$\underbrace{\mathbf{T}}_{=} \underbrace{\mathbf{A}}_{=} \underbrace{\mathbf{B}}_{=} \underbrace{\mathbf{L}}_{=} \underbrace{\mathbf{E}}_{=} \underbrace{\mathbf{D}}_{=} \underbrace{\mathbf{E}}_{=} \underbrace{\mathbf{S}}_{=} \underbrace{\mathbf{M}}_{=} \underbrace{\mathbf{A}}_{=} \underbrace{\mathbf{T}}_{=} \underbrace{\mathbf{I}}_{=} \underbrace{\mathbf{E}}_{=} \underbrace{\mathbf{E}}_{=} \underbrace{\mathbf{S}}_{=} \underbrace{\mathbf$

Seminaire Maurey-Schwartz

N° 1	B. MAUREY	Probabilités cylindriques, type et ordre. Applications radonifiantes.
N°2	L. SCHWARTZ	Les applications p-sommantes .
N°3	L. SCHWARTZ	Applications p-sommantes et p-radonifiantes.
N° 4	A. NAHOUM	Fonctions aléatoires linéaires. Théorème de dualité.
N° 5	B. MAUREY	Probabilités cylindriques stables sur les espaces L^p , $p \ge 2$ et applications du théorème de dualité.
N° 6	S. KWAPIEN	Sums of independent Banach space valued random variables (after J. Hoffmann-Jørgensen).
N° 7	B. MAUREY	Espaces de cotype p, $0 .$
N°8	S. KWAPIEN	Isomorphic characterizations of Hilbert spaces by orthogonal series with vector valued coefficients.
N° 9	L. SCHWARTZ	Applications O-radonifiantes.
N°10 N°11	B. MAUREY	Théorèmes de Nikishin : théorèmes de factorisation pour les applications linéaires à valeurs dans un espace $L^0(\Omega,\mu)$.
N° 12	B. MAUREY	Théorèmes de Nikishin : théorèmes de factorisation pour les applications linéaires à valeurs dans un espace $L^0(\Omega,\mu)$ (suite et fin).
N° 13	J. T. LAPRESTE	Idéaux d'opérateurs. Adjonction.
N°14	P. SAPHAR	Une caractérisation des sous-espaces de $\mathbf{L}^{\mathbf{p}}$ et ses applications.
N°15	B. MAUREY	Théorèmes de factorisation pour les opérateurs à valeurs dans un espace $L^p(\Omega,\mu)$, $0 .$
N°16	J. T. LAPRESTE	Opérateurs se factorisant par un espace L ^p d'après S. Kwapien.
N°16bi	s J. T. LAPRESTE	Opérateurs se factorisant par un espace L ^p d'après S. Kwapien (suite et fin).

N°17	B. MAUREY	Théorèmes de factorisation pour les opérateurs à valeurs dans un espace \mathbf{L}^p .
N°18	G. PISIER	Bases, suites lacunaires dans les espaces L ^p d'après Kadec et Pelczynski.
N°19	G. PISIER	Bases, suites lacunaires dans les espaces L^p d'après Kadec et Pelczynski (suite et fin).
N°20	H. P. ROSENTHAL	Exposé non rédigé.
N°21	B. MAUREY	Une lemme de H. P. Rosenthal.
N°22	B. MAUREY	Une nouvelle démonstration d'un théorème de Grothendieck.
N°23	B. MAUREY	Sur les sous-espaces de $\mathbf{L}^{\mathbf{p}}$, d'après H. P. Rosenthal.
N°24	A. NAHOUM	Applications radonifiantes dans l'espace des séries convergentes. I. Le théorème de Menchov.
N°25	A. NAHOUM	Applications radonifiantes dans l'espace des séries convergentes. II. Les résultats.
N°26	B. BEAUZAMY	Le théorème de Dvoretzky.
N°27	B. BEAUZAMY	Le théorème de Dvoretzky (suite).
Annex	ce G. PISIER	Sur les espaces qui ne contiennent pas de l_n^{∞} uniformément.