VERTEX ALGEBRAS AND THE FORMAL LOOP SPACE
by Miknai. KAPRANOV and Eric VASSEROT

ABSTRACT

We construct a certain algebro-geometric version .2 (X) of the free loop space for a complex algebraic variety X.
This is an ind-scheme containing the scheme .£°(X) of formal arcs in X as studied by Kontsevich and Denef-Loeser. We
describe the chiral de Rham complex of Malikov, Schechtman and Vaintrob in terms of the space of formal distributions
on .Z(X) supported in .Z°(X). We also show that .Z(X) possesses a factorization structure: a certain non-linear version
of a vertex algebra structure. This explains the heuristic principle that “all” linear constructions applied to the free loop
space produce vertex algebras.

Introduction

One of the salient mathematical features of string theory is the importance of
vertex algebras. Their role in the theory can be compared to that of Lie algebras
in the “ordinary” physics of point particles.

Mathematically, the approach of string theory can be cast in terms of an-
alysis on the space of free loops, ie., smooth maps S' — X where X is a given
“spacetime” manifold. Accordingly, one has the folklore principle that construc-
tions involving the space of free loops lead to vertex algebras. One class of such
constructions is provided by the spaces of highest weight representations of loop
groups. Another is ¢, the chiral de Rham complex of an algebraic variety X, in-
troduced by Malikov, Schechtman and Vaintrob [MSV]. Heuristically, this complex
should be interpreted in terms of LX, the space of free loops and its subvariety
L°X consisting of loops extending holomorphically into the unit disk. More pre-
cisely, Q% can be thought of as the semiinfinite de Rham complex with coefficients
in the space of distributions on LX supported on L°X. This is not, however, the
way Q¢ has been defined mathematically The definition given in [MSV] is of
more computational nature and proceeds by constructing the action of the group
of diffeomorphisms on the irreducible module over the Heisenberg algebra. In that
approach it seems miraculous that such an action exists at all.

The aim of this paper is twofold. First, to give a precise mathematical theo-
rem underlying the above folklore principle about vertex algebras. For this, we in-
troduce an algebro-geometric version of the free loop space Z(X) for any scheme
X of finite type over a field. This is an ind-scheme containing .Z°(X), the scheme
of formal germs of curves on X studied in [DL]. We prove that both Z(X)
and Z°(X) themselves possess a non-linear version of the vertex algebra structure
(which makes it clear that any natural linear construction applied to them should
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give a vertex algebra in the usual sense). More precisely, we use the geometric ap-
proach to vertex algebras developed by Beilinson and Drinfeld [BD1] and based
on the concepts of chiral algebras and factorization algebras. The latter concept
has a natural nonlinear version, that of a factorization monoid. What we prove is
that natural “global” versions of Z(X), -Z°(X) have natural structures of factor-
ization monoids. An earlier known example of a factorization monoid is given by
the affine Grassmannian [G], and this explains why the spaces of representations
of loop groups are vertex algebras. Our construction is similar in spirit.

To give a good definition of the algebraic analog of the full loop space LX
one has to overcome a certain subtlety Namely, a natural approach would be to
try to (ind-Jrepresent a functor which to any commutative ring R associates the
set of R((£))-points of X. (This is exactly how one defines the scheme Z"(X),
with R[[¢]] instead of R((¢)).) If X is affine, this indeed gives a good ind-scheme
which we denote - Z(X). But when X is, say, projective, then (for R a field) there
is no difference between R][[¢]]-points and R((¢))-points of X (valuative criterion
of properness), so it may seem that nothing is gained by allowing Laurent series.
To state this phenomenon differently, the ind-schemes Z(U) for affine Uc X do
not glue together well. This is in fact understandable on general grounds: the loop
space LX is not the union of the LU since a loop need not spend all its time in
any given U.

To get around this difficulty we adopt the following strategy. For an affine
X we consider .Z(X), the formal neighborhood of .Z"(X) in <z (X). So we are
dealing with formal loops which are “infinitesimal in the Laurent direction”. Then,
we prove that the Z(U), U C X, do indeed possess the right gluing properties.
This is due to the infinitesimal nature of our loops.

The role of nilpotent thickenings in Laurent series models for loop spaces was
first pointed out by C. Contou-Carrere [CC] who was studying, in our notation,
the group ind-scheme 2(Gy) and found that it is a nontrivial formal thickening
of Z%(Gm) x Z.

Our second goal is to give a direct geometric construction of Q% (for
smooth X) in terms of our model for the loop space. By the above, this con-
struction explains also the fact that Q¢ is a sheaf of vertex algebras. In order to
achieve this, we represent .Z(X) as an ind-pro-object in the category of schemes
of finite type and then show that the shifted de Rham complexes of the terms of
this ind-pro-system arrange naturally into a double inductive system whose induc-
tive limit is identified with .

As with the study of formal arcs and motivic integration [DL], one can
view our considerations as algebro-geometric analogs of the basic constructions
of p-adic analysis. The difference between our ind-scheme Z(X) and the more
familiar scheme .Z°%(X) is similar to the difference between Q, and Z,: while the
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latter is a pro-object in the category of schemes of finite type (resp. finite sets),

the former is an ind-pro-object. Further, our approach to Q% is similar to the

construction of the space of locally constant functions with compact support on

Q, = li_r)nll(iLn‘ p7Z,/p'Z, as the double inductive limit of the spaces of functions
i

on the finite sets p~'Z,/p'Z,, cf [P]. Notice that the reason that these spaces of
functions indeed form a double inductive system (with respect to the maps of
inverse image in the j-direction and direct image in the i-direction) is that the
commutative squares in the ind-pro-system p~'Z,/p’Z, are Cartesian (so that we
have base change). This is an algebraic counterpart of the property of the local
compactness of Q ,, see [Kat]. In our situation it is equally important that the
ind-scheme Z(X) satisfies a certain formal analog of local compactness.
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1. Construction of the formal loop space

1.1. Generalities on schemes and ind-schemes

If C is a category, then we denote by Ind(C) and Pro(C) the categories
of ind- and pro-objects of G, see [AM] [GV] for background. Thus, objects of
Ind(C) (resp. Pro(C)) are symbols “lim”C; (resp. “lim”C;) where (C)) is a fil-

tering inductive (resp. projective) system over C, with molrphisms defined as in /loc.
cit. Recall that Ind(C) can be considered as a full subcategory in Fun®(C, Sets),
the category of contravariant functors.

Throughout the paper we fix a field £. The word “scheme” will always mean
“a separated k-scheme”. We denote by Sch C Lrs the categories of schemes and
of locally ringed spaces over £. If R is a commutative ring, we will write Spec R
for the topological space (the set of prime ideals with the Zariski topology) un-
derlying the affine scheme Spec R which is thus the ringed space (SpecR, Ogpec ).

By an ind-scheme we will mean in this paper an ind-object of Sch repre-
sented by an inductive system of closed embeddings of quasicompact schemes. The
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category of ind-schemes will be denoted by Isch. In particular, we view formal
schemes as ind-schemes, e.g., Spf £[[/]] = “lim” Spec[¢]/t""". Let us make the

category Sch into a Grothendieck site by using Zariski open coverings and let
Shf be the category of sheaves of sets on Sch. For any ind-scheme Y the functor
ny on schemes represented by Y is then a sheaf, so we have the embeddings

(1.1.1) Sch C Isch C Shf C Fun’(Sch, Sets).

Since the category Sch has finite inverse limits, so do all the categories in
(1.1.1) and the embeddings preserve them. On the contrary, finite direct limits, such
as cokernels (when they exist) are preserved by the first two of the embeddings
but not by the third one: cokernels in the category of sheaves are not the same
as in the category of all functors (presheaves).

We denote by Alg the category of k-algebras and by Aff C Sch the dual
category of affine schemes. Note that Isch can be as well realized as a full sub-
category in Fun’(Aff, Sets) = Fun(Alg, Sets).

Given two contravariant functors ¢, ¢’ : Sch — Sets, and a morphism F :
¢ — ¢, we will say that F is formally smooth (resp. formally étale), if for any
nilpotent extension of affine schemes S C S’ the natural map

¢ (S) = o(S) Xp(S) d'(S)

1s surjective (resp. bijective).

We will say that I is an open embedding, if for any scheme S and any
u € ¢(S) (which is the same as a morphism ny — ¢) the fiber product functor
Ns Xy @ 1is representable by a scheme S’ whose natural morphism to S is an open
embedding.

We define formal smoothness and openness for morphisms of ind-schemes by
considering their representable functors.

For a scheme Z we denote by Z.q C Z the corresponding reduced sub-
scheme. We extend this notation to ind-schemes by applying it term by term in
inductive systems.

Let X be a k-scheme of finite type. We denote by Affyx (resp. AffL) the
category of schemes affine over X (resp. affine of finite type over X). For future
use let us quote the following fact [EGAIV, Corollary 8.13.2].

1.1.2. Proposition. — The category Pro(ASEY) is equivalent to Affx via the functor
“lim ” S, > lim S,.

We also denote Schyx the category of all separated X-schemes and Ischy
the category of ind-schemes over X. Thus objects of Ischx are arrows Y — X,
Y € Isch, or, equivalently, symbols “lim ”Y, where Y, — X form an inductive

system of closed embeddings of quasicomnpact X-schemes.
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1.2. The scheme of germs of arcs

Let X be a scheme. We denote by .Z°(X) the scheme of germs of arcs
on X, see [DL] and [BLR, Theorem 7.6.4]. It represents the following covariant
functor A% on the category Alg:

A : R > Homse(Spec R[], X).

Here are some of the well-known properties of .Z°(X). Note that if R is a local

ring with maximal ideal M, then R[[/]] 1s a local ring with maximal ideal M[[¢]]+
R[[]].

1.2.1. Proposition. — (a) For any scheme S the pawr (S, Os[[t]]) s a locally ringed
space.
(b) For any scheme S we have

Homy, (S, £°(X)) = Hompes ((S, Os[[11]), X).

¢) The scheme L°(X) is the projective limit of the schemes L°(X), n € N, repre-
by n 74

senting the functors
Ay« : R > Homge(Spec R[¢]/¢"!, X).
If X is of finite type, than so is each L (X).
(d) Denote p, : LX) = X, p: LX) — X the natural projections. They are affine

morphisms. For an open subset U C X we have p~"(U) = Z°(U) and p,"(U) = Z"(U).
(¢) If X is smooth, then so is L°(X) and LX) is formally smooth.

Progof. — Yor (a) and (b) it suffices to assume that S = Spec R is affine. The
embedding of constant series and the evaluation at 0 give ring homomorphisms

R 35 R[] £ R and hence morphisms of topological spaces
(1.2.2) Spec R L Spec R[[]] L Spec R.

The statement (a) follows from the next lemma, since Ogpec gy is obviously
a sheaf of local rings.

1.2.3. Lemma. — We have

1
2 ﬁSpec R[] — ﬁSpec R[[t]] = p*ﬁSpec R[]~
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Proof. — Let us prove the first equality. If p € SpecR is a prime ideal in R,
then the stalk of i_lﬁspec riy at P is the localization of R[[#]] with respect to the
multiplicative subset 87'(R —p) while the stalk of Ospec vI[11] 1s R[[{]]®r R, where
R, denotes, as usual, the localization of R with respect to R —p. Now, to see
that the two rings are the same, it suffices to use the following obvious property
of formal power series rings: if A is a commutative ring and /() € A[[¢]] is such
that f/(0) is invertible in A, then f(¢) is invertible in A[[¢]].

The second equality is obvious: the stalk of p,Ogspec vy at p is immediately
seen to coincide with R[[/]] ®r Ry. O

Now, composing with ¢ defines a map of sets
¢ : Homsen(Spec R[[7]], X) — Homy,s((Spec R, Ospec r[[211), X).

A map ¥ in the other direction comes from the second equality in Lemma 1.2.3.
One verifies easily that ¢ and Y are mutually inverse. This concludes the proof
of Proposition 1.2.1(b). The rest of Proposition 1.2.1 is proved in loc. cit.

We will also need the following generalization of Proposition 1.2.1(d).

1.2.4. Proposition. — Let ¢ : X — Y be an étale morphism of schemes. Then
(@) each morphism L (¢) : LX) — L) is dale,
(b) the square

LX) > L)

\: \:
X = Y,

as well as the analogous square for £°(X), ZL°(Y), is Cartesian.

Proof — We can assume that X = Spec(A),Y = Spec(B) are affine. It is
enough to prove that for each n > 0 the natural morphism

a: LX) = ZL°(Y) xy X

is an isomorphism. Let us construct the inverse morphism B. Let R be a £-algebra
and f be a morphism S — £°(Y) xy X. Thus, / corresponds to a pair of ring
homomorphisms forming the horizontal arrows of the commutative diagram

B — R[]/t
o b
A—— R

Here 7 is the natural projection. Since ¢ is étale and m is nilpotent, there is
a unique homomorphism w : A — R[#]/¢"*! such that both resulting triangles are
commutative. Let g be the morphism S — £°(X) represented by w. Then we set
B(f) = g. The verifications are obvious and left to the reader. |
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1.3. Nil-Laurent series

Let R be a commutative ring. A nil-Laurent series is, by definition, a Laurent
series a(t) = Zi»_oo ait' € R((t)) such that all the ¢ with i <0 are nilpotent. The
set of such series will be denoted R((¢))V .

It is clear that R((¢))V is a subring in R((¢)), the ring of all Laurent series.
Indeed, let ~/R be the radical of R (the set of all nilpotent elements) and set
R = R/\/i Consider the homomorphism p : R((¢#)) = Rq((¢)) induced by
the projection R — R,.q. Then R((OV = p ' (Reall41]).

1.3.1. Proposition. — For a =Y _ a;t' € R((OW  the following are equivalent:
(i) the element a is invertible in R((£))Y ,

(1) the element p(a) s wmvertible in R,4[[¢]],

() the element ay s wnvertible in R.

Proof. — (1)=>(11) 1s obvious. To see that (ii)<>(ii1), note that the invertibility of
p(a) implies the invertibility of the image of 4y in R,.q which certainly implies the
ivertibility of a; and the converse is equally obvious. Let us prove that (i1)=(i).
Indeed, if p(a) is invertible in R,.4[[{]], we have ab =1+ ¢ for some b € R(()) ,
¢ € Kerp = ~/R((1)). But every element ¢ € VR((1) is topologically nilpotent
(setting ¢ = ¢c_ + ¢, with ¢ € 'VR["'] and ¢, € VR[[{]], we have that ¢_ is
nilpotent while ¢; is topologically nilpotent), thus ab is invertible in R((1))v', and
a 1s invertible, too. O

1.3.2. Corollary. — If R is a local ring with maximal ideal M, then R(() s
a local ring with maximal ideal p~" (M, [[£]] + R,.[[£]]).

1.4. The formal loop space

We now describe our main construction. Let X be a scheme of finite type
over k. Define a covariant functor Ax from Alg to sets as follows:

(1.4.1) Ax(R) = Homgg,(Spec R(())V , X).

1.4.2. Theorem. — (a) The functor Ax is represented by an ind-scheme Z(X),
containing ZL°(X).

(b) LX) is an inductive limit of nilpolent extensions of L°(X). In particular, for
any open set Y C LX) there is a well-defined ind-scheme L (X)|y.

(c) If U is an open subset i X, then the ind-scheme £ (U) 1is identified with
LX) 1)

d) If X is smooth, then £ (X) is formally smooth.
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Note that Theorem 1.4.2 is closely related to [BDI1, Proposition 3.9.3(2)].
The proof will be finished in the next subsection.

