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ABSTRACT

We construct a certain algebro-geometric version L (X) of the free loop space for a complex algebraic variety X.
This is an ind-scheme containing the scheme L 0(X) of formal arcs in X as studied by Kontsevich and Denef-Loeser. We
describe the chiral de Rham complex of Malikov, Schechtman and Vaintrob in terms of the space of formal distributions
on L (X) supported in L 0(X). We also show that L (X) possesses a factorization structure: a certain non-linear version
of a vertex algebra structure. This explains the heuristic principle that “all” linear constructions applied to the free loop
space produce vertex algebras.

Introduction

One of the salient mathematical features of string theory is the importance of
vertex algebras. Their role in the theory can be compared to that of Lie algebras
in the “ordinary” physics of point particles.

Mathematically, the approach of string theory can be cast in terms of an-
alysis on the space of free loops, i.e., smooth maps S1 → X where X is a given
“spacetime” manifold. Accordingly, one has the folklore principle that construc-
tions involving the space of free loops lead to vertex algebras. One class of such
constructions is provided by the spaces of highest weight representations of loop
groups. Another is Ωch

X, the chiral de Rham complex of an algebraic variety X, in-
troduced by Malikov, Schechtman and Vaintrob [MSV]. Heuristically, this complex
should be interpreted in terms of LX, the space of free loops and its subvariety
L0X consisting of loops extending holomorphically into the unit disk. More pre-
cisely, Ωch

X can be thought of as the semiinfinite de Rham complex with coefficients
in the space of distributions on LX supported on L0X. This is not, however, the
way Ωch

X has been defined mathematically. The definition given in [MSV] is of
more computational nature and proceeds by constructing the action of the group
of diffeomorphisms on the irreducible module over the Heisenberg algebra. In that
approach it seems miraculous that such an action exists at all.

The aim of this paper is twofold. First, to give a precise mathematical theo-
rem underlying the above folklore principle about vertex algebras. For this, we in-
troduce an algebro-geometric version of the free loop space L (X) for any scheme
X of finite type over a field. This is an ind-scheme containing L 0(X), the scheme
of formal germs of curves on X studied in [DL]. We prove that both L (X)

and L 0(X) themselves possess a non-linear version of the vertex algebra structure
(which makes it clear that any natural linear construction applied to them should
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give a vertex algebra in the usual sense). More precisely, we use the geometric ap-
proach to vertex algebras developed by Beilinson and Drinfeld [BD1] and based
on the concepts of chiral algebras and factorization algebras. The latter concept
has a natural nonlinear version, that of a factorization monoid. What we prove is
that natural “global” versions of L (X), L 0(X) have natural structures of factor-
ization monoids. An earlier known example of a factorization monoid is given by
the affine Grassmannian [G], and this explains why the spaces of representations
of loop groups are vertex algebras. Our construction is similar in spirit.

To give a good definition of the algebraic analog of the full loop space LX
one has to overcome a certain subtlety. Namely, a natural approach would be to
try to (ind-)represent a functor which to any commutative ring R associates the
set of R((t))-points of X. (This is exactly how one defines the scheme L 0(X),
with R[[t]] instead of R((t)).) If X is affine, this indeed gives a good ind-scheme
which we denote L̃ (X). But when X is, say, projective, then (for R a field) there
is no difference between R[[t]]-points and R((t))-points of X (valuative criterion
of properness), so it may seem that nothing is gained by allowing Laurent series.
To state this phenomenon differently, the ind-schemes L̃ (U) for affine U ⊂ X do
not glue together well. This is in fact understandable on general grounds: the loop
space LX is not the union of the LU since a loop need not spend all its time in
any given U.

To get around this difficulty we adopt the following strategy. For an affine
X we consider L (X), the formal neighborhood of L 0(X) in L̃ (X). So we are
dealing with formal loops which are “infinitesimal in the Laurent direction”. Then,
we prove that the L (U), U ⊂ X, do indeed possess the right gluing properties.
This is due to the infinitesimal nature of our loops.

The role of nilpotent thickenings in Laurent series models for loop spaces was
first pointed out by C. Contou-Carrère [CC] who was studying, in our notation,
the group ind-scheme L̃ (Gm) and found that it is a nontrivial formal thickening
of L 0(Gm) × Z.

Our second goal is to give a direct geometric construction of Ωch
X (for

smooth X) in terms of our model for the loop space. By the above, this con-
struction explains also the fact that Ωch

X is a sheaf of vertex algebras. In order to
achieve this, we represent L (X) as an ind-pro-object in the category of schemes
of finite type and then show that the shifted de Rham complexes of the terms of
this ind-pro-system arrange naturally into a double inductive system whose induc-
tive limit is identified with Ωch

X.
As with the study of formal arcs and motivic integration [DL], one can

view our considerations as algebro-geometric analogs of the basic constructions
of p-adic analysis. The difference between our ind-scheme L (X) and the more
familiar scheme L 0(X) is similar to the difference between Q p and Zp: while the
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latter is a pro-object in the category of schemes of finite type (resp. finite sets),
the former is an ind-pro-object. Further, our approach to Ωch

X is similar to the
construction of the space of locally constant functions with compact support on
Q p = lim

−→ i
lim
←− j

p−iZp/p jZp as the double inductive limit of the spaces of functions

on the finite sets p−iZp/p jZp, cf [P]. Notice that the reason that these spaces of
functions indeed form a double inductive system (with respect to the maps of
inverse image in the j-direction and direct image in the i-direction) is that the
commutative squares in the ind-pro-system p−iZp/p jZp are Cartesian (so that we
have base change). This is an algebraic counterpart of the property of the local
compactness of Q p, see [Kat]. In our situation it is equally important that the
ind-scheme L (X) satisfies a certain formal analog of local compactness.
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1. Construction of the formal loop space

1.1. Generalities on schemes and ind-schemes

If C is a category, then we denote by Ind(C) and Pro(C) the categories
of ind- and pro-objects of C, see [AM] [GV] for background. Thus, objects of
Ind(C) (resp. Pro(C)) are symbols “lim−→ i

” Ci (resp. “lim←− i
” Ci) where (Ci) is a fil-

tering inductive (resp. projective) system over C, with morphisms defined as in loc.

cit. Recall that Ind(C) can be considered as a full subcategory in Fun◦(C, Sets),
the category of contravariant functors.

Throughout the paper we fix a field k. The word “scheme” will always mean
“a separated k-scheme”. We denote by Sch ⊂ Lrs the categories of schemes and
of locally ringed spaces over k. If R is a commutative ring, we will write Spec R
for the topological space (the set of prime ideals with the Zariski topology) un-
derlying the affine scheme Spec R which is thus the ringed space (Spec R, OSpec R).

By an ind-scheme we will mean in this paper an ind-object of Sch repre-
sented by an inductive system of closed embeddings of quasicompact schemes. The
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category of ind-schemes will be denoted by Isch. In particular, we view formal
schemes as ind-schemes, e.g., Spf k[[t]] = “lim−→” Spec k[t]/t n+1. Let us make the
category Sch into a Grothendieck site by using Zariski open coverings and let
Shf be the category of sheaves of sets on Sch. For any ind-scheme Y the functor
ηY on schemes represented by Y is then a sheaf, so we have the embeddings

Sch ⊂ Isch ⊂ Shf ⊂ Fun◦(Sch, Sets).(1.1.1)

Since the category Sch has finite inverse limits, so do all the categories in
(1.1.1) and the embeddings preserve them. On the contrary, finite direct limits, such
as cokernels (when they exist) are preserved by the first two of the embeddings
but not by the third one: cokernels in the category of sheaves are not the same
as in the category of all functors (presheaves).

We denote by Alg the category of k-algebras and by Aff ⊂ Sch the dual
category of affine schemes. Note that Isch can be as well realized as a full sub-
category in Fun◦(Aff , Sets) = Fun(Alg, Sets).

Given two contravariant functors φ, φ′ : Sch → Sets, and a morphism F :
φ′ → φ, we will say that F is formally smooth (resp. formally étale), if for any
nilpotent extension of affine schemes S ⊂ S′ the natural map

φ′(S′) → φ(S′) ×φ(S) φ′(S)

is surjective (resp. bijective).
We will say that F is an open embedding, if for any scheme S and any

u ∈ φ(S) (which is the same as a morphism ηS → φ) the fiber product functor
ηS ×φ φ′ is representable by a scheme S′ whose natural morphism to S is an open
embedding.

We define formal smoothness and openness for morphisms of ind-schemes by
considering their representable functors.

For a scheme Z we denote by Zred ⊂ Z the corresponding reduced sub-
scheme. We extend this notation to ind-schemes by applying it term by term in
inductive systems.

Let X be a k-scheme of finite type. We denote by Aff X (resp. Aff ft
X) the

category of schemes affine over X (resp. affine of finite type over X). For future
use let us quote the following fact [EGAIV, Corollary 8.13.2].

1.1.2. Proposition. — The category Pro(Aff ft
X) is equivalent to Aff X via the functor

“lim
←− n

” Sn �→ lim
←− n

Sn.

We also denote SchX the category of all separated X-schemes and IschX

the category of ind-schemes over X. Thus objects of IschX are arrows Y → X,
Y ∈ Isch, or, equivalently, symbols “lim

−→ n
” Yn where Yn → X form an inductive

system of closed embeddings of quasicompact X-schemes.
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1.2. The scheme of germs of arcs

Let X be a scheme. We denote by L 0(X) the scheme of germs of arcs
on X, see [DL] and [BLR, Theorem 7.6.4]. It represents the following covariant
functor λ0

X on the category Alg:

λ0
X : R �→ HomSch(Spec R[[t]], X).

Here are some of the well-known properties of L 0(X). Note that if R is a local
ring with maximal ideal M, then R[[t]] is a local ring with maximal ideal M[[t]]+
tR[[t]].

1.2.1. Proposition. — (a) For any scheme S the pair (S,OS[[t]]) is a locally ringed

space.

(b) For any scheme S we have

HomSch(S,L 0(X)) = HomLrs((S,OS[[t]]), X).

(c) The scheme L 0(X) is the projective limit of the schemes L 0
n (X), n ∈ N, repre-

senting the functors

λ0
n,X : R �→ HomSch(Spec R[t]/t n+1, X).

If X is of finite type, than so is each L 0
n (X).

(d) Denote pn : L 0
n (X) → X, p : L 0(X) → X the natural projections. They are affine

morphisms. For an open subset U ⊂ X we have p−1(U) = L 0(U) and p−1
n (U) = L 0

n (U).

(e) If X is smooth, then so is L 0
n (X) and L 0(X) is formally smooth.

Proof. — For (a) and (b) it suffices to assume that S = Spec R is affine. The
embedding of constant series and the evaluation at 0 give ring homomorphisms

R
α→ R[[t]] β→ R and hence morphisms of topological spaces

Spec R
p←− Spec R[[t]] i←− Spec R.(1.2.2)

The statement (a) follows from the next lemma, since OSpec R[[t]] is obviously
a sheaf of local rings.

1.2.3. Lemma. — We have

i−1OSpec R[[t]] = OSpec R[[t]] = p∗OSpec R[[t]].
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Proof. — Let us prove the first equality. If p ∈ Spec R is a prime ideal in R,
then the stalk of i−1OSpec R[[t]] at p is the localization of R[[t]] with respect to the
multiplicative subset β−1(R−p) while the stalk of OSpec R[[t]] is R[[t]]⊗R Rp where
Rp denotes, as usual, the localization of R with respect to R − p. Now, to see
that the two rings are the same, it suffices to use the following obvious property
of formal power series rings: if A is a commutative ring and f (t) ∈ A[[t]] is such
that f (0) is invertible in A, then f (t) is invertible in A[[t]].

The second equality is obvious: the stalk of p∗OSpec R[[t]] at p is immediately
seen to coincide with R[[t]] ⊗R Rp. 
�

Now, composing with i defines a map of sets

φ : HomSch(Spec R[[t]], X) → HomLrs((Spec R,OSpec R[[t]]), X).

A map ψ in the other direction comes from the second equality in Lemma 1.2.3.
One verifies easily that φ and ψ are mutually inverse. This concludes the proof
of Proposition 1.2.1(b). The rest of Proposition 1.2.1 is proved in loc. cit.

We will also need the following generalization of Proposition 1.2.1(d).

1.2.4. Proposition. — Let φ : X → Y be an étale morphism of schemes. Then

(a) each morphism L 0
n (φ) : L 0

n (X) → L 0
n (Y) is étale,

(b) the square

L 0
n (X) → L 0

n (Y)

↓ ↓
X → Y,

as well as the analogous square for L 0(X), L 0(Y), is Cartesian.

Proof. — We can assume that X = Spec (A), Y = Spec (B) are affine. It is
enough to prove that for each n ≥ 0 the natural morphism

α : L 0
n (X) → L 0

n (Y) ×Y X

is an isomorphism. Let us construct the inverse morphism β. Let R be a k-algebra
and f be a morphism S → L 0

n (Y) ×Y X. Thus, f corresponds to a pair of ring
homomorphisms forming the horizontal arrows of the commutative diagram

B
u−→ R[t]/t n+1

φ∗ ↓ ↓ π

A
v−→ R.

Here π is the natural projection. Since φ is étale and π is nilpotent, there is
a unique homomorphism w : A → R[t]/t n+1 such that both resulting triangles are
commutative. Let g be the morphism S → L 0

n (X) represented by w. Then we set
β( f ) = g. The verifications are obvious and left to the reader. 
�
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1.3. Nil-Laurent series

Let R be a commutative ring. A nil-Laurent series is, by definition, a Laurent
series a(t) = ∑

i�−∞ aiti ∈ R((t)) such that all the ai with i < 0 are nilpotent. The
set of such series will be denoted R((t))

√
.

It is clear that R((t))
√

is a subring in R((t)), the ring of all Laurent series.
Indeed, let

√
R be the radical of R (the set of all nilpotent elements) and set

Rred = R/
√

R. Consider the homomorphism ρ : R((t)) → Rred((t)) induced by
the projection R → Rred. Then R((t))

√ = ρ−1(Rred[[t]]).

1.3.1. Proposition. — For a = ∑
aiti ∈ R((t))

√
the following are equivalent:

(i) the element a is invertible in R((t))
√

,

(ii) the element ρ(a) is invertible in Rred[[t]],
(iii) the element a0 is invertible in R.

Proof. — (i)⇒(ii) is obvious. To see that (ii)⇔(iii), note that the invertibility of
ρ(a) implies the invertibility of the image of a0 in Rred which certainly implies the
invertibility of a0 and the converse is equally obvious. Let us prove that (ii)⇒(i).
Indeed, if ρ(a) is invertible in Rred[[t]], we have ab = 1 + c for some b ∈ R((t))

√
,

c ∈ Ker ρ = √
R((t)). But every element c ∈ √

R((t)) is topologically nilpotent
(setting c = c− + c+ with c− ∈ t−1

√
R[t−1] and c+ ∈ √

R[[t]], we have that c− is
nilpotent while c+ is topologically nilpotent), thus ab is invertible in R((t))

√
, and

a is invertible, too. 
�

1.3.2. Corollary. — If R is a local ring with maximal ideal M, then R((t))
√

is

a local ring with maximal ideal ρ−1(Mred[[t]] + tRred[[t]]).

1.4. The formal loop space

We now describe our main construction. Let X be a scheme of finite type
over k. Define a covariant functor λX from Alg to sets as follows:

λX(R) = HomSch(Spec R((t))
√

, X).(1.4.1)

1.4.2. Theorem. — (a) The functor λX is represented by an ind-scheme L (X),

containing L 0(X).

(b) L (X) is an inductive limit of nilpotent extensions of L 0(X). In particular, for

any open set Y ⊂ L 0(X) there is a well-defined ind-scheme L (X)|Y.

(c) If U is an open subset in X, then the ind-scheme L (U) is identified with

L (X)|p−1(U).

(d) If X is smooth, then L (X) is formally smooth.
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Note that Theorem 1.4.2 is closely related to [BD1, Proposition 3.9.3(i)].
The proof will be finished in the next subsection.

Let R be a commutative ring. Since R((t))
√

is a nilpotent extension of
R[[t]], we have Spec R((t))

√ = Spec R[[t]], so Spec R((t))
√

is the ringed space
formed by Spec R[[t]] and a certain sheaf of rings OSpec R((t))

√ on it.

1.4.3. Lemma. — (a) We have, with respect to the maps in (1.2.2), the equalities

i−1OSpec R((t))
√ = OSpec R((t))

√ = p∗OSpec R((t))
√ .

(b) For any scheme S the sheaf OS((t))
√

is a sheaf of local rings.

Proof. — The proof of (a) is analogous to that of Lemma 1.2.3. Instead
of the property of A[[t]] quoted there, we use Proposition 1.3.1. Part (b) follows
from (a). 
�

Let ψ : Sch → Lrs be the functor such that S �→ (S,OS((t))
√

). Let us
define a contravariant functor λ′

X on the category Sch by

λ′
X(S) = HomLrs(ψ(S), X).(1.4.4)

1.4.5. Proposition. — For an affine scheme S = Spec(R) we have λ′
X(S) = λX(R).

Proof. — Follows from Lemma 1.4.3 similarly to Proposition 1.2.1(a). 
�
In virtue of Proposition 1.4.5, for the proof of Theorem 1.4.2 it suffices to

show that the functor λ′
X on Sch is ind-representable. We start by establishing

some of its properties.

1.4.6. Proposition. — (a) For every scheme X the functor λ′
X is a sheaf on Sch.

(b) If U ⊂ X is an open subset, then the induced morphism of functors λ′
U → λ′

X is

open.

(c) Let (Uα)α∈A be an open covering of X. Then λ′
X is equal to the cokernel, in the

category Shf , of the pair of morphisms

∐

α,β

λ′
Uα∩Uβ

⇒
∐

α

λ′
Uα

.

