proved.

It follows from the claim that there exists a thinnest rectangle P′ containing z′. As z′

belongs to Ws(�) but not to any child of P′, P′ is not I-decomposable for any parameter
interval I containing t; therefore P′ is I-transverse for I small enough.

As z′ ∈ G(Q∩Lu)∩P′, Q and P′ are not I-separated. We have also already seen that
they cannot be I-transverse. Therefore, as P′ is I-transverse, there exists (P∗,Q∗, n∗) ∈ R
with Q ⊃ Q∗ such that Q∗ and P′ are I-transverse. But then, by Proposition 21 (Sec-
tion 8.1), it follows from |P′| � 3|Q′| that Q�I′ P′ holds for I′ small enough, a contradic-
tion. �

We have shown that Z is contained in the lenticular region bounded on one side
by G(γ ∩ Lu) and on the other by the curve {xs = ϕ(ys, x

∗)}, with δ(x∗)= C|Q|1−η. The
quadratic geometry of C, δ given by Lemma 19 guarantees that this lenticular region has
diameter � C|Q| 1

2 (1−η). �

11.9. Proof of Theorem 6. — We will estimate first the Lebesgue measure of each
domain E +(P0, . . . ,Pk). We have

(11.72) gmk−1+N0(E +(P0, . . . ,Pk))⊂ c(Pk).
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We now use that both the fixed map gN0 and the affine-like iterates gnj : Pj → Qj (for
0 � j < k) have uniformly bounded distortion with respect to Lebesgue measure. We are,
therefore, able to deduce from (11.69) in Proposition 62 that

(11.73) Leb(E +(P0, . . . ,Pk))� Ck+1|Qk|
3
2 − 1

2 η
k
∏

0

|Pj|
|Qj| .

By Lemma 24, we have |Pj+1| 	 |Qj| for j > 0 and it is easy to check that this still holds
for j = 0 (using (11.64) if |Q0| � ε0; if Q0 ⊂ Qu, the argument of Lemma 24 applies). It
then follows from (11.73) that we have (for k > 0)

(11.74) Leb(E +(P0, . . . ,Pk))	 |P0||Qk|
1
2 (1−η)

.

To obtain the estimate for E +, we have to sum over sequences (P0, . . . ,Pk). We first
estimate, when (P0,Q0, n0) and (Pk,Qk, nk) are fixed, how many admissible sequences
have these two extremities.

The element (Pk−1,Qk−1, nk−1) must satisfy

(11.75) |Qk−1| � C−1 max(|Pk||Qk|)1/˜β.
On the other hand, as Qk−1, Pk are neither separated nor transverse (for every parameter
interval containing t), we must have, as |Qk−1| � |Pk|
(11.76) 0 � δLR(Qk−1,Pk)� C|Qk−1|1−η.

For every scale 2−l � C−1 max(|Pk||Qk|)1/˜β , this will give at most C2lη possibilities for
Qk−1 with 2−l � |Qk−1|> 2−l−1. Summing over l gives at most C|Qk|−η/˜β total possibili-
ties for Qk−1.

We repeat this, with Qk−1 now fixed, for Qk−2, . . . . We obtain a number of possible
admissible sequence not greater than

(11.77) Cl|Qk|−η(˜β−1+···+˜β−l )

with l � C log log |Qk|−1. We conclude that the total number of admissible sequences with
fixed extremity Qk is bounded by C|Qk|−Cη.

Therefore, we obtain

(11.78) Leb(E +)�
∑

P0,Qk

|P0||Qk|
1
2 −Cη

.

We first claim that the sum
∑ |P0| is bounded. Actually, this is true even if we do not

restrict (P0,Q0, n0) ∈ R by the condition that Q0 is critical. Indeed, when we sum over a
given generation (with a fixed number of ascendants), the P0 are disjoint hence the sum is
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bounded. But the sum of the widths of the children is always smaller by a definite factor
than the width of the parent; therefore, the sum over the various generations is bounded.

Finally, we claim that the sum
∑

Qk
|Qk| 1

2 −Cη is arbitrarily small (when k is large).
Indeed, it has been shown in Section 11.5.9 that the sum

∑

Q critical |Q|d−
is convergent

provided (cf. (11.48))

(11.79) d− � − σ

1 + τ + τd∗
u + τ.

Here, the right-hand side is close to d0
s + d0

u − 1 (when τ � η� ε0 are small). On the
other hand, under condition (H4), the maximum value of d0

s + d0
u − 1 is 1/5. Therefore,

the sum
∑

Q critical |Q| 1
2 −Cη is convergent. But we have

(11.80) |Qk| � ε̂βk

0 .

We deduce that

(11.81) lim
k→+∞

∑

Qk

|Qk|
1
2 −Cη = 0,

and this concludes the proof of Theorem 6.
We can sum up the results in Sections 10 and 11 by rephrasing our main result as

follows:

Theorem 7. — Assume (H1)–(H4). Then, for most g ∈ U+, �g ⊂ Ws(�g) and �g ⊂
Wu(�g) carry geometric invariant measures, à la Sinai-Ruelle-Bowen [Si], [Ru], [BR], with non-

zero Lyapunov exponents. Both Ws(�g) and Wu(�g) have Lebesgue measure zero and thus �g carries

no attractors nor repellors.

Appendix A: Composition formulas for affine-like maps

We mostly recall in this appendix the formulas for the simple and parabolic compositions
of implicitly defined affine-like maps.

We follow closely [PY2]. The main difference with [PY2] is that we consider maps
depending on a parameter t, and we are interested also in some partial derivatives with
respect to the parameter.

A.1 Formulas for simple composition. — Here we consider a map Ft : (x0, y0) �→ (x1, y1)

implicitly defined by

(A.1)

{

x0 = A(y0, x1, t),

y1 = B(y0, x1, t),
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and a map F′
t : (x1, y1) �→ (x2, y2) implicitly defined by

(A.2)

{

x1 = A′(y1, x2, t),

y2 = B′(y1, x2, t).

The composition F′′
t = F′

t ◦ Ft is implicitly defined by

(A.3)

{

x0 = A′′(y0, x2, t),

y2 = B′′(y0, x2, t)

and we want to relate the partial derivatives of A′′, B′′ to those of A, B, A′, B′. Set

(A.4) � := 1 − A′
y(y1, x2, t)Bx(y0, x1, t).