Let R be a commutative ring. Since R((/))Y is a nilpotent extension of
R[[#]], we have Spec R(()}Y = SpecR[[¢]], so Spec R((#))¥ is the ringed space
formed by Spec R[[#]] and a certain sheaf of rings Ospec R(py~ ON it.

1.4.3. Lemma. — (a) We have, with respect to the maps in (1.2.2), the equalities

._1 —
t ﬁSpec RO — ﬁSpeC R((t))“/ :p*ﬁspec R((O)W

(b) For any scheme S the sheaf Os((OW is a sheaf of local rings.

Proof — 'The proof of (a) is analogous to that of Lemma 1.2.3. Instead
of the property of A[[/]] quoted there, we use Proposition 1.3.1. Part (b) follows
from (a). O

Let ¥ : Sch — Lrs be the functor such that S — (S, Os(())¥' ). Let us
define a contravariant functor Ay on the category Sch by

(1.4.4) A (S) = Homp,s (¥(S), X).
1.4.5. Proposition. — For an affine scheme S = Spec(R) we have A (S) = Ax(R).
Proof. — Tollows from Lemma 1.4.3 similarly to Proposition 1.2.1(a). O

In virtue of Proposition 1.4.5, for the proof of Theorem 1.4.2 it suffices to
show that the functor A{ on Sch is ind-representable. We start by establishing
some of its properties.

1.4.6. Proposition. — (a) For every scheme X the functor Ay is a sheaf on Sch.

(b) If U C X is an open subset, then the induced morphism of functors Ai; — A% is
open.

(c) Let (Uy)gea be an open covering of X. Then Ay s equal to the cokernel, in the
category Shf, of the pair of morphisms

[ M= L M
o, B o

Proof. — The proposition follows from simple properties of representable func-
tors on the category Lrs. If .7 = (T, 07) is a locally ringed space, we will call
an open part of 7 a ringed space of the form (U, O7|y) where U C T is an
open subset in the usual sense. An open embedding is, by definition, a morphism
isomorphic to the inclusion of an open part. Accordingly, we have the concept of
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an open covering of 7. This makes Lrs into a Grothendieck site. For 2" € Lrs
let n4 be the corresponding representable functor on Lrs. As in Sect. 1.1, a mor-
phism F: ¢ — ¢ of functors Lrs — Sets will be called open, if for any . € Lrs
and any element u € ¢(.¥) (i.e.,, a morphism 1y — ¢) the fiber product functor
Ny X @ is representable by a locally ringed space . whose natural morphism
to . is an open embedding. Let us recall the following basic facts.

1.4.7. Lemma. — (a) For any X € Lrs the representable functor ny is a sheaf on
Lrs.

) If % C Z is an open embedding in Lrs, then 1y — Ny is an open morphism
of functors.

(c) Let X € Lrs and (Uy)aen be an open covering of Z'. Then in the category of
sheaves of sets on Lrs we have the equality

(1.4.8) o = Coker| [ [ =] [ 1
o, B o

o, explicitly, for any ¥ € Lrs,

(1.4.9) 02 () = lim Ker{l_[ 02,02 [ [ naoan(Fe N Fp) }

Ja @ af
where the lhmit is taken over the set of open coverings (Fy)aen of < (the indexing set A
beng fixed) ordered by simultaneous inclusion.

Proposition 1.4.6 follows from Lemma 1.4.7. Indeed, we have A{ = nx o ¥,
where X is viewed as a locally ringed space. Thus, to prove Proposition 1.4.6.(5)
using Lemma 1.4.7(b) it is enough to prove that for any open embedding of
schemes U — X and any u € AL(S) there is an open embedding j : S" — S such
that the following square is Cartesian

U —< X
A A u
R®))
W(S) = Y(S)
(then, ns X, Ay = ny). This is obvious. O

Proof. — Part (a) is obvious, and Part (b) is proved in [EGAO, (4.5.2)]. Let
us prove Part (¢). For any ¢ € ny () and any «, consider the ringed space

S = (" (U), Orls-1m)-
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Clearly, () is an open covering of .. Let ¢, be the restriction of ¢ to .7,.
Then, (¢,) is an element of [], 7%, () lying in the kernel (1.4.9). Thus we
have constructed a map from 75 (%) to the right hand side of (1.4.9). On the
other hand, assume that (¢,) € [], 1%, (%) is such that ¢,(F, N .Sp) C U N U
and ¢yl 707 = Pplsns,. The corresponding maps 7 rea — Uy ea glue together,
giving a continuous map @rq : Sred = Zred- Moreover, there is an obvious sheaf
homomorphism ¢* : ¢ 0, — Oy: the restriction of ¢* to .7, is the composition
of the chain of maps

(raO) %ﬁ@fa = 0Oylg,.

This establishes (1.4.9).

Let C be the cokernel as in (1.4.8) but taken in the category of presheaves.
Then the cokernel in the category of sheaves is just the sheaf C associated to the
presheaf C. By definition, for .#’€Lrs the set C(¥) consists of pairs (&, ¢:S—%,)
taken modulo the identifications coming from morphisms of . into %,N%s. Now,
by the definition of the sheaf associated to the presheaf,

A = ((pozledﬁf%) .

C= lim | Ker { ﬂ C(S) — Vl;!r G, NS, }

where the limit is over all possible open coverings of . (with arbitrary indexing
sets I') ordered by refinement. Notice now that specifying a section of C over .7,
includes specifying an index o« from the set A indexing the covering {%,}, so we
get a map p:I' — A. Denoting 7, = {,(,—, > we get an element of the right
hand side of (1.4.9). This establishes the equivalence of (1.4.8) and (1.4.9). O

Note that Proposition 1.4.6(c) implies the following

1.4.10. Corollary. — We have Ax = limycx gpeAv, the limit being taken in the
category Shf.

1.5. Proof of Theorem 1.4.2

We first assume that X = SpecA is an affine scheme of finite type. Consider
the larger functor Ax on Alg defined by

Ax(R) = Homaig(A, R((1)))-
1.5.1. Proposition. — (a) The funclor Ax is represented by an ind-scheme LX),

which s an inductive limat of affine schemes of infinile type.
() If X is smooth, then £ (X) is formally smooth.
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Proof. — (a) Consider the A-ind-scheme
k((t)) =lim Speckla;; —N < [].
=N

We can think of the ¢ as the coeflicients of an indeterminate Laurent series
Y @it Tt is clear that k((f)) represents the functor Asi. Since A! is a k-algebra
object in the category of schemes, multiplication of Laurent series makes £((¢)) into

a k-algebra object in the category of ind-schemes. In particular, each polynomial
S € klx,...,x;] defines a morphism of ind-schemes j(f) C R = k().
Hereafter we will write £[x] instead of £[xi, ..., x,] to simplify.

Suppose now that X is given in A? by a system of algebraic equations, say

Jn(x1, o xg) =0, m=12,...,1

The ind-scheme & (X) is realized as the closed sub-ind-scheme in £((7))" defined

as the intersection of the preimages of 0 under the Z(f,). More explicitly, replac-
ing x; by x(8) = ij—N a}i)tf in the equations above, we get, for each N, a system
of algebraic equations in k[a?i); —N </] for each N which defines a subscheme in
(Speckla;; =N < {])?. Our desired ind-scheme Z(X) is the direct limit of these
schemes as N — oo.

(b) The infinitesimal lifting condition for Ay is formulated for affine schemes
S = Spec(R). We need to prove that for any surjection of k-algebras R’ — R
whose kernel I satisfies I" = 0 for some n, the map of sets x(R) = Ax(R) is
surjective. But the kernel of R'((£)) — R((¢)) is 1((#)) which is also nilpotent of
order n. So the smoothness of A implies that any morphism A — R((¢)) can be
lifted to a morphism A — R'((?)). O

1.5.2. Corollary. — The functor Ax is represented by an ind-scheme £(X) which is
the inductive limit of the formal neighborhoods of L°(X) in the schemes forming an inductive
system for L(X). If X is smooth, then L(X) is _formally smooth.

This proves parts (a), (b) and (d) of Theorem 1.4.2 for the case of affine X.
Part (c) of the theorem follows from Proposition 1.4.6(c).

To prove Theorem 1.4.2 for general X, it is enough to establish the existence
of the limit li_r)n uex afine-Z (U) in the category of ind-schemes. In fact, it is enough

to take the limit over a finite set of U consisting of elements of some finite cover-
ing and their intersections. Indeed, given this, all the other properties follow from
the affine case and from Proposition 1.4.6. But using Proposition 1.4.6(b) again,
we see that for any pair U C U of affine open subsets in X the correspond-
ing morphism of ind-schemes Z(U) — Z(U) is an open embedding. Further,
the ind-scheme .Z(U),q is actually a scheme, namely .Z°(U). So our statement
follows from the next general fact.
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1.5.3. Lemma. — Let (Z,)ic1 be a fimte diagram of ind-schemes in which all the
arrows are open embeddings. Assume that the inductive bimit of Z; . exists in the category of
ind-schemes. Then so does the inductive limit of the Z,.

Theorem 1.4.2 is proved. Let us also note the following fact.

1.5.4. Proposition. — If ¢ : X — Y s an étale morphism of schemes of finite type,
then L(p) : LX) = L) is _formally étale.

Proof — By the above we can assume that X = Spec(A), Y = Spec (B) are
affine. If S is a scheme and we have two compatible maps

a: Seq —> Z(X), B:S— ZY),

we must construct the unique map S — Z(X). If S = SpecR, then we have
a diagram

AS Rg((ON = Rll]
¢ 1 ) 0
B L RV,

where the right arrow, which is the projection p in Sect. 1.3 has nilpotent kernel.
Therefore there is a unique homomorphism of rings A — R((/))¥' making the
diagram commute. O

1.6. The formal loop space as an ind-object

For future purposes we construct a certain class of local realizations of Z(X)
as an ind-object in the category of schemes.

Let x),x9,...,x4; be the coordinates on the affine space A, Tor any k-
algebra A and any morphism ¢ : SpecA — A’ let ¢* be the corresponding
map A[xy, ..., x] = A.

1.6.1. Proposition. — Assume that X = SpecA s an affine scheme and that ¢ :
X — A? is an dale morphism of schemes.

(@) There is a umque morphism 0, : L(X) — X such that 0,(f)(P*x;) = f(d*x:)0
Jor any [ € Ax(R). The restriction of 0y to Lo(X) s equal to the projection p from
Proposition 1.2.1(b).

(b) We have L(A?) xp X >~ L (X).

Proof — Clonsider the morphism of functors As« — 7a¢ which maps a homo-
morphism f € Homag(£[xy, ..., x,], R((1))) to the morphism from £[x, ..., x,]
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to R defined by x; > f(x)o. This morphism of functors can be seen as a mor-
phism of ind-schemes Opi + LAY — A Tt is clear that its restriction to .Z°(AY)
coincides with the projection p from Proposition 1.2.1(d). Let 85« be the restriction
of By to the ind-subscheme -Z(AY) C &z (AY). Since Z(X) is an inductive limit of
nilpotent extensions of the scheme £°(X) and ¢ is formally étale, there is a map
0, 1 Z(X) = X splitting the diagram

29X) > X

2 o
LX) —> A?

into two commutative triangles. Here, the lower horizontal arrow is the composition
of maps

Opi 0 L(9) : LX) - LAY — A"

Let ¥ be the resulting map Z(X) — Z(A%) xa X. We claim that ¥ is an
isomorphism. For this, we construct a map x : Z(A%) x X — Z(X) inverse to .
Let S = SpecR be a scheme. A morphism S — Z(A?%) x4 X is a compatible pair

(@:S— LAY, B:S—X).

We need to construct a map x(a, B) : S > Z(X). First, a(S,.q) C Z°(AY), and
B(Siea) C X. Thus, by Proposition 1.2.4, we have a map y : S,.q > -Z°(X). The
composition 7 of ¥ and the embedding Z°(X) C Z(X) gives a commutative
diagram

St & LX)
(1.6.2) \: 1 24
S 5 2.

To complete the construction, we notice that Z(¢) is formally étale by Proposi-
tion 1.5.4 and so we have a map S — Z(X) splitting (1.6.2) into two commutative
triangles. We take this map to be x(«, B). The verification that x is inverse to ¥
is straightforward. Proposition 1.6.1 is proved. |

Let E be the set of ¢ = (6_1,6.9,...), & € Z; such that & = 0 for almost
all j. It is equipped with the natural partial order: & < &' if ¢; < ¢/ for all ;. In the
remainder of this section we assume that the A-scheme X is smooth. Thus X can
be covered by affine open sets U = SpecA possessing étale maps ¢ : U — A”.
For every such U, ¢ we consider the functor

1+¢;

At Ris {f € ao(R) 1f(¢*x), " =0, ¥i e [1,d], ¥j < 0}.
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1.6.3. Proposition. — The functor A, is representable by a closed subscheme Z°(¢) C
L), such that L (U) is the inductive limit of the schemes L*(¢).

Progf — We first consider the case U = A’, ¢ = Id. Let N be such that
¢ =0 for j < N. Define the scheme .#*(A’) by

(1.6.4) £°(A%) = Spec (K[a"; =N < 1]/((a") "'; 1< 0)).

It is immediate that this scheme represents the functor A%, and that A3 = A}, X, ,
Au. The proof of Proposition 1.6.1 implies that that the map

(1.6.5) hy = Ay X, nus > (f 0@, 0,(f))
is an isomorphism of functors. Thus, the closed subscheme
(1.6.6) LA xp U C LAY x40 U= L),

see Proposition 1.6.1(b), represents the functor Aj. It is clear by the definition
that Ay = hm Ay mn the category of functors Alg — Sets and thus we have that

ZU) = hm $€(¢>) in the category of ind-schemes. O

Let us note the following reformulation of this fact, to be used later.

1.6.7. Corollary. — If ¢, are two étale maps U — A’ then the ind-objects
« hm ? L), hm ? L) are isomorphic, te., for any € there is € such that £ (¢) C

f e (1,0) and vice versa.

Progf. — Given v, any map S — Z(U) with S an affine scheme, factors
through some L (Y). Now take S = Z*(¢) which we know to be an affine
scheme by (1.6.4)—(1.6.6). O

1.7. The formal loop space as an ind-pro-object

We keep the notations of Sect. 1.6. Thus U = Spec(A) is affine and ¢ :
U — A? is étale. The schemes Z*(¢) are of infinite type. In fact, each of these
schemes is a projective limit of schemes of finite type, so Z(U) can be viewed
as an ind-pro-object in the category of schemes of finite type over 4. In this
subsection we construct explicit ind-pro-systems for £ (U).

Consider the functor A;, @ R+ A3(R)/ ~,4, where

S~ & = [(@7x) —g(@*x) € "RV,
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1.7.1. Proposition. — (a) The functor Ay is representable by a scheme £ (¢). The
scheme LE(@) is of finite type and is a nilpotent extension of L0(U) = L (p). Moreover,
Z7(9) = lim Z1($).

() The schemes Z(@) form an ind-pro-system with Carlesian squares (f > n, & > ¢€)

L5P) — L5 (P)
! !
LE(P) — L5 (B)

where the vertical arrows are smooth affine morphisms.

(c) The ind-pro-object “lim ” “lim ” L5 (@) s independent, up to isomorphism, on @.