Proof. — The proposition follows from simple properties of representable func-
tors on the category Lrs. If T = (T,OT ) is a locally ringed space, we will call
an open part of T a ringed space of the form (U,OT |U) where U ⊂ T is an
open subset in the usual sense. An open embedding is, by definition, a morphism
isomorphic to the inclusion of an open part. Accordingly, we have the concept of
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an open covering of T . This makes Lrs into a Grothendieck site. For X ∈ Lrs
let ηX be the corresponding representable functor on Lrs. As in Sect. 1.1, a mor-
phism F : φ′ → φ of functors Lrs → Sets will be called open, if for any S ∈ Lrs
and any element u ∈ φ(S ) (i.e., a morphism ηS → φ) the fiber product functor
ηS ×φ φ′ is representable by a locally ringed space S ′ whose natural morphism
to S is an open embedding. Let us recall the following basic facts.

1.4.7. Lemma. — (a) For any X ∈ Lrs the representable functor ηX is a sheaf on

Lrs.

(b) If U ⊂ X is an open embedding in Lrs, then ηU → ηX is an open morphism

of functors.

(c) Let X ∈ Lrs and (Uα)α∈A be an open covering of X . Then in the category of

sheaves of sets on Lrs we have the equality

ηX = Coker
{∐

α,β

ηUα∩Uβ
⇒

∐

α

ηUα

}
(1.4.8)

or, explicitly, for any S ∈ Lrs,

ηX (S ) = lim−→
Sα

Ker
{∏

α

ηUα
(Sα)⇒

∏

αβ

ηUα∩Uβ
(Sα ∩ Sβ)

}
,(1.4.9)

where the limit is taken over the set of open coverings (Sα)α∈A of S (the indexing set A
being fixed) ordered by simultaneous inclusion.

Proposition 1.4.6 follows from Lemma 1.4.7. Indeed, we have λ′
X = ηX ◦ ψ,

where X is viewed as a locally ringed space. Thus, to prove Proposition 1.4.6.(b)
using Lemma 1.4.7(b) it is enough to prove that for any open embedding of
schemes U ↪→ X and any u ∈ λ′

X(S) there is an open embedding j : S′ ↪→ S such
that the following square is Cartesian

U ↪→ X
↑ ↑ u

ψ(S′)
ψ( j)→ ψ(S)

(then, ηS ×λ′
X

λ′
U = ηS′ ). This is obvious. 
�

Proof. — Part (a) is obvious, and Part (b) is proved in [EGA0, (4.5.2)]. Let
us prove Part (c). For any φ ∈ ηX (S ) and any α, consider the ringed space

Sα = (φ−1(Uα),OS |φ−1(Uα)).
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Clearly, (Sα) is an open covering of S . Let φα be the restriction of φ to Sα.
Then, (φα) is an element of

∏
α ηUα

(Sα) lying in the kernel (1.4.9). Thus we
have constructed a map from ηX (S ) to the right hand side of (1.4.9). On the
other hand, assume that (φα) ∈ ∏

α ηUα
(Sα) is such that φα(Sα ∩ Sβ) ⊂ Uα ∩ Uβ

and φα|Sα∩Sβ
= φβ|Sα∩Sβ

. The corresponding maps Sα,red → Uα,red glue together,
giving a continuous map φred : Sred → Xred. Moreover, there is an obvious sheaf
homomorphism φ∗ : φ−1

redOX → OS : the restriction of φ∗ to Sα is the composition
of the chain of maps

(
φ−1

redOX

)∣
∣
Sα

= (
φ−1

α,redOSα

)∣
∣
Sα

φ∗
α→OSα

= OS |Sα
.

This establishes (1.4.9).
Let C be the cokernel as in (1.4.8) but taken in the category of presheaves.

Then the cokernel in the category of sheaves is just the sheaf C associated to the
presheaf C. By definition, for S ∈Lrs the set C(S ) consists of pairs (α, φ : S →Uα)

taken modulo the identifications coming from morphisms of S into Uα∩Uβ. Now,
by the definition of the sheaf associated to the presheaf,

C = lim
−→S=⋃

γ∈Γ Sγ

Ker
{∏

γ∈Γ

C(Sγ ) →
∏

γ,γ ′∈Γ

C(Sγ ∩ Sγ ′)
}
,

where the limit is over all possible open coverings of S (with arbitrary indexing
sets Γ) ordered by refinement. Notice now that specifying a section of C over Sγ

includes specifying an index α from the set A indexing the covering {Uα}, so we
get a map p : Γ → A. Denoting Sα = ⋃

p(γ)=α Sγ , we get an element of the right
hand side of (1.4.9). This establishes the equivalence of (1.4.8) and (1.4.9). 
�

Note that Proposition 1.4.6(c) implies the following.

1.4.10. Corollary. — We have λX = lim
−→ U⊂X affineλU, the limit being taken in the

category Shf .

1.5. Proof of Theorem 1.4.2

We first assume that X = Spec A is an affine scheme of finite type. Consider
the larger functor λ̃X on Alg defined by

λ̃X(R) = HomAlg(A, R((t))).

1.5.1. Proposition. — (a) The functor λ̃X is represented by an ind-scheme L̃ (X),

which is an inductive limit of affine schemes of infinite type.

(b) If X is smooth, then L̃ (X) is formally smooth.
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Proof. — (a) Consider the k-ind-scheme

k((t)) = lim−→ N
Spec k[al;−N ≤ l].

We can think of the ai as the coefficients of an indeterminate Laurent series∑
aiti. It is clear that k((t)) represents the functor λ̃A1 . Since A1 is a k-algebra

object in the category of schemes, multiplication of Laurent series makes k((t)) into
a k-algebra object in the category of ind-schemes. In particular, each polynomial
f ∈ k[x1, . . . , xd] defines a morphism of ind-schemes L̃ ( f ) : k((t))d → k((t)).
Hereafter we will write k[x] instead of k[x1, . . . , xd] to simplify.

Suppose now that X is given in Ad by a system of algebraic equations, say

fm(x1, . . . , xd) = 0, m = 1, 2, . . . , l.

The ind-scheme L̃ (X) is realized as the closed sub-ind-scheme in k((t))d defined
as the intersection of the preimages of 0 under the L̃ ( fm). More explicitly, replac-
ing xi by xi(t) = ∑

j≥−N a(i)
j t j in the equations above, we get, for each N, a system

of algebraic equations in k[a(i)
l ;−N ≤ l] for each N which defines a subscheme in

(Spec k[al;−N ≤ l])d . Our desired ind-scheme L̃ (X) is the direct limit of these
schemes as N → ∞.

(b) The infinitesimal lifting condition for λ̃X is formulated for affine schemes
S = Spec(R). We need to prove that for any surjection of k-algebras R′ → R
whose kernel I satisfies In = 0 for some n, the map of sets λ̃X(R′) → λ̃X(R) is
surjective. But the kernel of R′((t)) → R((t)) is I((t)) which is also nilpotent of
order n. So the smoothness of A implies that any morphism A → R((t)) can be
lifted to a morphism A → R′((t)). 
�

1.5.2. Corollary. — The functor λX is represented by an ind-scheme L (X) which is

the inductive limit of the formal neighborhoods of L 0(X) in the schemes forming an inductive

system for L̃ (X). If X is smooth, then L (X) is formally smooth.

This proves parts (a), (b) and (d) of Theorem 1.4.2 for the case of affine X.
Part (c) of the theorem follows from Proposition 1.4.6(c).

To prove Theorem 1.4.2 for general X, it is enough to establish the existence
of the limit lim−→ U⊂X affineL (U) in the category of ind-schemes. In fact, it is enough

to take the limit over a finite set of U consisting of elements of some finite cover-
ing and their intersections. Indeed, given this, all the other properties follow from
the affine case and from Proposition 1.4.6. But using Proposition 1.4.6(b) again,
we see that for any pair U′ ⊂ U of affine open subsets in X the correspond-
ing morphism of ind-schemes L (U′) → L (U) is an open embedding. Further,
the ind-scheme L (U)red is actually a scheme, namely L 0(U). So our statement
follows from the next general fact.
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1.5.3. Lemma. — Let (Zi)i∈I be a finite diagram of ind-schemes in which all the

arrows are open embeddings. Assume that the inductive limit of Zi,red exists in the category of

ind-schemes. Then so does the inductive limit of the Zi.

Theorem 1.4.2 is proved. Let us also note the following fact.

1.5.4. Proposition. — If φ : X → Y is an étale morphism of schemes of finite type,

then L (φ) : L (X) → L (Y) is formally étale.

Proof. — By the above we can assume that X = Spec (A), Y = Spec (B) are
affine. If S is a scheme and we have two compatible maps

α : Sred → L (X), β : S → L (Y),

we must construct the unique map S → L (X). If S = Spec R, then we have
a diagram

A
α∗→ Rred((t))

√ = Rred[[t]]
φ∗ ↑ ↑

B
β∗→ R((t))

√
,

where the right arrow, which is the projection ρ in Sect. 1.3 has nilpotent kernel.
Therefore there is a unique homomorphism of rings A → R((t))

√
making the

diagram commute. 
�

1.6. The formal loop space as an ind-object

For future purposes we construct a certain class of local realizations of L (X)

as an ind-object in the category of schemes.
Let x1, x2, . . . , xd be the coordinates on the affine space Ad . For any k-

algebra A and any morphism φ : Spec A → Ad let φ∗ be the corresponding
map k[x1, . . . , xd] → A.

1.6.1. Proposition. — Assume that X = Spec A is an affine scheme and that φ :
X → Ad is an étale morphism of schemes.

(a) There is a unique morphism θφ : L (X) → X such that θφ( f )(φ∗xi) = f (φ∗xi)0

for any f ∈ λX(R). The restriction of θφ to L0(X) is equal to the projection p from

Proposition 1.2.1(b).

(b) We have L (Ad) ×Ad X � L (X).

Proof. — Consider the morphism of functors λ̃Ad → ηAd which maps a homo-
morphism f ∈ HomAlg(k[x1, . . . , xd], R((t))) to the morphism from k[x1, . . . , xn]
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to R defined by xi �→ f (xi)0. This morphism of functors can be seen as a mor-
phism of ind-schemes θ̃Ad : L̃ (Ad) → Ad . It is clear that its restriction to L 0(Ad)

coincides with the projection p from Proposition 1.2.1(d). Let θAd be the restriction
of θ̃Ad to the ind-subscheme L (Ad) ⊂ L̃ (Ad). Since L (X) is an inductive limit of
nilpotent extensions of the scheme L 0(X) and φ is formally étale, there is a map
θφ : L (X) → X splitting the diagram

L 0(X) → X
↓ ↓ φ

L (X) → Ad

into two commutative triangles. Here, the lower horizontal arrow is the composition
of maps

θAd ◦ L (φ) : L (X) → L (Ad) → Ad .

Let ψ be the resulting map L (X) → L (Ad) ×Ad X. We claim that ψ is an
isomorphism. For this, we construct a map χ : L (Ad)×Ad X → L (X) inverse to ψ.
Let S = Spec R be a scheme. A morphism S → L (Ad)×Ad X is a compatible pair

(α : S → L (Ad), β : S → X).

We need to construct a map χ(α, β) : S → L (X). First, α(Sred) ⊂ L 0(Ad), and
β(Sred) ⊂ X. Thus, by Proposition 1.2.4, we have a map γ : Sred → L 0(X). The
composition γ̃ of γ and the embedding L 0(X) ⊂ L (X) gives a commutative
diagram

Sred
γ̃→ L (X)

↓ ↓ L (φ)

S
α→ L (Ad).

(1.6.2)

To complete the construction, we notice that L (φ) is formally étale by Proposi-
tion 1.5.4 and so we have a map S → L (X) splitting (1.6.2) into two commutative
triangles. We take this map to be χ(α, β). The verification that χ is inverse to ψ

is straightforward. Proposition 1.6.1 is proved. 
�
Let E be the set of ε = (ε−1, ε−2, . . . ), εj ∈ Z+ such that εj = 0 for almost

all j. It is equipped with the natural partial order: ε ≤ ε′ if εj ≤ ε′
j for all j. In the

remainder of this section we assume that the k-scheme X is smooth. Thus X can
be covered by affine open sets U = Spec A possessing étale maps φ : U → Ad .
For every such U, φ we consider the functor

λε
φ : R �→ {

f ∈ λU(R) | f (φ∗xi)
1+εj

j = 0, ∀i ∈ [1, d ], ∀j < 0
}
.
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1.6.3. Proposition. — The functor λε
φ is representable by a closed subscheme L ε(φ) ⊂

L (U), such that L (U) is the inductive limit of the schemes L ε(φ).

Proof. — We first consider the case U = Ad, φ = Id. Let N be such that
εj = 0 for j < N. Define the scheme L ε(Ad) by

L ε(Ad) = Spec
(
k
[
a(i)

l ;−N ≤ l
]
/
((

a(i)
l

)1+εl ; l < 0
))

.(1.6.4)

It is immediate that this scheme represents the functor λε
id , and that λε

φ = λε
id ×λAd

λU. The proof of Proposition 1.6.1 implies that that the map

λε
φ → λε

id ×ηAd ηU, f �→ ( f ◦ φ∗, θφ( f ))(1.6.5)

is an isomorphism of functors. Thus, the closed subscheme

L ε(Ad) ×Ad U ⊂ L (Ad) ×Ad U = L (U),(1.6.6)

see Proposition 1.6.1(b), represents the functor λε
φ. It is clear by the definition

that λU = lim−→ ε

λε
φ in the category of functors Alg → Sets and thus we have that

L (U) = lim−→ ε

L ε(φ) in the category of ind-schemes. 
�

Let us note the following reformulation of this fact, to be used later.

1.6.7. Corollary. — If φ,ψ are two étale maps U → Ad , then the ind-objects

“ lim
−→ ε

” L ε(φ), “ lim
−→ ε

” L ε(ψ) are isomorphic, i.e., for any ε there is ε′ such that L ε(φ) ⊂
L ε′

(ψ) and vice versa.

Proof. — Given ψ, any map S → L (U) with S an affine scheme, factors
through some L ε′

(ψ). Now take S = L ε(φ) which we know to be an affine
scheme by (1.6.4)–(1.6.6). 
�

1.7. The formal loop space as an ind-pro-object

We keep the notations of Sect. 1.6. Thus U = Spec (A) is affine and φ :
U → Ad is étale. The schemes L ε(φ) are of infinite type. In fact, each of these
schemes is a projective limit of schemes of finite type, so L (U) can be viewed
as an ind-pro-object in the category of schemes of finite type over k. In this
subsection we construct explicit ind-pro-systems for L (U).

Consider the functor λε
nφ : R �→ λε

φ(R)/ ∼nφ, where

f ∼nφ g ⇐⇒ f (φ∗xi) − g(φ∗xi) ∈ t n+1R[[t]], ∀i.
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1.7.1. Proposition. — (a) The functor λε
nφ is representable by a scheme L ε

n (φ). The

scheme L ε
n (φ) is of finite type and is a nilpotent extension of L 0

n (U) = L 0
n (φ). Moreover,

L ε(φ) = lim←− n
L ε

n (φ).

(b) The schemes L ε
n (φ) form an ind-pro-system with Cartesian squares (n′ ≥ n, ε′ ≥ ε)

L ε
n′(φ) ↪→ L ε′

n′ (φ)

↓ ↓
L ε

n (φ) ↪→ L ε′
n (φ)

where the vertical arrows are smooth affine morphisms.

(c) The ind-pro-object “ lim−→ ε

” “ lim←− n
” L ε

n (φ) is independent, up to isomorphism, on φ.

Proof. — Claim (a) is entirely similar to Proposition 1.6.3. We first consider
the case U = Ad, φ = id and define the scheme L ε

n (Ad) by

L ε
n (Ad) = Spec

(
k
[
a(i)

l ;−N ≤ l ≤ n
]
/
((

a(i)
l

)1+εl; l < 0
))

, N � 0.(1.7.2)

It represents λε
nid . The fiber product scheme L ε

n (Ad) ×Ad U represents the functor
λε

nid ×ηAd ηU. The isomorphism of functors (1.6.5) yields an isomorphism of functors
λε

nφ → λε
nid ×ηAd ηU. Thus

L ε
n (φ) = L ε

n (Ad) ×Ad U.(1.7.3)

Claim (b) is obvious in the case U = Ad , φ = id . The general case follows
from (1.7.3) since the base change of a smooth affine morphism is still smooth
affine, and the base change of a Cartesian square is Cartesian.

Claim (c) follows from Corollary 1.6.7 and Proposition 1.1.2. 
�

Passing to the limit in ε we get the ind-scheme Ln(φ) = “ lim−→ ε

” L ε
n (φ). It

represents the functor R �→ λU(R)/ ∼nφ. As in (1.7.2) we get

Ln(A
d) = “lim−→ N

” Spf k
[
a(i)

l , 0 ≤ l ≤ n
][[

a(i)
l ,−N ≤ l < 0

]]
.

Here the formal spectrum is considered as an ind-scheme as in Sect. 1.1. So we
see that Ln(Ad) is formally smooth. Further, we see that

Ln(φ) = Ln(Ad) ×Ad U,

from which we see that Ln(φ) is also formally smooth.
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2. The global loop space

2.1. Localization on a curve

Consider the Lie algebra Der k[[t]] and the group scheme Aut k[[t]] over k.
They form a Harish-Chandra pair [BB] and [F, Sect. 6.1]. By construction, we
have the action of this pair on the scheme L 0(X) and on the ind-scheme L (X)

constructed in Sect. 1.
Let C be a smooth curve over k. The well known procedure of localiza-

tion, see loc. cit. and [GKF], gives then a scheme L 0(X)C and an ind-scheme
L (X)C over C defined as follows. Let C∧ → C be the scheme of pairs (c, tc)
where c ∈ C and tc is a formal coordinate near c. Then C∧ has a natural
(Der k[[t]], Aut k[[t]])-structure, i.e. a simply transitive Der k[[t]]-action extending
the fiberwise Aut k[[t]]-action. We define

L 0(X)C = C∧ ×Aut k[[t]] L 0(X), L (X)C = C∧ ×Aut k[[t]] L (X).(2.1.1)

If X is affine, we define, in a similar way, the ind-scheme L̃ (X)C start-
ing from L̃ (X). Because of the simple transitivity of the Der k[[t]]-action on C∧,
the (ind-)schemes thus constructued possess natural connections along C which are
compatible with the embeddings L 0(X)C ⊂ L (X)C and, for X affine, L 0(X)C ⊂
L̃ (X)C.