When we solve the system (A.1), (A.2) for x1, y1, we obtain

(A.5)

{

x1 = X(y0, x2, t),

y1 = Y(y0, x2, t),

where the partial derivatives of X, Y are given by

(A.6)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Xx = A′
x�

−1,

Xy = A′
yBy�

−1,

Xt = (A′
t + A′

yBt)�
−1,

Yx = A′
xBx�

−1,

Yy = By�
−1,

Yt = (Bt + A′
tBx)�

−1.

We have

(A.7)

{

A′′(y0, x2, t)= A(y0,X, t),
B′′(y0, x2, t)= B′(Y, x2, t),

which gives

(A.8)

{

A′′
x = AxA′

x�
−1,

B′′
y = B′

yBy�
−1,

(A.9)

{

A′′
y = Ay + AxXy,

B′′
x = B′

x + B′
yYx,
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(A.10)

{

A′′
t = At + AxXt,

B′′
t = B′

t + B′
yYt.

Next, from (A.4), we have

(A.11)

⎧

⎪

⎨

⎪

⎩

−�x = BxxXxA′
y + BxA′

xy + BxA′
yyYx,

−�y = A′
yyYyBx + A′

yBxy + A′
yBxxXy,

−�t = BxtA′
y + BxxXtA′

y + BxA′
yt + BxA′

yyYt.

Taking logarithmic derivatives in (A.8) gives

∂x log |A′′
x | = ∂x log |A′

x| + Yx∂y log |A′
x| + Xx∂x log |Ax| −�x�

−1,(A.12)

∂y log |A′′
x | = ∂y log |Ax| + Xy∂x log |Ax| + Yy∂y log |A′

x| −�y�
−1,(A.13)

∂t log |A′′
x | = ∂t log |Ax| + ∂t log |A′

x| + Xt∂x log |Ax|
+ Yt∂y log |A′

x| −�t�
−1,(A.14)

∂y log |B′′
y | = ∂y log |By| + Xy∂x log |By| + Yy∂y log |B′

y| −�y�
−1,(A.15)

∂x log |B′′
y | = ∂x log |B′

y| + Yx∂y log |B′
y| + Xx∂x log |By| −�x�

−1,(A.16)

∂t log |B′′
y | = ∂t log |B′

y| + ∂t log |By| + Yt∂y log |B′
y|

+ Xt∂x log |By| −�t�
−1.(A.17)

Taking derivatives in (A.9) gives

(A.18)

{

A′′
yy = Ayy + 2AxyXy + AxxX2

y + AxXyy,

B′′
xx = B′

xx + 2B′
xyYx + B′

yyY
2
x + B′

yYxx,

(A.19)

{

A′′
yt = Ayt + XtAxy + XyAxt + XtXyAxx + AxXyt,

B′′
xt = B′

xt + YtB′
xy + YxB′

yt + YtYxB′
yy + B′

yYxt,

where the partial derivatives of X, Y are obtained from (A.6):

Xyy = By�
−1(A′

yyYy + A′
y∂y log |By| + A′

yXy∂x log |By| − A′
y�y�

−1),(A.20)

Yxx = A′
x�

−1(BxxXx + Bx∂x log |A′
x| + BxYx∂y log |A′

x| − Bx�x�
−1),(A.21)

Xyt = By�
−1(A′

yyYt + A′
yt + A′

y∂t log |By| + A′
yXt∂x log |By| − A′

y�t�
−1),(A.22)

Yxt = A′
x�

−1(BxxXt + Bxt + Bx∂t log |A′
x| + BxYt∂y log |A′

x| − Bx�t�
−1).(A.23)
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A.2 Formulas for parabolic composition. — We have now a fold map Gt = G+ ◦
G0 ◦ G−:

(xu, yu)
G−−→ (w, yu)

G0−→ (xs,w)
G+−→ (xs, ys),

with

(A.24)

{

ys = Ys(w, xs, t),

xu = Xu(w, yu, t),

(A.25) w2 = θ(yu, xs, t).

We also have an affine like map F0 : (x0, y0) �→ (xu, yu) implicitly defined by

(A.26)

{

x0 = A0(y0, xu, t),

yu = B0(y0, xu, t),

and another affine-like map F1 : (x1, y1) �→ (x1, y1) implicitly defined by

(A.27)

{

xs = A1(ys, x1, t),

y1 = B1(ys, x1, t).

We assume that (PC1), (PC2) in Section 3.5 are satisfied. As we have seen in [PY2] and
Section 3.5, the first step is to write

(A.28)

{

xu = X(w, y0, t),

ys = Y(w, x1, t),

where the partial derivatives of X, Y are given by

(A.29)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Xw = Xu,w�
−1
0 ,

Xy = Xu,yB0,y�
−1
0 ,

Xt = (Xu,t + Xu,yB0,t)�
−1
0 ,

Yw = Ys,w�
−1
1 ,

Yx = Ys,xA1,x�
−1
1 ,

Yt = (Ys,t + Ys,xA1,t)�
−1
1 ,

(A.30)

{

�0 = 1 − Xu,yB0,x,

�1 = 1 − Ys,xA1,y.
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We set

(A.31)

{

Y(w, y0, t) := B0(y0,X, t),
X(w, x1, t) := A1(Y, x1, t),

(A.32) C(w, y0, x1, t) :=w2 − θ(X,Y, t).
The partial derivatives are given by

(A.33)

⎧

⎪

⎨

⎪

⎩

Yw = B0,xXw,

Yy = B0,y + B0,xXy = B0,y�
−1
0 ,

Yt = B0,t + B0,xXt = (B0,t + B0,xXu,t)�
−1
0 ,

(A.34)

⎧

⎪

⎨

⎪

⎩

Xw = A1,yYw,
Xx = A1,x + A1,yYx = A1,x�

−1
1 ,

Xt = A1,t + A1,yYt = (A1,t + A1,yYs,t)�
−1
1 ,

(A.35)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−Cw = −2w+ θxXw + θyYw,
−Cx = θxXx,

−Cy = θyYy,

−Ct = θxXt + θyYt + θt.

We solve

(A.36) C(w, y0, x1, t)= 0

to define

(A.37) w = W(y0, x1, t)

(there are two solutions W+ and W−).
The corresponding branch of the parabolic composition is implicitly defined by

(A.38)

{

x0 = A0(y0,X(W, y0, t), t)=: A(y0, x1, t),

y1 = B1(Y(W, x1, t), x1, t)=: B(y0, x1, t).