Proof — Claim (a) is entirely similar to Proposition 1.6.3. We first consider
the case U=A", ¢ =id and define the scheme £*(A?) by

(1.7.2) Z(A%) = Spec (Ha"; =N < 1 < n]/((a") ™; 1< 0)), N> o.
It represents Af,. The fiber product scheme .Z°(A?) x5 U represents the functor
Ania X Mu. The isomorphism of functors (1.6.5) yields an isomorphism of functors
Aug = Mg X Mu. Thus
(1.7.3) L) = LA xa0 UL

Claim (b) is obvious in the case U= A’ ¢ = id. The general case follows
from (1.7.3) since the base change of a smooth affine morphism is still smooth

affine, and the base change of a Cartesian square is Cartesian.
Claim (¢) follows from Corollary 1.6.7 and Proposition 1.1.2. O

Passing to the limit in € we get the ind-scheme .Z,(¢) = “lim ” Z(¢). It
represents the functor R = Ay(R)/ ~,p. As in (1.7.2) we get ‘

Z,AY = “lim ” Spf k[a”,0 < | < u][[4”, —-N < 1< 0]].
—N

Here the formal spectrum is considered as an ind-scheme as in Sect. 1.1. So we
see that .Z,(A?) is formally smooth. Further, we see that

Z(¢) = LA xae U,

from which we see that Z,(¢) is also formally smooth.
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2. The global loop space

2.1. Localization on a curve

Consider the Lie algebra Der £[[¢]] and the group scheme Aut £[[¢]] over &.
They form a Harish-Chandra pair [BB] and [F, Sect. 6.1]. By construction, we
have the action of this pair on the scheme £°(X) and on the ind-scheme .Z(X)
constructed in Sect. 1.

Let C be a smooth curve over £ The well known procedure of localiza-
tion, see loc. cit. and [GKF], gives then a scheme & %X)¢ and an ind-scheme
Z(X)¢ over C defined as follows. Let G" — C be the scheme of pairs (¢, ¢)
where ¢ € C and ¢ is a formal coordinate near ¢. Then C” has a natural
(Der £[[¢]], Aut [[t]])-structure, ie. a simply transitive Der £[[{]]-action extending
the fiberwise Aut £[[{]]-action. We define

(2.1.1) Z°X)e = C" Xpuu L°X),  ZLX)e = C" Xpu i LX).

If X is affine, we define, in a similar way, the ind-scheme <z (X)¢ start-
ing from Z(X). Because of the simple transitivity of the Der £[[{]]-action on C*,
the (ind-)schemes thus constructued possess natural connections along C which are
compatible with the embeddings & '"X)e € ZX)¢ and, for X affine, £°(X)¢ C
ZX)¢c.

Note that Z°(X)¢ is nothing but the scheme of infinite jets of morphisms
C — X, so it is easy to describe explicitly the functor represented by Z°(X)¢
(and also by Z(X)¢, Z(X)c). Let us introduce some notations. For a scheme S
and a morphism f : S — C we denote by I'(f) C S x C the graph of f. Let
Jred @ Stea = G be the restriction of f to S,.q. We have then the following sheaves
of k-algebras on S x C supported on I'(f):

— ﬁfA, the completion of Os.c along I'(f), ie. the sheaf of functions on the
formal neighborhood of I'(f).

— ", the sheaf of functions on the punctured formal neighborhood of
I'(f). Thus " is obtained from & by inverting the local equations of the
divisor I'(f) € S x C.

— Jif/— C %", the subsheaf of sections whose restriction to Sy.q X C lies in
ﬁff‘\ed c ‘%221

2.1.2. Proposition. — (a) The sheaves O and Jij?/_ are sheaves of local rings.

(b) The scheme L°(X)c represents the functor 1%  : Sch — Sets which associates

lo a scheme S the set of paws (f, p) where f : S — C s a morphism of schemes and
p: (L), OF) = X is a moyphism of locally ringed spaces.
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(c) The ind-scheme L (X)c ind-represents the functor Ax.c defined as in (b) but with
Op replaced by Ji?/— ) )

(d) Similarly, when X is affine, the ind-scheme L (X)¢ ind-represents the functor dx c
defined as in (b) but with OF replaced by ;"

Proof — (a) By choosing an etale coordinate » on C and using the relative
etale coordinate y — f(s) on C x S, we reduce to the case when C =A! and [ is
constant with value 0 € A!. Then

o) = Oill). K= 0(0), A =050V

and our assertion follows from Proposition 1.2.1(a) and Lemma 1.4.4(b).
(b) The projection 7 : C* — C induces, for any scheme S, a map of sets

s : Hom (S, £°(X)¢) — Hom(S, Q).
It is enough to show that for any f:S — C the set w5 '(f) is naturally identified
with the set of p: (I'(f), ﬁfA) — X. Further, since both functors )‘g(,c and n.g0x.
are sheaves of sets on Sch, it is enough to construct such an identification Zariski
locally on S. But locally on S we have, from the definition 2.1.1:
7Ts_1(f) = Lifts(f, C") X au 4117 Hom(S, LX),
where Lifts( £, C") is the set of f:S — C” such that 7/ = f. Recall that
Hom(sa XO(X)) = Hoers((Sa ﬁS[[t]])a X)
This means that

”s_l(f) = Hoers((Sa M)a X)’
where o7 is the sheaf of rings on S associated to the presheaf
AutA{[1]]
Ut < I mum) .
‘feLifts( f]u,CM)

But it is clear that & >~ 07, whence the statement. Parts (c) and (d) are proved
similarly. |
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2.2. Factorization monoids

Let C be a smooth curve, as before. For any surjection J — I of finite sets
and ¢ € I we denote by J; the preimage of . To such a surjection one associates,
in a standard way, the “diagonal” embedding AY/D : C' — CJ. Let UV c CJ
be the locus of (¢)jej such that ¢ # ¢ whenever the images of j and ;' in I are
different. We denote by ;U : UU/D — CJ the embedding.

2.2.1. Defimition. — Let Y be an wnd-scheme over C. A factorization monoid structure
on Y is a collection of ind-schemes Yy over C' with a formally integrable connection, given for
each nonempty finite set 1 such that Yy =Y and Yy is formally smooth over C', equipped
with the following data:

(@) An isomorphism of C'-ind-schemes vV AU/ I)*YJ:)YI Jor every surjection
J = L, compatible with compositions of surjections.

(b) An isomorphism of UV ind-schemes
I LY S I,

Sor every ] — 1, such that for K —» ] the isomorphism k™Y coincides with the composition
kKW o ([T kSH2). We also demand that v, k are compatible in the following sense: for
ewery J —J = 1 one has v o AUI*(eIMYy = T/ o (K vidd),

2.2.2. Remark. — (a) This is a nonlinear counterpart of the concept of a fac-
torization algebra due to Beilinson and Drinfeld [BDI1], [G], see also Sect. 5.1
below. Factorization monoids can be used to construct factorization algebras by
applying “natural” linear constructions.

(b) More generally, we can speak about a factorization monoid structure on
any functor % : Sch — Sets (not necessarily representable by an ind-scheme)
which is equipped with a morphism to G (i.e. to the representable functor 7).

2.2.3. Example. — Let G be an affine algebraic group over £ Then Z°(G)
is a group scheme and Z(G) is a group ind-scheme over C. The quotient ind-
scheme &rg = Z(G)/ZL°(G) is known as the affine Grassmannian associated
to G. The natural family of such Grassmannians over C, ie. the ind-scheme
B76(C) = L(G)/ZL°(G)¢ is known to have a structure of a factorization monoid,
see [G, Sect. 5.2.2].

Now, the main result of this section is the following

2.2.4. Theorem. — Let X be a scheme of finite type. Then the C-scheme £°(X)¢
and the C-ind-scheme £ (X)q possess natural structures of factorization monoids so that the
embedding L°(X)e € LX) is a factorization homomorphism. Similarly, if X is affine,
then the C-ind-scheme .,%: (X)¢ has a natural structure of a factorization monoid so that the
embedding L (X)c C LX) is a factorization homomorphism.
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2.3. Factorization monoid structure on the functors represented by £°(X)¢, <z X)¢ and
ZLX)c

Let S be a scheme and f; be I-uple of morphisms £ : S — C, 7 € I. We
denote by I'(fi) C SxC the union of the graphs of the f’s and by fiq C S;ea X C
the union of the graphs of the f 4. Let us introduce, similarly to Sect. 2.1, the
following sheaves of rings on S x C with support in I'( f;):

- ﬁfl, the completion of Os.¢ along I'(f1), ie. the sheaf of functions on
the formal neighborhood of I'( f1).

— A, the sheaf of functions on the punctured formal neighborhood of

(/.

- Jiﬁ/— C %", the subsheaf of sections whose restriction to Sy.q X C lies in
o) C " .
fl,rcd fl,rcd

2.3.1. Proposition. — The sheaves Of and ,/“iﬁ[ are sheaves of local rings.

Proof. — The case of ﬁfl is immediate because (I'(f1), ﬁﬁ) is the formal
neighborhood of I'(f;) in S x C, hence it is a locally ringed space. The case

of Jiﬁ/— is analogous to the proof of Proposition 1.2.1. Indeed we can assume
that C = Speck[f] and S = SpecR. Set b; = f*(1), K} = H(T(f}), %, ), and
Ofl =H'(T'(f), ﬁﬁ)' The ring K}/I_ 1s identified with the set of series

Y a]Je—b)

[>—00 i

where ¢,(f) € R[¢] are polynomials of degree less than |I| with nilpotent coefficients
if [ <0, and the subring Ojﬁl with the series such that (f) = 0 if [ < 0, see

Sect. 1.7. We have Spec (K}I[) = Spec (Of) because K}IF is a nilpotent extension
of Ofn. Let ¢ : I'(f1) — Spec(Op) be the natural map. Then

- 4
e () = -

Spec
The proposition follows. O

2.3.2. Defimition. — Let 1 be a nonemply finite set.

(a) We define the contravariant funclors 13 i, Ax.c1 from Sch to Sets as follows.

For a scheme S the sel A%!CI(S) consists of pawrs (f1, p) such that
i € Homgen, (S, CY ad pe Homhsk((l"(fl), ﬁﬁ), X)

The contravariant functor Axcr is defined similarly but with OF replaced by Ji??/—
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(b) If X is affine, the functor kx.c1 from Alg to Sets is such that the set kx ci(R)
consists of pairs (f1, p) with fi being a scheme morphism from SpecR to C' and p an
algebra morphism from k[X] to HY(T(fy), ).

The embeddings of sheaves of rings Of — Jiﬁf — " induce embeddings

of functors )‘g(,cl — Ax.al = Ax.cl-

2.3.3. Proposition. — Let X be a fixed scheme of finite type. The families of functors
()‘g(,cl)ﬁ (Ax.c1), (Ax.qr) with 1 runming over nonempty finite sets, form each a factorization
monoid n the category of functors.

Proof. — This is almost obvious by construction. Indeed, let J — I be a sur-
jection of nonempty sets. Then AWU/D* of the Jth functor in any of the three
families takes S into the set of (fj, p) where fj is a morphism S — CJ which in
fact lie in the image of AY/Y. Thus fj comes from a uniquely defined I-tuple f;.
Now, I'(f}) = (/1) and so each of the three sheaves 0", &, #V associated to
them coincide. This gives the datum (a) of Definition 2.2.1. Similarly, ;Y applied
to the Jth functor in any of the families, takes S into the set of (fj, p) where
f1:5S—> UU/D, But this means that I'(f) = [[,,T(f}) and hence on the level
of set of morphisms of I'(fj) equipped with any of the three sheaves of rings, we
get a direct product. This gives the datum (b), i.e. the isomorphism «J/V. The
associativity of these isomorphisms is obvious. |

Therefore, to establish Theorem 2.2.4, we need only to prove the repre-

sentability of the functors kg( Ax.a and, when X is affine, of Ax i, as well

’Cla
as to prove the formal smoothness of the structure morphisms of the representing

objects to Cl.

2.4. The global space of germs of arcs

2.4.1. Proposition. — The functor )‘g(,cl is representable by a scheme L°(X)a of
infinite type over Cl.

Proof — For n > 0 let C™ be the nth symmetric product of C. As C is
a smooth curve, C" is identified with the Hilbert scheme Hilb"(C) parametriz-
ing subschemes in C of finite length n. Explicitly to a point of C®, ie. an

effective divisor D on C of degree n, there corresponds the subscheme Zp =
Spec (O¢/Oc(—D)). The following lemma is well-known.

2.4.2. Lemma. — Let T be a k-scheme, and X, 7 be any 'T-schemes. Assume that
the morphusm 2. — T is fimte, and that X — T s of fiute type. The contravariant
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functor
Sch — Sets, S+ Hom (S x Z,X),

is represented by a T-scheme Hom (7., X).

Let Z C C x C™ be the total space of the family of the schemes Zp,
D e C™. We set Map"(C,X) = Hom, (Z, X x C™). Let &' be the composition of
the maps

CI N Clx[l,ﬂ-l-l] N C((ﬂ-i-l)\l\)

where the first map takes the I-uple (¢, ¢ € I) to the Ix[1, n41]-uple (¢, ¢, ..., ¢,
1 €1), each ¢ counted n+1 times, and the second map is the projection from the
Cartesian product to the symmetric product. Let Z°(X)c be the fiber product

LX) = C' xg@rnm Map™PN (@, X).

For any I-uple ¢ € C!' we have inclusions of subschemes of C
u?(c) C ull(c) C uf(c) cC---

Thus we get a projective system of schemes
ZO(X)CI < %O(X)cl <~ »%O(X)cl < e

The morphisms in this projective system are affine because the embeddings «'(¢) C

u*'(¢) are purely nilpotent. Therefore we have the limit scheme

LX) = lim £ " X)a.
We claim that the scheme Z°(X)c represents the functor )&Cl. Indeed a mor-
phism from a k-scheme S to Z°(X)a is a pair (f;, p) where f; : S — C! and
p : u(f1) — X are morphisms of schemes. Here u(f;) C S x C is the subscheme

of relative length n|I| over S corresponding to the S-point f; of C! via u!. When
we pass to the limit we get lim G5y = OF. O
n

2.4.3. Remark. — When X = SpecA is affine, the scheme Z°(X)¢, being
the scheme of infinite jets of maps C — X, is the spectrum of a commutative
O¢-algebra with connection along C (in fact, of the universal such algebra with
connection generated by ¢ ®; A). According to Beilinson and Drinfeld [BDI],
[G], commutative O-algebras with connection are particular case of chiral algebras
which, in their turn, give factorization algebras. So our construction in this case
is a particular case of theirs.
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2.4.4. Proposition. — Let ¢ : X — Y be an étale morphism of schemes of finite type,
and 7w : G — D be a morphism of smooth curves. Then

(@) if 7 is ale then each morphism L2(P) @ L' X)a — LX) is élale,

(b) the square

%O(X)cl — ZP(Y)DI
1 1
LX) — LV,
as well as the analogous square for L°(X)pi, L°(Y)p1, is Carlesian.