Note that L 0(X)C is nothing but the scheme of infinite jets of morphisms
C → X, so it is easy to describe explicitly the functor represented by L 0(X)C

(and also by L (X)C, L̃ (X)C). Let us introduce some notations. For a scheme S
and a morphism f : S → C we denote by Γ( f ) ⊂ S × C the graph of f . Let
fred : Sred → C be the restriction of f to Sred. We have then the following sheaves
of k-algebras on S × C supported on Γ( f ):

– O∧
f , the completion of OS×C along Γ( f ), i.e. the sheaf of functions on the

formal neighborhood of Γ( f ).
– K ∧

f , the sheaf of functions on the punctured formal neighborhood of
Γ( f ). Thus K ∧

f is obtained from O∧
f by inverting the local equations of the

divisor Γ( f ) ⊂ S × C.
– K

√
f ⊂ K ∧

f , the subsheaf of sections whose restriction to Sred × C lies in
O∧

fred
⊂ K ∧

fred
.

2.1.2. Proposition. — (a) The sheaves O∧
f and K

√
f are sheaves of local rings.

(b) The scheme L 0(X)C represents the functor λ0
X,C : Sch → Sets which associates

to a scheme S the set of pairs ( f , ρ) where f : S → C is a morphism of schemes and

ρ : (Γ( f ),O∧
f ) → X is a morphism of locally ringed spaces.
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(c) The ind-scheme L (X)C ind-represents the functor λX,C defined as in (b) but with

O∧
f replaced by K

√
f .

(d) Similarly, when X is affine, the ind-scheme L̃ (X)C ind-represents the functor λ̃X,C

defined as in (b) but with O∧
f replaced by K ∧

f .

Proof. — (a) By choosing an etale coordinate y on C and using the relative
etale coordinate y − f (s) on C × S, we reduce to the case when C = A1 and f is
constant with value 0 ∈ A1. Then

O∧
f = OS[[t]], Kf = OS((t)), K

√
f = OS((t))

√

and our assertion follows from Proposition 1.2.1(a) and Lemma 1.4.4(b).
(b) The projection π : C∧ → C induces, for any scheme S, a map of sets

πS : Hom
(
S,L 0(X)C

) → Hom(S, C).

It is enough to show that for any f : S → C the set π−1
S ( f ) is naturally identified

with the set of ρ : (Γ( f ),O∧
f ) → X. Further, since both functors λ0

X,C and ηL 0(X)C

are sheaves of sets on Sch, it is enough to construct such an identification Zariski
locally on S. But locally on S we have, from the definition 2.1.1:

π−1
S ( f ) = Lifts( f , C∧) ×Aut k[[t]] Hom(S,L 0(X)),

where Lifts( f , C∧) is the set of f̃ : S → C∧ such that π f̃ = f . Recall that

Hom(S,L 0(X)) = HomLrs((S,OS[[t]]), X).

This means that

π−1
S ( f ) = HomLrs((S,A ), X),

where A is the sheaf of rings on S associated to the presheaf

U �→
( ∏

f̃ ∈Lifts( f |U,C∧)

OU[[t]]
)Aut k[[t]]

.

But it is clear that A � O∧
f , whence the statement. Parts (c) and (d) are proved

similarly. 
�
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2.2. Factorization monoids

Let C be a smooth curve, as before. For any surjection J� I of finite sets
and i ∈ I we denote by Ji the preimage of i. To such a surjection one associates,
in a standard way, the “diagonal” embedding ∆( J/I) : CI ↪→ C J. Let U( J/I) ⊂ C J

be the locus of (cj)j∈ J such that cj �= cj ′ whenever the images of j and j ′ in I are
different. We denote by j( J/I) : U( J/I) ↪→ C J the embedding.

2.2.1. Definition. — Let Y be an ind-scheme over C. A factorization monoid structure

on Y is a collection of ind-schemes YI over CI with a formally integrable connection, given for

each nonempty finite set I such that Y{1} = Y and YI is formally smooth over CI, equipped

with the following data:

(a) An isomorphism of CI-ind-schemes ν( J/I) : ∆( J/I)∗YJ
∼→ YI for every surjection

J� I, compatible with compositions of surjections.

(b) An isomorphism of U( J/I)-ind-schemes

κ( J/I) : j( J/I)∗(
∏

i∈IYJi)
∼→ j( J/I)∗YJ

for every J � I, such that for K � J the isomorphism κ(K/I) coincides with the composition

κ( J/I) ◦ (
∏

i∈I κ
(Ki/Ji)). We also demand that ν, κ are compatible in the following sense: for

every J� J′ � I one has ν( J/J′) ◦ ∆( J/J′)∗(κ( J/I)) = κ( J′/I) ◦ (�i∈Iν
( Ji/J′i)).

2.2.2. Remark. — (a) This is a nonlinear counterpart of the concept of a fac-
torization algebra due to Beilinson and Drinfeld [BD1], [G], see also Sect. 5.1
below. Factorization monoids can be used to construct factorization algebras by
applying “natural” linear constructions.

(b) More generally, we can speak about a factorization monoid structure on
any functor Y : Sch → Sets (not necessarily representable by an ind-scheme)
which is equipped with a morphism to C (i.e. to the representable functor ηC).

2.2.3. Example. — Let G be an affine algebraic group over k. Then L 0(G)

is a group scheme and L̃ (G) is a group ind-scheme over C. The quotient ind-
scheme GrG = L̃ (G)/L 0(G) is known as the affine Grassmannian associated
to G. The natural family of such Grassmannians over C, i.e. the ind-scheme
GrG(C) = L̃ (G)C/L 0(G)C is known to have a structure of a factorization monoid,
see [G, Sect. 5.2.2].

Now, the main result of this section is the following.

2.2.4. Theorem. — Let X be a scheme of finite type. Then the C-scheme L 0(X)C

and the C-ind-scheme L (X)C possess natural structures of factorization monoids so that the

embedding L 0(X)C ⊂ L (X)C is a factorization homomorphism. Similarly, if X is affine,

then the C-ind-scheme L̃ (X)C has a natural structure of a factorization monoid so that the

embedding L 0(X)C ⊂ L̃ (X)C is a factorization homomorphism.
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2.3. Factorization monoid structure on the functors represented by L 0(X)C, L̃ (X)C and

L (X)C

Let S be a scheme and f I be I-uple of morphisms fi : S → C, i ∈ I. We
denote by Γ( f I) ⊂ S×C the union of the graphs of the fi’s and by f I,red ⊂ Sred ×C
the union of the graphs of the fi,red. Let us introduce, similarly to Sect. 2.1, the
following sheaves of rings on S × C with support in Γ( f I):

– O∧
f I

, the completion of OS×C along Γ( f I), i.e. the sheaf of functions on
the formal neighborhood of Γ( f I).

– K ∧
f I

, the sheaf of functions on the punctured formal neighborhood of
Γ( f I).

– K
√

f I
⊂ K ∧

f I
, the subsheaf of sections whose restriction to Sred × C lies in

O∧
f I,red

⊂ K ∧
f I,red

.

2.3.1. Proposition. — The sheaves O∧
f I

and K
√

f I
are sheaves of local rings.

Proof. — The case of O∧
f I

is immediate because (Γ( f I),O∧
f I
) is the formal

neighborhood of Γ( f I) in S × C, hence it is a locally ringed space. The case
of K

√
f I

is analogous to the proof of Proposition 1.2.1. Indeed we can assume

that C = Spec k[t] and S = Spec R. Set bi = f ∗
i (t), K

√
f I

= H0(Γ( f I),K
√

f I
), and

O∧
f I

= H0(Γ( f I),O∧
f I
). The ring K

√
f I

is identified with the set of series
∑

l�−∞
al(t)

∏

i

(t − bi)
l

where al(t) ∈ R[t] are polynomials of degree less than |I| with nilpotent coefficients
if l < 0, and the subring O∧

f I
with the series such that al(t) = 0 if l < 0, see

Sect. 1.7. We have Spec (K
√
f I

) = Spec (O∧
f I
) because K

√
f I

is a nilpotent extension
of O∧

f I
. Let i : Γ( f I) → Spec (O∧

f I
) be the natural map. Then

i−1O
Spec

(
K

√
f I

) = K
√

f I
.

The proposition follows. 
�
2.3.2. Definition. — Let I be a nonempty finite set.

(a) We define the contravariant functors λ0
X,CI , λX,CI from Sch to Sets as follows.

For a scheme S the set λ0
X,CI(S) consists of pairs ( f I, ρ) such that

f I ∈ HomSchk(S, CI) and ρ ∈ HomLrsk

((
Γ( f I),O

∧
f I

)
, X

)
.

The contravariant functor λX,CI is defined similarly but with O∧
f I

replaced by K
√

f I
.
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(b) If X is affine, the functor λ̃X,CI from Alg to Sets is such that the set λ̃X,CI(R)

consists of pairs ( f I, ρ) with f I being a scheme morphism from Spec R to CI and ρ an

algebra morphism from k[X] to H0(Γ( f I),K ∧
f I

).

The embeddings of sheaves of rings O∧
f I
↪→ K

√
f I
↪→ K ∧

f I
induce embeddings

of functors λ0
X,CI ↪→ λX,CI ↪→ λ̃X,CI .

2.3.3. Proposition. — Let X be a fixed scheme of finite type. The families of functors

(λ0
X,CI), (λ̃X,CI), (λX,CI) with I running over nonempty finite sets, form each a factorization

monoid in the category of functors.

Proof. — This is almost obvious by construction. Indeed, let J� I be a sur-
jection of nonempty sets. Then ∆( J/I)∗ of the Jth functor in any of the three
families takes S into the set of ( f J, ρ) where f J is a morphism S → C J which in
fact lie in the image of ∆( J/I). Thus f J comes from a uniquely defined I-tuple f I.
Now, Γ( f J) = Γ( f I) and so each of the three sheaves O∧,K ∧,K

√
associated to

them coincide. This gives the datum (a) of Definition 2.2.1. Similarly, j( J/I)∗ applied
to the Jth functor in any of the families, takes S into the set of ( f J, ρ) where
f J : S → U( J/I). But this means that Γ( f J) = ∐

i∈I Γ( f Ji) and hence on the level
of set of morphisms of Γ( f J) equipped with any of the three sheaves of rings, we
get a direct product. This gives the datum (b), i.e. the isomorphism κ( J/I). The
associativity of these isomorphisms is obvious. 
�

Therefore, to establish Theorem 2.2.4, we need only to prove the repre-
sentability of the functors λ0

X,CI, λX,CI and, when X is affine, of λ̃X,CI , as well
as to prove the formal smoothness of the structure morphisms of the representing
objects to CI.

2.4. The global space of germs of arcs

2.4.1. Proposition. — The functor λ0
X,CI is representable by a scheme L 0(X)CI of

infinite type over CI.

Proof. — For n > 0 let C(n) be the nth symmetric product of C. As C is
a smooth curve, C(n) is identified with the Hilbert scheme Hilbn(C) parametriz-
ing subschemes in C of finite length n. Explicitly, to a point of C(n), i.e. an
effective divisor D on C of degree n, there corresponds the subscheme ZD =
Spec (OC/OC(−D)). The following lemma is well-known.

2.4.2. Lemma. — Let T be a k-scheme, and X, Z be any T-schemes. Assume that

the morphism Z → T is finite, and that X → T is of finite type. The contravariant
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functor

Sch → Sets, S �→ HomT(S × Z, X),

is represented by a T-scheme Hom
T
(Z, X).

Let Z ⊂ C × C(n) be the total space of the family of the schemes ZD,
D ∈ C(n). We set Mapn(C, X) = HomC(n)(Z, X × C(n)). Let un

I be the composition of
the maps

CI → CI×[1,n+1] → C((n+1)|I|)

where the first map takes the I-uple (ci, i ∈ I) to the I×[1, n+1]-uple (ci, ci, . . . , ci,

i ∈ I), each ci counted n+1 times, and the second map is the projection from the
Cartesian product to the symmetric product. Let L 0

n (X)CI be the fiber product

L 0
n (X)CI = CI ×C((n+1)|I|) Map(n+1)|I|(C, X).

For any I-uple c ∈ CI we have inclusions of subschemes of C

u0
I (c) ⊂ u1

I (c) ⊂ u2
I (c) ⊂ · · ·

Thus we get a projective system of schemes

L 0
1 (X)CI ← L 0

2 (X)CI ← L 0
3 (X)CI ← · · ·

The morphisms in this projective system are affine because the embeddings un
I (c) ⊂

un+1
I (c) are purely nilpotent. Therefore we have the limit scheme

L 0(X)CI = lim←− n
L 0

n (X)CI .

We claim that the scheme L 0(X)CI represents the functor λ0
X,CI . Indeed a mor-

phism from a k-scheme S to L 0
n (X)CI is a pair ( f I, ρ) where f I : S → CI and

ρ : un
I ( f I) → X are morphisms of schemes. Here un

I ( f I) ⊂ S × C is the subscheme
of relative length n|I| over S corresponding to the S-point f I of CI via un

I . When
we pass to the limit we get lim←− n

Ou n
I ( f I) = O∧

f I
. 
�

2.4.3. Remark. — When X = Spec A is affine, the scheme L 0(X)C, being
the scheme of infinite jets of maps C → X, is the spectrum of a commutative
OC-algebra with connection along C (in fact, of the universal such algebra with
connection generated by OC ⊗k A). According to Beilinson and Drinfeld [BD1],
[G], commutative OC-algebras with connection are particular case of chiral algebras
which, in their turn, give factorization algebras. So our construction in this case
is a particular case of theirs.
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2.4.4. Proposition. — Let φ : X → Y be an étale morphism of schemes of finite type,

and π : C → D be a morphism of smooth curves. Then

(a) if π is étale then each morphism L 0
n (φ)πI : L 0

n (X)CI → L 0
n (Y)DI is étale,

(b) the square

L 0
n (X)CI → L 0

n (Y)DI

↓ ↓
L 0

0 (X)CI → L 0
0 (Y)DI,

as well as the analogous square for L 0(X)DI , L 0(Y)DI , is Cartesian.

Proof. — (a) Let S be any scheme. Given two compatible morphisms

α = (αI, ρα) : Sred → L 0
n (X)CI, β = (βI, ρβ) : S → L 0

n (Y)DI,

we must prove that there is a unique morphism γ = (γ I, ργ ) : S → L 0
n (X)CI

which splits the square

Sred → L 0
n (X)CI

↓ ↓
S → L 0

n (Y)DI,

into two commutative triangles. We have a commutative square

Sred
αI−→ CI

↓ ↓ πI

S
βI−→ DI.

(2.4.5)

Thus, π being étale, there is a unique morphism γ I : S → CI splitting (2.4.5) into
two commutative triangles. Let the subschemes

un
I (αI) ⊂ Sred × C, un

I (βI) ⊂ S × D, un
I (γ I) ⊂ S × C

be as in Sect. 2.4.2. We have a Cartesian square

un
I (αI) → Sred × C
↓ ↓

un
I (γ I) → S × C,

yielding a nilpotent extension of schemes un
I (αI) → un

I (γ I). This map fits into
a commutative diagram

un
I (αI)

ρα−→ X
↓ ↓ φ

un
I (γ I) −→ Y

(2.4.6)
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where the lower arrow is the composition of the chain of maps

un
I (γ I)

id×π−→un
I (βI)

ρβ−→Y.

Thus, φ being étale, there is a unique morphism ργ : un
I (γ I) → X splitting (2.4.6)

into two commutative triangles. We have proved (a).

(b) Let

ψ : L 0
n (X)CI → L 0

0 (X)CI ×L 0
0 (Y)DI L 0

n (Y)DI

be the morphism induced by the diagram. To prove that ψ is an isomorphism
we show that for every scheme S and every two compatible morphisms

α : S → L 0
0 (X)CI, β : S → L 0

n (Y)DI

there is a unique γ : S → L 0
n (X)CI such that ψ(γ) = (β, α). By definition

α = (αI, ρα) with αI : S → DI, ρα : un
I (αI) → Y morphisms of schemes. Similarly

β = (βI, ρβ) with βI : S → CI, ρβ : Γ(βI) → X. We look for γ = (γ I, ργ ) with
γ I : S → CI, ργ : un

I (γ I) → X.
We first prove the existence of γ . Take γ I = βI. Next, by compatibility of

α and β we have (id × π)(Γ(βI)) = Γ(αI), and this implies that id × π induces
a morphism � : un

I (βI) → un
I (αI). Composing � with ρα we get a diagram

Γ(βI) → X
↓ ↓

un
I (βI) → Y,

with horizontal arrows ρβ, ρα ◦ � and right vertical arrow π. This diagram is
commutative by compatibility of α and β. Now the left vertical arrow is a nilpotent
embedding, while the right vertical arrow is étale. Therefore there is a unique
morphism ργ : un

I (βI) → X splitting the diagram into two commutative triangles.
We now check the unicity of γ . That ψ(γ) = (β, α) means that, first, βI = γ I

and the diagram (whose horizontal maps are ρβ, ργ respectively)

Γ(βI) → X
↓ ↗

un
I (βI)

commutes and, second, αI = πI ◦ γ I and the diagram (whose horizontal maps are
φ ◦ ργ , ρα respectively)

un
I (γ I) → Y
↓ ↗

un
I (αI)
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commutes. The second condition determines φ◦ργ uniquely as ρα◦� . So ργ splits
the following square into two commutative triangles

Γ(βI) → X
↓ ↓

un
I (βI) → Y,

so it is unique because φ is étale. 
�

2.5. The meromorphic loop space of an affine scheme

Here we prove the ind-representability of the functor λ̃X,CI for X affine. We
first treat the case when X = A1. Let I be fixed. To every point (ci)i∈I ∈ CI we
associate the effective divisor

∑
ci on C. For every m, n ≥ 0 let Amn be the vector

bundle on CI whose fiber over (ci) is the vector space of global sections of the
coherent 0-dimensional sheaf

OC(m
∑

ci)/OC(−n
∑

ci)

on C. Thus rk(Amn) = |I|(m + n). Let Amn be the total space of the bundle Amn,
considered as an algebraic variety over CI. When m, n vary, these varieties form
a double inductive-projective system and the following is then obvious.