The partial derivatives of A, B, W are given by

(A.39)

⎧

⎪

⎨

⎪

⎩

Ax = A0,xXwWx,

Ay = A0,y + A0,x(Xy + XwWy),

At = A0,t + A0,x(Xt + XwWt),
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(A.40)

⎧

⎪

⎨

⎪

⎩

By = B1,yYwWy,

Bx = B1,x + B1,y(Yx + YwWx),

Bt = B1,t + B1,y(Yt + YwWt),

(A.41)

⎧

⎪

⎨

⎪

⎩

Wx = −CxC−1
w ,

Wy = −CyC−1
w ,

Wt = −CtC−1
w .

Substituting (A.29), (A.41), (A.35), (A.34) in the formulas (A.39)–(A.40) leads to

(A.42)

{

Ax = A0,xA1,xC−1
w θxXu,w�

−1
0 �

−1
1 ,

By = B1,yB0,yC−1
w θyYs,w�

−1
0 �

−1
1 ,

(A.43)

{

Ay = A0,y + A0,xB0,y�
−1
0 (Xu,y + Xu,wθy�

−1
0 C−1

w ),

Bx = B1,x + B1,yA1,x�
−1
1 (Ys,x + Ys,wθx�

−1
1 C−1

w ),

(A.44)

{

At = A0,t + A0,x�
−1
0 [Xu,t + Xu,yB0,t + Xu,wC−1

w (θt + θxXt + θyYt)],
Bt = B1,t + B1,y�

−1
1 [Ys,t + Ys,xA1,t + Ys,wC−1

w (θt + θxXt + θyYt)].
Taking the logarithmic derivatives in the first formula of (A.39), we obtain

∂x log |Ax| = WxXw∂x log |A0,x| + Wx∂w log |Xw| + ∂x log |Wx|,(A.45)

∂y log |Ax| = ∂y log |A0,x| + ∂x log |A0,x|(Xy + XwWy)

+ ∂y log |Xw| + Wy∂w log |Xw| + ∂y log |Wx|,(A.46)

∂t log |Ax| = ∂t log |A0,x| + ∂x log |A0,x|(Xt + XwWt)

+ ∂t log |Xw| + Wt∂w log |Xw| + ∂t log |Wx|.(A.47)

From the second formula in (A.39), one gets

Ayy = A0,yy + 2A0,xy(Xy + XwWy)+ A0,xx(Xy + XwWy)
2

+ A0,x(Xyy + 2XwyWy + XwwW2
y + XwWyy),(A.48)

Ayt = A0,yt + A0,xy(Xy + XwWt)+ A0,xt(Xy + XwWy)

+ A0,xx(Xt + XwWt)(Xy + XwWy)

+ A0,x(Xyt + XwyWt + XwtWy + XwwWyWt + XwWyt).(A.49)

The symmetric formulas for B are

∂y log |By| = WyYw∂y log |B1,y| + ∂y log |Wy| + Wy∂w log |Yw|,(A.50)
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∂x log |By| = ∂x log |B1,y| + ∂x log |Yw|
+ ∂x log |Wy| + ∂y log |B1,y|(Yx + YwWx)+ Wx∂w log |Yw|,(A.51)

∂t log |By| = ∂t log |B1,y| + ∂y log |B1,y|(Yt + YwWt)

+ ∂t log |Yw| + Wt∂w log |Yw| + ∂t log |Wy|,(A.52)

Bxx = B1,xx + 2B1,xy(Yx + YwWx)+ B1,yy(Yx + YwWx)
2

+ B1,y(Yxx + 2YwxWx + YwwW2
x + YwWxx),(A.53)

Bxt = B1,xt + B1,xy(Yt + YwWt)+ B1,yt(Yx + YwWx)

+ B1,yy(Yx + YwWx)(Yt + YwWt)

+ B1,y(Yxt + YwxWt + YwtWx + YwwWxWt + YwWxt).(A.54)

In formulas (A.45)–(A.54), the partial derivatives of order 2 of W are obtained from
(A.41):

(A.55)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Wxx = −C−1
w (CwwW2

x + 2CwxWx + Cxx),

Wxy = −C−1
w (CwwWxWy + CwxWy + CwyWx + Cxy),

Wyy = −C−1
w (CwwW2

y + 2CwyWy + Cyy),

Wxt = −C−1
w (CwwWxWt + CwxWt + CwtWx + Cxt),

Wyt = −C−1
w (CwwWyWt + CwyWt + CwtWy + Cyt).

The partial derivatives of order 2 of C are obtained from (A.35):

(A.56) −Cww = −2 + θxXww + θyYww + θxxX
2
w + 2θxyXwYw + θyyY

2
w,

(A.57)

{

−Cwx = θxxXwXx + θxyYwXx + θxXwx,

−Cwy = θyyYwYy + θxyXwYy + θyYwy,

−Cwt = θxtXw + θxxXwXt + θxy(XwYt + YwXt)+ θyyYwYt

+ θytYw + θxXwt + θyYwt,(A.58)

(A.59)

⎧

⎪

⎨

⎪

⎩

−Cxx = θxxX
2
x + θxXxx,

−Cxy = θxyXxYy,

−Cyy = θyyY
2
y + θyYyy,

(A.60)

{

−Cxt = θxtXx + θxxXxXt + θxyXxYt + θxXxt,

−Cyt = θytYy + θyyYyYt + θxyYyXt + θyYyt.
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The partial derivatives of order 2 of X, Y are obtained from (A.34):

(A.61)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Xww = A1,yyY2
w + A1,yYww,

Xwx = A1,xyYw + A1,yyYwYx + A1,yYwx,

Xwt = A1,ytYw + A1,yyYwYt + A1,yYwt,

Xxx = A1,xx + 2A1,xyYx + A1,yyY2
x + A1,yYxx,

Xxt = A1,xt + A1,xyYt + A1,ytYx + A1,yyYxYt + A1,yYxt,

(A.62)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Yww = B0,xxX2
w + B0,xXww,

Ywy = B0,xyXw + B0,xxXwXy + B0,xXwy,

Ywt = B0,xtXw + B0,xxXwXt + B0,xXwt,

Yyy = B0,yy + 2B0,xyXy + B0,xxX2
y + B0,xXyy,

Yyt = B0,yt + B0,xyXt + B0,xtXy + B0,xxXyXt + B0,xXyt.