Proof — (a) Let S be any scheme. Given two compatible morphisms
@ = (a1, Po) : Siea > LX), B=(Bipp) : S— L' Wy,

we must prove that there is a unique morphism y = (y1,p,) : S — LY(X)a
which splits the square

Sred - ZZO(X)CI

\ .
S = Z' Mo,

into two commutative triangles. We have a commutative square

o
Srcd ’ CI

(2.4.5) ) L

s 2 p

Thus, 7w being étale, there is a unique morphism y; : S — C! splitting (2.4.5) into
two commutative triangles. Let the subschemes

wi(ar) CSea x G, w(B) CSxD, u(y) CSxC
be as in Sect. 2.4.2. We have a Cartesian square

uf (or) = Spea x G

\’ 2
uf (Y1) = S x G,

yielding a nilpotent extension of schemes u'(or) — u'(y1). This map fits into
a commutative diagram

ul () 25> X
(2.4.6) \ Vo
u'(y) — Y
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where the lower arrow is the composition of the chain of maps
d X7 P
u (y)—> 1 (B)—>Y.

Thus, ¢ being étale, there is a unique morphism p, : u'(y;) — X splitting (2.4.6)
into two commutative triangles. We have proved (a).

(b) Let
Yo %O(X)cl - O%O(X)cl X LWt Z,O(Y)Dl

be the morphism induced by the diagram. To prove that ¢ is an isomorphism
we show that for every scheme S and every two compatible morphisms

a:S—> L X)a, B:S—> LYy

there is a unique y : S — Z"X)a such that ¥(y) = (B,®). By definition
o = (o, py) with o : S — D p, : u(e;) = Y morphisms of schemes. Similarly
B = (B, pg) with B; : S — C', pg : T(B1) = X. We look for y = (y1, p,) with
yi:S—=>CLp, yf(y) > X

We first prove the existence of y. Take y; = B;. Next, by compatibility of
a and B we have (id x m)(I'(B1)) = I'(a1), and this implies that d x 7 induces
a morphism @ : u/'(B) — u(o;). Composing @ with p, we get a diagram

L'y - X

\2 \2
w' (Br) — Y,

with horizontal arrows pg, p, o @ and right vertical arrow m. This diagram is
commutative by compatibility of o and B. Now the left vertical arrow is a nilpotent
embedding, while the right vertical arrow is étale. Therefore there is a unique
morphism p, : u'(B;) — X splitting the diagram into two commutative triangles.

We now check the unicity of y. That ¥(y) = (B, @) means that, first, f; = y;
and the diagram (whose horizontal maps are pg, p, respectively)

L) - X

I/
ui' (Br)

commutes and, second, a; = ' o0 y; and the diagram (whose horizontal maps are
¢ o p,, po respectively)

w(yp) =Y
I/

UI"(“I)
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commutes. The second condition determines ¢op, uniquely as p,ow. So p, splits
the following square into two commutative triangles

Ly — X

\ |
u' (B — Y,

so it is unique because ¢ is étale. |

2.5. The meromorphic loop space of an affine scheme

Here we prove the ind-representability of the functor Ax.c for X affine. We
first treat the case when X = A'. Let I be fixed. To every point (¢;);e; € C' we
associate the effective divisor Y ¢; on C. For every m,n > 0 let <7, be the vector
bundle on C! whose fiber over (¢;) is the vector space of global sections of the
coherent O-dimensional sheaf

Oc(my_c;)] Oc(—n)_c;)

on C. Thus rk(e,,) = |I|(m+n). Let A,, be the total space of the bundle 47,
considered as an algebraic variety over C!. When m, n vary, these varieties form
a double inductive-projective system and the following is then obvious.

2.5.1. Proposition. — (a) For every m > 0 the limut im A, exists as a scheme. The
ind-scheme & (AYg = “lim ” lim A, represents the functor ):AI,CI.
—m

(b) LAY has a natwal structure of a k-algebra object i the category of ind-schemes
over Cl.

Proof. — A morphism of £-schemes SpecR — A, is a pair of a morphism of
k-schemes f; : S — C!, and a morphism of sheaves of £-algebras Or,,®o, R — R
(here, the right hand side is identified with the constant sheaf on C!). There is
a canonical bijection

lim lim Hom(O

m n

®s, R, R) ~ H'(T'(f), ;)
~ Hompg (Klx], H(T'(f1), ;).

-mn

Claim (a) is proved. In part (), the variety A,, is not a ring scheme. However
there is an obvious map A,, X A,y = A,y which induces a ring structure
on the limit of the ind-pro system. |

2.5.2. Proposithon. — For any affine X of fimte type the functor Ax.c1 is representable
by an ind-scheme LX)t over CL.
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Proof. — By part (b) of Proposition 2.5.1, for every f € k[xi, ..., x;] we have
a morphism of ind-schemes

L(Na: (LANG)" - LA

If now the scheme X is given in some A’ be equations fi(xi,...,x;) = 0, then
AX c is represented by the ind-scheme Z (X)ai_ which is the intersection, in
(X(Al)cl)d of the preimages of 0 under the ,,5,”( fai, e the inverse limit of
an obvious diagram in the category of ind-schemes. |

2.5.3. Corollary. — For an affine scheme X the functor Ax.c1 s represented by an
ind-scheme L (X) 1 which is the inductive limit of the formal neighborhoods of £°(X)cr in
the schemes of an inductive system for L (X)c1.

2.6. The global loop space of an arbitrary scheme

Let now X be an arbitrary scheme of finite type. The (ind-)representability
of the functor Ax 1 follows from Corollary 2.5.3 for the affine case and from the
general gluing properties of the functors summarized in the next proposition.

2.6.1. Proposition. — (a) The functor Ax.ci s a sheaf on Sch.

() If U C X s an open subset, then the induced morphism of functors Ay ct — Ax.ci
s open.

(c) Let {Uglyen be an open covering of X. Then Ax v is equal to the cokernel, in
the category Shf, of the pair of morphisms

H AU,NUz.a1 =3 H Au,.ct-
o, B o

Proof. — (a) For any f; : S — C! the graph ['(f;) is identified with S, so
,%jf;[ can be regarded as a sheaf of local rings on S. So our statement follows
from the fact that the representable functor nx on Lrs is a sheaf.

(b) Let S be a scheme and # a morphism of functors ns — Ax .. We need to
prove that the fiber product of ng and Ay over Ax cr is represented by a scheme
S whose natural morphism to S is an open embedding. To see this, we view u as
an element of Ax c1(S), so u= (f1, p) with f;: S — Cl and p: (C(f), ,/”i?lf) — X.
Notice that T'(f;) >~ S, so p gives, in particular, a continuous map of topological
spaces p : S — X. It is clear then that the fiber product mentioned above is
represented by the open subset "= p~!(U) C S.

(c) This follows from (b) and from Lemma 1.4.7(c). O
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An mmmediate corollary of Proposition 2.6.1 and Corollary 2.5.3 is that the
functor Ax i is representable by an ind-scheme Z(X)a over Cl. Then, Proposi-
tion 2.3.3 implies that the collections of schemes and ind-schemes £°(X)c and
Z(X)q are factorization monoids in the categories of schemes and ind-schemes.
To finish the proof of Theorem 2.2.4 it remains to establish part (b) of the fol-
lowing

2.6.2. Proposiion. — (a) If ¢ : X = Y, : C — D are élale morphisms, then the
induced morphism L(P)p1 1 L (X)ar = ZL(Y)pt is formally élale.
(b) If X is smooth then the morphism L (X)ct — Cl is formally smooth.

Proof. — 'To prove Claim () it is sufficient to observe that if U C X, V.C C
are affine open sets with étale maps U — A?, V — A! then the composition of
maps

LUy — LAY — Al

is formally smooth by Claim (a) and the statement (2.7.2) of the example below.

The proof of Claim (a) is similar to that of Proposition 1.5.4. Let S be
a scheme. We are given o : S, g > ZX)a, B : S — ZY)p, and we look for
a unique y which splits the square

Srcd - X(X)CI

¥ V
S — X(Y)DI.

The morphism o consists of a pair (ap : S,q = Cl py : (T (al),%}r) — X).
Similarly B consists of a pair (B; : S — DI, P - (F(ﬁl),%{) — Y). We must

construct a pair (y; : S — Cl Py (F(yI),%{) — X). There is a map y;
splitting the square

Srcd - CI

\2 \:
S — D!

I

into two commutative triangles, because 7' is étale. We have a Cartesian square

F(al) — Srcd x C

2 2
I'(y1) > SxC,
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which implies that we have a morphism of ringed spaces ¢ : (F(al),%{) —
Ty, ,/”i/y{) with nilpotent kernel. This map fits into a diagram of ringed spaces

(T, # ) = (T, )

A \:
X — Y,

where the left vertical arrow is p, : (I'(oy), %}/_) — X, the right vertical arrow is
the composition of j : (C(y), Y ) — (T(B), %3 ) and ps = (DB, H#3 ) — Y,
the topological map underlying j is jo, = (ids X ) : T(y1) — I'(By) and the
structure morphism jg = %‘Iﬁ — Ji/y}f is an isomorphism. Note that : yields an
isomorphism of underlying topological spaces. Let p be any point in I'(ap). We
have a diagram of stalks

(), < (),
0 0

OX ou(p) < OY.pu(p)

where the upper horizontal map is ¢*, hence has a nilpotent kernel, and the lower
horizontal map is ¢*, hence is étale. Therefore there is a unique morphism of rings

OX pu(p) = (Ji/y}r)p for each p. Theses morphisms give a morphism of sheaves of

rings o, tlopﬁx — %}/_, 1.e. a desired morphism of ringed spaces y. |

2.7. Example: the cases C = A' and X = A?

Let C = Speck[/]. If S = SpecR, a morphism f; = (f) : S — C' is the same
as a collection of elements b, = f*({) € R. Assume these have been fixed. Then
the subscheme u/'(f;)) C S x C from the proof of Proposition 2.4.1 is described
explicitly:

u'(fr) = Spec (RIA/T L (t — 6)").
This implies the following,
2.7.1. Proposition. — (a) The ring
HY (P, ) = lim (RUA/TT = 6)™")

s udentified with the set of series Zzo a()[].— b;)', where a)(t) € R[{] are polynomials
of degree less than 1| (such polynomials form a set of representatives for R[(1/ [1;(t — ;).
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(b) The ring H (T(fy), H#};) is identified with the set of series
Y aw]a—5)"
I»>—00 i

where a,(t) are as n (a).

(c) The subring H°(I'( ﬁ),,/”iﬁ[) is udentified with the series as wn (b) but with the
condition that all the coefficients of the polynomials a)(t), [ <0, are nilpotent elements of R.

For fixed b; € R and «a € HO(F(fI),Jiﬁ) we denote by () € R[t] the /th
coeflicient of the series corresponding to a by Proposition 2.7.1(b) and by a, € R,
v=20,...,|I] =1, the vth coefficient of the polynomial ¢(%).

Assume moreover that X = A? with coordinates «xq,...,x;. In this case

we can give a completely explicit description of the ind-schemes LAy and
L (A% 41, using Proposition 2.7.1. Indeed,

it a(R) = {(bi, p) | (b) € R', p 2 klx] = HU(T(f), ;)

The algebra homomorphism p is uniquely determined by the choice of

-1

pG) = > > alt[Je-5). ¢ eR.

>—o00 v=0 el

A choice of p(x;) is the same as a choice of elements a%) € R. Thus the universal

case corresponds to b;, a . with i € ILjell,d], leZ and v € [0, |I| = 1], being

>
independent variables, i.e.

LA = lim Spec A[4; a;); 1= —N].
and
(2.7.2) LAy = lim Spf Kb ai); 1> 0][[af); N < 1 < —1]].
Notice further that

LY (A" = Speck[b;, a); 0 <1 <.

v
In particular, we have a natural morphism

(2.7.3) Oars i LADa — LV (A1,

taking all 4,/ # 0, to 0.
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2.7.4. Proposition. — If X, C are affine and ¢ : X — AY, w : C — A" we élale
morphisms, there s a Cartesian diagram

ZLX)a —» LAY

! !
LX) — LA

Proof — The proof is similar to that of Proposition 1.6.1(b). Consider the
diagram

XO(X)CI — Z)O(X)CI

\2 \:
LX)a = LA

where the right vertical arrow is .Z(¢),1, the lower horizontal arrow is the
composition of Gpi; : L(ANa — .Z)O(Ad)Al defined in (2.7.3) and Z(¢)
LX)a — LA, The upper horizontal arrow is the natural projection of
LX) to the 0-th term of the projective system, see Sect. 2.4. Further, the left
vertical arrow is an inductive limit of nilpotent embeddings of schemes, while the
right vertical arrow is étale by Proposition 2.4.4. Therefore there exists a unique
morphism 6,1 1 L (X)a — Z)O(X)CI splitting the diagram into two commutative
triangles.

Combining 6,1 with L ()1 : LX) = L(A%)a we obtain a morphism

(2.7.5) v LX)a — LY(X)a x Loy LAY 1.

We claim that v is an isomorphism and to prove this we construct its inverse x.
Let S be a scheme. A morphism from S to the RHS of (2.7.5) is a compatible
pair

(@ :S—> LAY, B:S—> LX)a).

We construct a morphism x(e, B) : S = Z(X)a. For this notice that a(S;q) C
LAY and B(Siq) C Z)O(X)CI. By Proposition 2.4.4(b) we have a map y :
Seed = Z°(X)a. The composition 7 of y and the embedding Z°(X)a —
Z(X)a gives a commutative diagram

Srcd - X(X)CI

¥ }
S — .,g(Ad)AI.

Because £ (@)1 is formally etale by Proposition 2.6.2(a), we set x(c, B) to be the
unique splitting of the diagram into two exact triangles. The verification that x is
inverse to ¥ is straightforward. |
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2.8. The global loop space as an ind-object

We first consider the case X = A’ C = A!, employing the notations of
Sect. 2.7. Let e = (e_;,&_9,...) € E be as in Sect. 1.6. Define the scheme

LA = Spec (b ]/ (a)) - @il 1< 0)),

where j € [1,d], [ € Z, and v, ..., vy, € [0, [I| = 1] are arbitrary for /< 0. It is
clear that

LAY = “lim ” L (AY) a1

Next, assume that X is an arbitrary smooth scheme of finite type and C is an
arbitrary smooth curve. Then X can be covered by open U = Spec A possessing
an étale map ¢ : U — A? and similarly C can be covered by open V possessing
an étale 7:V — A", We set

L) = »%O(U)VI X L0 (A 1 fs(Ad)Al,

where the map Z°(A)x — Z (A% a1 is the restriction of 64 defined in (2.7.3).
This is an affine scheme.

2.8.1. Proposition. — The ind-object “lim ” L*(¢),1 in Sch s isomorphic to
LUy, )
Proof. — This follows from the case X = A?, C = A!, from Proposition 2.7.4,

and from the fact that fiber products commute with filtering inductive limits. O

2.9. The global loop space as an ind-pro-object

We keep the notation of Sect. 2.8. For ¢ € E,n > 1 consider the scheme

(2.9.1) .,Zf(Ad)AI = Spec (k[bi, a%); [ < n]/(a%l) . a§f31+s()).
We set
<2-9'2> Zf((b)nl = O%O(U)VI XJUO(M)AI ogf(Ad)Al,

where the map Z9(A%) a1 — Z(A%)a is defined as Oy in (2.7.3).

2.9.3. Proposition. — (a) The scheme ZL°(P), s of fimite ype and is a nilpo-
tent extension of L2(Ui. The second projection L5(P)1 — LAY a1 is élale. Moreover
gs((p)nl = lim le((p)nl'
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(b) The schemes L5(P)1 form a double ind-pro-system with Carlesian squares (n' > n,
e<é¢)

Zlg/ ((p)nl — Zj/ ((p)nl

! 1
vgf (¢)nl — 0%,8 (¢)nl

where the vertical arrows are smooth affine morphisms.