2.5.1. Proposition. — (a) For every m > 0 the limit lim←−
n

Amn exists as a scheme. The

ind-scheme L̃ (A1)CI = “ lim−→ m
” lim←− n

Amn represents the functor λ̃A1,CI .

(b) L̃ (A1)CI has a natural structure of a k-algebra object in the category of ind-schemes

over CI.

Proof. — A morphism of k-schemes Spec R → Amn is a pair of a morphism of
k-schemes f I : S → CI, and a morphism of sheaves of k-algebras OAmn ⊗OCI R → R
(here, the right hand side is identified with the constant sheaf on CI). There is
a canonical bijection

lim
−→ m

lim
←− n

Hom(OAmn ⊗OCI R, R) � H0(Γ( f I),Kf I)

� HomAlg(k[x], H0(Γ( f I),Kf I)).

Claim (a) is proved. In part (b), the variety Amn is not a ring scheme. However
there is an obvious map Amn × Am′n′ → Am+m′,n+n′ which induces a ring structure
on the limit of the ind-pro system. 
�

2.5.2. Proposition. — For any affine X of finite type the functor λ̃X,CI is representable

by an ind-scheme L̃ (X)CI over CI.
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Proof. — By part (b) of Proposition 2.5.1, for every f ∈ k[x1, . . . , xd] we have
a morphism of ind-schemes

L̃ ( f )CI : (
L̃ (A1)CI

)d → L̃ (A1)CI .

If now the scheme X is given in some Ad be equations fj(x1, . . . , xd) = 0, then
λ̃X,CI is represented by the ind-scheme L̃ (X)CI which is the intersection, in
(L̃ (A1)CI)d , of the preimages of 0 under the L̃ ( fj)CI , i.e. the inverse limit of
an obvious diagram in the category of ind-schemes. 
�

2.5.3. Corollary. — For an affine scheme X the functor λX,CI is represented by an

ind-scheme L (X)CI which is the inductive limit of the formal neighborhoods of L 0(X)CI in

the schemes of an inductive system for L̃ (X)CI .

2.6. The global loop space of an arbitrary scheme

Let now X be an arbitrary scheme of finite type. The (ind-)representability
of the functor λX,CI follows from Corollary 2.5.3 for the affine case and from the
general gluing properties of the functors summarized in the next proposition.

2.6.1. Proposition. — (a) The functor λX,CI is a sheaf on Sch.

(b) If U ⊂ X is an open subset, then the induced morphism of functors λU,CI → λX,CI

is open.

(c) Let {Uα}α∈A be an open covering of X. Then λX,CI is equal to the cokernel, in

the category Shf , of the pair of morphisms

∏

α,β

λUα∩Uβ,CI⇒
∏

α

λUα,CI.

Proof. — (a) For any f I : S → CI the graph Γ( f I) is identified with S, so
K

√
f I

can be regarded as a sheaf of local rings on S. So our statement follows
from the fact that the representable functor ηX on Lrs is a sheaf.

(b) Let S be a scheme and u a morphism of functors ηS → λX,CI . We need to
prove that the fiber product of ηS and λU,CI over λX,CI is represented by a scheme
S′ whose natural morphism to S is an open embedding. To see this, we view u as
an element of λX,CI(S), so u = ( f I, ρ) with f I : S → CI and ρ : (Γ( f I),K

√
f I

) → X.
Notice that Γ( f I) � S, so ρ gives, in particular, a continuous map of topological
spaces ρ̄ : S → X. It is clear then that the fiber product mentioned above is
represented by the open subset S′ = ρ̄−1(U) ⊂ S.

(c) This follows from (b) and from Lemma 1.4.7(c). 
�



234 MIKHAIL KAPRANOV, ERIC VASSEROT

An immediate corollary of Proposition 2.6.1 and Corollary 2.5.3 is that the
functor λX,CI is representable by an ind-scheme L (X)CI over CI. Then, Proposi-
tion 2.3.3 implies that the collections of schemes and ind-schemes L 0(X)CI and
L (X)CI are factorization monoids in the categories of schemes and ind-schemes.
To finish the proof of Theorem 2.2.4 it remains to establish part (b) of the fol-
lowing.

2.6.2. Proposition. — (a) If φ : X → Y, π : C → D are étale morphisms, then the

induced morphism L (φ)πI : L (X)CI → L (Y)DI is formally étale.

(b) If X is smooth then the morphism L (X)CI → CI is formally smooth.

Proof. — To prove Claim (b) it is sufficient to observe that if U ⊂ X, V ⊂ C
are affine open sets with étale maps U → Ad , V → A1 then the composition of
maps

L (U)VI → L (Ad)AI → AI

is formally smooth by Claim (a) and the statement (2.7.2) of the example below.
The proof of Claim (a) is similar to that of Proposition 1.5.4. Let S be

a scheme. We are given α : Sred → L (X)CI , β : S → L (Y)DI , and we look for
a unique γ which splits the square

Sred → L (X)CI

↓ ↓
S → L (Y)DI .

The morphism α consists of a pair (αI : Sred → CI, ρα : (Γ(αI),K
√
αI ) → X).

Similarly β consists of a pair (βI : S → DI, ρβ : (Γ(βI),K
√
βI

) → Y). We must

construct a pair (γ I : S → CI, ργ : (Γ(γ I),K
√
γ I ) → X). There is a map γ I

splitting the square

Sred → CI

↓ ↓
S → DI

into two commutative triangles, because πI is étale. We have a Cartesian square

Γ(αI) → Sred × C
↓ ↓

Γ(γ I) → S × C,
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which implies that we have a morphism of ringed spaces i : (Γ(αI),K
√
αI ) →

(Γ(γ I),K
√
γ I ) with nilpotent kernel. This map fits into a diagram of ringed spaces

(
Γ(αI),K

√
αI

) → (
Γ(γ I),K

√
γ I

)

↓ ↓
X → Y,

where the left vertical arrow is ρα : (Γ(αI),K
√
αI ) → X, the right vertical arrow is

the composition of j : (Γ(γ I),K
√
γ I ) → (Γ(βI),K

√
βI

) and ρβ : (Γ(βI),K
√
βI

) → Y,

the topological map underlying j is jtop = (idS × πI) : Γ(γ I) → Γ(βI) and the
structure morphism j∗top : K

√
βI

→ K
√
γ I is an isomorphism. Note that i yields an

isomorphism of underlying topological spaces. Let p be any point in Γ(αI). We
have a diagram of stalks

(
K

√
αI

)
p
← (

K
√
γ I

)
p

↑ ↑
OX,ρα( p) ← OY,φρα( p)

where the upper horizontal map is i∗, hence has a nilpotent kernel, and the lower
horizontal map is φ∗, hence is étale. Therefore there is a unique morphism of rings
OX,ρα( p) → (K

√
γ I )p for each p. Theses morphisms give a morphism of sheaves of

rings ρ−1
γ,topOX → K

√
γ I , i.e. a desired morphism of ringed spaces γ . 
�

2.7. Example: the cases C = A1 and X = Ad

Let C = Spec k[t]. If S = Spec R, a morphism f I = ( fi) : S → CI is the same
as a collection of elements bi = f ∗

i (t) ∈ R. Assume these have been fixed. Then
the subscheme un

I ( f I) ⊂ S × C from the proof of Proposition 2.4.1 is described
explicitly:

un
I ( f I) = Spec

(
R[t]/∏i∈I(t − bi)

n+1
)
.

This implies the following.

2.7.1. Proposition. — (a) The ring

H0
(
Γ( f I),O

∧
f I

) = lim
←− n

(
R[t]/∏i(t − bi)

n+1
)

is identified with the set of series
∑∞

l=0 al(t)
∏

i(t − bi)
l , where al(t) ∈ R[t] are polynomials

of degree less than |I| (such polynomials form a set of representatives for R[t]/∏
i(t − bi)).



236 MIKHAIL KAPRANOV, ERIC VASSEROT

(b) The ring H0(Γ( f I),Kf I) is identified with the set of series

∑

l�−∞
al(t)

∏

i

(t − bi)
l,

where al(t) are as in (a).

(c) The subring H0(Γ( f I),K
√

f I
) is identified with the series as in (b) but with the

condition that all the coefficients of the polynomials al(t), l < 0, are nilpotent elements of R.

For fixed bi ∈ R and a ∈ H0(Γ( f I),Kf I) we denote by al(t) ∈ R[t] the lth
coefficient of the series corresponding to a by Proposition 2.7.1(b) and by alν ∈ R,
ν = 0, . . . , |I| − 1, the νth coefficient of the polynomial al(t).

Assume moreover that X = Ad with coordinates x1, . . . , xd . In this case
we can give a completely explicit description of the ind-schemes L̃ (Ad)AI and
L (Ad)AI , using Proposition 2.7.1. Indeed,

λ̃Ad ,AI(R) = {
(bi, ρ) | (bi) ∈ RI, ρ : k[x] → H0(Γ( f I),Kf I)

}
.

The algebra homomorphism ρ is uniquely determined by the choice of

ρ(xj) =
∑

l�−∞

|I|−1∑

ν=0

a( j)
lν tν

∏

i∈I

(t − bi)
l, a( j)

lν ∈ R.

A choice of ρ(xj) is the same as a choice of elements a( j)
lν ∈ R. Thus the universal

case corresponds to bi, a( j)
lν , with i ∈ I, j ∈ [1, d ], l ∈ Z and ν ∈ [0, |I| − 1], being

independent variables, i.e.

L̃ (Ad)AI = lim
−→ N

Spec k
[
bi, a( j)

lν ; l ≥ −N
]
.

and

L (Ad)AI = lim
−→ N

Spf k
[
bi, a( j)

lν ; l ≥ 0
][[

a( j)
lν ;−N ≤ l ≤ −1

]]
.(2.7.2)

Notice further that

L 0
n (Ad)AI = Spec k

[
bi, a( j)

lν ; 0 ≤ l ≤ n
]
.

In particular, we have a natural morphism

θAd ,I : L (Ad)AI → L 0
0 (Ad)AI,(2.7.3)

taking all a( j)
lν , l �= 0, to 0.
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2.7.4. Proposition. — If X, C are affine and φ : X → Ad , π : C → A1 are étale

morphisms, there is a Cartesian diagram

L (X)CI → L (Ad)AI

↓ ↓
L 0

0 (X)CI → L 0
0 (Ad)AI .

Proof. — The proof is similar to that of Proposition 1.6.1(b). Consider the
diagram

L 0(X)CI → L 0
0 (X)CI

↓ ↓
L (X)CI → L 0

0 (Ad)AI

where the right vertical arrow is L 0
0 (φ)πI , the lower horizontal arrow is the

composition of θAd ,I : L (Ad)AI → L 0
0 (Ad)AI defined in (2.7.3) and L (φ)πI :

L (X)CI → L (Ad)AI . The upper horizontal arrow is the natural projection of
L 0(X)CI to the 0-th term of the projective system, see Sect. 2.4. Further, the left
vertical arrow is an inductive limit of nilpotent embeddings of schemes, while the
right vertical arrow is étale by Proposition 2.4.4. Therefore there exists a unique
morphism θφ,πI : L (X)CI → L 0

0 (X)CI splitting the diagram into two commutative
triangles.

Combining θφ,πI with L (φ)πI : L (X)CI → L (Ad)AI we obtain a morphism

ψ : L (X)CI → L 0
0 (X)CI ×L 0

0 (Ad )AI
L (Ad)AI .(2.7.5)

We claim that ψ is an isomorphism and to prove this we construct its inverse χ.
Let S be a scheme. A morphism from S to the RHS of (2.7.5) is a compatible
pair

(
α : S → L (Ad)AI, β : S → L 0

0 (X)CI

)
.

We construct a morphism χ(α, β) : S → L (X)CI . For this notice that α(Sred) ⊂
L 0(Ad)AI and β(Sred) ⊂ L 0

0 (X)CI . By Proposition 2.4.4(b) we have a map γ :
Sred → L 0(X)CI . The composition γ̃ of γ and the embedding L 0(X)CI →
L (X)CI gives a commutative diagram

Sred → L (X)CI

↓ ↓
S → L (Ad)AI .

Because L (φ)πI is formally etale by Proposition 2.6.2(a), we set χ(α, β) to be the
unique splitting of the diagram into two exact triangles. The verification that χ is
inverse to ψ is straightforward. 
�
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2.8. The global loop space as an ind-object

We first consider the case X = Ad, C = A1, employing the notations of
Sect. 2.7. Let ε = (ε−1, ε−2, . . . ) ∈ E be as in Sect. 1.6. Define the scheme

L ε(Ad)AI = Spec
(
k
[
bi, a( j)

lν

]
/
(
a( j)

l,ν1
· · · a( j)

l,ν1+εl
; l < 0

))
,

where j ∈ [1, d ], l ∈ Z, and ν1, . . . , ν1+εl ∈ [0, |I| − 1] are arbitrary for l < 0. It is
clear that

L (Ad)AI = “lim−→ ε

” L ε(Ad)AI .

Next, assume that X is an arbitrary smooth scheme of finite type and C is an
arbitrary smooth curve. Then X can be covered by open U = Spec A possessing
an étale map φ : U → Ad and similarly C can be covered by open V possessing
an étale π : V → A1. We set

L ε(φ)πI = L 0
0 (U)VI ×L 0

0 (Ad )AI
L ε(Ad)AI,

where the map L ε(Ad)AI → L 0
0 (Ad)AI is the restriction of θAd ,I defined in (2.7.3).

This is an affine scheme.

2.8.1. Proposition. — The ind-object “ lim
−→ ε

” L ε(φ)πI in Sch is isomorphic to

L (U)VI .

Proof. — This follows from the case X = Ad , C = A1, from Proposition 2.7.4,
and from the fact that fiber products commute with filtering inductive limits. 
�

2.9. The global loop space as an ind-pro-object

We keep the notation of Sect. 2.8. For ε ∈ E, n ≥ 1 consider the scheme

L ε
n (Ad)AI = Spec

(
k
[
bi, a( j)

lν ; l ≤ n
]
/
(
a( j)

lν1
· · · a( j)

l,ν1+εl

))
.(2.9.1)

We set

L ε
n (φ)πI = L 0

0 (U)VI ×L 0
0 (Ad )AI L ε

n (Ad)AI,(2.9.2)

where the map L ε
n (Ad)AI → L 0

0 (Ad)AI is defined as θAd ,I in (2.7.3).

2.9.3. Proposition. — (a) The scheme L ε
n (φ)πI is of finite type and is a nilpo-

tent extension of L 0
n (U)VI . The second projection L ε

n (φ)πI → L ε
n (Ad)AI is étale. Moreover

L ε(φ)πI = lim
←− n

L ε
n (φ)πI .
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(b) The schemes L ε
n (φ)πI form a double ind-pro-system with Cartesian squares (n′ ≥ n,

ε ≤ ε′)

L ε
n′(φ)πI ↪→ L ε′

n′ (φ)πI

↓ ↓
L ε

n (φ)πI ↪→ L ε′
n (φ)πI

where the vertical arrows are smooth affine morphisms.

(c) The ind-pro-object “ lim−→ ε

” “lim←− n
”L ε

n (φ)πI is independent, up to isomorphism, on

φ, π.

Proof. — The proof of (a) is similar to that of Proposition 2.8.1. In order to
prove that L ε

n (φ)πI → L ε
n (Ad)AI is étale, due to (2.9.2) it is sufficient to check that

the morphism L 0
0 (φ)πI : L 0

0 (U)VI → L 0
0 (Ad)AI is étale. This is a consequence of

Proposition 2.4.4(a).
Claim (b) is obvious in the case φ = id , π = id . The general case follows

from (2.9.2) since the base change of a smooth affine morphism is still smooth
affine, and the base change of a Cartesian square is Cartesian.

(c) The pro-object “lim←− n
”L ε

n (φ)πI in Pro(Aff ft) can be identified, due to

Proposition 1.1.2, with the scheme L ε(φ)πI . The ind-object “ lim−→ ε

” L ε(φ)πI in

Ind(Pro(Aff ft)) can then be identified with the ind-scheme L (U)VI . 
�

3. D-modules over ind-schemes

3.1. Reminder on D-modules

From now on we assume that char(k) = 0. Fix a k-scheme S of finite type.
Let Schft

S denote the category of S-schemes of finite type. For any such scheme
X let OX be the category of all quasi-coherent OX-modules. For a morphism
f : X → Y in Schft

S we denote by f∗, f ∗ the functors of the direct and inverse
images on OX, OY. If f is a closed embedding and E ∈ OY, let

f !E = f −1HomOY( f∗OX,E )(3.1.1)

be the inverse image of the subsheaf of E consisting of sections supported scheme-
theoretically on f (X) ⊂ Y.