Finally, from (A.29), we obtain

(A.63)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Xww =�−1
0 (Xu,ww + 2Xu,wyYw + Xu,yyY

2
w + Xu,yB0,xxX2

w),

Xwy =�−1
0 (Xu,wyYy + Xu,yyYwYy + Xu,yXw(B0,xy + B0,xxXy)),

Xyy =�−1
0 (Xu,yyY

2
y + Xu,y(B0,yy + 2B0,xyXy + B0,xxX2

y )),

Xwt =�−1
0 [Xu,wt + Xu,wyYt + Xu,yyYwYt + Xu,ytYw

+ Xu,yXw(B0,xt + B0,xxXt)],
Xyt =�−1

0 [Xu,ytYy + Xu,yyYyYt

+ Xu,y(B0,yt + B0,xyXt + B0,xtXy + B0,xxXyXt)],

(A.64)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Yww =�−1
1 (Ys,ww + 2Ys,wxXw + Ys,xxX

2
w + Ys,xA1,yyY2

w),

Ywx =�−1
1 (Ys,wxXx + Ys,xxXwXx + Ys,xYw(A1,xy + A1,yyYx)),

Yxx =�−1
1 (Ys,xxX

2
x + Ys,x(A1,xx + 2A1,xyYx + A1,yyY2

x)),

Ywt =�−1
1 [Ys,wt + Ys,wxXt + Ys,xxXwXt + Ys,xtXw

+ Ys,xYw(A1,yt + A1,yyYt)],
Yxt =�−1

1 [Ys,xtXx + Ys,xxXxXt

+ Ys,x(A1,xt + A1,xyYt + A1,ytYx + A1,yyYxYt)].

A.3 Estimates for simple composition. — We keep the notations of Section A.1 above
and use also the notations |P|, |Q|, |P′|, |Q′| introduced in Section 3.2. Constants de-
pending only on the cone condition satisfied by Ft,F′

t are denoted by C0, those depending
also on the distortions of Ft,F′

t by C.
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From (A.6), we get

(A.65)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

|Xx| � C0|P′|,
|Xy| � C0|Q|,
|Yx| � C0|P′|,
|Yy| � C0|Q|,
|Xt| � C0(|A′

t| + |Bt|),
|Yt| � C0(|A′

t| + |Bt|).
Then (A.9) gives

(A.66)

{

|A′′
y − Ay| � C0|P||Q|,

|B′′
x − B′

x| � C0|P′||Q′|,
and (A.10) gives

(A.67)

{

|A′′
t − At| � C0|P|(|A′

t| + |Bt|),
|B′′

t − B′
t| � C0|Q′|(|A′

t| + |Bt|).
Next, (A.11) gives

(A.68)

⎧

⎪

⎨

⎪

⎩

|�x| � C0|P′|(|Bxx| + |A′
yy| + |∂y log |A′

x||)� C|P′|,
|�y| � C0|Q|(|Bxx| + |A′

yy| + |∂x log |By||)� C|Q|,
|�t| � C(|Bxt| + |A′

yt| + |A′
t| + |Bt|).

From (A.20)–(A.23) we obtain

(A.69)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

|Xyy| � C0|Q|(|A′
yy| + |Bxx| + |∂x log |By|| + |∂y log |By||)� C|Q|,

|Yxx| � C0|P′|(|Bxx| + |A′
yy| + |∂y log |A′

x|| + |∂x log |A′
x||)� C|P′|,

|Xyt| � C|Q|(|Bxt| + |A′
yt| + |A′

t| + |Bt| + |∂t log |By||),
|Yxt| � C|P′|(|Bxt| + |A′

yt| + |A′
t| + |Bt| + |∂t log |A′

x||).
Then, from (A.12), (A.13), (A.15), (A.16), we get

(A.70)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

|∂x log |A′′
x | − ∂x log |A′

x|| � C0|P′|(D(F)+ D(F′)),
|∂y log |A′′

x | − ∂y log |Ax|| � C0|Q|(D(F)+ D(F′)),
|∂x log |B′′

y | − ∂x log |B′
y|| � C0|P′|(D(F)+ D(F′)),

|∂y log |B′′
y | − ∂y log |By|| � C0|Q|(D(F)+ D(F′)),

while (A.18) gives

(A.71)

{

|A′′
yy − Ayy| � C0|P||Q|(D(F)+ D(F′)),

|B′′
xx − B′

xx| � C0|P′||Q′|(D(F)+ D(F′)).
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Formulas (A.70) and (A.71) give the formula (3.13) for the distortion of a simple compo-
sition.

From (A.14), (A.17), we get

(A.72)

{

|∂t log |A′′
x | − ∂t log |A′

x| − ∂t log |Ax|| � C(|Bxt| + |A′
yt| + |A′

t| + |Bt|),
|∂t log |B′′

y | − ∂t log |B′
y| − ∂t log |By|| � C(|Bxt| + |A′

yt| + |A′
t| + |Bt|),

while (A.19) gives

(A.73)

{

|A′′
yt − Ayt| � C|P|[|A′

t| + |Bt| + |Q|(|Bxt| + |A′
yt| + ∂t log |Ax| + ∂t log |By|)],

|B′′
xt − B′

xt| � C|Q′|[|A′
t| + |Bt| + |P′|(|Bxt| + |A′

yt| + ∂t log |A′
x| + ∂t log |B′

y|)].
Formulas (A.72), (A.73) are used in Section 7.4.

A.4 Estimates for parabolic composition. — The context and notations are those of
Section A.2. We derive estimates from the formulas in this subsection, assuming that the
maps F0,F1 satisfy (see (R4) in Section 5.3)

(A.74)

{

|A1,y|<Cε0, |A1,yy|<Cε0,

|B0,x|<Cε0, |B0,xx|<Cε0.

We write δ for δ(Q0,P1). We assume that (see (R7) in Section 5.4)

(A.75) δ(Q0,P1)� C−1
(

|P1|1−η + |Q0|1−η
)

.

We first deal with the partial derivatives not involving time. From (A.29), we get

(A.76)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

C−1 � |Xw| � C,
C−1 � |Yw| � C,
|Xy| � C|Q0|,
|Yx| � C|P1|.

Then, from (A.33), (A.34), we obtain

(A.77)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

C−1|P1| � |Xx| � C|P1|,
C−1|Q0| � |Yy| � C|Q0|,
|Xw| � Cε0,

|Yw| � Cε0.

Putting this into (A.35) gives

(A.78)

{

C−1|P1| � |Cx| � C|P1|,
C−1|Q0| � |Cy| � C|Q0|.
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From (A.63), (A.64), one gets

(A.79)

{

|Xww| � C,
|Yww| � C,

and then, from (A.61), (A.62)

(A.80)

{

|Xww| � Cε0,

|Yww| � Cε0.

Taking (A.77), (A.80) into (A.56) gives

(A.81) |Cww − 2| � Cε0.