(c) The ind-pro-object hm P Um L (P is independent, up lo isomorphism, on

n
¢, .

Proof. — The proof of (a) is similar to that of Proposition 2.8.1. In order to
prove that Z°(¢) — Zf(Ad)AI is étale, due to (2.9.2) it 1s sufficient to check that
the morphism £ (¢),1 : L (U)yi = LV (A is étale. This is a consequence of
Proposition 2.4.4(a).

Claim (b) is obvious in the case ¢ =, m = id. The general case follows
from (2.9.2) since the base change of a smooth affine morphism is still smooth
affine, and the base change of a Cartesian square is Cartesian.

(c) The pro-object “hm ”fg(qﬁ),,l in Pro(Aff") can be identified, due to

Proposition 1.1.2, with the scheme ZL(¢)n1. The ind-object “lim ” Z*(¢)1 in
Ind(Pro(Aff")) can then be identified with the ind-scheme Z(U)yi. |

3. Y-modules over ind-schemes

3.1. Reminder on P-modules

From now on we assume that char(k) = 0. Fix a k-scheme S of finite type.
Let Schl denote the category of S-schemes of finite type. For any such scheme
X let Ox be the category of all quasi-coherent Ox-modules. For a morphism
f:X — Y in Sch! we denote by f,f* the functors of the direct and inverse
images on Ox, Oy. If / is a closed embedding and & € Oy, let

(3.1.1) & = Homp, (f,0x, &)

be the inverse image of the subsheaf of & consisting of sections supported scheme-
theoretically on f(X) C Y.

For X € Schi let Dyx/s be the category of coherent right Zx;s-modules
on X. It is defined as follows, see [BD2, Sect. 7.10] or [G, Sect. 0.2.2]. If X
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is smooth over S, then we have the sheaf of rings Zx/s of differential operators
from Ox to itself which are linear over Os. An object of Dx/s is then a coher-
ent sheaf of right Zx s-modules. It is quasicoherent over Ox. Next, if X admits
a closed embedding into a smooth S-scheme Y, one defines Dx/s as Dy/sx, the
full subcategory of Dy/s consisting of modules supported (as sheaves) on X. This
definition is independent on the choice of embedding: if X is embedded into two
smooth S-schemes Y, and Y,, then one has an equivalence Dy sx — Dy,/sx
which is unique up to a unique isomorphism of functors. Now, given any X, an
embedding into a smooth scheme always exists locally on X. Therefore we have
an open covering X = (JU,, the categories Dy,s, Dy, etc. and the obvi-
ous restriction functors among them. One then defines an object .#Z of Dx/s as
a collection of objects .#, € Dy,/s together with isomorphisms of their images
in Dy,,/s whose images in Mor(Dy,,, ) satisfy the obvious compatibility condi-
tions.

Given X € Sch‘s‘t and .# € Dxjs, we define a sheaf .# 7 € Ox as follows.
If X admits a closed embedding ¢ : X — Y with Y smooth over S and .Z is
represented by a sheaf of right %y,s-modules supported on X (which we also de-
note ./ ) then we set .#7 = i'.#. This definition is easily seen to be independent
on the choice of Y. In the case of a general X one defines .#“ by gluing the
sheaves given by above procedures on open parts of X admitting embeddings into
smooth schemes.

Any smooth morphism f : X — Y in Sch induces the functor of inverse
image f* : Dy;s — Dx/s. If wx/y is the relative canonical bundle, then

SN = (M) @y wx /Y-
We have then a canonical embedding
(3.1.2) M (M) ® wy)y).

If f: X— Y is a closed embedding in Schf, we have an exact functor of direct
image f, : Dx;s — Dyss. In the particular case when X,Y are smooth over S,
we can view # € Dx/s as a sheaf on X and we have

Here 9x_v is the sheaf of differential operators from f~'0y to Ox linear over O,

see [BB], [G].

For a general closed embedding / we have a canonical embedding

(3.1.3) MO > ff( M) — [T ).
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For example, if X is non-reduced and 7 : X,.q = X 1s the reduced part, then i,
identifies Dx_,
We have the following base change property.

/S with Dx/s.

3.1.4. Lemma. — Suppose that in a Cartesian diagram of S-schemes of finite type

X <> X
Ay

Y5y
the morphisms f, [’ are smooth, 1i,] are closed embeddings. Then for any M € Dys, we have
W) M =[] M.

Note that if / is a closed embedding of smooth schemes over S, the inverse
image functor f* is still defined. Furthermore, the projection formula holds for
right Z-modules. More precisely, if / is a closed or open embedding of smooth
S-schemes and . € Dx/s, -4/ € Dy/g, then there is a canonical isomorphism

S (SN Qo M @y ') = N Qo o M) Ry 0y

3.2. D-modules over pro-schemes

3.2.1. Demition. — (¢f [Rap]) Let A be a filterng poset and (Cg)yen be an
inductive system of categories labelled by A. In other words, for each oo < B we have a functor
op : Gy — Cg, for each o < B < y a natural somorphism g, 0 145 = 14, and these
wsomorphisms satisfy the obuvious coherence conditions for any o < B <y <34.

The wnductive limit 21im G, s the category whose objects are pairs (o, xy), @ € A,

Xy, € Ob(C,) and ¢

HOI’Il((O[, xoz)v (ﬁ’,yﬂ)) = lgl;l p HOI’IlCa (iay(xa)a Z,By(_yﬂ))
v

>a,

3.2.2. Defimition. — A S-scheme X (possibly of infinite type) is called compact if it
can be represented as lim X, where (Xo)aen @5 a fillering projective system over Schy such

that all the maps pup : Xaﬁ — Xy, @ < B, are affine morphisms.

3.2.3. Proposition. — A scheme s compact if and only if it s quasi-compact. The
category of compact k-schemes can be identified with a full subcategory in Pro(Schl), via
X =1lim X, = “lim 7 X,.
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Proof. — This follows from [TT, Appendix C, Theorem C9]. |

3.2.4. Defimition. — (a) A compact S-scheme X s called smooth if it can be
represented as im X, for some (X,) as i Defimition 3.2.2 with the extra property that each

Xy s a smooth S-scheme and each bap 15 a smooth affine morphism.
(b) Xoo 15 called almost smooth if it can be represented as hm Xy Jor some (X,) as

i Defimtion 3.2.2 with the extra property that each pyp is a smooﬂz cgﬁne morphism.

3.2.5. Example. — For any smooth X € Sch}, the scheme #°(X) is smooth
and compact over Spec(k), and the scheme Z°(X)q is smooth and compact
over Cl. Moreover, the schemes Z*(¢), £*(¢),1 from Proposition 1.6.3 and
Sect. 2.8 are almost smooth.

Let ¢ : Xoo — S be a compact almost smooth S-scheme and (¢, : X, — S)
be as in Definition 3.2.4. We have two inductive systems of categories (Ox,, fys),
(DXa/Sv/’;ﬁ)- We set DX:)O/S = QIE)D Dxa/s.

3.2.6. Proposition. — The category Dx_ /s 15 independent, up to canonical equivalence
of categories, on the choice of (Xy) as in Definition 3.2.4.

Proof — We first consider the case when X, is smooth, so that each X,
is smooth over S. Let D{_ /s be the category of left coherent Zx,/s-modules. We
have an equivalence

Df(a/s — DXQ/Sa :/VP—> </V®Cl)xa/s.

Let also Zx_,s be the sheaf of rings of differential operators on X linear over
Os. It is equipped with the natural topology, see [KT, Sect. 1.7]. Using the pull-
back of left Z-modules (which is the same as for quasi-coherent sheaves) we get
an inductive system of categories Dg@ ss- It is proved in [KT, Sect. 1.9], that
21i_rr)1 D§a ss 1s 1dentfied with the category of discrete, locally finitely generated qua-

sicoherent sheaves of left Zx_s-modules, and thus is independent on the choice
of (X,). Therefore the category 2lim Dx_ s, being equivalent to the previous one,
oy

is also independent.

Now assume that X, is almost smooth. Fix oy € A. Using a covering of X,
by affine open subsets, we reduce to the case when X,, (and thus X.) 1s affine.
We can also assume that «p is the minimal element in A. Let us embed X,
as a closed subscheme into a smooth affine S-scheme Y,,. We can then extend
each pgq @ Xy = X, to a smooth map ¢y o @ Yo = Yg,. We get then a smooth
compact scheme Y, = lim Y, containing X, as a closed subscheme. The category

o
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2lim Dy /s is then identified with the category of sheaves of discrete locally finitely
geneoll“ated left v s-modules supported on X. |

Informally, an object of Dx_/s is a “Z-module pulled back from some X,”.
Let py : Xoo = X, be the projection. Let p8 : Dx /5 — Dx_ /5. My = (o, M)
be the canonical functor. If the compact S-scheme X, is smooth, there is the
functor

o . 2 . _
pa’//a = (lba’//a) = ((paﬂj/"‘)ﬁ ®ﬁxﬂ a)X/lS)ﬂZa'

In particular, we can associate to any .# € Dx_/s its “space of global sections”,
ie., the direct image to S as an O-module. This is a quasi-coherent sheaf on S
such that if . # = pS.#, then

(3.2.7) 0 M) = (A0 =l () (X, (Popetle)” @i, ,)-

When S = Speck, we write I'Xy, &) for ¢.( ).

3.3. D-modules over ind-schemes

3.3.1. Defimition. — Let A be a filtering poset and (Cy)aen be a projective system of
categories labelled by A. In other words, for each a < B we have a functor jop : Gg — Gy
and for any a < B < y a natural 1somorphism jJug 0 Jg, = Ju, Satisfying the obvious
compatibility conditions.

The projective limat QI(iEICa i the category whose objects are systems consisting of objects
xe € Gy gwen for all @ € A and 1somorphisms Jop(xg) — xo given for each o < B and
satisfying the compatibility condition for each o < B <'y. Morphisms are defined i the obvious
way.

3.3.2. Defimition. — Let X*° be an ind-S-scheme. We say that X s discrete over
S if it can be represented as X = “lim 7 X where (X*)qen 15 a fillering inductive system

o

over Schgt such that each map 1,5 © X% — XP, a < B, is a closed embedding

3.3.3. Example. — Yor any ¢, U as in Sect. 1.7 the ind-scheme .Z,(¢) is
discrete over Spec (k).

Let ¢ : X* — S be a discrete ind-scheme over S and (¢ : X* — S) be
as in Definition 3.3.2. We have then the projective system of categories (Oxe, z'fw).
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We define Ox~ = 2limOxe. If (8%, yup 1 % — i}xﬁé"ﬁ) is an object of Ox~, then

the direct images ¢%(£*) form an inductive system and we define
¢x& = lim ¢ (&").

When S = Spec (k) we write ['(X*, &) for ¢.&.
We will also use the category Ox~ which is the limit of the projective system
of categories (Oxe, i;ﬂ). There 1s a functor

(3.3.4) Oxx X Oxx = Oxx, (&,.F) > E®.F = (6% Qu F).

See [BD2, Sect. 7.11.4] for more details on Oxw, Oxw.
We set also Dx/s = 211m (Dxa/s, lape). Let 7, be the embedding X% — X,

Let i4e @ Dxoys = Dxooss, /// r—> (o, #*) be the canonical functor. It is exact.
There is also the functor

o

(3.3.5) Dywss = Oxn, M = igull® > MO = (igatl®)” = (iapatl®)",

pra’

see (3.1.3). In particular, to any .# € Dx~;s we can associate its direct image
to S: if ./ is represented by 4% € Dx«/s, then

) = g (MO =i (g ) ).

3.3.6. Remark. — (a) We have an exact functor

2lim OXO‘ — OXOC, (Ol, (g&a) = (l'aﬁ*(gxx)

o Bza’

The two categories are not equivalent in general.

(b) The category Ox~ is closed by inductive limits.

(¢) If the ind-scheme X* is not discrete anymore, the Ox«-module ifxﬁé"ﬁ
may not be quasi-coherent. However the category Oxe~ 1is still well-defined.

Let X* = “lim ” X% be a formally smooth (over S) discrete ind-S-scheme.

Following [BD2, Propaosition 7.11.8] we define the tangent sheaf of X to be the
object Oxw /s € Oxm such that

(g{>® (:)X"O/S = lim %M(Q)l(a/s, (gxx)’ V& € Oxoc.

Denoting 7% : X¥ — X the canonical embedding, we have that i**@x~ /s 18 a lo-
cally free Oxe-module (possibly of infinite rank), see [BD2, Proposition 7.12.13].
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3.4. D-modules over ind-pro-schemes

The following definition is inspired by the paper of K. Kato [Kat].

3.4.1. Deimtion. — An ind-S-scheme X3 15 called locally compact if it can be

represented as
X% =lim lim X§
——~ acA < BeB

where (X%) 15 a bifiltering ind-pro-system  over Schi with the following properties:

(1) For each B € B and a < o € A the structure map ig"‘/ P XG — X‘;/ s a closed
embedding.

(2) For each « € A and B < p' € B the structure map pq : X — X is an affine

morphism.
(3) For each o« <o’ € A and B < ' € B the commutative square

B B
\2 \2

s Cartesian.

We denote by Les C Ischg the full subcategory formed by locally compact ind-S-schemes.

Let (X%) be an ind-pro-system as above. The maps pgs being afline, the
projective limit lim X% is represented by a compact scheme (possibly of infinite

type) denoted by X7 . Similarly, we have the discrete ind-schemes X3 = “lim ” X3.

By definition X% = “lim ” X ’

o

3.4.2. Proposition. — For an ind-pro-system satisfying the conditions of Definition 3.4.1

we also have X35 = lim X = lim “lim » X§, the projective limut taken i the category of

B “—B —ua

wnd-schemes.

Proof — By passing to the functors (ind-)represented by our (ind-)schemes,
we reduce the statement (a) to the following lemma whose proof we leave to the
reader. O

3.4.3. Lemma. — Let (Tg)uen pen be a bifillering ind-pro-system of seis. Then there
s a canonical map

¢:lim lim T‘g — lim lim Tg.

—a <8 —pg—«a

If; moreover, all the squares in (T‘g) are Cartesian, then ¢ 1s an isomorphism.
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3.4.4. Defmition. — We say that a locally compact ind-S-scheme X32 is smooth
(over S) if it admits a presentation as in Definition 3.4.1 where:

(1) All the pgg are smooth morphisms of relative dimension dgg  (independent on ).
There is an element (o, B) € A X B such that X 15 smooth over S.

(2) All the ind-S-schemes X3° = “lim ” X% are formally smooth over S.

Let X3 be a locally compact smooth ind-S-scheme and (Xj) be an ind-
pro-system as in Definitions 3.4.1, 3.4.4. By Lemma 3.1.4, we have then a double
inductive system of categories (Dxa/s, ig‘j‘/, Pg) and we define the category of (right)
Z-modules on X3 to be Dxx/s = 21i_r)na ﬁsz/s.

3.4.5. Proposition. — The category Dxcx /s is independent, up to canonical equivalence,
on the chowe of (X3) as in Definition 3.4.4.