For X ∈ Schft
S let DX/S be the category of coherent right DX/S-modules

on X. It is defined as follows, see [BD2, Sect. 7.10] or [G, Sect. 0.2.2]. If X
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is smooth over S, then we have the sheaf of rings DX/S of differential operators
from OX to itself which are linear over OS. An object of DX/S is then a coher-
ent sheaf of right DX/S-modules. It is quasicoherent over OX. Next, if X admits
a closed embedding into a smooth S-scheme Y, one defines DX/S as DY/S,X, the
full subcategory of DY/S consisting of modules supported (as sheaves) on X. This
definition is independent on the choice of embedding: if X is embedded into two
smooth S-schemes Y1 and Y2, then one has an equivalence DY1/S,X → DY2/S,X

which is unique up to a unique isomorphism of functors. Now, given any X, an
embedding into a smooth scheme always exists locally on X. Therefore we have
an open covering X = ⋃

Uα, the categories DUα/S, DUαβ/S etc. and the obvi-
ous restriction functors among them. One then defines an object M of DX/S as
a collection of objects Mα ∈ DUα/S together with isomorphisms of their images
in DUαβ/S whose images in Mor(DUαβγ /S) satisfy the obvious compatibility condi-
tions.

Given X ∈ Schft
S and M ∈ DX/S, we define a sheaf MO ∈ OX as follows.

If X admits a closed embedding i : X → Y with Y smooth over S and M is
represented by a sheaf of right DY/S-modules supported on X (which we also de-
note M ) then we set MO = i!M . This definition is easily seen to be independent
on the choice of Y. In the case of a general X one defines MO by gluing the
sheaves given by above procedures on open parts of X admitting embeddings into
smooth schemes.

Any smooth morphism f : X → Y in Schft
S induces the functor of inverse

image f • : DY/S → DX/S. If ωX/Y is the relative canonical bundle, then

f •(M )O = f ∗(MO) ⊗OX ωX/Y.

We have then a canonical embedding

MO ↪→ f∗
(
( f •M )O ⊗ ω−1

X/Y

)
.(3.1.2)

If f : X → Y is a closed embedding in Schft
S, we have an exact functor of direct

image f• : DX/S → DY/S. In the particular case when X, Y are smooth over S,
we can view M ∈ DX/S as a sheaf on X and we have

f•(M ) = f∗(M ⊗DX/S DX→Y).

Here DX→Y is the sheaf of differential operators from f −1OY to OX linear over OS,
see [BB], [G].

For a general closed embedding f we have a canonical embedding

MO � f !f•(M ) ↪→ f −1f•(M ).(3.1.3)
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For example, if X is non-reduced and i : Xred ↪→ X is the reduced part, then i•
identifies DXred/S with DX/S.

We have the following base change property.

3.1.4. Lemma. — Suppose that in a Cartesian diagram of S-schemes of finite type

X
i
↪→ X′

f

�


� f ′

Y
j
↪→ Y′

the morphisms f , f ′ are smooth, i, j are closed embeddings. Then for any M ∈ DY/S, we have

i• f •M � f ′•j•M .

Note that if f is a closed embedding of smooth schemes over S, the inverse
image functor f • is still defined. Furthermore, the projection formula holds for
right D-modules. More precisely, if f is a closed or open embedding of smooth
S-schemes and M ∈ DX/S, N ∈ DY/S, then there is a canonical isomorphism

f•
(

f •(N ) ⊗OX M ⊗OX ω−1
X

) � N ⊗OY f•(M ) ⊗OY ω−1
Y .

3.2. D-modules over pro-schemes

3.2.1. Definition. — (cf. [Kap]) Let A be a filtering poset and (Cα)α∈A be an

inductive system of categories labelled by A. In other words, for each α ≤ β we have a functor

iαβ : Cα → Cβ, for each α ≤ β ≤ γ a natural isomorphism iβγ ◦ iαβ ⇒ iαγ and these

isomorphisms satisfy the obvious coherence conditions for any α ≤ β ≤ γ ≤ δ.

The inductive limit 2lim−→α

Cα is the category whose objects are pairs (α, xα), α ∈ A,

xα ∈ Ob(Cα) and

Hom((α, xα), (β, yβ)) = lim−→ γ≥α,β

HomCα
(iαγ (xα), iβγ ( yβ)).

3.2.2. Definition. — A S-scheme X∞ (possibly of infinite type) is called compact if it

can be represented as lim←− α

Xα where (Xα)α∈A is a filtering projective system over Schft
S such

that all the maps pαβ : Xβ → Xα, α ≤ β, are affine morphisms.

3.2.3. Proposition. — A scheme is compact if and only if it is quasi-compact. The

category of compact k-schemes can be identified with a full subcategory in Pro(Schft
S), via

X∞ = lim←− α

Xα �→ “lim←− α

” Xα.
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Proof. — This follows from [TT, Appendix C, Theorem C9]. 
�
3.2.4. Definition. — (a) A compact S-scheme X∞ is called smooth if it can be

represented as lim
←− α

Xα for some (Xα) as in Definition 3.2.2 with the extra property that each

Xα is a smooth S-scheme and each pαβ is a smooth affine morphism.

(b) X∞ is called almost smooth if it can be represented as lim←− α

Xα for some (Xα) as

in Definition 3.2.2 with the extra property that each pαβ is a smooth affine morphism.

3.2.5. Example. — For any smooth X ∈ Schft
k , the scheme L 0(X) is smooth

and compact over Spec (k), and the scheme L 0(X)CI is smooth and compact
over CI. Moreover, the schemes L ε(φ), L ε(φ)πI from Proposition 1.6.3 and
Sect. 2.8 are almost smooth.

Let q : X∞ → S be a compact almost smooth S-scheme and (qα : Xα → S)

be as in Definition 3.2.4. We have two inductive systems of categories (OXα
, p∗

αβ),
(DXα/S, p•

αβ). We set DX∞/S = 2lim−→α

DXα/S.

3.2.6. Proposition. — The category DX∞/S is independent, up to canonical equivalence

of categories, on the choice of (Xα) as in Definition 3.2.4.

Proof. — We first consider the case when X∞ is smooth, so that each Xα

is smooth over S. Let D�
Xα/S be the category of left coherent DXα/S-modules. We

have an equivalence

D�
Xα/S → DXα/S, N �→ N ⊗ ωXα/S.

Let also DX∞/S be the sheaf of rings of differential operators on X∞ linear over
OS. It is equipped with the natural topology, see [KT, Sect. 1.7]. Using the pull-
back of left D-modules (which is the same as for quasi-coherent sheaves) we get
an inductive system of categories D�

Xα/S. It is proved in [KT, Sect. 1.9], that
2lim−→α

D�
Xα/S is identified with the category of discrete, locally finitely generated qua-

sicoherent sheaves of left DX∞/S-modules, and thus is independent on the choice
of (Xα). Therefore the category 2lim−→α

DXα/S, being equivalent to the previous one,

is also independent.
Now assume that X∞ is almost smooth. Fix α0 ∈ A. Using a covering of Xα0

by affine open subsets, we reduce to the case when Xα0 (and thus X∞) is affine.
We can also assume that α0 is the minimal element in A. Let us embed Xα0

as a closed subscheme into a smooth affine S-scheme Yα0 . We can then extend
each pα0,α : Xα → Xα0 to a smooth map qα0,α : Yα → Yα0 . We get then a smooth
compact scheme Y∞ = lim←− α

Yα containing X∞ as a closed subscheme. The category
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2lim−→α

DXα/S is then identified with the category of sheaves of discrete locally finitely

generated left DY∞/S-modules supported on X∞. 
�

Informally, an object of DX∞/S is a “D-module pulled back from some Xα”.
Let pα : X∞ → Xα be the projection. Let p•

α : DXα/S → DX∞/S, Mα �→ (α,Mα)

be the canonical functor. If the compact S-scheme X∞ is smooth, there is the
functor

DX∞/S → 2lim−→ α

OXα
⊂ OX∞,

p•
αMα �→ (

p•
αMα

)O := (
(p•

αβMα)
O ⊗OXβ

ω−1
Xβ

)
β≥α

.

In particular, we can associate to any M ∈ DX∞/S its “space of global sections”,
i.e., the direct image to S as an O-module. This is a quasi-coherent sheaf on S
such that if M = p•

αMα then

q∗(M ) := q∗(MO) = lim
−→β≥α

(qβ)∗
(
Xβ, (p•

αβMα)
O ⊗OXβ

ω−1
Xβ

)
.(3.2.7)

When S = Spec k, we write Γ(X∞,M ) for q∗(M ).

3.3. D-modules over ind-schemes

3.3.1. Definition. — Let A be a filtering poset and (Cα)α∈A be a projective system of

categories labelled by A. In other words, for each α ≤ β we have a functor jαβ : Cβ → Cα

and for any α ≤ β ≤ γ a natural isomorphism jαβ ◦ jβγ ⇒ jαγ satisfying the obvious

compatibility conditions.

The projective limit 2lim←−Cα is the category whose objects are systems consisting of objects

xα ∈ Cα given for all α ∈ A and isomorphisms jαβ(xβ) → xα given for each α ≤ β and

satisfying the compatibility condition for each α ≤ β ≤ γ . Morphisms are defined in the obvious

way.

3.3.2. Definition. — Let X∞ be an ind-S-scheme. We say that X∞ is discrete over

S if it can be represented as X∞ = “ lim
−→α

” Xα where (Xα)α∈A is a filtering inductive system

over Schft
S such that each map iαβ : Xα → Xβ, α ≤ β, is a closed embedding.

3.3.3. Example. — For any φ, U as in Sect. 1.7 the ind-scheme Ln(φ) is
discrete over Spec (k).

Let q : X∞ → S be a discrete ind-scheme over S and (qα : Xα → S) be
as in Definition 3.3.2. We have then the projective system of categories (OXα , i!αβ).
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We define OX∞ = 2lim←−OXα . If (E α, γαβ : E α → i!αβE
β) is an object of OX∞ , then

the direct images qα
∗(E

α) form an inductive system and we define

q∗E = lim−→α

qα
∗(E

α).

When S = Spec (k) we write Γ(X∞,E ) for q∗E .
We will also use the category ÔX∞ which is the limit of the projective system

of categories (OXα, i∗αβ). There is a functor

OX∞ × ÔX∞ → OX∞, (E , F̂) �→ E ⊗ F̂ = (
E α ⊗OXα F̂α

)
.(3.3.4)

See [BD2, Sect. 7.11.4] for more details on OX∞ , ÔX∞.
We set also DX∞/S = 2lim−→α

(DXα/S, iαβ•). Let iα be the embedding Xα ↪→ X∞.

Let iα• : DXα/S → DX∞/S, M α �→ (α,M α) be the canonical functor. It is exact.
There is also the functor

DX∞/S → OX∞, M = iα•M α �→ MO = (
iα•M α

)O := (
iαβ•M α

)O

β≥α
,(3.3.5)

see (3.1.3). In particular, to any M ∈ DX∞/S we can associate its direct image
to S: if M is represented by M α ∈ DXα/S, then

q∗(M ) := q∗(MO) = lim
−→β≥α

qβ
∗
((

iαβ•M α
)O)

.

3.3.6. Remark. — (a) We have an exact functor

2lim−→α

OXα → OX∞, (α,E α) �→ (
iαβ∗E α

)
β≥α

.

The two categories are not equivalent in general.
(b) The category OX∞ is closed by inductive limits.
(c) If the ind-scheme X∞ is not discrete anymore, the OXα-module i!αβE

β

may not be quasi-coherent. However the category OX∞ is still well-defined.

Let X∞ = “lim−→α

” Xα be a formally smooth (over S) discrete ind-S-scheme.

Following [BD2, Proposition 7.11.8] we define the tangent sheaf of X to be the
object Θ̂X∞/S ∈ ÔX∞ such that

E ⊗ Θ̂X∞/S = lim−→α

Hom
(
Ω1

Xα/S,E
α
)
, ∀E ∈ OX∞ .

Denoting iα : Xα → X∞ the canonical embedding, we have that iα∗Θ̂X∞/S is a lo-
cally free OXα-module (possibly of infinite rank), see [BD2, Proposition 7.12.13].
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3.4. D-modules over ind-pro-schemes

The following definition is inspired by the paper of K. Kato [Kat].

3.4.1. Definition. — An ind-S-scheme X∞
∞ is called locally compact if it can be

represented as

X∞
∞ = lim−→α∈A

lim←− β∈B
Xα

β

where (Xα
β) is a bi-filtering ind-pro-system over Schft

S with the following properties:

(1) For each β ∈ B and α ≤ α′ ∈ A the structure map iαα′
β : Xα

β → Xα′
β is a closed

embedding.

(2) For each α ∈ A and β ≤ β′ ∈ B the structure map pα
ββ′ : Xα

β′ → Xα
β is an affine

morphism.

(3) For each α ≤ α′ ∈ A and β ≤ β′ ∈ B the commutative square

Xα
β′ ↪→ Xα′

β′
↓ ↓

Xα
β ↪→ Xα′

β

is Cartesian.

We denote by LcS ⊂ IschS the full subcategory formed by locally compact ind-S-schemes.

Let (Xα
β) be an ind-pro-system as above. The maps pα

ββ′ being affine, the
projective limit lim←− β

Xα
β is represented by a compact scheme (possibly of infinite

type) denoted by Xα
∞. Similarly, we have the discrete ind-schemes X∞

β = “ lim−→α

” Xα
β.

By definition X∞
∞ = “ lim−→α

” Xα
∞.

3.4.2. Proposition. — For an ind-pro-system satisfying the conditions of Definition 3.4.1

we also have X∞
∞ = lim←− β

X∞
β = lim←− β

“lim−→α

” Xα
β, the projective limit taken in the category of

ind-schemes.

Proof. — By passing to the functors (ind-)represented by our (ind-)schemes,
we reduce the statement (a) to the following lemma whose proof we leave to the
reader. 
�

3.4.3. Lemma. — Let (Tα
β)α∈A,β∈B be a bi-filtering ind-pro-system of sets. Then there

is a canonical map

c : lim−→α

lim←− β

Tα
β → lim←− β

lim−→α

Tα
β.

If, moreover, all the squares in (Tα
β) are Cartesian, then c is an isomorphism.
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3.4.4. Definition. — We say that a locally compact ind-S-scheme X∞
∞ is smooth

(over S) if it admits a presentation as in Definition 3.4.1 where:

(1) All the pα
ββ′ are smooth morphisms of relative dimension dββ′ (independent on α).

There is an element (α, β) ∈ A × B such that Xα
β is smooth over S.

(2) All the ind-S-schemes X∞
β = “lim

−→ α

” Xα
β are formally smooth over S.

Let X∞
∞ be a locally compact smooth ind-S-scheme and (Xα

β) be an ind-
pro-system as in Definitions 3.4.1, 3.4.4. By Lemma 3.1.4, we have then a double
inductive system of categories (DXα

β/S, iαα′
β• , pα•

ββ′) and we define the category of (right)
D-modules on X∞

∞ to be DX∞∞/S = 2lim−→α,β

DXα
β/S.

3.4.5. Proposition. — The category DX∞∞/S is independent, up to canonical equivalence,

on the choice of (Xα
β) as in Definition 3.4.4.

Proof. — Each Xα
∞ = lim←− β

Xα
β being almost smooth, the category DXα∞/S =

2lim−→β

DXα
β/S depends, by Proposition 3.2.6, on Xα

∞ only. Next, for α < α′ the

functor DXα∞/S → DXα′
∞/S depends only on the morphism Xα

∞ → Xα′
∞. This is seen

by the same argument as in Proposition 3.2.6. Let (X̃α̃

β̃
) be another ind-pro-system

as in Definition 3.4.4 representing X∞
∞. So X∞

∞ = “ lim−→α

” Xα
∞ = “lim−→ α̃

” X̃α̃
∞. The

second equality (of ind-objects) means that each Xα
∞ is included into some X̃α̃

∞ as
a closed subset and vice versa. This means that DXα∞/S is identified with a full
subcategory in some DX̃α̃∞/S and vice versa. Therefore their 2-limits are identified.


�
3.4.6. Remark. — Although we have defined DX∞∞/S as an abstract category,

it is impossible, in general, to view its objects as sheaves in a more conventional
sense. For example, it is impossible to associate to an object of DX∞∞/S its direct
image onto S. Indeed, assume that S = Spec (k) for simplicity. If such an object
M is represented by some M α

β ∈ DXα
β
, then the spaces of global sections of the

coherent sheaves
(
pα′•
ββ′iαα′

β• M α
β

)O = (
pα′∗
ββ′

(
iαα′
β• M α

β

)O) ⊗O
Xα′

β′
ωXα′

β′/Xα′
β

∈ OXα′
β′

do not form an inductive system because of the twist by the relative canonical
class. For a compact smooth pro-scheme it is possible to get around this problem
by untwisting by the absolute canonical classes of the terms of the projective sys-
tem, see (3.2.7). To achieve the same effect in the ind-pro-case one would need
to make sense of the (absolute) canonical class of the ind-scheme X∞

β , i.e. of the
determinant of the (possibly infinite-dimensional) vector bundle Θ̂X∞

β
. The impossi-
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bility of doing this (“the determinantal anomaly”) is precisely the reason why there
is no natural space Γ(X∞

∞,M ).

3.4.7. Example. — (a) If X is a smooth affine variety admitting an étale
map to Ad , then the ind-scheme L (X) is locally compact and smooth. Thus, the
category DL (X) is well-defined. If X is no longer affine it admits a covering by
affine open sets Uα admitting an étale map to Ad . Then, an object of DL (X) is
a sheaf on L (X) whose restriction to L (Uα) is an object of DL (Uα).

(b) If X is smooth then L (X)CI → CI is a locally compact and smooth
ind-scheme over CI.

(c) If X is a smooth affine variety, then the ind-scheme L̃ (X) is locally
compact and formally smooth. But we do not know if it is smooth in the sense
of Definition 3.4.4.

4. De Rham complexes on ind-schemes

As in Sect. 3, let S be a k-scheme of finite type.

4.1. Reminder on the De Rham complexes

Let q : X → S be a smooth S-scheme of finite type and M ∈ DX/S be
a right DX/S-module. Its de Rham complex DR(M ) is given by

DRi(M ) = HomOX

(
Ω−i

X/S,M
) = M ⊗OX

∧−i
ΘX/S, i ≤ 0.