Fix y0, x1 and denote by w∗ the point where C takes its minimal value C(y0, x1). We have

(A.82)

{

|Cw(w, y0, x1)− 2(w−w∗)| � Cε0|w−w∗|,
|C(w, y0, x1)− (w−w∗)2 − C(y0, x1)| � Cε0|w−w∗|2.

This gives, as C(W(y0, x1), y0, x1)= 0,

(A.83) ||Cw(W(y0, x1), y0, x1)| − 2|C(y0, x1)|1/2| � Cε0|C(y0, x1)|1/2.
From (A.75), (A.78) and the definition of δ = min−C, we have thus

(A.84) C−1δ1/2 � |Cw| � Cδ1/2.

Formulas (3.27), (3.28) of Section 3.5 are then a consequence of (A.42).
From (A.41), we now get

(A.85)

{

C−1|P1|δ−1/2 � |Wx| � C|P1|δ−1/2,

C−1|Q0|δ−1/2 � |Wy| � C|Q0|δ−1/2.

Plugging into (A.39), (A.40) gives

(A.86)

{

|Ay − A0,y| � C|P0||Q0|δ−1/2,

|Bx − B1,x| � C|P1||Q1|δ−1/2.

Next, from (A.63), (A.64), we have

(A.87)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

|Xwy| � C|Q0|,
|Xyy| � C|Q0|,
|Ywx| � C|P1|,
|Yxx| � C|P1|,
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and then, from (A.61), (A.62)

(A.88)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

|Xwx| � C|P1|,
|Xxx| � C|P1|,
|Ywy| � C|Q0|,
|Yyy| � C|Q0|.

Plugging into (A.57), (A.59) gives

(A.89)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

|Cwy| � C|Q0|,
|Cyy| � C|Q0|,
|Cwx| � C|P1|,
|Cxx| � C|P1|,
|Cxy| � C|P1||Q0|.

We can now estimate the second partial derivatives of W from (A.55)

(A.90)

⎧

⎪

⎨

⎪

⎩

|Wyy| � C|Q0|δ−1/2,

|Wxx| � C|P1|δ−1/2,

|Wxy| � C|P1||Q0|δ−1/2,

which finally gives from (A.48), (A.53)

(A.91)

{

|Ayy − A0,yy| � C|P0||Q0|δ−1/2,

|Bxx − B1,xx| � C|P1||Q1|δ−1/2.

These estimates are used in Section 7.5. We now turn to derivatives involving the para-
meter. First, from (A.29), we get

(A.92)

{

|Xt| � C(1 + |B0,t|),
|Yt| � C(1 + |A1,t|),

and then, from (A.33), (A.34)

(A.93)

{

|Xt| � C(ε0 + |B0,t|),
|Yt| � C(ε0 + |A1,t|).

Plugging this into (A.35) gives

(A.94) |Ct| � C(1 + |B0,t| + |A1,t|),



206 JACOB PALIS AND JEAN-CHRISTOPHE YOCCOZ

and then, from (A.41)

(A.95) |Wt| � Cδ−1/2(1 + |B0,t| + |A1,t|).
From (A.44), one then concludes that

(A.96)

{

|At − A0,t| � C|P0|δ−1/2(1 + |B0,t| + |A1,t|),
|Bt − B1,t| � C|Q1|δ−1/2(1 + |B0,t| + |A1,t|).

From now on, we assume that the estimates of Proposition 17 in Section 7.6 are satisfied,
i.e.

(A.97)

{

|A1,t| � Cε1/2
0 ,

|B0,t| � Cε1/2
0 .

Observe then that in (A.92), (A.95), we get the estimates

(A.98)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

|Xt| � C,
|Yt| � C,
|Xt| � Cε1/2

0 ,

|Yt| � Cε1/2
0 ,

|Ct| � C,
|Wt| � Cδ−1/2.

From (A.63), (A.64), we obtain

(A.99)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

|Xwt| � C(1 + |B0,xt|),
|Xyt| � C|Q0|(1 + |B0,xt| + |∂t log |B0,y|),
|Ywt| � C(1 + |A1,yt|),
|Yxt| � C|P1|(1 + |A1,yt| + |∂t log |A1,x|),

and then, from (A.61), (A.62)

(A.100)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

|Ywt| � C(ε0 + |B0,xt|),
|Yyt| � C|Q0|(1 + |B0,xt| + |∂t log |B0,y|),
|Xwt| � C(ε0 + |A1,yt|),
|Xxt| � C|P1|(1 + |A1,yt| + |∂t log |A1,x|).

Taking this into (A.58), (A.60) gives

(A.101)

⎧

⎪

⎨

⎪

⎩

|Cwt| � C(ε0 + |B0,xt| + |A1,yt|),
|Cyt| � C|Q0|(1 + |B0,xt| + |∂t log |B0,y|),
|Cxt| � C|P1|(1 + |A1,yt| + |∂t log |A1,x|).
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We can now estimate the partial derivatives of W from (A.55)

(A.102)

{

|Wxt| � C|P1|δ−1/2[δ−1 + δ−1/2(|B0,xt| + |A1,yt|)+ |∂t log |A1,x|],
|Wyt| � C|Q0|δ−1/2[δ−1 + δ−1/2(|B0,xt| + |A1,yt|)+ |∂t log |B0,y|].

Finally, we obtain from (A.49), (A.54)

(A.103)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

|Ayt − A0,yt| � C|P0|δ−1/2 + C|P0||Q0|δ−1/2[δ−1 + δ−1/2(|B0,xt| + |A1,yt|)
+ |∂t log |B0,y| + |∂t log |A0,x|],

|Bxt − B1,xt| � C|Q1|δ−1/2 + C|P1||Q1|δ−1/2[δ−1 + δ−1/2(|B0,xt| + |A1,yt|)
+ |∂t log |B1,y| + |∂t log |A1,x|],

and from (A.47), (A.52)

(A.104)

{

|∂t log |Ax| − ∂t log |A0,x|| � C[δ−1 + δ−1/2(|B0,xt| + |A1,yt|)+ |∂t log |A1,x||],
|∂t log |By| − ∂t log |B1,y|| � C[δ−1 + δ−1/2(|B0,xt| + |A1,yt|)+ |∂t log |B0,y||].

These formulas are used in Section 7.7.

Appendix B: On the Lipschitz regularity of ˜R∞
+

The goal of this Appendix is to perform some calculations that are used in Section 10.5,
Proposition 51.