Proof — Each X% = lim X% being almost smooth, the category Dxa ;s =
2lim ng/s depends, by Proposition 3.2.6, on X% only. Next, for ¢ < o the
B

functor Dxe /s = Dyv s depends only on the morphism X%, — X% . This is seen
by the same argument as in Proposition 3.2.6. Let (X‘g) be another ind-pro-system
as in Definition 3.4.4 representing X®. So X¥ = “lim ” X% = “lim ” X% . The

— —a
second equality (of ind-objects) means that each X% is included into some X% as
a closed subset and vice versa. This means that Dx« s is identified with a full
subcategory in some Dxs 5 and vice versa. Therefore their 2-limits are identfied.
O

3.4.6. Remark. — Although we have defined Dxx/s as an abstract category,
it is impossible, in general, to view its objects as sheaves in a more conventional
sense. For example, it is impossible to associate to an object of Dxx /s its direct
image onto S. Indeed, assume that S = Spec (k) for simplicity. If such an object
A is represented by some .#y € Dy, then the spaces of global sections of the
coherent sheaves

o'e oo’ o o o' * [ aa o o
(Kgptse A5)" = (g (50 A5)) ®ﬁx§; Oxe xg € Ox
do not form an inductive system because of the twist by the relative canonical
class. For a compact smooth pro-scheme it is possible to get around this problem
by untwisting by the absolute canonical classes of the terms of the projective sys-
tem, see (3.2.7). To achieve the same effect in the ind-pro-case one would need
to make sense of the (absolute) canonical class of the ind-scheme X, ie. of the

determinant of the (possibly infinite-dimensional) vector bundle @ch. The impossi-
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bility of doing this (“the determinantal anomaly”) is precisely the reason why there
is no natural space I'(XZ, .Z).

3.4.7. Example. — (a) If X is a smooth affine variety admitting an étale
map to A’ then the ind-scheme .Z(X) is locally compact and smooth. Thus, the
category D) 138 well-defined. If X is no longer affine it admits a covering by
affine open sets U, admitting an étale map to A’. Then, an object of Dy is
a sheaf on Z(X) whose restriction to Z(U,) is an object of D gqy,).

(b) If X is smooth then Z(X)a — C' is a locally compact and smooth
ind-scheme over C. 3

(c) If X is a smooth affine variety, then the ind-scheme Z(X) is locally
compact and formally smooth. But we do not know if it is smooth in the sense
of Definition 3.4.4.

4. De Rham complexes on ind-schemes

As in Sect. 3, let S be a A-scheme of finite type.

4.1. Reminder on the De Rham complexes

Let ¢ : X — S be a smooth S-scheme of finite type and .# € Dy;s be
a right Yx/s-module. Its de Rham complex ZZ(#) is given by

DR M) = Himo (s M) = M @0y, |\ Oxss, i =0,

If (x) is a relative étale coordinate system on an open part of X, then the differ-
ential is given by the formula d =} 3, ® dy; where dx; € Q is considered as the
contraction operator A\~ Ox — /\_’_1 ®x. We denote by DR(A) = q.(P% (M)
the complex of direct images.

Let ¢ : X — Y be a closed embedding of smooth S-schemes and # €
Dx/s. The embedding (3.1.3) induces an embedding of the de Rham complexes
DPR(M) — " DX (1,.#) and therefore an embedding of the complexes of direct
images
(4.1.1) DR(AZ) — DR, (A)).

Let p: X — Y be a smooth morphism of smooth S-schemes of relative dimension
d and A € Dyss. Let ¢ : X — S, r : Y = S be the structure maps. The em-

bedding (3.1.2) induces an embedding of de Rham complexes which now involves
a shift in the degrees:

(4.1.2) D DR(M) — DR (M)
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It i1s induced by the map

‘ i+d
A /\ Oys = wx)y Doy /\ Ox/s.
In particular, we get an embedding of the complexes of direct images
(4.1.3) DR(A#Z) — DR(p*.#)[d].

Note that without passing to the de Rham complexes there is no embedding of
1M into qp* . The map (4.1.3) can be seen as a Z-module manifestation of
the fact that “fermions cancel the determinantal anomaly”.

4.1.4. Example. — Take S = Spec (k). Let Y = A? with coordinates ai, ..., a

and ¢ : X <= Y be the embedding of the affine subspace {¢, = ... = ¢, = 0},
[ < d. The algebra I'(Y, Zy) is just the Heisenberg (Weyl) algebra Dy generated
by a,...,a; and af, ..., a; subject to the relations

lan, a,] =), a,] =0, [a,a,]=35,.
The space of global sections I'(Y, z,wx) 1s the right Dy-module
wxy = DY/(a:;a a,; n S l< m)DY

Let also Cy be the Clifford algebra generated by odd elements 4y, ..., b, 67,..., 0}
subject to the relations

(b b)y = [0, 614 = 0, [55, Bls = Sy

m’> “n

Denote CDy = Cy ®; Dy the tensor product algebra. Then the global de Rham
complex of z,wx is identified with the right CDy-module

DRxy = CDy/(&},, a,, by; n < [<m, p=1,...,d)CDy.

4.2. De Rham complexes for ind-schemes

Let X* = “lim 7 X* be a formally smooth discrete ind-S-scheme with
— acA

structure maps ¢, ¢°. Denote by * : X* — X the canonical embedding. The
considerations of Sect. 4.1 generalize easily to give the global de Rham complex
of any .# € Dx~s. Explicitly, let .# have the form i4.#*. Then the ith term
of its de Rham complex is

(4.2.1) DR (M) = g (M7 @ \ ' Oxps) =lim ¢ Aom(QL, , (2. a%)).

o /Q?
— o'>a X* /S

Here .# is defined in (3.3.5).
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4.2.2. Proposition. — Let p>° : X — Y be a morphism of formally smooth discrete
ind-S-schemes which s smooth of relative dimension d. Then for any M € Dyw;s we have
an embedding of the shified de Rham complexes DR(A) — DR(p*™*.)[d].

Proof — The conditions on p> in the proposition are equivalent to the
following: we can represent X* = “lim 7 X% Y* =“lim ” Y* with the same
7 aeA — aeA

filtering poset A, and we can represent > by a morphism of inductive systems
(p* : X* = Y% of S-schemes such that for each o < B the arising commutative
square

P
X — XFP
3 %
J
Y & YP

is Cartesian, and each p* is smooth of relative dimension d. Then p™ is formally
smooth. By [BD2, Lemma 7.12.13] we have an exact sequence

(4.2.3) 0— é)xoo/yoo — (:)XOO/S - POO*@YOO/S — 0.
Moreover
(4.2.4) (#)* (Oxoe jy~) = Oxp ys.

Let .# have the form j,,.#*, where j* : Y* — Y is the canonical embedding.
Then p>* M = 1,p** #*. The base change for Cartesian squares gives

DR =lim (¢35 %) @0, N Oxe )
=tim (0 (1) ©o 0
R0 P /\_i_d (:)XOC/S),

see Lemma 3.1.4. Let r : Y® = S, »* : Y* = S be the structure maps. By (4.2.3),
(4.2.4) there is an embedding

—i—d A

—i A . —i A )
pﬂﬂj]ﬁ*/\ @YOO/S = Zﬂ*poo*/\ ®Y°°/S —> WXB/YP ®ﬁxﬂ Zﬂ*/\ @Xoo/s.

Hence there is an embedding
DRI4) =lim J ) @0y i I\ Ovms) —
S lim (P (2 4) @0, N Or)) > DRI

We are done. |
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4.3. De Rham complexes for ind-pro-schemes

Let X3 be a locally compact smooth ind-S-scheme and .# be an object of
Dxx/s. We fix an ind-pro-system (X%) for X as in Definitions 3.4.1, 3.4.4. We have
then the formally smooth discrete ind-schemes X3 and projections pg : X35 — X%
We also have schemes X%, and embeddings * : X%, — XZT. Let also ¢ @ X§ —
Xy, Pp + X% — Xj be the natural embeddings and projections. The category
Dxx/s being the double direct limit of DX‘;/S; we can think of .#Z as being of
the form pgig, g =7 pg* Mg for some Mg € Dxas. Recall that dgg denotes the
relative dimension of the smooth morphism p%, : X§ — X§, g < . We choose
numbers dg, B € B, such that dgg = ds — dp (this can be done uniquely up to an
overall constant). Set .#g = ig, Mg € Dxy/s. Proposition 4.2.2 implies then that
the shifted global de Rham complexes DR(p/'sﬂ,///ﬁ)[dﬁ/] form an inductive system
of complexes of vector spaces and we define the de Rham complex of .#Z to be

(4.3.1) DR(A) =1lim  DR(pps-#5)ldp].
=P
Explicitly, by (4.2.1) we have

(4.3.2) DR(#) =lim  lim ¢ stom(Q, ", (pnics #5)7),

B’z a'za X(;;/S ’
where q%, : X‘g/, — S is the structure morphism.

4.3.3. Proposition. — DR'(A) depends only on X and A as an object of Dxse)s,
but not on the choice of a system (X%)

Proof — Interchanging the two inductive limits and using base change for
Cartesian squares in the diagram (X%), we can write

DR'(#Z) =lim lim ¢, m(Q, "

—adza = XZ:/S ’

wo o a\0

(i5ebbi5) ).

For any o > a the limit over B depends only on the scheme X% and the object
M = P MG € Dyy s

Therefore the limit over o > « of the limits above depends only on the ind-object

“lim X% (which is X%°) and the object

— o>

lwedl® € 2lim  Dyy 5 = Dxyys,

—a>a

which is . O
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4.4. The de Rham complexes on L (X)

We now specialize to the particular case X3 = Z(X) where X is a smooth
affine algebraic variety over k admitting an étale map ¢ to A’ In this case A =E,
B = N with the terms of the ind-pro-systems being Z°(¢), see Corollary 1.6.7.
We take S = Spec (k). Given an object .# € Dy, we associate to it its de Rham
complex DR(.#) as in Sect. 4.3. Note that it is independent on the choice of an
étale map to A? because two such maps lead to isomorphic ind-pro-objects in the
category Sch', see Proposition 1.7.1(c).

Let now X be an arbitrary smooth algebraic variety over k£ and .# be an
object of D yx). By covering X with affine open U admitting étale maps to A’
we get a complex of sheaves U+ DR(#|4)) which we denote ZZ%(.#). Recall
that we have the diagram

(4.4.1) X < 29X) <& 2(X).

Thus, every right Zx-module .4 gives an object p* A4 of Dy We write
COA(N) for DR (p*AN) and call it the chiral de Rham complex of 4. In par-
ticular, we write €2%x for 9% (i,p*wx). More generally, denoting p, : £°(X) —
Z%(X) the projection, we can start with any right Z-module .4/ on the algebraic
variety Z(X): then 7,p%.# is an object of Dy, and we can form its de Rham
complex. It is a complex of sheaves on X.

4.4.2. Example. — Let X = A'. Then the complex of global sections of
CPXx, i.e., the complex DR(gp*wys1) can be found explicitly as follows.

Let V be the topological £-vector space £((#)) and V* be its topological dual
(over k). Denote by = (/,v) the canonical pairing of /€ V* and v € V.

Then V* can be identified with £((¢))dt, the space of 1-forms, the pairing
between V and V* being (f,w) — res(f - w). Let D be the Heisenberg algebra
generated by V* and V with [/, 9] = (/,») and C be the Clifford algebra generated
by V¥,V with [/, 2]y = (/,v). Denote CD =C ®; D. This is a certain completion
of the algebra CD generated by symbols a,, b,,a;, b, for n € Z subject to the
relations

lan, o] =, 1=0, [, a]=235,_.,
[bm’ bn]+ = [b* b*]+ = Os [b;s bn]-i— = 8m,—rn

m’> “n

(@, b,) = la,,, b] = la,, b1 = [a,, 5,1 = 0.

More precisely, we write a generic element of V as ) a,t", so a,, @’ are elements
of D. Similarly, writing a generic element of V* as > 4,(" 'di we view b,, b* as

elements of C. Let V = k[, '], V* = k[¢, t~']dt. Then CD = C ®, D, where C is
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the Clifford algebra generated by V*,V and D is the Heisenberg algebra generated
by V., V% Let CD" c CD be the right ideal generated by linear combinations of
ay, by, @y, 0%, with n > 0, and CD™ C CD be the ideal generated by possibly
infinite linear combinations with the above property. We denote Vac = CD/CD*
and Vac = (’]\l/)/(’]\l/)Jr the corresponding vacuum modules.

4.4.3. Proposition. — (a) The natural morphism Vac — Vac is an wsomorphism.
(b) The de Rham complex DR (i,p°wa1) s identified (as a vector space) with Vac.

4.4.4. Remark. — Although this description is similar to Example 4.1.4, there
wii» by for m < 0 while in Ex-
ample 4.1.4 all the 4, are in the ideal. This is because in our present situation

is a difference: here the ideal is generated by b

we are dealing with a semiinfinite de Rham complex obtained as an inductive
limit of usual de Rham complexes with respect to maps shifting the degrees.

Proof. — (a) The quotient k((¢))/k[[¢]] is identified with k[z, £ ']/k[f]. The
ideal CD* includes the Taylor series part of V,V* € D and V,V* C C. So
CD/CD* is identified with CD/CD".

(b) To simplify, we write .Z = Z(A"), etc. We have

L& = Spec (Ka; =N, < 1 < M]/(a/™)),
where, for each ¢ € E, we set N, = max{/; e_; # 0}. Hence

Zvu =lim Spf(kla;; 0 < < M][[a;; =N < [ < 0]]).
—N

For any M € N, N € NU {oo}, we put
Yy = Spec (Kla; =N < [ < M]).

Then %\ is just the limit, over N > 0, of the formal completions of Yﬂ along
Y}, Since the de Rham complex with coefficients in the Z-module of distributions
along a subvariety depends only on the completion along this subvariety, we can
write

(4.4.5) DR(ip*wa1) = lim DR (iy; x .0y )[M],
— M,N B

where iy x @ Yy <> Y3, is the embedding. Note that 7y is just the embedding of
an affine subspace, so we are in the situation of Example 4.1.4.

Let DY} be the subalgebra in CD generated by a,, —N < n <M, and d,
—M < n < N. It i3 identified with the algebra of polynomial differential operators
on functions of a_y, ..., ay, with @, corresponding to 9/dq;. Similarly let CY, be
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generated by 4,, —N <n <M, and 4], —M < n < N. Denote (]DgI = Cﬂ Xy Dﬂ.

We see therefore that the (M, N)th term of the inductive system in (4.4.5) is
identified with

Vacy := CDy/(ar, i > 0; af,i > 0; 5})CDy;.

Denote by 13} the generator of this module. Then for N < N’ and any M
the embedding takes 1Y, to 1Y/, while for M < M’ and any N it takes 13
nto lﬁ,bMH...bM/. From the normal form of elements it is clear that CD =

—~

lim CD}, Vac =lim Vaq), and we are done since Vac = Vac. O
— M,N — M,N

5. Identification of the chiral de Rham complex

In this section we construct, in a geometric way, the structure of a vertex
algebra on the chiral de Rham complex €%%x and compare it with the con-
struction of [MSV].

5.1. Factorization algebras, and De Rham complexes on L (X)c

Let C be a smooth curve, as before. For any non-empty finite set I we set
UD = U AD = AW and jO = ;D see Sect. 3.2. Hereafter we write U, A,
instead of U®P, A® ;O if T has cardinal 2. We will need the following notation:
for any (possibly empty) I let I=10UQ be the corresponding pointed set. For any
surjection I — J we denote I — ] the surjection equal to I — J on I and taking O
to O. Let us recall the definition of a factorization algebra, see [BDI, Sect. 3.4].