If (xj) is a relative étale coordinate system on an open part of X, then the differ-
ential is given by the formula d = ∑

∂xj ⊗ dxj where dxj ∈ Ω1
X is considered as the

contraction operator
∧−i

ΘX → ∧−i−1
ΘX. We denote by DR(M ) = q∗(DR(M ))

the complex of direct images.
Let i : X → Y be a closed embedding of smooth S-schemes and M ∈

DX/S. The embedding (3.1.3) induces an embedding of the de Rham complexes
DR(M ) ↪→ i∗DR(i•M ) and therefore an embedding of the complexes of direct
images

DR(M ) ↪→ DR(i•(M )).(4.1.1)

Let p : X → Y be a smooth morphism of smooth S-schemes of relative dimension
d and M ∈ DY/S. Let q : X → S, r : Y → S be the structure maps. The em-
bedding (3.1.2) induces an embedding of de Rham complexes which now involves
a shift in the degrees:

p∗DR(M ) ↪→ DR(p•(M ))[d ].(4.1.2)
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It is induced by the map

p∗ ∧i
ΘY/S → ωX/Y ⊗OX

∧i+d
ΘX/S.

In particular, we get an embedding of the complexes of direct images

DR(M ) ↪→ DR(p•M )[d ].(4.1.3)

Note that without passing to the de Rham complexes there is no embedding of
r∗M into q∗p•M . The map (4.1.3) can be seen as a D-module manifestation of
the fact that “fermions cancel the determinantal anomaly”.

4.1.4. Example. — Take S = Spec (k). Let Y = Ad with coordinates a1, . . . , ad

and i : X ↪→ Y be the embedding of the affine subspace {a1 = . . . = al = 0},
l ≤ d . The algebra Γ(Y,DY) is just the Heisenberg (Weyl) algebra DY generated
by a1, . . . , ad and a∗

1, . . . , a∗
d subject to the relations

[am, an] = [a∗
m, an] = 0, [a∗

m, an] = δmn.

The space of global sections Γ(Y, i•ωX) is the right DY-module

ωXY = DY/(a∗
m, an; n ≤ l < m)DY.

Let also CY be the Clifford algebra generated by odd elements b1, . . . , bd , b∗
1, . . . , b∗

d
subject to the relations

[bm, bn]+ = [b∗
m, b∗

n ]+ = 0, [b∗
m, bn]+ = δmn.

Denote CDY = CY ⊗k DY the tensor product algebra. Then the global de Rham
complex of i•ωX is identified with the right CDY-module

DRXY = CDY/(a∗
m, an, bp; n ≤ l < m, p = 1, . . . , d)CDY.

4.2. De Rham complexes for ind-schemes

Let X∞ = “lim−→α∈A
” Xα be a formally smooth discrete ind-S-scheme with

structure maps q, qα. Denote by iα : Xα ↪→ X∞ the canonical embedding. The
considerations of Sect. 4.1 generalize easily to give the global de Rham complex
of any M ∈ DX∞/S. Explicitly, let M have the form iα•M α. Then the ith term
of its de Rham complex is

DRi(M ) = q∗
(
MO ⊗ ∧−i

Θ̂X∞/S

) = lim−→ α′≥α

qα′
∗ Hom

(
Ω−i

Xα′
/S

,
(
iαα′
• M α

)O)
.(4.2.1)

Here MO is defined in (3.3.5).
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4.2.2. Proposition. — Let p∞ : X∞ → Y∞ be a morphism of formally smooth discrete

ind-S-schemes which is smooth of relative dimension d . Then for any M ∈ DY∞/S we have

an embedding of the shifted de Rham complexes DR(M ) ↪→ DR(p∞•M )[d ].
Proof. — The conditions on p∞ in the proposition are equivalent to the

following: we can represent X∞ = “lim−→α∈A
” Xα, Y∞ = “lim−→α∈A

” Yα with the same

filtering poset A, and we can represent p∞ by a morphism of inductive systems
(pα : Xα → Yα) of S-schemes such that for each α ≤ β the arising commutative
square

Xα
iαβ

↪→ Xβ

pα ↓ ↓ pβ

Yα
jαβ

↪→ Yβ

is Cartesian, and each pα is smooth of relative dimension d . Then p∞ is formally
smooth. By [BD2, Lemma 7.12.13] we have an exact sequence

0 → Θ̂X∞/Y∞ → Θ̂X∞/S → p∞∗Θ̂Y∞/S → 0.(4.2.3)

Moreover

(iβ)∗(Θ̂X∞/Y∞) = ΘXβ/Yβ .(4.2.4)

Let M have the form jα•M α, where jα : Yα ↪→ Y∞ is the canonical embedding.
Then p∞•M = iα•pα•M α. The base change for Cartesian squares gives

DRi(p∞•M )[d ] = lim−→β≥α

qβ
∗
((

pβ•jαβ
• M α

)O ⊗OXβ
iβ∗ ∧−i−d

Θ̂X∞/S

)

= lim−→β≥α

qβ
∗
(
pβ∗( jαβ

• M α
)O ⊗OXβ

ωXβ/Yβ

⊗OXβ
iβ∗ ∧−i−d

Θ̂X∞/S

)
,

see Lemma 3.1.4. Let r : Y∞ → S, rα : Yα → S be the structure maps. By (4.2.3),
(4.2.4) there is an embedding

pβ∗jβ∗∧−i
Θ̂Y∞/S = iβ∗p∞∗∧−i

Θ̂Y∞/S → ωXβ/Yβ ⊗OXβ
iβ∗∧−i−d

Θ̂X∞/S.

Hence there is an embedding

DRi(M ) = lim−→β≥α

rβ
∗
((

jαβ
• M α

)O ⊗OYβ
jβ∗ ∧−i

Θ̂Y∞/S

) →

→ lim−→ β≥α

qβ
∗
(
pβ∗(( jαβ

• M α
)O ⊗OYβ

jβ∗ ∧−i
Θ̂Y∞/S

)) → DRi(p∞•M )[d ].

We are done. 
�
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4.3. De Rham complexes for ind-pro-schemes

Let X∞
∞ be a locally compact smooth ind-S-scheme and M be an object of

DX∞∞/S. We fix an ind-pro-system (Xα
β) for X as in Definitions 3.4.1, 3.4.4. We have

then the formally smooth discrete ind-schemes X∞
β and projections pβ : X∞

∞ → X∞
β .

We also have schemes Xα
∞ and embeddings iα : Xα

∞ → X∞
∞. Let also iαβ : Xα

β →
X∞

β , pα
β : Xα

∞ → Xα
β be the natural embeddings and projections. The category

DX∞∞/S being the double direct limit of DXα
β/S, we can think of M as being of

the form p•
βiαβ•M

α
β = iα• pα•

β M α
β for some M α

β ∈ DXα
β/S. Recall that dββ′ denotes the

relative dimension of the smooth morphism pα
ββ′ : Xα

β′ → Xα
β, β ≤ β′. We choose

numbers dβ, β ∈ B, such that dββ′ = dβ − dβ′ (this can be done uniquely up to an
overall constant). Set Mβ = iαβ•M

α
β ∈ DX∞

β /S. Proposition 4.2.2 implies then that
the shifted global de Rham complexes DR(p•

ββ′Mβ)[dβ′] form an inductive system
of complexes of vector spaces and we define the de Rham complex of M to be

DR(M ) = lim−→β′≥β

DR(p•
ββ′Mβ)[dβ′ ].(4.3.1)

Explicitly, by (4.2.1) we have

DRi(M ) = lim−→β′≥β

lim−→α′≥α

qα′
β′∗Hom

(
Ω

−i−dβ′
Xα′

β′/S
,
(
pα′•
ββ′iαα′

β• M α
β

)O)
,(4.3.2)

where qα′
β′ : Xα′

β′ → S is the structure morphism.

4.3.3. Proposition. — DRi(M ) depends only on X∞
∞ and M as an object of DX∞∞/S,

but not on the choice of a system (Xα
β).

Proof. — Interchanging the two inductive limits and using base change for
Cartesian squares in the diagram (Xα

β), we can write

DRi(M ) = lim−→α′≥α

lim−→β′≥β

qα′
β′∗Hom

(
Ω

−i−dβ′
Xα′

β′/S
,
(
iαα′
β′•pα•

ββ′M α
β

)O)
.

For any α′ ≥ α the limit over β′ depends only on the scheme Xα′
∞ and the object

M α′ = pα′•
β iαα′

β• M α
β ∈ DXα′

∞/S.

Therefore the limit over α′ ≥ α of the limits above depends only on the ind-object
“lim

−→α′≥α

” Xα′
∞ (which is X∞

∞) and the object

iα′•M α′ ∈ 2lim
−→ α′≥α

DXα′
∞/S = DX∞∞/S,

which is M . 
�
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4.4. The de Rham complexes on L (X)

We now specialize to the particular case X∞
∞ = L (X) where X is a smooth

affine algebraic variety over k admitting an étale map φ to Ad . In this case A = E,
B = N with the terms of the ind-pro-systems being L ε

n (φ), see Corollary 1.6.7.
We take S = Spec (k). Given an object M ∈ DL (X) we associate to it its de Rham
complex DR(M ) as in Sect. 4.3. Note that it is independent on the choice of an
étale map to Ad because two such maps lead to isomorphic ind-pro-objects in the
category Schft, see Proposition 1.7.1(c).

Let now X be an arbitrary smooth algebraic variety over k and M be an
object of DL (X). By covering X with affine open U admitting étale maps to Ad ,
we get a complex of sheaves U �→ DR(M |L (U)) which we denote DR(M ). Recall
that we have the diagram

X
p←− L 0(X)

i
↪→ L (X).(4.4.1)

Thus, every right DX-module N gives an object i•p•N of DL (X). We write
CDR(N ) for DR(i•p•N ) and call it the chiral de Rham complex of N . In par-
ticular, we write CDRX for DR(i•p•ωX). More generally, denoting pn : L 0(X) →
L 0

n (X) the projection, we can start with any right D-module N on the algebraic
variety L 0

n (X): then i•p•
nN is an object of DL (X) and we can form its de Rham

complex. It is a complex of sheaves on X.

4.4.2. Example. — Let X = A1. Then the complex of global sections of
CDRX, i.e., the complex DR(i•p•ωA1) can be found explicitly as follows.

Let V be the topological k-vector space k((t)) and V∗ be its topological dual
(over k). Denote by = 〈l, v〉 the canonical pairing of l ∈ V∗ and v ∈ V.

Then V∗ can be identified with k((t))dt, the space of 1-forms, the pairing
between V and V∗ being ( f , ω) → res( f · ω). Let D be the Heisenberg algebra
generated by V∗ and V with [l, v] = 〈l, v〉 and C be the Clifford algebra generated
by V∗, V with [l, v]+ = 〈l, v〉. Denote CD = C ⊗k D. This is a certain completion
of the algebra C̃D generated by symbols an, bn, a∗

n , b∗
n for n ∈ Z subject to the

relations

[am, an] = [a∗
m, a∗

n ] = 0, [a∗
m, an] = δm,−n,

[bm, bn]+ = [b∗
m, b∗

n ]+ = 0, [b∗
m, bn]+ = δm,−n,

[am, bn] = [a∗
m, bn] = [am, b∗

n ] = [a∗
m, b∗

n] = 0.

More precisely, we write a generic element of V as
∑

m amtm, so am, a∗
m are elements

of D. Similarly, writing a generic element of V∗ as
∑

m bmtm−1dt we view bm, b∗
m as

elements of C. Let Ṽ = k[t, t−1], Ṽ∗ = k[t, t−1]dt. Then C̃D = C̃ ⊗k D̃, where C̃ is
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the Clifford algebra generated by Ṽ∗, Ṽ and D̃ is the Heisenberg algebra generated
by Ṽ, Ṽ∗. Let C̃D

+ ⊂ C̃D be the right ideal generated by linear combinations of
an, bn, a∗

n+1, b∗
n+1 with n ≥ 0, and CD+ ⊂ CD be the ideal generated by possibly

infinite linear combinations with the above property. We denote Vac = CD/CD+

and Ṽac = C̃D/C̃D
+

the corresponding vacuum modules.

4.4.3. Proposition. — (a) The natural morphism Ṽac → Vac is an isomorphism.

(b) The de Rham complex DR(i•p•ωA1) is identified (as a vector space) with Vac.

4.4.4. Remark. — Although this description is similar to Example 4.1.4, there
is a difference: here the ideal is generated by b∗

n+1, bn for n < 0 while in Ex-
ample 4.1.4 all the bn are in the ideal. This is because in our present situation
we are dealing with a semiinfinite de Rham complex obtained as an inductive
limit of usual de Rham complexes with respect to maps shifting the degrees.

Proof. — (a) The quotient k((t))/k[[t]] is identified with k[t, t−1]/k[t]. The
ideal CD+ includes the Taylor series part of V, V∗ ⊂ D and V, V∗ ⊂ C. So
CD/CD+ is identified with C̃D/C̃D

+
.

(b) To simplify, we write L = L (A1), etc. We have

L ε
M = Spec

(
k
[
al;−Nε ≤ l ≤ M

]
/
(
a1+εl

l

))
,

where, for each ε ∈ E, we set Nε = max {l; ε−l �= 0}. Hence

LM = lim−→ N
Spf(k[al; 0 ≤ l ≤ M][[al;−N ≤ l < 0]]).

For any M ∈ N, N ∈ N ∪ {∞}, we put

YN
M = Spec (k[al;−N ≤ l ≤ M]).

Then LM is just the limit, over N > 0, of the formal completions of YN
M along

Y0
M. Since the de Rham complex with coefficients in the D-module of distributions

along a subvariety depends only on the completion along this subvariety, we can
write

DR(i•p•ωA1) = lim−→ M,N
DR(iM,N,•ωY0

M
)[M],(4.4.5)

where iM,N : Y0
M ↪→ YN

M is the embedding. Note that iM,N is just the embedding of
an affine subspace, so we are in the situation of Example 4.1.4.

Let DN
M be the subalgebra in CD generated by an, −N ≤ n ≤ M, and a∗

n ,
−M ≤ n ≤ N. It is identified with the algebra of polynomial differential operators
on functions of a−N, . . . , aM, with a∗

−i corresponding to ∂/∂ai. Similarly let CN
M be
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generated by bn, −N ≤ n ≤ M, and b∗
n , −M ≤ n ≤ N. Denote CDN

M = CN
M ⊗k DN

M.
We see therefore that the (M, N)th term of the inductive system in (4.4.5) is
identified with

VacN
M := CDN

M/(ai, i > 0; a∗
i , i ≥ 0; b∗

i )CDN
M.

Denote by 1N
M the generator of this module. Then for N ≤ N′ and any M

the embedding takes 1N
M to 1N′

M , while for M ≤ M′ and any N it takes 1N
M

into 1N
M′bM+1. . . bM′. From the normal form of elements it is clear that C̃D =

lim−→ M,N
CDN

M, Ṽac = lim−→ M,N
VacN

M, and we are done since Ṽac = Vac. 
�

5. Identification of the chiral de Rham complex

In this section we construct, in a geometric way, the structure of a vertex
algebra on the chiral de Rham complex CDRX and compare it with the con-
struction of [MSV].

5.1. Factorization algebras, and De Rham complexes on L (X)CI

Let C be a smooth curve, as before. For any non-empty finite set I we set
U(I) = U(I/I), ∆(I) = ∆(I/{1}) and j(I) = j(I/I), see Sect. 3.2. Hereafter we write U,∆, j
instead of U(I), ∆(I), j(I) if I has cardinal 2. We will need the following notation:
for any (possibly empty) I let Ī = I �♥ be the corresponding pointed set. For any
surjection I� J we denote Ī� J̄ the surjection equal to I� J on I and taking ♥
to ♥. Let us recall the definition of a factorization algebra, see [BD1, Sect. 3.4].

5.1.1. Definition. — (a) Let E be a quasi-coherent sheaf on C. A structure of a fac-

torization algebra on E is a collection of quasi-coherent OCI-modules EI for each non-empty

finite set I, such that EI is flat along the diagonal strata, E{1} = E , and

– an isomorphism of OCI-modules ν( J/I) : ∆( J/I)∗EJ
∼→EI for every J� I, compatible

with the compositions of J� I,
– an isomorphism of OU( J/I)-modules

�( J/I) : j( J/I)∗(�IEJi)
∼→ j( J/I)∗EJ

for every J� I, compatible with the compositions of J� I, and compatible with ν,

– a global section 1E ∈ H0(C,E ) such that for every f ∈ E one has 1E � f ∈
E{1,2} ⊂ j∗ j∗(E � E ) and ∆∗(1E � f ) = f .

(b) A module over E is a quasi-coherent sheaf M on C with a collection of quasi-

coherent OCĪ-modules MĪ for each non-empty finite set I, such that MĪ is flat along the

diagonal strata, M{♥} = M , and
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– an isomorphism of OCĪ-modules ν( J̄/Ī) : ∆( J̄/Ī)∗MJ̄
∼→MĪ for every J̄� Ī, compatible

with the compositions of J̄� Ī,
– an isomorphism of OU(J̄/Ī)-modules

�( J̄/Ī) : j( J̄/Ī)∗((�IEJi)�MJ̄♥)
∼→ j( J̄/Ī)∗MJ̄

for every J̄� Ī, compatible with the compositions of J̄� Ī, and compatible with ν, such that

– for any f ∈ M one has 1E � f ∈ M{1,♥} ⊂ j∗ j∗(E �M ) and ∆∗(1E � f ) = f .

We have the following immediate global counterpart of Sect. 4.4.

5.1.2. Proposition. — For any right DX-module M there is a unique complex

CDR(M )CI of sheaves of OCI-modules on X × CI such that:

(a) the fiber of CDR(M )C at a point of the curve C is isomorphic to the complex

CDR(M ),

(b) the collection (CDR(ωX)CI) is a factorization algebra on the curve C. The collection

(CDR(M )CI) is a (CDR(ωX)CI)-module.