We recall the setting We have rectangles R0 = Is
0 × Iu

0, Ras
= Is

u × Iu
u, Rau

= Is
s × Iu

s

with respective coordinates (x0, y0), (xu, yu), (xs, ys).
We have an affine-like map F with domain P ⊂ R0, image Q ⊂ Qu ⊂ Rau

, and
implicit representation (A,B). We assume as usual that the cone condition is satisfied
and that the distortion is bounded by C. We also have a folding map G with domain
Lu ⊂ Is

u × Iu
u, image Ls ⊂ Is

s × Iu
s . The map G is implicitly defined by the system

(B.1)

⎧

⎪

⎨

⎪

⎩

ys = Ys(w, xs),

xu = Xu(w, yu),

w2 = θ(yu, xs)

with Ys, Xu, θ as in Sections 2.3 and 3.5. One has (cf. (R4) in Section 5.3):

(B.2) |Bx|<Cε0, |Bxx|<Cε0.

Consider a vertical-like C2 curve ω = {xs = ϕ(ys)} ⊂ Ps ⊂ Ras
intersecting Ls and satisfy-

ing

(B.3)
∣

∣

∣

∂ϕ

∂y

∣

∣

∣<Cε0,

∣

∣

∣

∂2ϕ

∂y2

∣

∣

∣<Cε0.
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As in Section 3.5 (formulas (3.14), (3.15)) we eliminate yu in the system xu = Xu(w, yu),
yu = B(y0, xu) to write

(B.4) xu = X(w, y0).

Similarly, in the equation

(B.5) ys = Ys(w,ϕ(ys)),

we solve for ys to write

(B.6) ys = Y(w).

We set

(B.7) C(w, y0)=w2 − θ(B(y0,X(w, y0)), ϕ(Y(w))).

We assume that, for all y0 ∈ Iu
0

(B.8) C(y0) := min
w

C(w, y0)� −C−1|Q|1−η.

Suppose now that we have two vertical-like C2 curves ωi = {xs = ϕi(ys)}, i = 0,1 as above
satisfying (B.3), (B.8). We also assume that ϕ0(ys) �= ϕ1(ys) for all ys and that we have for
some T> 0, everywhere on Iu

s

(B.9)

∣

∣

∣

∣

∂

∂y
log |ϕ1 − ϕ0|

∣

∣

∣

∣

� T.

For i = 0,1, let �±
i be the connected components of F−1(Q ∩ G−1(ωi ∩ Ls)).

Proposition. — The curves �±
i are graphs

(B.10) �±
i (s)= {x0 = ±

i (y0)}
which satisfy, everywhere on Iu

0
∣

∣

∣

∣

∂

∂y
log | +

1 − +
0 |
∣

∣

∣

∣

� T′,(B.11)

∣

∣

∣

∣

∂

∂y
log | −

1 − −
0 |
∣

∣

∣

∣

� T′,(B.12)

∣

∣

∣

∣

∂

∂y
log | +

1 − −
0 |
∣

∣

∣

∣

� T′′,(B.13)

∣

∣

∣

∣

∂

∂y
log | −

1 − +
0 |
∣

∣

∣

∣

� T′′,(B.14)

with T′ = C(1 + |Q| 1
2 T), T′′ = C.
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Remark. — In (B.13), we allow ω0 = ω1.

Proof. — Let Ci , i = 0,1, be the function defined by (B.7) for ωi . One solves Ci = 0
to get

w = W±
i (y0),(B.15)

 ±
i (y0)= A(y0,X(W±

i (y0), y0)).(B.16)

Let ε, ε′ ∈ {+,−}, W0 = Wε
0, W1 = Wε′

1 ,  0 = ε0,  1 = ε′1 . Define, for s ∈ [0,1]
(B.17) Ws = sW1 + (1 − s)W0.

One has

( 1 − 0)(y0)

= (W1 − W0)(y0)

∫ 1

0
Ax(y0,X(Ws(y0), y0))Xw(Ws(y0), y0)ds.(B.18)

Set

(B.19) as(y0)= Ax(y0,X(Ws(y0), y0))Xw(Ws(y0), y0).

From (A.76), we have, for all s, y0

(B.20) C−1|P| � |as(y0)| � C|P|.
One has

∂

∂y
log |as| = ∂y log |Ax| + ∂x log |Ax|

(

Xy + Xw

∂Ws

∂y

)

+ X−1
w

(

Xwy + Xww

∂Ws

∂y

)

.(B.21)

From (A.76), (A.79), (A.87) we get

(B.22)

∣

∣

∣

∣

∂

∂y
log |as|

∣

∣

∣

∣

� C
(

1 +
∣

∣

∣

∣

∂Ws

∂y

∣

∣

∣

∣

)

.

But we see as for (A.85) that we have, for i = 0,1

(B.23)

∣

∣

∣

∣

∂Wi

∂y

∣

∣

∣

∣

� C|Q|δ−1/2
i ,

where δi := −maxy0 minw C(w, y0). We have assumed that

(B.24) δi � C−1|Q|1−η.
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It then follows from (B.22) that the logarithmic derivative of |as| is bounded by C. From
(B.20), the same is true for the logarithmic derivative of | ∫ 1

0 asds|. To prove the estimates
of the proposition, in view of (B.18), it remains to see that the logarithmic derivative of
|W1 − W0| is bounded by C(1 + |Q| 1

2 T) or C (depending whether ε and ε′ are equal or
not).

1. We assume first that ε �= ε′.

In this case, from (B.24) and the quadratic behavior of Ci (cf. (A.82)), we have

(B.25) |W1 − W0| � C−1|Q| 1
2 (1−η).

Combining this with (B.23), (B.24) shows that the logarithmic derivative of |W1 − W0| is
bounded by C.

2. We assume now that ε = ε′.

We may assume that

(B.26) |W1 − W0| 	 |Q| 1
2 (1−η),

otherwise we conclude as the first case. We interpolate between the two curves ω0,ω1

defining

(B.27) ϕ(ys, s)= sϕ1(ys)+ (1 − s)ϕ0(ys).

We have

(B.28)

∣

∣

∣

∣

∂

∂y
log

∣

∣

∣

∣

∂ϕ

∂s

∣

∣

∣

∣

∣

∣

∣

∣

� T.

In the equation

(B.29) ys = Ys(w,ϕ(ys, s)),

we solve for ys to write

(B.30) ys = Y(w, s).