5.1.1. Definittion. — (a) Let & be a quasi-coherent sheaf on C. A structure of a fac-
torization algebra on & is a collection of quasi-coherent Oci-modules & for each non-empty
Jinite set 1, such that & s flat along the diagonal strata, &y = &, and

— an isomorphism of Oci-modules vV A(J/I)*éj; &1 Jor every J — 1, compatible
with the compositions of J — 1,

— an wsomorphism of Oyym-modules

I UM (R, 4y 55 jIe g,

Jor every J = 1, compatible with the compositions of J —» 1, and compatible with v,

— a global section le € HY(C, &) such that for every f € & one has 1 X f €
i Ci (ERE) ad A(1sRS) =/,

(b) A module over & is a quasi-coherent sheaf M on C with a collection of quasi-
coherent  Oci-modules A for each non-empty finite set 1, such that A s flat along the
diagonal strata, Moy = M, and



254 MIKHAIL KAPRANOV, ERIC VASSEROT

— an 1somorphism of O i-modules pU/m o AU/ D*///j — M for every ] — 1, compatible
with the compositions of J — 1,
— an isomorphism of O\, -modules

5D :]'(J/I)*(([X]I(%Z) g///jo) ;j'(J/I)*///j

Jor every J — 1, compatible with the compositions of ] —» 1, and compatible with v, such that
— for any f € M one has 1o X f € Moy Chg (ERA) and AN*(1:K[f) =7.

We have the following immediate global counterpart of Sect. 4.4.

5.1.2. Proposition. — For any right Dx-module M there is a unique complex
CDR(M )1 of sheaves of Oci-modules on X x Cl such that:

(a) the fiber of COE(M ) at a pont of the curve C is isomorphic lo the complex
COH (M),

(b) the collection (€DPX(wx)c1) s a factorization algebra on the curve C. The collection
(CDL(M)1) s a (€DX(wx)cr)-module.

Proof. — A choice of an element 7 €1 defines a morphism of schemes p; 1 :
Z°X)a — X as follows. Recall that Z°(X)cr represents the functor A?{,cl which
takes a scheme S into the set of pairs (fi, p) where f;:S — C! is a morphism of
schemes and p is a morphism of @, the formal neighborhood of I'(f;) C SxC,
into X. Now, restricting p onto the graph of f,, which is a subscheme in F/(]?I)
isomorphic to S, we get a natural transformation from X?{,cl into the functor
represented by X, so a morphism p; ;.

Denote by 4 : LX)y = LX)y the embedding. For any .# € Dx, we
form the object (1p)e(pop)* A € Df(X)CI/Ci' The general construction of Sect. 4.3,

applied to the restrictions of (t1)e(po1)*# onto open subsets in X x C', gives then

a complex of sheaves on X x C' which we denote DL (M) .

Notice that in the particular case where .# = wx the object (p;,1)*# of the
category D o) /c1 is independent (up to a unique isomorphism) of the choice of
i € L. Indeed, objects of the latter category are, by definition, pairs (n, .#") where
A s a right Z-module on £°(X)a and two such pairs (n, A4) and (7, A
are isomorphic, if the pullbacks of A4 and A7 to ZL°(X)a, m > n,n/, are iso-
morphic as right Z-modules. Since the pullback for right Z-modules is just the
O-module pullback tensored with the relative canonical class, (p;1)°wx is repre-
sented by (7, ®20x),) for any n, and thus is clearly independent on 7.

Then, the general construction in Sect. 4.3 gives a complex of sheaves on
X x Cl, denoted by €2%(wx)c.
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To prove Claim (a) it is sufficient to observe that the fiber of Z(X)¢ at
a point 0 € C is isomorphic to Z(X). Recall that Z(X)¢ represents the con-
travariant functor Ax ¢ : Sch — Sets such that Ax ¢(S) is the set of pairs (f, p)
such that

f € Homsey(S,C) and  p € Hompo(P(/), Y ), X).
Thus the fiber at O represents the subfunctor

S = {(/s P € Ax,c(S) |/ (S)ea = {0}}.

Let ¢ be a local coordinate on C centered at 0. For any f as above we have
(I'( f),%j?/—) = (S, Os(())Y') and this proves (a). Note that the isomorphism of
Z(X) and the fiber of Z(X)¢ at 0 is compatible with the ind-pro-systems in
Sect. 1.7, 2.9.

(b) Both Z°(X)1 and £ (X))@ form factorization monoids in the categories
of ind-schemes. Since passing to the De Rham complex takes Cartesian products
of (ind-)schemes to tensor products of vector spaces, we see that (€Y% (wx)a)
form a factorization algebra.

Next, given any surjection ] — I and the corresponding surjection ] — I, we
have

(5.1.3) [[2X0, = 2Xe x [ [£Xer,

el i€l

the first factor in the RHS corresponding to 7 = Q. Let us use the notation k for
the factorization monoid structure of Z(X)c as in Definition 2.2.1. Then, with
respect to the identification (5.1.3), we have an isomorphism of Z-modules

kI (Do (po))* M = (o) M ® ®(L1f)'(p°’l").wx
el

over UJT — (I Using again the fact that passing to the De Rham complexes
takes Cartesian products to tensor products, we conclude that (€DZ (M) ) is
a factorization module over (€Y% (wx)c1). O

5.2. Remunder on chiral and vertex algebras

Let us recall the basic facts on chiral and vertex algebras. See [BDI1, Sect. 3],
[K] and [FLM] for more details. Let G be a smooth curve, as before. For any
right Zc-module .# the projection formula yields an isomorphism of right Zce-

modules A A*(wg R .A#) = At . Let
e JoJ (W X M) — A M
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be the composition of the projection j,j*(wc X ) — joj*(wc X )/ (wc R )
and of the isomorphism (j,j*(wc X .42))/(wc B ) = AA*(wc R M) = Ay M .

5.2.1. Defimtion. — (a) A chiral algebra over C is a right Z/2Z-graded Dc-module
o = A ® A with two even maps ., € Homp , (Joj*(d W &), A,) and 1, €
Homp,.(wc, &°) such that

— the map oy (1o, 1dy) cotncides with €.,

— the map o 15 antisymmelric, and it salisfies the Jacobi identity.

(b) A module over a chiral algebra o over C s a right Z/2Z-graded Dc-module A
with an even map w4 € Homp ,(joj* (' W M), Ay M) such that

— the map . 4(1os,1d z) coincides with € 4,

— the map W4 1s compatible with [ y.

For any factorization algebra on &, each sheaf & has a canonical left Zci-
module structure, compatible with the factorization structure, such that the section
lg 1s a horizontal, see [BDI1, Proposition 3.4.8]. It is proved in [BDI, Sect. 3.4.9]
that the right Zg-module & := & ®4, wc is a chiral algebra over C. The map
Mo 1s the composition of the chain of maps

joj.(éar IX é"’) :joj.a)CQ ®ﬁC2 éa{l,?} — Aowc ®ﬁC2 éa{l,?} = Aoéar-

Here the 1-st equality is the 2-nd isomorphism in Definition 5.1.1(a), the second
arrow 18 &,,, and the last equality results from the l-st isomorphism in Defin-
ition 5.1.1(a) and the projection formula for A.

5.2.2. Defimtion. — (a) A vertex algebra 1s a k-supervector space V with an even
vector 1y € V, an even endomorphism oy € End(V), and an even lnear map V —
End V)[[z, 271, ar a(z2) = Zn a,2 "' These data satisfy the jfollowing axioms:

= ov(ly) =0, Iv(z) =y, a(lyv) =0 y n=0, ai(ly) =a,

= [0y, a(2)] = 8.a(2),

— we have (z — w)Na(z), b(w)] =0 for N> 0.

We will also assume that for all elements a, b € V we have a,(b) =0 for n> 0.

(b) A module over a verlex algebra V is a k-supervector space W with an even endo-

morphism 3" € End (W), and an even linear map

V= End WLz, 2711, ar V() =) a7

These data satisfy the following axioms:
Ch@ =i ,
— [0V, dV(2)] = 3.4 (2) = (va)“(2),
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— (Borcherds identity)

- 1 — X / / _ —Z0+ 2z " ;
@'8(F2) @t @) — 5 8 ) @) () =

<0 <0
= 25(F )@ @),
where
zO—18<Z1 z—o ZQ) _ Z Z(_l)m(z)z(;ﬂ_lzln_ng'

meN neZ

Assume that C is the formal disk Speck[[t]]. Let O be the closed point of C.
Let 41, =t®1, 6 =1®1t be the coordinates on C>. We have the following basic
fact, due to Beilinson-Drinfeld (see [HL], [B] for details). Fix a vertex algebra V.
The A[[¢]]-module VI[[¢]] has a unique structure of vertex algebra such that

v = 0v+ 9, Ly = lv,  (@")(2) = (14 2)"a(2),
for any elements a« € V, n € Z. Let 24 be the sheaf on C associated to the
k[[¢]]-module VI[[¢]] - di. The sheaf @4, has a unique structure of a chiral algebra
over C such that the field 9, acts on .2, as the operator dyy;, and such that the
chiral product is induced by the map

V® V[[4, tQ]][(tl — 52)_1] — V[[4, tQ]][(tl - 52)_1]/\/[[51, b]]
which takes the element f(¢, t,)a X b, with f(4, ) € k(4 — &) and a,b € V, to
the element f (4, &)a(ty — t)(b) + VI[[4, &]]. Similarly, if W is a V-module then the
k[[¢]]-module WI[{]] has a natural structure of a V][[{]]-module, and the corres-
ponding sheaf .#y on C has a natural structure of a @4A,-module. Conversely, we
have the following.

5.2.3. Lemma. — Assume that G is a smooth curve. Fix a pomt 0 € C and a formal
coordinate t at 0.

(a) Let &/ be a chiral algebra on C. Assume that </ is a locally free Oc-module. The
Siber, V, of & at 0 has a umique structure of a vertex algebra such that the chiral algebra
JZ%V is l.SO?’I’LO?;b}ll.C to dlSpeck[[t]]'

(b) Let M be a module over a chiral algebra <7 on C. Assume that <of, M are
locally free Oc-modules. Let N, W be the fibers of </, M at 0. The space W has a unique
structure of a module over V, see Part (a), such that the <i;-module My is isomorphic to
M\ pec -

Thus, Proposition 5.1.2 gives the following

5.2.4. Theorem. — The De Rham complex €D%(wx) is a sheaf of vertex alge-
bras on X. For any right Dx-module M the De Rham complex CDE(M) s a sheaf of
CDX (wx)-modules.
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5.3. The vacuum module and the chiral de Rham complex

Here we recall the original construction of the chiral de Rham complex of
X as given in [MSV]. One first considers the case X = A?. Similarly to Ex-
ample 4.4.2, let CDY| be the Z/2Z-graded k-algebra generated by even elements
@i, @, and odd elements b;,, 67, with :=1,...,d and —N <»n <M for ¢, b;, and
—M < n <N for a, b?, modulo the relations

wm? “and

@ Gjn — &, @, = 8ﬁ8m,—m Cimin. — Ajnlim = a, & — a,a;, =0,

imn n“im im”~jn “nim
* * % % * Pk
bimbjﬂ + bjﬂbim - 8@'8771,—;” bimbjﬂ + bjnbim - blmbjn + bj'nbl‘m =0.

We further require that the letters ¢ and 4 commute in all cases. Let CD =

lim CDY,. Consider the super vector space £ with basis consisting of even
— MN
vectors vy, ...v; and odd vectors vy, ...v9. The space

b= (ke 1@ HE ' 1d) @ K & ky
is then a Lie super algebra over £ with respect to the brackets given by
[f ® v, 0@ 3] = §;Res(f - )y,
all other brackets being zero. It is clear that
CD =U(h)/(y — 1),
with @, > ot", @& > vt" ' dl, by > vigt", bt > v 0t"'dl Let also
b = (k(()) ® k()d) @ k" @ ky
with the bracket defined in the same way, and
CD=U®)/(y — D.
Obviously CD C CD. Let
bt = (@ M) @ £, b = IIA] @ HILA1d) ® k.

These are Abelian subalgebras in E, bh. Set CD'" = U(h*)CD, CD* = U(h*)CD.
The vacuum module Vac = 6]3/ éT)+, Vac = CD/CD™ are identified as in Propo-
sition 4.4.3(a). We denote by 1 € Vac (the vacuum vector) the image of 1 € CD.
As well-known, Vac has a structure of a vertex algebra such that the generating
series associated to the (-1)- and 0-modes of «;, b; are given by:

@ D@ =Y @, @H@ =Y a

nez neZ
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and similarly with (6, _;1)(2), (b}1)(2). The generating series associated to other
modes are obtained by differentiation, using the action of 9 given by

a(ain) = Na; p—1, a(d*) = (7’l - l)d*

n ,n—1°

and similarly for b}

wm?

biy. The map
§=Y . abi_,: Vac— Vac

i,n"in

is a derivation of vertex algebras with zero square.

Setting x; = a; makes Vac into a module over £[xi,...,x,], the coordinate
ring of AY. We denote this ring shortly by £[x]. In [MSV] the authors consider
the quasicoherent sheaf Qf, := Vac®q,) Oa¢ corresponding to k[x]-module Vac and
extend the vertex algebra structure to it. One also has a vertex algebra structure
on

Vac" := Vac Q. kl[x]].

Now let X be a smooth algebraic varietyy, U C X be an open subset and
¢ : U — A’ be an étale map. Let 0 € X be a point such that ¢(0) = 0 and let
X" be the formal neighborhood of 0 in X. Then x! = ¢*x; are the coordinates
on X",

In [MSV] the authors construct a sheaf Q¢ of differential vertex algebras
on X as the unique such sheaf satisfying the following condition. For any ¢ as
above, there is an isomorphism of vertex algebras

¢ch . Q;lé ®ﬁ¥ ﬁX/\ — d)*QZld ®@°Ad ﬁAd/\ = VCZC/\

which coincides, for U C A?, with the automorphism of Vac" introduced in [MSV,
Theorem 3.7]. Our aim in the rest of this paper is to prove the following fact.

5.3.1. Theorem. — There 1s an tsomorphism of sheaves of differential vertex algebras
Ql ~ CDR (wx).

5.4. The factorization algebra associated to the vacuum module

As the first step in proving Theorem 5.3.1, let us describe the factorization
algebra corresponding to Vac = T'(A?, QX@). In this, we follow [BDI1], [G]: the
constructions below are a particular instance of the general concept of the chiral
enveloping algebra of a Lie*-algebra. For the convenience of the reader we give
a self-contained presentation.

Fix a smooth projective curve C. Recall that w¢ is the sheaf of 1-forms on
C (in the Zariski topology). Let I be a finite set. Consider the product C! x C
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and its projections p, ¢ to C' and C. Let us specialize the notation of Sect. 2.3
to the case when S =C! and f; =1d: C' - Cl. We denote the subvariety T'(f;)
simply by

I = {((c), x) € C' x Clx € {¢;}}.
Similarly we write 07, " for 07, ;. Set
O = 07, Oy = poi"
o = p(O) @ d*we), ) = p(H" ® ¢ wc).