Proof. — A choice of an element i0 ∈ I defines a morphism of schemes pi0,I :
L 0(X)CI → X as follows. Recall that L 0(X)CI represents the functor λ0

X,CI which
takes a scheme S into the set of pairs ( f I, ρ) where f I : S → CI is a morphism of
schemes and ρ is a morphism of Γ̂( f I), the formal neighborhood of Γ( f I) ⊂ S×C,
into X. Now, restricting ρ onto the graph of fi0 , which is a subscheme in Γ̂( f I)

isomorphic to S, we get a natural transformation from λ0
X,CI into the functor

represented by X, so a morphism pi0,I.
Denote by ιĪ : L 0(X)CĪ → L (X)CĪ the embedding. For any M ∈ DX, we

form the object (ιĪ)•(p♥,Ī)
•M ∈ DL (X)

CĪ/CĪ . The general construction of Sect. 4.3,

applied to the restrictions of (ιĪ)•(p♥,Ī)
•M onto open subsets in X×CĪ, gives then

a complex of sheaves on X × CĪ which we denote CDR(M )CĪ .
Notice that in the particular case where M = ωX the object (pi0,I)

•M of the
category DL 0(X)CI/CI is independent (up to a unique isomorphism) of the choice of
i0 ∈ I. Indeed, objects of the latter category are, by definition, pairs (n,N ) where
N is a right D-module on L 0

n (X)CI and two such pairs (n,N ) and (n′,N ′)
are isomorphic, if the pullbacks of N and N ′ to L 0

m (X)CI , m ≥ n, n′, are iso-
morphic as right D-modules. Since the pullback for right D-modules is just the
O-module pullback tensored with the relative canonical class, (pi0,I)

•ωX is repre-
sented by (n, ωL 0

n (X)CI ) for any n, and thus is clearly independent on i0.
Then, the general construction in Sect. 4.3 gives a complex of sheaves on

X × CI, denoted by CDR(ωX)CI .
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To prove Claim (a) it is sufficient to observe that the fiber of L (X)C at
a point 0 ∈ C is isomorphic to L (X). Recall that L (X)C represents the con-
travariant functor λX,C : Sch → Sets such that λX,C(S) is the set of pairs ( f , ρ)

such that

f ∈ HomSch(S, C) and ρ ∈ HomLrs((Γ( f ),K
√

f ), X).

Thus the fiber at 0 represents the subfunctor

S �→ {( f , ρ) ∈ λX,C(S) | f (S)red = {0}}.
Let t be a local coordinate on C centered at 0. For any f as above we have
(Γ( f ),K

√
f ) = (S,OS((t))

√
) and this proves (a). Note that the isomorphism of

L (X) and the fiber of L (X)C at 0 is compatible with the ind-pro-systems in
Sect. 1.7, 2.9.

(b) Both L 0(X)CI and L (X)CI form factorization monoids in the categories
of ind-schemes. Since passing to the De Rham complex takes Cartesian products
of (ind-)schemes to tensor products of vector spaces, we see that (CDR(ωX)CI)

form a factorization algebra.
Next, given any surjection J → I and the corresponding surjection J̄ → Ī, we

have
∏

ī∈Ī

L (X)
C J̄

ī

= L (X)C ×
∏

i∈I

L (X)C Ji ,(5.1.3)

the first factor in the RHS corresponding to ī = ♥. Let us use the notation κ for
the factorization monoid structure of L (X)CI as in Definition 2.2.1. Then, with
respect to the identification (5.1.3), we have an isomorphism of D-modules

(κ( J̄/Ī))•(ιĪ)•(p♥,Ī)
•M = (p♥,{♥})•M ⊗

⊗

i∈I

(ιIi )•(p♥,Ii)
•ωX

over UJ̄/Ī → CĪ. Using again the fact that passing to the De Rham complexes
takes Cartesian products to tensor products, we conclude that (CDR(M )CĪ) is
a factorization module over (CDR(ωX)CI). 
�

5.2. Reminder on chiral and vertex algebras

Let us recall the basic facts on chiral and vertex algebras. See [BD1, Sect. 3],
[K] and [FLM] for more details. Let C be a smooth curve, as before. For any
right DC-module M the projection formula yields an isomorphism of right DC2-
modules ∆•∆•(ωC �M )

∼→∆•M . Let

εM : j• j•(ωC �M ) → ∆•M
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be the composition of the projection j• j•(ωC �M ) → j• j•(ωC �M )/(ωC �M )

and of the isomorphism ( j• j•(ωC �M ))/(ωC �M )
∼→∆•∆•(ωC �M )

∼→∆•M .

5.2.1. Definition. — (a) A chiral algebra over C is a right Z/2Z-graded DC-module

A = A 0 ⊕ A 1 with two even maps µA ∈ HomDC2 ( j• j•(A � A ),∆•A ) and 1A ∈
HomDC(ωC,A 0) such that

– the map µA (1A , idA ) coincides with εA ,

– the map µA is antisymmetric, and it satisfies the Jacobi identity.

(b) A module over a chiral algebra A over C is a right Z/2Z-graded DC-module MC

with an even map µM ∈ HomDC2 ( j• j•(A �M ),∆•M ) such that

– the map µM (1A , idM ) coincides with εM ,

– the map µM is compatible with µA .

For any factorization algebra on E , each sheaf EI has a canonical left DCI-
module structure, compatible with the factorization structure, such that the section
1E is a horizontal, see [BD1, Proposition 3.4.8]. It is proved in [BD1, Sect. 3.4.9]
that the right DC-module E r := E ⊗OC ωC is a chiral algebra over C. The map
µA is the composition of the chain of maps

j• j•(E r � E r) = j• j•ωC2 ⊗OC2 E{1,2} → ∆•ωC ⊗OC2 E{1,2} = ∆•E r.

Here the 1-st equality is the 2-nd isomorphism in Definition 5.1.1(a), the second
arrow is εωC , and the last equality results from the 1-st isomorphism in Defin-
ition 5.1.1(a) and the projection formula for ∆.

5.2.2. Definition. — (a) A vertex algebra is a k-supervector space V with an even

vector 1V ∈ V, an even endomorphism ∂V ∈ End (V), and an even linear map V →
End (V)[[z, z−1]], a �→ a(z) = ∑

n anz−n−1. These data satisfy the following axioms:

– ∂V(1V) = 0, 1V(z) = idV, an(1V) = 0 if n ≥ 0, a−1(1V) = a,

– [∂V, a(z)] = ∂za(z),
– we have (z − w)N[a(z), b(w)] = 0 for N � 0.

We will also assume that for all elements a, b ∈ V we have an(b) = 0 for n � 0.

(b) A module over a vertex algebra V is a k-supervector space W with an even endo-

morphism ∂W ∈ End (W), and an even linear map

V → End (W)[[z, z−1]], a �→ aW(z) =
∑

n

aW
n z−n−1.

These data satisfy the following axioms:

– 1W
V (z) = idW,

– [∂W, aW(z)] = ∂zaW(z) = (∂Va)W(z),
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– (Borcherds identity)

z−1
0 δ

(z1 − z2

z0

)
aW(z1)bW(z2) − z−1

0 δ
(−z2 + z1

z0

)
bW(z2)aW(z1) =

= z−1
2 δ

(z1 − z0

z2

)
(a(z0)(b))W(z2),

where

z−1
0 δ

(z1 − z2

z0

)
=

∑

m∈N

∑

n∈Z

(−1)m
(n

m

)
z−n−1

0 zn−m
1 zm

2 .

Assume that C is the formal disk Spec k[[t]]. Let 0 be the closed point of C.
Let t1 = t ⊗ 1, t2 = 1 ⊗ t be the coordinates on C2. We have the following basic
fact, due to Beilinson-Drinfeld (see [HL], [B] for details). Fix a vertex algebra V.
The k[[t]]-module V[[t]] has a unique structure of vertex algebra such that

∂V[[t]] = ∂V + ∂t, 1V[[t]] = 1V, (atn)(z) = (t + z)na(z),

for any elements a ∈ V, n ∈ Z. Let AV be the sheaf on C associated to the
k[[t]]-module V[[t]] · dt. The sheaf AV has a unique structure of a chiral algebra
over C such that the field ∂t acts on AV as the operator ∂V[[t]], and such that the
chiral product is induced by the map

V ⊗ V[[t1, t2]]
[
(t1 − t2)−1

] → V[[t1, t2]]
[
(t1 − t2)−1

]
/V[[t1, t2]]

which takes the element f (t1, t2)a � b, with f (t1, t2) ∈ k(t1 − t2) and a, b ∈ V, to
the element f (t1, t2)a(t1 − t2)(b)+V[[t1, t2]]. Similarly, if W is a V-module then the
k[[t]]-module W[[t]] has a natural structure of a V[[t]]-module, and the corres-
ponding sheaf MW on C has a natural structure of a AV-module. Conversely, we
have the following.

5.2.3. Lemma. — Assume that C is a smooth curve. Fix a point 0 ∈ C and a formal

coordinate t at 0.

(a) Let A be a chiral algebra on C. Assume that A is a locally free OC-module. The

fiber, V, of A at 0 has a unique structure of a vertex algebra such that the chiral algebra

AV is isomorphic to A |Spec k[[t]].
(b) Let M be a module over a chiral algebra A on C. Assume that A , M are

locally free OC-modules. Let V, W be the fibers of A , M at 0. The space W has a unique

structure of a module over V, see Part (a), such that the AV-module MW is isomorphic to

M |Spec k[[t]].

Thus, Proposition 5.1.2 gives the following.

5.2.4. Theorem. — The De Rham complex CDR(ωX) is a sheaf of vertex alge-

bras on X. For any right DX-module M the De Rham complex CDR(M ) is a sheaf of

CDR(ωX)-modules.
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5.3. The vacuum module and the chiral de Rham complex

Here we recall the original construction of the chiral de Rham complex of
X as given in [MSV]. One first considers the case X = Ad . Similarly to Ex-
ample 4.4.2, let CDN

M be the Z/2Z-graded k-algebra generated by even elements
ain, a∗

in and odd elements bin, b∗
in, with i = 1, . . . , d and −N ≤ n ≤ M for ain, bin and

−M ≤ n ≤ N for a∗
in, b∗

in, modulo the relations

a∗
imajn − ajna∗

im = δijδm,−n, aimajn − ajnaim = a∗
ima∗

jn − a∗
jna

∗
im = 0,

b∗
imbjn + bjnb∗

im = δijδm,−n, bimbjn + bjnbim = b∗
imb∗

jn + b∗
jnb

∗
im = 0.

We further require that the letters a and b commute in all cases. Let C̃D =
lim
−→ M,N

CDN
M. Consider the super vector space kd|d with basis consisting of even

vectors v1, . . . vd and odd vectors vd+1, . . . v2d . The space

h̃ = (k[t, t−1] ⊕ k[t, t−1]dt) ⊗ kd|d ⊕ kγ

is then a Lie super algebra over k with respect to the brackets given by

[ f ⊗ vi, ω ⊗ vj] = δijRes( f · ω)γ,

all other brackets being zero. It is clear that

C̃D = U(̃h)/(γ − 1),

with ain �→ vit n, a∗
in �→ vit n−1dt, bin �→ vi+d t n, b∗

in �→ vi+d t n−1dt. Let also

h = (k((t)) ⊕ k((t))dt) ⊗ kd|d ⊕ kγ

with the bracket defined in the same way, and

CD = U(h)/(γ − 1).

Obviously C̃D ⊂ CD. Let

h̃+ = (k[t] ⊕ k[t]dt) ⊗ kd|d, h+ = (k[[t]] ⊕ k[[t]]dt) ⊗ kd|d .

These are Abelian subalgebras in h̃, h. Set C̃D
+ = U(h̃+)C̃D, CD+ = U(h+)CD.

The vacuum module Ṽac = C̃D/C̃D
+

, Vac = CD/CD+ are identified as in Propo-
sition 4.4.3(a). We denote by 1 ∈ Vac (the vacuum vector) the image of 1 ∈ CD.
As well-known, Vac has a structure of a vertex algebra such that the generating
series associated to the (-1)- and 0-modes of ai, bi are given by:

(ai,−11)(z) =
∑

n∈Z

ainz−n−1, (a∗
i01)(z) =

∑

n∈Z

a∗
inz

−n,
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and similarly with (bi,−11)(z), (b∗
i01)(z). The generating series associated to other

modes are obtained by differentiation, using the action of ∂ given by

∂(ain) = nai,n−1, ∂(a∗
in) = (n − 1)a∗

i,n−1,

and similarly for b∗
in, bin. The map

δ = ∑
i,na

∗
inbi,−n : Vac → Vac

is a derivation of vertex algebras with zero square.
Setting xi = ai0 makes Vac into a module over k[x1, . . . , xn], the coordinate

ring of Ad . We denote this ring shortly by k[x]. In [MSV] the authors consider
the quasicoherent sheaf Ωch

Ad := Vac⊗k[x] OAd corresponding to k[x]-module Vac and
extend the vertex algebra structure to it. One also has a vertex algebra structure
on

Vac∧ := Vac ⊗k[xi] k[[xi]].
Now let X be a smooth algebraic variety, U ⊂ X be an open subset and

φ : U → Ad be an étale map. Let 0 ∈ X be a point such that φ(0) = 0 and let
X∧ be the formal neighborhood of 0 in X. Then x′

i = φ∗xi are the coordinates
on X∧.

In [MSV] the authors construct a sheaf Ωch
X of differential vertex algebras

on X as the unique such sheaf satisfying the following condition. For any φ as
above, there is an isomorphism of vertex algebras

φch : Ωch
X ⊗OX OX∧ → φ∗Ωch

Ad ⊗OAd OAd∧ = Vac∧

which coincides, for U ⊂ Ad , with the automorphism of Vac∧ introduced in [MSV,
Theorem 3.7]. Our aim in the rest of this paper is to prove the following fact.

5.3.1. Theorem. — There is an isomorphism of sheaves of differential vertex algebras

Ωch
X � CDR(ωX).

5.4. The factorization algebra associated to the vacuum module

As the first step in proving Theorem 5.3.1, let us describe the factorization
algebra corresponding to Vac = Γ(Ad,Ωch

Ad ). In this, we follow [BD1], [G]: the
constructions below are a particular instance of the general concept of the chiral
enveloping algebra of a Lie*-algebra. For the convenience of the reader we give
a self-contained presentation.

Fix a smooth projective curve C. Recall that ωC is the sheaf of 1-forms on
C (in the Zariski topology). Let I be a finite set. Consider the product CI × C



260 MIKHAIL KAPRANOV, ERIC VASSEROT

and its projections p, q to CI and C. Let us specialize the notation of Sect. 2.3
to the case when S = CI and f I = Id : CI → CI. We denote the subvariety Γ( f I)

simply by

ΓI = {
((ci), x) ∈ CI × C|x ∈ {ci}

}
.

Similarly we write O∧
I ,K ∧

I for O∧
f I

, K ∧
f I

. Set

O[[I]] = p∗O∧
I , O((I)) = p∗K ∧

I ,

ω[[I]] = p∗
(
O∧

I ⊗ q∗ωC

)
, ω((I)) = p∗

(
K ∧

I ⊗ q∗ωC

)
.

These are (non-quasicoherent) sheaves of O-modules on CI. Informally, the “fiber”
of, say, ω((I)) at a point (ci) ∈ CI is the space of sections of ωC on the punctured
formal neighborhood of the set {ci}, and similarly in the other cases. Note that
the sum of residues defines a morphism

Res(ci) : ω((I)) → OCI,

trivial on ω[[I]].
Consider the super-vector space kd|d as in Sect. 5.3. The sheaf

hI = (O((I)) ⊕ ω((I))) ⊗ kd|d ⊕ OCI · γ
is then a Lie superalgebra in the category of left DCI-modules, with respect to the
super-bracket

[
O d|d

C ,O d|d
C

] = [
ω

d|d
C , ω

d|d
C

] = 0,

[vi ⊗ f , vj ⊗ ω] = δijRes(ci)( f ω) · γ, ∀f ∈ OC,∀ω ∈ ωC,

and with γ being a central element. Similarly, let h+I ⊂ hI be the super-Lie sub-
algebra (O[[I]] ⊕ ω[[I]]) ⊗ kd|d . For any surjective map J � I there are obvious
isomorphisms

∆( J/I)∗hJ
∼→ hI, j( J/I)∗(

∏
IhJi)

∼→ j( J/I)∗hJ.

Let UCI be the quotient of the associative enveloping algebra of hI, in the category
of left DCI-modules, by the right ideal generated by γ − 1. Consider the sheaf

VacCI = UCI/U +
CI,

where U +
CI ⊂ UCI is the right ideal generated by h+I . The collection (VacCI) is

clearly a factorization algebra. To simplify we may omit the subscript C, writing
Vac instead of VacC.
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5.4.1. Lemma. — Vac is isomorphic, as a vertex algebra, to the fiber of the chiral

algebra Vac at any point of C.

Proof. — Fix a point 0 ∈ C and a formal coordinate t at 0. Let D =
Spec k[[t]] be the formal neighborhood of 0 in C. We compute the chiral product,
µ, on the right DC-module Vacr := Vac ⊗OC ωC. The scheme C × C is equipped
with the coordinates t := t�1, z := 1� t. The OC-module h{1} is locally free, such
that

Γ(D, h{1}) = (kd|d ⊕ kd|ddz)[[z − t, t]][(z − t)−1] ⊕ k[[t]] · γ.

Thus the map

(z − t)mvi �→ aim, (z − t)mvi+d �→ bim,

(z − t)m−1vidz �→ a∗
im, (z − t)m−1vi+ddz �→ b∗

im

extends uniquely to an isomorphism of k[[t]]-vector spaces Γ(D,UC)
∼→ CD[[t]],

where CD was defined in Sect. 6.3. Let 1, 1C, 1C2 be the vacuum elements of Vac,
Vac, VacC2 . We consider the unique isomorphism of CD[[t]]-modules Γ(D,Vac)
∼→ Vac[[t]] such that 1C �→ 1.