We then set

X(w, s) := ϕ(Y(w, s), s),(B.31)

C(w, y0, s) :=w2 − θ(Y(w, y0),X(w, s)).(B.32)

Then, one solves C = 0 to get

(B.33) w = Wε(y0, s).
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One has

(B.34)
∂Wε

∂s
= −∂C

∂s
C−1
w = C−1

w θx

(∂ϕ

∂s
+ ∂ϕ

∂y

∂Y
∂s

)

.

From (B.29), (B.30), one obtains

(B.35)
∂Y
∂s

= Ys,x

∂ϕ

∂s

(

1 − Ys,x

∂ϕ

∂y

)−1
,

where, here and below Ys,x stands for the partial derivative of Ys with respect to x (and
not the second partial derivative of Y!). Plugging this into (B.34), one obtains

(B.36)
∂Wε

∂s
= C−1

w θx

∂ϕ

∂s

(

1 − Ys,x

∂ϕ

∂y

)−1
.

We now take the logarithmic derivative of this product of four terms with relation to y0.
We obtain a sum of four terms:

Z1 = −C−1
w [CwwWy + Cwy],(B.37)

Z2 = ∂y log |θx|(Yy + YwWy)+ ∂x log |θx|XwWy,(B.38)

Z3 =
(

∂

∂y
log

∣

∣

∣

∣

∂ϕ

∂s

∣

∣

∣

∣

)

YwWy,(B.39)

Z4 =
(

1 − Ys,x

∂ϕ

∂y

)−1{

Ys,x

∂2ϕ

∂y2
YwWy + ∂ϕ

∂y
(Ys,xwWy + Ys,xxXwWy)

}

.(B.40)

The partial derivatives of X have been estimated in Appendix A (formulas (A.76), (A.79),
(A.87))

(B.41) |Xw| � C, |Xy| � C|Q|, |Xww| � C, |Xwy| � C|Q|.
The partial derivatives of Y are estimated by

(B.42) |Yw| � C, |Yww| � C.

Then we get

|Xw| � Cε0, |Yw| � Cε0, |Yy| � C|Q|,(B.43)

|Xww| � Cε0, |Yww| � Cε0, |Ywy| � C|Q|,(B.44)

|Cwy| � C|Q|, |Cww − 2| � Cε0,(B.45)

|Wy| � C|Q||C−1
w |.(B.46)
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From (B.26), we have |δ0 − δ1| 	 δ0, and therefore we have

(B.47) |C−1
w (W

ε(y0, s), y0, s)| � Cδ−1/2
0 ,

for all y0, s. This gives, as δ0 � C−1|Q|1−η

|Zi| � C for i = 1,2,4;(B.48)

|Z3| � C|Q|1/2T.(B.49)

This proves that

(B.50)

∣

∣

∣

∣

∂

∂y
log

∣

∣

∣

∣

∂Wε

∂s

∣

∣

∣

∣

∣

∣

∣

∣

� C(1 + |Q|1/2T).

But then, we have
∣

∣

∣

∣

∂

∂y
(Wε

1 − Wε
0)

∣

∣

∣

∣

=
∣

∣

∣

∣

∂

∂y

∫ 1

0

∂Wε

∂s
ds

∣

∣

∣

∣

� C(1 + |Q|1/2T)
∫ 1

0

∣

∣

∣

∣

∂Wε

∂s

∣

∣

∣

∣

ds

= C(1 + |Q|1/2T)|Wε
1 − Wε

0|,
as ∂Wε

∂s
has constant sign.
The required estimate on the logarithmic derivative of |W1 − W0| has been ob-

tained in both cases. The proof of the proposition is complete. �

Appendix C: A toy model for the transversality relation

C.1 Our goal in this appendix is to explain why the complicated definition of the
transversality relation in Section 5.4, is in some way “natural”, if we require some useful
properties for the proof of our Main Theorem. The toy model that we are considering is
an abstract one. It is much simpler than the real situation of Section 5 because the sets
in which the relation takes place are well defined to begin with: in Section 5, we need to
know the transversality relation in order to construct the classes R(I).

C.2 A partially ordered set X is a forest if, for any x0 ∈ X, the set {x � x0} is finite
and totally ordered. A tree is a forest with a single maximal element. Let X1, . . . ,Xn be
forests and let A be a subset of X = X1 × · · · × Xn (one should think of A as the graph of
an n-ary relation). We say that A is hereditary if whenever x = (x1, . . . , xn), y = (y1, . . . , yn)

are such that and yi � xi for all 1 � i � n (abbreviated as y � x), then y ∈ A if x ∈ A.
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Two points x = (x1, . . . , xn), y = (y1, . . . , yn) of X are coordinate-wise comparable (c-
comparable for short) if for each i ∈ {1, . . . , n}, we have xi � yi or xi � yi . In this case, we
set

(C.1) x ∨ y = (max(xi, yi))1�i�n.

The set A is concave if, whenever x, y ∈ A are c-comparable, then the point x ∨ y also
belongs to A.

The intersection of hereditary, resp. concave, subsets of X is hereditary, resp. con-
cave. It follows that any subset A ⊂ X is contained in a smallest concave hereditary subset,
called the c.h-envelope and denoted by ̂A.

Example. — When the number of factors n = 1, any subset is concave: the c.h-
envelope of A ⊂ X1 is the set of x ∈ X1 such that x � y for some y ∈ A.

C.3 We construct the c.h-envelope when n = 2.

Proposition. — Let X1, X2 be forests and A be a subset of X = X1 × X2. Let A1 be the set of

x ∈ X such that x = y ∨ z for some c-comparable y, z ∈ A. The c.h-envelope of A is equal to the set

A2 of t = (t1, t2) such that t1 � x1, t2 � x2 for some x = (x1, x2) ∈ A1.

Proof. — It is clear that the set A2 defined in the proposition is hereditary and it is
contained in the c.h-envelopêA of A. We have to prove that A2 is concave. We first prove
the �

Lemma. — If y, z ∈ A1 are c-comparable, y ∨ z also belongs to A1.

Proof. — By the definition of A1, we can write y = y′ ∨ y′′, z = z′ ∨ z′′ with y′, y′′, z′,
z′′ in A, y′ and y′′ c-comparable, z′ and z′′ c-comparable. We may assume that y1 � z1 and
y2 � z2, and also z1 = z′

1, y2 = y′
2; then, we have z′

1 = z1 � y1 � y′
1 and y′

2 = y2 � z2 � z′
2,

hence y′, z′ are c-comparable with y′ ∨ z′ = y ∨ z. �

End of the Proof of the Proposition. — Let t′, t′′ ∈ A2 be c-comparable and let x′, x′′ ∈
A1 be such that x′

i � t′i , x′′
i � t′′i for i = 1,2. As X1 and X2 are forests, x′ and x′′ are

c-comparable. From the lemma, x′ ∨ x′′ belongs to A1; then t′ ∨ t′′ belongs to A2. �

C.4 For n � 3, the situation is more complicated, as the two examples below
indicate.