These are (non-quasicoherent) sheaves of @-modules on C!. Informally, the “fiber”
of, say, o, at a point (¢;) € C! is the space of sections of wc on the punctured
formal neighborhood of the set {¢}, and similarly in the other cases. Note that
the sum of residues defines a morphism

Resq) oy = O,

trivial on -
Consider the super-vector space £’ as in Sect. 5.3. The sheaf

b = (O © o)) ® Y @ O -y

is then a Lie superalgebra in the category of left Zci-modules, with respect to the
super-bracket

[ﬁé’\d, ﬁgld] _ [a)éld, a)éld] =0,
[Ui ®f, vj®w] =89~Res([i)(fa)) - Y, VfE ﬁc,\?’a)ea)g,
and with y being a central element. Similarly, let b C b; be the super-Lie sub-

algebra (O @ o) ® k97, For any surjective map J —» I there are obvious
isomorphisms

A(J/I)*hJ = br, ]'(J/I)*(thji) ;]'(J/I)*hj_

Let % be the quotient of the associative enveloping algebra of by, in the category
of left Yci-modules, by the right ideal generated by y — 1. Consider the sheaf

%Ccl = OZ/@I/%{;,

where %% C % is the right ideal generated by by. The collection (Yacci) is
clearly a factorization algebra. To simplify we may omit the subscript C, writing
Yac instead of Yacc.
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5.4.1. Lemma. — Vac s isomorphic, as a vertex algebra, to the fiber of the chiral
algebra Vac at any pomnt of C.

Proof — Fix a point 0 € C and a formal coordinate ¢ at 0. Let D =
Speck[[{]] be the formal neighborhood of 0 in C. We compute the chiral product,
i, on the right Zg-module %ac' := Yac ® g, wc. The scheme C x C is equipped
with the coordinates ¢ :=tX 1, z:= 1X¢ The O¢-module by is locally free, such
that

T, by = G @ kVd)[lz — 1, Az — )" 1@ K] - y.
Thus the map

(Z - t)mvi = Qim, (Z - t)mvi+d = bim’

*
m’

(z = 0" " vpgdz — b

m

z—0""vdz— a

extends uniquely to an isomorphism of A[[¢]]-vector spaces F(D,@/C):)CD[[t]],
where CD was defined in Sect. 6.3. Let 1, 1, 1c2 be the vacuum elements of Vae,
Yac, Vacce. We consider the unique isomorphism of CD[[{]]-modules I'(D, Yac)

—~>Vac[[t]] such that 1¢ +— 1.

The scheme C? x C is equipped with the local coordinates # := ¢ X 1,
z:=1K1¢ :=1,2. Put R=£[[#, &]]l. The Oc2:-module by 9, is locally free, such
that

F(D% by) = RY®RYd)[[z —t, z— bll[z— 1) (= 6) ']
®R-y

Let T; (resp. Ty) be the Taylor expansion

Rllz—t.z—6ll[G—0)"" =) (ht—n)"'] -
— R((z — £)((z — 1))

(resp. R((z— 4))((z — &))). The factorization map

Jo (i) = jeg* By X by

takes an element a € T'(D?,J,/°(hp1.9))) to (Ti(a), To(a)). It induces an action of
the sheaf of Lie algebras j,j*(h19) on joj*(Yac X Vac'). The factorization map

Joj*(Yad R Yac) = j,j° (Vacg,)
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is the unique morphism of sheaves of j,j*(h 9))-modules taking 1¢ X 1¢ to lco.
The chiral product p is the composition of the chain of maps

JoJ* (Vac ® Yac') =" (Yacge) — joj* (Vacy:) [ Vac, = AJA®(Vacy,)
= A,(Yac).

The right T'(D?, Zc2)-module T'(D?, A,(Yac')) is spanned by the formal symbols
a(t)8(t, — tp), for any a(t) € I'(D, Yac'), modulo the relations

(a()o(ty — ©))(9, + 8;,) = (a(t)3)(t; — 1),

(@()s(t — ) [, ) = (a() [, D)8l — b),
for any f(4, &) € kl[4, &]]. Fix b€ T'(D, Yac'). Note that

To(c—m)")==> -t z—n)"

m=>0

Hence,
(= )" (@ -11c) B b) = (-1 1) W b) (4 — b)"
= L anbhd(t — ).
Similarly, we get

(= 6)" (i 1) Rb) =Y biub 8ty — )3T,
meZ
u((t = 0)"(@le) R b) =) " albd(t — b)),
meZ
w((t — u)"(b5le) X b) Z b bt — tz)a(’” .
meZ
On the other hand, the chiral product associated to the vertex algebra V[[{]] is
the map

Vac ® Vac[t, tQ]][(tl - 52)_1] — Vad[t, tQ]][(tl - 52)_1]/\/46[[51, o]
taking (4, — &)"(a;—11) X b to

D @bl — 1),

meZ
where Bg")S(tl — &) stands for the element (¢4 — &)™™' + k[[#, t]], and similarly
for b;_y, af, b%. Thus, to prove that the chiral algebra ¥ac" is isomorphic to the
chiral algebra on D built from Vac as in Sect. 5.2 it is sufficient to check that
the corresponding right Zc-modules coincide. See [BD1, Remark 3.4.8.(1)] for an
elementary definition of the the canonical left Zc-module structure on 7Yac. By
construction we have 9,(1¢) = 0. It is easy to see that 9,(a;,1¢) = ma;,— ¢ for all
m < 0. Hence, the operators 3 on I'(D, Yac’) and Vac[[{]] coincide on a,,. The
case of &, bt

s br ., by, is similar. O
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5.5. The action of étale morphisms 1

To prove Theorem 5.3.1 in full generality, it suffices to establish the following
lemma. Let U C X be any affine open set and ¢ : U — A’ be any étale map.
Fix a point 0 € U such that ¢(0) = 0. Let X" be the formal neighborhood of 0.
In particular we write A% for (A9)".

5.5.1. Lemma. — (a) There is an isomorphism of differential vertex algebras Fy :
*Q, = XN ®py CDH (wx).
(b) If X = A? then F;l oFy = ¢y 15 the isomorphism constructed i [MSV].

The plan of the proof is as follows. We will construct an isomorpism (I})
of factorization algebras and obtain F; as the fiber of Fy; at a pomt of C. It is
enough to assume that C = A'. Set

CD; =T(A", %), CDf =T(A", %)),
DR(wy); = T(ZL(U)a1, €2%(wv)a), Vaa = T'(A!, Yaca).

Thus, Vae = CD;/CD;. If X =A? we introduce the algebra

CD; =lim CDxy,

— n,N
where
(5.5.2) A=HA", A¥=A[a); -N<i<n], XY=SpecAl,
see Example 4.4.2. Note that 6]51 is a subalgebra of CDy. Let

CD; =lim CDj
— N

N>
X”ﬂ

where CD;E};I is the right ideal generated by a,,(i), aﬁfi s b/(,i), b,{fiv with /> 0 and
—~ = o=+
Vae = CD;/CD; .

5.5.3. Lemma. — Vac is an irreducible CDy-module and the natural map of vector
spaces Vacy — Vacy s an somorphism.

Progf. — Trreducibility follows from the fact that CDxx/CD{y is irreducible
over GDxy. The isomorphism follows from the normal form of elements of Vag
and Vag. O
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Now, to prove Lemma 5.5.1 we will construct a right action
(5.5.4) DR (wy); ® CD; — DR(wy)r,

commuting with the factorization maps. To prove that the factorization algebras
(Yacp), (€D%(wy)ar) are isomorphic, it is then sufficient to check that the right
(?ﬁl—module DR(wy); has a cyclic vector whose annihilator is 6]3; Observe that,
since the map in Lemma 5.5.3 depends on ¢, the resulting isomorphism of sheaves

of vertex algebras ¢*Q% S kXM ®oy CDX(wx) will also depend on ¢.

AdN

5.5.5. Example. — First we consider the particular case where U = A’ and
¢ = id. What we do in this case is to provide an explicit identification of the
right CD-module DR(wye);. To simplify we set .Z = Z(A%)a1, etc. Then, in the
notations of (5.5.2),

Z, =1lim Spf (A’[[a}); —N < 1< 0]]),
—N

22 = Spec (A /(a1 1< 0))

vy ’ ZVI-H?/ ’

see (2.9.1), where we set N, = max{/; ¢_; # 0} for each ¢ € E. To simplify again
we set X& = X, Thus X§ is an affine space of finite dimension. There are closed
embeddings 2" C £ C X, Let i, : £ — X¢ be the composite embedding. We
write wgox: for the right Z-module 7,00 on X! Let 2% (o)) € Oy be the
subsheaf of 2% (w40 x:) consisting of the sections supported (scheme-theoretically)
on Z*. By definition,

lim 12, 20(af)) = lim T2, 980.50)) = DR -
Let us denote this space by DR(w,);. Hence,
DR(@p0)1 = lim DR(w,)i[nd],
and there is a right li_r)nNCng—action on DR(w,);, such that DR(w,); is the quo-

tient of lim CDxx by lim CD{y. Using (5.5.4) we get a right action of CD; on
— N ) — N n
DR (wae); such that

DR (wpe); =~ (,]\I/)I/(,]\I/)I+ -~ %CI = Vag,
thus achieving our goal in the case X = A’

5.5.6. Corollary. — Theorem 5.3.1 is true for X = A’.
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5.6. Etale change of coordinates i Clifford algebras

In order to prove Lemma 5.5.1 for general ¢ : U — A’ we need some
elementary observations about Clifford algebras.

If X is a smooth algebraic variety, we denote by $%x the sheaf of differential
operators in 2%, the commutative superalgebra of differential forms.

In particular, if X = A? with coordinates xi,...,x; then x,dy; are free
generators of (the algebra of global sections of) Q2% and we denote 0, = 9/dx;
and & = “0/0dx;,” the corresponding derivations, which are thus global sections of
%@Ad.

Let now U be an affine open subset of a smooth variety X, and let ¢ :
U — A’ be an étale map. Let ! = ¢*x; be the coordinate on X*. There are then
uniquely determined derivations 9/, &/ of Qx» such that

Set CDx~ = k[XA]®ﬁX<€.@X. The étale map ¢ gives an isomorphism of formal
schemes X" = A%". Let ¢ be the inverse isomorphism.

5.6.1. Lemma. — For any ¢ as above, there 1s a unmique k[X"]-algebra isomorphism
¢ 1 CDxr — ¢*CDpun
such that

Pu(dx) =D (v, Pu(E) =Y 0/ ($()E;.
J J

$e@) = 0G0+ Y 93D ()b duE,
J

kL
where ¢ = (P, ..., dy).

Proof. — It suffices to observe that, since the map ¢ is étale, CDx» is a free
k[ X"*]-module with basis

(3))(3)"™ -+ ()" @ (§))™ - -+ (E)™ (dx )" -+ - (dx)™,

where 7, m;, n, € N. Then use the coordinates change formulas, see [L, Chap. II]
for instance. O
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5.7. The action of étale morphisms II

Let now ¢ : U — A’ be a general étale morphism, with U affine. By (2.9.2)
we have an isomorphism of schemes

LB = L x g0 Z£)(U)a,  where L = 2 (A4

We will use freely the notations in Sect. 5.5, 5.6. There is an obvious map X\ —
LY, since %) = X) = SpecA), which restricts to the map Z° — %" when
N = N,. For any N, consider the fiber product

Xy = X x 20 LY (U

Denote by ¢ : XnN¢ — X the projection to the first factor. Being a base change
of an étale morphism %%(b)id 0 LU — £, see Proposition 2.9.3, the map
oY is étale. Set 0= {ay, = 0} € Homg(A!, XJ). Fix 0 € Homge (A", XJ,) mapping
to 0 by ¢N. Let Xg’A,Xg;Z,A be the formal neighborhoods of 0, and set
: : N, 0,

X = X" Xy XY, Xp" = XG0 X X
By Lemma 5.6.1 applied to @Y, we have a ring isomorphism

¢+ CDyxn — CDyx.
Let

CD; =lim CDy., CDp,=1lim CDyx,

’ —nN "

— N
so that the ¢ give a ring isomorphism
o | AN ~ A
¢y + CDpy — CDy.

Let also
CD;" =lim CD,,,

—> n’N n

where
CDgyr = X" @iy CDYy

and CD;;]V is introduced after (5.5.2). We have then the vacuum modules
Vae = é\ﬁf/é\ﬁfi

which form the factorization algebra corresponding to the vertex algebra Vac"
defined in Sect. 5.3. Note that

DR(@y) = lim DR, x3)nd]

and after tensoring with A[U"] we get a module DR(wy~); over (/-]\]-/)IA e
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5.7.1. Lemma. — With respect to the above structure of a C~DIA -module, DR (wyr);
is wsomorphic to Vac{.

Proof. — Tollows from the fact that each DR(w 200),XY) is isomorphic to the
vacuum module over CDXI\;> . O

Note that both DR(wyr); and Vae have distinguished generators. Namely
DR(wyr)r 1s the limit of an inductive system with the first term DR(wgoq) ,/a0-
But for any smooth morphism 7Z — S there is a canonical element ly5 in
DR(wzs) and we take 1} € DR(wy~); to be the image of 1 L0(U) /AT in the limit.
The generator 1{ € Va¢ is the image of 1 € (’]\l/)lA . We denote F; : Vag —
DR(wy~); the unique module isomorphism taking 17 to 1j. Let % : Yaq —
DX (wur)1 be the corresponding morphism of quasicoherent sheaves on ,,%O(U)Al.

5.7.2. Lemma. — The (%) commute with factorization maps and thus form an
wsomorphism of factorization algebras.

Proof. — Tollows from the fact that (1)) and (1) are compatible with fac-
torization structures: in the notation of Definition 5.1.1 we have J{J/I(ﬁli) = 1
and similarly for 1. O

Set I ={1}. Let F4 be the fiber of Fy, at the point 0 € A'. Lemma 5.7.2
implies that F, is a morphism of vertex algebras. This establishes part (a) of
Lemma 5.5.1.

We now prove Lemma 5.5.1(b). So we assume U C A? and need to com-
pare two automorphisms of the vertex algebra I'(U, Yac), namely F;loFId and ¢,,.
Notice that the vertex algebra Vac is strongly generated by the fields (a;_;1)(2),
(@) (2), (bi—11)(2), (b51)(2), see [K], and that I'(U, Yac) is obtained by localiza-
tion. Thus it i3 enough to compare the two automorpisms on the elements

(5.7.3) (a1 1), (@51), (bi_i1), (b51) € Vac.

Since U C A?, the sheaf of algebras (/-]\]-/)IA ¢ 1s 1dentified with (/i\]-jlA , SO ¢y 1s an
automorphism of the latter.

5.7.4. Lemma. — (a) The morphism @S, preserves (,]\IJ)IA " and thus induces an
automorphism ¢y1 © Vac — Vac].

(b) For 1 = {e}, the morphism of vertex algebras qul oFy : Vac® — Vac" is equal
to Gyo, which is the fiber over 0 € A" of the morphism ¢y1.

Progf — (a) is enough to verify for each @Y : CDX%A — CDXI\;A7 in which
case it follows from Lemma 5.6.1. Claim (b) follows from construction of Fy. O
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To prove Lemma 5.5.1(b) it suffices therefore to check that ¢u = ¢, on
elements (5.7.3). Recall that .4 (X)x1 = X xA! for any X. Hence, there is a com-

mutative diagram

XN X9, = UxA
o J 1o

This diagram induces a diagram of A-algebra homomorphisms

CDy; < CDyy,

2 \L \L ¢’8#
CDY/\ <~ CDXB/\

Note that the images of the elements (5.7.3) by ¢% and ¢f, coincide, modulo the
identification

* *
ao > X;, b > dx;, bi,—l = Si, a; _y — 0;.

On the other hand the images of the elements (5.7.3) by ¢, and ¢f, coincide,
see the formulas [MSV, (3.17)] for ¢, and Lemma 5.6.1 for ¢),. We are done.

O
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