The scheme C2 × C is equipped with the local coordinates ti := ti � 1,
z := 1� t, i = 1, 2. Put R = k[[t1, t2]]. The OC2-module h{1,2} is locally free, such
that

Γ
(
D2, h{1,2}

) = (Rd|d ⊕ Rd|ddz)[[z − t1, z − t2]]
[
(z − t1)−1, (z − t2)−1

]

⊕ R · γ.

Let T1 (resp. T2) be the Taylor expansion

R[[z − t1, z − t2]]
[
(z − t1)−1, (z − t2)−1, (t1 − t2)−1

] →
→ R((z − t2))((z − t1))

(resp. R((z − t1))((z − t2))). The factorization map

j• j•(h{1,2})
∼→ j• j•(h{1} × h{1})

takes an element a ∈ Γ(D2, j• j•(h{1,2})) to (T1(a), T2(a)). It induces an action of
the sheaf of Lie algebras j• j•(h{1,2}) on j• j•(Vacr � Vacr

). The factorization map

j• j•(Vacr � Vacr
)

∼→ j• j•
(
Vacr

C2

)
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is the unique morphism of sheaves of j• j•(h{1,2})-modules taking 1C � 1C to 1C2 .
The chiral product µ is the composition of the chain of maps

j• j•
(
Vacr � Vacr) ∼→ j• j•

(
Vacr

C2

) → j• j•
(
Vacr

C2

)
/Vacr

C2 = ∆•∆•(Vacr
C2

)

= ∆•(Vacr
).

The right Γ(D2,DC2)-module Γ(D2,∆•(Vacr
)) is spanned by the formal symbols

a(t)δ(t1 − t2), for any a(t) ∈ Γ(D,Vacr
), modulo the relations

(a(t)δ(t1 − t2))(∂t1 + ∂t2) = (a(t)∂t)δ(t1 − t2),
(a(t)δ(t1 − t2)) f (t1, t2) = (a(t) f (t, t))δ(t1 − t2),

for any f (t1, t2) ∈ k[[t1, t2]]. Fix b ∈ Γ(D,Vacr
). Note that

T2

(
(z − t1)−1

) = −
∑

m≥0

(t1 − t2)−m−1(z − t2)m.

Hence,

µ
(
(t1 − t2)n(ai,−11C)� b

) = µ((ai,−11C)� b)(t1 − t2)n

= ∑
m∈Z aimb δ(t1 − t2)∂

(m−n)
t2 .

Similarly, we get

µ
(
(t1 − t2)n(bi,−11C)� b

) =
∑

m∈Z

bimb δ(t1 − t2)∂(m−n)
t2 ,

µ
(
(t1 − t2)n(a∗

i01C)� b
) =

∑

m∈Z

a∗
imb δ(t1 − t2)∂(m−n)

t2 ,

µ
(
(t1 − t2)n(b∗

i01C)� b
) =

∑

m∈Z

b∗
imb δ(t1 − t2)∂(m−n)

t2 .

On the other hand, the chiral product associated to the vertex algebra V[[t]] is
the map

Vac ⊗ Vac[[t1, t2]]
[
(t1 − t2)−1

] → Vac[[t1, t2]]
[
(t1 − t2)−1

]
/Vac[[t1, t2]]

taking (t1 − t2)n(ai,−11)� b to
∑

m∈Z

aimb ∂(m−n)
t2 δ(t1 − t2),

where ∂
(m)
t2 δ(t1 − t2) stands for the element (t1 − t2)−m−1 + k[[t1, t2]], and similarly

for bi,−1, a∗
i0, b∗

i0. Thus, to prove that the chiral algebra Vacr is isomorphic to the
chiral algebra on D built from Vac as in Sect. 5.2 it is sufficient to check that
the corresponding right DC-modules coincide. See [BD1, Remark 3.4.8.(i)] for an
elementary definition of the the canonical left DC-module structure on Vac. By
construction we have ∂t(1C) = 0. It is easy to see that ∂t(aim1C) = mai,m−11C for all
m < 0. Hence, the operators ∂ on Γ(D,Vacr

) and Vac[[t]] coincide on aim. The
case of a∗

im, b∗
im, bim is similar. 
�
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5.5. The action of étale morphisms I

To prove Theorem 5.3.1 in full generality, it suffices to establish the following
lemma. Let U ⊂ X be any affine open set and φ : U → Ad be any étale map.
Fix a point 0 ∈ U such that φ(0) = 0. Let X∧ be the formal neighborhood of 0.
In particular we write Ad,∧ for (Ad)∧.

5.5.1. Lemma. — (a) There is an isomorphism of differential vertex algebras Fφ :
φ∗Ωch

Ad,∧
∼→ k[X∧] ⊗OX CDR(ωX).

(b) If X = Ad then F−1
φ ◦ Fid = φch is the isomorphism constructed in [MSV].

The plan of the proof is as follows. We will construct an isomorpism (FI)

of factorization algebras and obtain Fφ as the fiber of F{1} at a point of C. It is
enough to assume that C = A1. Set

CDI = Γ
(
AI,UCI

)
, CD+

I = Γ
(
AI,U +

CI

)
,

DR(ωU)I = Γ(L (U)AI ,CDR(ωU)AI), VacI = Γ
(
AI,VacCI

)
.

Thus, VacI = CDI/CD+
I . If X = Ad we introduce the algebra

C̃DI = lim−→ n,N
CDXN

n
,

where

A = k[AI], AN
n = A

[
a( j)

lν ;−N ≤ l ≤ n
]
, XN

n = Spec AN
n ,(5.5.2)

see Example 4.4.2. Note that C̃DI is a subalgebra of CDI. Let

C̃D
+
I = lim−→ n,N

CD+
XN

n
,

where CD+
XN

n
is the right ideal generated by a( j)

lν , a( j)∗
l+1,ν, b( j)

lν , b( j)∗
l+1,ν with l ≥ 0 and

ṼacI = C̃DI/C̃D
+
I .

5.5.3. Lemma. — ṼacI is an irreducible C̃DI-module and the natural map of vector

spaces ṼacI → VacI is an isomorphism.

Proof. — Irreducibility follows from the fact that CDXN
n
/CD+

XN
n

is irreducible
over CDXN

n
. The isomorphism follows from the normal form of elements of VacI

and ṼacI. 
�
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Now, to prove Lemma 5.5.1 we will construct a right action

DR(ωU)I ⊗ C̃DI → DR(ωU)I,(5.5.4)

commuting with the factorization maps. To prove that the factorization algebras
(VacAI), (CDR(ωU)AI) are isomorphic, it is then sufficient to check that the right
C̃DI-module DR(ωU)I has a cyclic vector whose annihilator is C̃D

+
I . Observe that,

since the map in Lemma 5.5.3 depends on φ, the resulting isomorphism of sheaves
of vertex algebras φ∗Ωch

Ad,∧
∼→ k[X∧] ⊗OX CDR(ωX) will also depend on φ.

5.5.5. Example. — First we consider the particular case where U = Ad and
φ = id . What we do in this case is to provide an explicit identification of the
right C̃DI-module DR(ωAd )I. To simplify we set L = L (Ad)AI , etc. Then, in the
notations of (5.5.2),

Ln = lim−→ N
Spf

(
A0

n

[[
a( j)

lν ;−N ≤ l < 0
]])

,

L ε
n = Spec

(
ANε

n /
(
a( j)

lν1
· · · a( j)

lν1+εl
; l < 0

))
,

see (2.9.1), where we set Nε = max {l; ε−l �= 0} for each ε ∈ E. To simplify again
we set Xε

n = XNε
n . Thus Xε

N is an affine space of finite dimension. There are closed
embeddings L 0

n ⊂ L ε
n ⊂ Xε

n. Let inε : L 0
n ↪→ Xε

n be the composite embedding. We
write ωL 0

n ,Xε
n

for the right D-module inε•ωL 0
n

on Xε
n. Let DR(ωε

n) ∈ OL ε
n

be the
subsheaf of DR(ωL 0

n ,Xε
n
) consisting of the sections supported (scheme-theoretically)

on L ε
n . By definition,

lim−→ ε

Γ
(
L ε

n ,DR
(
ωε

n

)) = lim−→ N
Γ
(
L 0

n ,DR(ωL 0
n ,XN

n
)
) = DRL 0

n ,X∞
n
.

Let us denote this space by DR(ωn)I. Hence,

DR(ωAd )I = lim−→ n
DR(ωn)I[nd ],

and there is a right lim−→ N
CDXN

n
-action on DR(ωn)I, such that DR(ωn)I is the quo-

tient of lim−→ N
CDXN

n
by lim−→ N

CD+
XN

n
. Using (5.5.4) we get a right action of C̃DI on

DR(ωAd )I such that

DR(ωAd )I � C̃DI/C̃D
+
I � ṼacI = VacI,

thus achieving our goal in the case X = Ad .

5.5.6. Corollary. — Theorem 5.3.1 is true for X = Ad .
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5.6. Etale change of coordinates in Clifford algebras

In order to prove Lemma 5.5.1 for general φ : U → Ad we need some
elementary observations about Clifford algebras.

If X is a smooth algebraic variety, we denote by CDX the sheaf of differential
operators in Ω•

X, the commutative superalgebra of differential forms.
In particular, if X = Ad with coordinates x1, . . . , xd , then xi, dxi are free

generators of (the algebra of global sections of ) Ω•
X and we denote ∂i = ∂/∂xi

and ξi = “∂/∂ dxi” the corresponding derivations, which are thus global sections of
CDAd .

Let now U be an affine open subset of a smooth variety X, and let φ :
U → Ad be an étale map. Let x′

i = φ∗xi be the coordinate on X∧. There are then
uniquely determined derivations ∂′

i , ξ
′
i of ΩX∧ such that

[∂′
i , x′

j ] = [ξ ′
i , dx′

j ] = δij, [∂′
i , dx′

j ] = [ξ ′
i , x′

j ] = 0.

Set CDX∧ = k[X∧]⊗̂OXCDX. The étale map φ gives an isomorphism of formal
schemes X∧ ∼→ Ad,∧. Let φ′ be the inverse isomorphism.

5.6.1. Lemma. — For any φ as above, there is a unique k[X∧]-algebra isomorphism

φ# : CDX∧
∼→φ∗CDAd,∧

such that

φ#(dx′
i) =

∑

j

∂jφi(x)dxj, φ#(ξ
′
i ) =

∑

j

∂′
iφ

′
j(φ(x))ξj,

φ#(∂
′
i ) =

∑

j

∂′
iφ

′
j(φ(x))∂j +

∑

j,k,l

∂′
i∂

′
kφ

′
j(φ(x))∂lφk(x)dxkξj,

where φ = (φ1, . . . , φd).

Proof. — It suffices to observe that, since the map φ is étale, CDX∧ is a free
k[X∧]-module with basis

(∂′
1)

r1(∂′
2)

r2 · · · (∂′
d)

rd ⊗ (ξ ′
1)

m1 · · · (ξ ′
d)

md (dx′
1)

n1 · · · (dx′
d)

nd ,

where ri, mi, ni ∈ N. Then use the coordinates change formulas, see [L, Chap. II]
for instance. 
�



266 MIKHAIL KAPRANOV, ERIC VASSEROT

5.7. The action of étale morphisms II

Let now φ : U → Ad be a general étale morphism, with U affine. By (2.9.2)
we have an isomorphism of schemes

L ε
n (φ)AI � L ε

n ×L 0
0

L 0
0 (U)AI, where L ε

n = L ε
n (Ad)AI .

We will use freely the notations in Sect. 5.5, 5.6. There is an obvious map XN
n →

L 0
0 , since L 0

0 = X0
0 = Spec A0

0, which restricts to the map L ε
n → L 0

0 when
N = Nε. For any N, consider the fiber product

XN
nφ = XN

n ×L 0
0

L 0
0 (U)AI .

Denote by φN
n : XN

nφ → XN
n the projection to the first factor. Being a base change

of an étale morphism L 0
0 (φ)id : L 0

0 (U)AI → L 0
0 , see Proposition 2.9.3, the map

φN
n is étale. Set 0 = {a( j)

0ν = 0} ∈ HomSch(AI, X0
0). Fix 0 ∈ HomSch(AI, X0

0φ) mapping
to 0 by φN

n . Let X0,∧
0 , X0,∧

0φ be the formal neighborhoods of 0, and set

XN,∧
n = X0,∧

0 ×X0
0

XN
n , XN,∧

φ = X0,∧
0φ ×X0

0
XN

n .

By Lemma 5.6.1 applied to φN
n , we have a ring isomorphism

φN
n# : CDXN,∧

nφ

∼→ CDXN,∧
n

.

Let

C̃D
∧
I = lim−→ n,N

CDXN,∧
n

, C̃D
∧
I,φ = lim−→ n,N

CDXN,∧
nφ

,

so that the φN
n# give a ring isomorphism

φ∞
∞# : C̃D

∧
I,φ → C̃D

∧
I .

Let also

C̃D
∧,+
I = lim

−→ n,N
CD+

XN,∧
n

,

where

CD+
XN,∧

n
= k

[
XN,∧

n

] ⊗k[XN
n ] CD+

XN
n

and CD+
XN

n
is introduced after (5.5.2). We have then the vacuum modules

Vac∧I = C̃D
∧
I /C̃D

∧,+
I ,

which form the factorization algebra corresponding to the vertex algebra Vac∧

defined in Sect. 5.3. Note that

DR(ωU)I = lim−→ n,N
DR(ωL 0

n (U)AI ,XN
nφ
)[nd ],

and after tensoring with k[U∧] we get a module DR(ωU∧)I over C̃D
∧
I,φ.
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5.7.1. Lemma. — With respect to the above structure of a C̃D
∧
I -module, DR(ωU∧)I

is isomorphic to Vac∧I .

Proof. — Follows from the fact that each DR(ωL 0
n (U),XN

nφ
) is isomorphic to the

vacuum module over CDXN
nφ

. 
�
Note that both DR(ωU∧)I and Vac∧I have distinguished generators. Namely

DR(ωU∧)I is the limit of an inductive system with the first term DR(ωL 0
0 (U)AI/AI).

But for any smooth morphism Z → S there is a canonical element 1Z/S in
DR(ωZ/S) and we take 1′

I ∈ DR(ωU∧)I to be the image of 1L 0
0 (U)AI/AI in the limit.

The generator 1′′
I ∈ Vac∧I is the image of 1 ∈ C̃D

∧
I . We denote FI : Vac∧I →

DR(ωU∧)I the unique module isomorphism taking 1′′
I to 1′

I. Let FI : Vac∧I →
DR(ωU∧)I be the corresponding morphism of quasicoherent sheaves on L 0

0 (U)AI .

5.7.2. Lemma. — The (FI) commute with factorization maps and thus form an

isomorphism of factorization algebras.

Proof. — Follows from the fact that (1′
I) and (1′′

I ) are compatible with fac-
torization structures: in the notation of Definition 5.1.1 we have � J/I(�1′

Ji
) = 1′

J
and similarly for 1′′

I . 
�
Set I = {1}. Let Fφ be the fiber of F{1} at the point 0 ∈ A1. Lemma 5.7.2

implies that Fφ is a morphism of vertex algebras. This establishes part (a) of
Lemma 5.5.1.

We now prove Lemma 5.5.1(b). So we assume U ⊂ Ad and need to com-
pare two automorphisms of the vertex algebra Γ(U,Vac), namely F−1

φ ◦FId and φch.
Notice that the vertex algebra Vac is strongly generated by the fields (ai,−11)(z),
(a∗

i01)(z), (bi,−11)(z), (b∗
i01)(z), see [K], and that Γ(U,Vac) is obtained by localiza-

tion. Thus it is enough to compare the two automorpisms on the elements

(ai,−11), (a∗
i01), (bi,−11), (b∗

i01) ∈ Vac.(5.7.3)

Since U ⊂ Ad , the sheaf of algebras C̃D
∧
I,φ is identified with C̃D

∧
I , so φ∞

∞,# is an
automorphism of the latter.

5.7.4. Lemma. — (a) The morphism φ∞
∞# preserves C̃D

∧,+
I and thus induces an

automorphism φ#,I : Vac∧I → Vac∧I .

(b) For I = {•}, the morphism of vertex algebras F−1
φ ◦ Fid : Vac∧ → Vac∧ is equal

to φ#,0, which is the fiber over 0 ∈ A1 of the morphism φ#,I.

Proof. — (a) is enough to verify for each φN
n# : CDXN,∧

nφ
→ CDXN,∧

nφ
, in which

case it follows from Lemma 5.6.1. Claim (b) follows from construction of Fφ. 
�
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To prove Lemma 5.5.1(b) it suffices therefore to check that φ#0 = φch on
elements (5.7.3). Recall that L 0

0 (X)A1 = X×A1 for any X. Hence, there is a com-
mutative diagram

XN
nφ � X0

0φ = U × A1

φN
n ↓ ↓ ↓ φ

XN
n � X0

0 = Ad × A1.

This diagram induces a diagram of A-algebra homomorphisms

CDY∧
φ
←↩ CDX0∧

0φ

φ# ↓ ↓ φ0
0#

CDY∧ ←↩ CDX0∧
0

.

Note that the images of the elements (5.7.3) by φ# and φ0
0# coincide, modulo the

identification

ai0 �→ xi, bi0 �→ dxi, b∗
i,−1 �→ ξi, a∗

i,−1 �→ ∂i.

On the other hand the images of the elements (5.7.3) by φch and φ0
0# coincide,

see the formulas [MSV, (3.17)] for φch, and Lemma 5.6.1 for φ0
0#. We are done.


�
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Acad. Sci. Paris, Sér. I, Math., 318 (1994), 743–746.
[DL] J. DENEF, F. LOESER, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math.,

135 (1999), 201–232.
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