Example. — Let X1, X2, X3 be forests and let x, y, z be three points of X = X1 ×
X2 × X3 such that

x1 � y1 � z1,(C.2)
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y2 � x2, y2 � z2,(C.3)

z3 � x3, z3 � y3.(C.4)

Let A = {x, y, z} ⊂ X. If we define, as in the proposition above,

(C.5) A1 = {u ∨ v, u, v ∈ A, u, v c-comparable}
and if we assume that x2, z2 are not comparable and x3, y3 are not comparable, then we
have

(C.6) A1 = {x, y, z, y ∨ z = (y1, y2, z3)}.
On the other hand, the point w = (x1, y2, z3) = x ∨ (y ∨ z) certainly belongs to the c.h-
envelope of A, but does not satisfy wi � ui (i = 1,2,3) for any u ∈ A1. This example
shows that the analogue of the proposition above is false for n = 3.

Example. — Let X1, X2, X3 forests and let x, y, z ∈ X = X1 × X2 × X3 such that

x1 � y1, x1 � z1,(C.7)

y2 � x2, y2 � z2,(C.8)

z3 � x3, z3 � y3,(C.9)

but none of the pairs (y1, z1), (x2, z2), (x3, y3) is made of comparable elements. Let A =
{x, y, z}. The sets {u � x}, {v � y}, {w � z} are disjoint and their union is the c.h-envelope
of A: any u � x, v � y cannot be c-comparable; otherwise, as X3 is a forest and x, y are
larger than u ∧ v = (min(ui, vi)), x3 and y3 would be comparable. On the other hand, if
u′ � x, u′′ � x and u′, u′′ c-comparable, then u′ ∨ u′′ � x.

C.5 We have the following partial result:

Proposition. — Let X1, . . . ,Xn be forests and let A be a subset of X = X1 × · · · × Xn.

Let A1 be the set of elements x ∈ X for which there exists x1, x2, . . . , xn in A with xj = x
j

j � xi
j for

all 1 � i, j � n. Let A2 be the set of elements y ∈ X such that y � x for some x in A1. Then A2 is

hereditary and concave.

Remark. — Example 2 above shows that A2 can be strictly larger than the c.h-
envelope. Example 1 shows that the straightforward generalization of the case n = 2 does
not work.

Proof of the Proposition. — It is very similar to the proof of the proposition in Sec-
tion C.3 above and left to the reader. �
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C.6 We will now see how the definition of the transversality relation in Section 5.4
is a natural consequence of the proposition above. As observed earlier, an essential differ-
ence with the toy model is that the transversality relation is used to construct the classes
R(I). So, let us just try to define the relation for the starting class R(I0) associated to the
initial horseshoe K. We would have:

X1 = {(P,Q, n) ∈ R(I0),Q ⊂ Qu},(C.10)

X2 = {(P′,Q′, n′) ∈ R(I0),P ⊂ Ps},(C.11)

and X3 is the set of parameter intervals. All sets are partially ordered by inclusion (of the
Q’s for X1, of the P’s for X2), and are obviously trees, with respective roots (Pu,Qu, nu),
(Ps,Qs, ns), I0.

We start from an intuitive definition of transversality: for (P,Q, n) ∈ X1, (P′,Q′, n′)
∈ X2, I ∈ X3, we write

Q̂�I P′

if for all t ∈ I we have

(C.12) δ(Q,P′)� 2 max(I, |Q|1−η, |P′|1−η).

(The number η in the exponent is necessary in order to keep the distortions under con-
trol.)

The corresponding subset of X1 × X2 × X3 is

(C.13) A = {(Q,P′, I),Q̂�I P′}.
This set is hereditary but it is not, a priori, concave. The concavity property (Proposition 9
in Section 6.3) is very useful in many places. So, we wish to replace A by a larger set which
is hereditary and concave. If we apply the recipe of the proposition in Section C.5, we
are led first to define a set A1 and then a set A2. According to the proposition, A1 should
be the set of (Q,P′, I) for which there exist Q2, Q3 ⊂ Q, P′

1, P′
3 ⊂ P′, I1, I2 ⊂ I satisfying

(C.14) Q̂� I1 P′
1, Q2

̂� I2 P′, Q3
̂�I P′

3.

As I1, I2 can be chosen arbitrarily small, we can replace them with single values t1, t2 ∈ I
of the parameter; the three conditions in (C.14) become:

– there exists P′
1 ⊂ P′, t1 ∈ I such that

(C.15) δ(Q,P′
1)� 2 max(|Q|1−η, |P′

1|1−η)

– there exists Q2 ⊂ Q, t2 ∈ I such that

(C.16) δ(Q2,P′)� 2 max(|Q2|1−η, |P′|1−η)
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– there exists Q3 ⊂ Q, P′
3 ⊂ P′ such that

(C.17) δ(Q3,P′
3)� 2 max(|I|, |Q3|1−η, |P′

3|1−η)

for all t ∈ I.

As P′
1, Q2, Q3, P′

3 may be chosen arbitrarily thin, it is natural to replace (C.15),
(C.16), (C.17) by

δ(Q,P′
1)� 2|Q|1−η for t = t1;(C.15)′

δ(Q2,P′)� 2|P′|1−η for t = t2;(C.16)′

δ(Q3,P′
3)� 2|I| for all t ∈ I.(C.17)′

Finally, the largest t value of δ(Q,P′
1) that one can hope for (by choosing P′

1 ⊂ P′ ap-
propriately) is δR(Q,P′); similarly, the largest value of δ(Q2,P′) that one can hope for
is δL(Q,P′) and the largest value of δ(Q3,P′

3) that one can hope for is δLR(Q,P′). No-
tice that we need anyway to eliminate P′

1, Q2, P′
3, Q3 from the definition because in

R(I) (instead of R(I0)), elements are constructed inductively and thinner rectangles are
constructed at the end. Replacing δ(Q,P′

1) by δR(Q,P′), δ(Q2,P′) by δL(Q,P′) and
δ(Q3,P′

3) by δLR(Q,P′), we obtain the three conditions, (T1), (T2), (T3) in Section 5.4.
This defines �.

The last step is to go from A1 to A2, taking the hereditary envelope of A1, which
corresponds exactly to the transition from � to � in Section 5.4.
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